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Optimizing differential expression analysis
for proteomics data via high-performing
rules and ensemble inference

Hui Peng 1,2, He Wang 1,2, Weijia Kong 1,2, Jinyan Li 3 &
Wilson Wen Bin Goh 1,2,4,5,6

Identification of differentially expressed proteins in a proteomics workflow
typically encompasses five key steps: raw data quantification, expression
matrix construction, matrix normalization, missing value imputation (MVI),
and differential expression analysis. The plethora of options in each step
makes it challenging to identify optimal workflows that maximize the identi-
fication of differentially expressed proteins. To identify optimal workflows and
their common properties, we conduct an extensive study involving 34,576
combinatoric experiments on 24 gold standard spike-in datasets. Applying
frequent pattern mining techniques to top-ranked workflows, we uncover
high-performing rules that demonstrate optimality has conserved properties.
Via machine learning, we confirm optimal workflows are indeed predictable,
with average cross-validation F1 scores and Matthew’s correlation coefficients
surpassing 0.84.We introduce an ensemble inference to integrate results from
individual top-performing workflows for expanding differential proteome
coverage and resolve inconsistencies. Ensemble inference provides gains in
pAUC (up to 4.61%) and G-mean (up to 11.14%) and facilitates effective aggre-
gation of information across varied quantification approaches such as topN,
directLFQ, MaxLFQ intensities, and spectral counts. However, further devel-
opment and evaluation are needed to establish acceptable frameworks for
conducting ensemble inference on multiple proteomics workflows.

Differential expression analysis (DEA) for proteomics data is crucial for
accurate detection of phenotype-specific proteins, which canbe useful
in biomedical applications such as biomarker and drug target
discovery1,2. DEA workflows usually comprise five key steps: raw data
quantification, expression matrix construction, matrix normalization,
missing value imputation (MVI), and finally, conducting differential
expression analysis by means of a statistical method. In each step,
multiple options in terms of methods/tools are available (Fig. 1).

Selecting different options in each step can result in varied outcomes
in terms of differential protein reporting. Given the numerous com-
binations possible, identifying an optimal workflow suitable for one’s
data is challenging.

There have been prior efforts for identifying optimal workflows
or, at least, identification of some high-performing options specific to
certain steps in the DEA workflows. Each of these efforts have some
limitations: Langley et al.3 evaluated 7 DEA tools based on spectral
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count data, but did not consider the influence by other preprocessing
steps such as normalization and missing value imputation (MVI) or
intensity-based quantifications. Ramus et al.4 benchmarked 8 DDA
(data-dependent acquisition) workflows on their in-house yeast data-
set (YUltq819_LFQ as shown in Table 1) integrating different tools for
database search, protein assembly and validation, intensity-based
quantitation, and with two tools for DEA; however, the impact of the
data preprocessing methods was not fully considered. Välikangas
et al.5 integrated several proteomics data processing (identification
and quantification) software tools and evaluated 9 MVI algorithms.
However, only one DEA tool named ROTS6 was considered, thus ren-
dering their findings more suited for evaluating MVI methods only.
Fröhlich et al.7 concentrated on evaluating DIA (data-independent
acquisition) processing tools, integrating variousDIA processing tools,
4 normalization methods, and 7 DEA tools. However, their study did
not consider MVI algorithms. Lin et al.8 compared DEA performance
using tools originally designed for gene expression data, and con-
sidered MVI and quantification tools in their analysis but overlooked
normalization. Sticker et al.9 compared 7 DEA tools on spike-in data-
sets but ignored preprocessing methods. Dowell et al.10 generated
spike-in datasets to benchmark tool combinations, including acquisi-
tion methods, replicate number, statistical approach, and FDR (False
Discovery Rate) corrections11. However, the study was limited to only 2
DEA tools and one concentration contrast, while preprocessing was
not considered. Suomi et al.12 compared their DEA tool with three
others but did not address preprocessing and other steps.

Although insightful, these prior studies provide an incomplete
perspective, as they do not cover the gamut of steps in a workflow nor
are they sufficiently representative of the various proteomics plat-
forms available today. Hence, the impact of combinatorial synergies

between steps, e.g., normalization andMVI algorithms, remains poorly
understood. It is thus unsurprising that we do not understand what
differentiates a high performing workflow from a low performing one.
Under such circumstances, researchers are relegated to use published
ones from other studies. But this is also not a good solution as the
published workflow may not have been benchmarked, and thus,
optimality is not assured.

To identify optimal workflows for a wide gamut of proteomics
platforms (including label-free and labeled), we implemented a brute-
force approach to test all possible combinations of (readily available)
options/methods. The performance of each workflow combination is
attributed to what we define as a “quantification setting”, i.e., pairings
of a quantification platform and a data type, e.g., if an experiment
involved quantification by Maxquant13 and is a labeled Tandem Mass
Tags (TMT) experiment14, this setting will be encoded as “MQ_TMT”.
Unlike the other steps which can be easily changed, the quantification
settings reflect experimental conditions which are less flexible (these
settings were used for generating the rawdata already). Workflows are
benchmarked on a large assembly of spike-in datasets inclusive of
label-free DDA and DIA modes, or labeled TMT.

Here, we report that optimality is predictable, where workflow
performance levels can be classified accurately (average F1 score or
MCC score > 0.84) and workflow ranks generalize well to unseen
datasets (mean Spearman correlation coefficients > 0.56 between
ranks based on unseen datasets against benchmark datasets).

Next, some steps in a workflow are more important in determin-
ing outcomes in a setting-specific manner. Normalization and DEA
statistical methods exert greater influence than other steps for label-
free DDA data and TMT data. Whereas for label-free DIA data, the
matrix type is also important. We find that high-performing workflows
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Fig. 1 | Workflow for performing differential expression analysis (DEA) on
proteomics data. a The fivemain steps in a typical DEAworkflow. bQuantification
covers peptide identification, protein assembling and quantitative analysis on an
analysis platform, e.g., FragPipe25 for DDA or DIA-NN26 for DIA. c Selection of
quantification results to be expressed as a matrix containing spectral counts or
protein intensities. Available matrix types for each quantification platform are
located in a colored dashed box. d Normalization of raw expression matrix to

reduce systematic bias, e.g., by center.mean or by vsn64. e Imputation of missing
values, which includes methods such as missForest35. f Selection of suitable DEA
statistical tool, e.g., ROTS6 to identify differentially expressed proteins. In d–f, the
compared options in each step are grouped into different categories (shown in
boxes with different colors). Detailed descriptions of compared options in each
step are summarized in Supplementary Note 2.
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of label-free data are enriched for the directLFQ intensity15, no nor-
malization (referring only to distribution correction methods that are
not embedded with any particular settings), and incline SeqKNN16,17,
Impseq17,18, or MinProb19 (probabilisticminimum) for imputation while
eschewing simple statistical tools (e.g., ANOVA20, SAM21, and t-test22 are
enriched in low-performing workflows).

Finally, we report that workflow integration is beneficial for
expanding differential proteome coverage but is also a double-edged
sword. Given the increased attention to machine learning approaches,
we design an ensemble inference approach that integrates DEA results
from individual top-performing workflows. The ensemble approach
can increase true positives, leading to improvements of mean
pAUC(0.01) by 1.17–4.61% and improvements of the mean G-mean
scores by as high as 11.14% across six different quantification settings.
In particular, the integrationof top 1stworkflows using top0 intensities
(which incorporates all precursors) and intensities extracted with
directLFQ and MaxLFQ23 improves the DEA performance more than
any of the best single workflows did, gaining a pAUC(0.01) of 4.61%
under theMQ_DDA setting (usingMaxquant to quantify label-freeDDA
data). This suggests that while top0may not work as well as directLFQ
intensity in DEA workflows, combining these multiple workflows pro-
vides complementary information that enhances DEA outcomes.
However, the increase in true positives also comeswith the risk of false
positives. To mitigate such risks, further development on workflow
integration approaches is needed.

For users to study the impact of choices at each step of a DEA
workflowand facilitate thepractical usageof ourfindings, weprovide a
unique resource, OpDEA, to guideworkflow selection on newdatasets.
This tool is available at http://www.ai4pro.tech:3838/.

Results
Assembled benchmark proteomic datasets
We amassed 12 label-free DDA datasets, 5 TMT datasets, and 7 label-
free DIA datasets from different proteomics projects for assessing the
performance of DEA workflows (Table 1). This assemblage is, to the
best of our knowledge, themost comprehensive and largest collection
of benchmark data for workflow optimization across key proteomic
platforms andhas value for testingnovel algorithms.Wepackage these
datasets under the OpDEA resource at http://www.ai4pro.tech:3838.

Table 1 presents the dataset names (Dataset), dataset depository
identifier (ID), technique used for data generation (Technique), num-
ber of contrasts used for benchmarking (Contrasts), instrument type
of the spectrometer (Instrument), the mixture type (Mixture) and the
PubMed unique identifier of the publication reporting the dataset
(PMID) for each dataset. A contrast refers to an expression-level
comparison of two groups of proteins acquired from two different
samples. Thus, the contrast number in a dataset is equivalent to the
number of unique sample pairs contained therein.

For a specific spike-in dataset such as YUltq006_LFQ24, a total of
48 UPS1 (Universal Proteomics Standard 1) proteins spanning five
concentrationswere compared against the yeast backgroundproteins.
In this scenario, by selecting samples given 2 out of the 5 distinct
concentrations, 10 possible pairwise contrasts are generated (i.e.,
C2
5 = 10). Each of these selected contrasts is useful for the identification

of differentially expressed proteins during analysis.
To prevent the performance benchmark from being dominated

by any single dataset, we evaluated all contrasts in those datasets with
many contrasts, and then selected only a subset of these contrasts for
comparison. E.g., only 2 out of the 10 contrasts in YUltq006_LFQ were

Table 1 | Datasets used for workflow benchmarking

Dataset ID Technique Contrastsa Instrument Mixture PMIDb

HYE5600735_LFQ PXD028735c DDA 1 SCIEX Triple TOF5600 Human + yeast + E. coli 3535482531

HYE6600735_LFQ PXD028735 DDA 1 SCIEX Triple TOF6600 Human + yeast + E. coli 3535482531

HYEqe735_LFQ PXD028735 DDA 1 Orbitrap QE-HFX Human + yeast + E. coli 3535482531

HYEtims735_LFQ PXD028735 DDA 1 TimsToF pro Human + yeast + E. coli 3535482531

HYtims134_LFQ PXD036134 DDA 3 TimsToF pro Human + yeast 3654144083

HEtims425_LFQ PXD021425 DDA 3 TimsToF pro Human + E. coli 3437345784

YUltq006_LFQ PDC000006d DDA 2 LTQ-Orbitrap Yeast + UPS1 1985849924

YUltq099_LFQ PXD002099 DDA 2 LTQ Orbitrap Velos Yeast + UPS1 2632146385

YUltq819_LFQ PXD001819 DDA 3 LTQ Orbitrap Velos Yeast + UPS1 2686257486

HEqe408_LFQ PXD018408 DDA 1 Q Exactive Human + E. coli 3355386810

HYqfl683_LFQ PXD007683 DDA 3 Orbitrap Fusion Lumos Human + yeast 2963591687

HYEtims777_LFQ PXD014777 DDA 1 TimsToF pro Human + yeast + E. coli 3215679313

HYEtims735_DIA PXD028735 DIA 1 TimsToFpro Human + yeast + E. coli 3535482531

MYtims709_DIA PXD034709 DIA 3 TimsTOF Pro Mouse + yeast 3660950288

HEof_n600_DIA PXD026600 DIA 3 Orbitrap Fusion ETD UPS1 + E. coli 3447286589

HEof_w600_DIA PXD026600 DIA 3 Orbitrap Fusion ETD UPS1 + E. coli 3447286589

HYtims134_DIA PXD036134 DIA 3 TimsToF pro human+ yeast 3654144083

HEqe777_DIA PXD019777 DIA 3 Q Exactive HF Human + E. coli 3437345784

HEqe408_DIA PXD018408 DIA 1 Q Exactive Human + E. coli 3355386810

HEqe277_TMT10 PXD013277 TMT 3 Q Exactive Human + E. coli 3220541734

HYqfl683_TMT11 PXD007683 TMT 3 Orbitrap Fusion Lumos Human + yeast 2963591687

HYms2faims815_TMT16 PXD020815 TMT 3 Orbitrap Fusion Lumos Human+ yeast 3317554090

HYsps2815_TMT16 PXD020815 TMT 3 Orbitrap Fusion Lumos Human + yeast 3317554090

HYms2815_TMT16 PXD020815 TMT 3 Orbitrap Fusion Lumos Human + yeast 3317554090

aNumber of contrasts used for benchmarking.
bThe PubMed unique identifier of the publication reporting the dataset (https://pubmed.ncbi.nlm.nih.gov/).
cProteomeXchange ID (http://proteomecentral.proteomexchange.org/cgi/GetDataset).
dProteomic Data Commons Study Identifier (https://proteomic.datacommons.cancer.gov/pdc/).
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used. Altogether, we have 22, 15 and 17 contrasts representing DDA,
TMT and DIA platforms.

Due to compatibility considerations, we used the following
quantification software for specific proteomics platforms:

• Fragpipe25 and Maxquant13 for the DDA and TMT data.
• DIA-NN26 and Spectronaut27 (spt) for the DIA data.

For further details regarding workflows pertinent to each plat-
form, please refer to the “Methods” section.

Optimal workflows are predictable and are settings-specific
We evaluate workflows on five performance metrics (see the “Meth-
ods” section for details):

• Partial area under receiver operator characteristic curves
(pAUC)28 with false-positive rate (FPR) thresholds of 0.01, 0.05, or
0.1 (denoted as pAUC(0.01), pAUC(0.05), pAUC(0.1)).

• Normalized Matthew’s correlation coefficient (nMCC)29.
• Geometric mean of specificity and recall (G-mean)30.

For each workflow, we calculate each performance metric and
determine its corresponding mean value across benchmark datasets.
Each mean performance metric (regarding a particular workflow) is
then converted to a rank based on performance relative to other
workflows. A workflow’s final rank is determined by averaging the
ranks over the 5 performance metrics (see the “Methods” section).
The detailed rankings of the workflows are listed in Supplemen-
tary Data 2.

Figure 2a shows the distributions of performance metrics on
FragPipe-based workflows across DDA datasets (the specific combi-
nation of the data type and a quantification platform are defined as a
setting, e.g., FG_DDA refers to label-free DDA data quantified by
FragPipe). We observed wide performance gaps between top- and
bottom-ranked workflows (see our performance comparisons
between top-5%workflows and bottom-50% in Supplementary Fig. 3 of
Supplementary Information). The wide variability of performance
metrics suggests that selecting an appropriate workflow is important.

To test whether our benchmarking results can support workflow
recommendations for new datasets, we designed a leave-one-dataset-
out cross-validation (LODOCV) procedure to take advantage of our
assemblage of datasets in Table 1. LODOCV is a form of multiple vali-
dations, wherein each test round, one dataset is reserved for perfor-
mance testingwhile the remaining datasets areused formodel training
(see the “Methods” section). Although LODOCV takes the form of a
typical cross-validation procedure, there is an important distinction:
In cross-validation, a dataset of a single origin is split into
multiple components for the purpose of model tuning. In LODOCV,
the datasets are of multiple origins. In this regard, the LODOCV pro-
cedure is akin to performing several rounds of independent validation
and is more robust than typical procedures where only one indepen-
dent validation is performed for a trained model. To evaluate con-
sistency, we use the Spearman correlation coefficient (R) to compare
the workflow ranks obtained from the training dataset against the
validation dataset.

Figure 2b illustrates the results from one round of LODOCV. We
plot the ranks of workflows obtained from the validation dataset
HYEtims735_LFQ31 (under the setting FG_DDA, Table 1) against the
corresponding ranks from the remaining DDA datasets (training
datasets). In this comparison, a mean R of 0.72 was achieved, sug-
gesting the conservation of information. To summarize across all our
datasets, wepresent the overall LODOCV results tested under different
settings in Fig. 2c (and Supplementary Data 1).

The workflow ranks on TMT are quite stable where we obtained
~0.8 mean R regardless of whether FragPipe or Maxquant (FG_TMT or
MQ_TMT)wasused for quantification. AmeanR ~ 0.65was achievedon
DEA workflows for FG_DDA and MQ_DDA (label-free DDA data

quantified by Maxquant). For workflows based on DIANN_DIA and
spt_DIA (label-free DIA data quantified by DIA-NN and Spectronaut
respectively), a mean R of ~0.57 was obtained.

The mean ranks may be unstable if performance metrics are
sensitive to the choice of instrument. To assay this, we used the
Kruskal–Wallis test32 (see the “Methods” section). We plot 30 top-
performing workflows ranked by mean performance under different
settings against the log-transformed p values of the Kruskal–Wallis
tests (Fig. 2d). We conclude that under most circumstances, the
rankings of top workflows are not sensitive to instrument type (shown
as gray markers in Fig. 2d). However, some workflows involving DIA-
NN_DIA do show some sensitivity to instrument type, with 4 out of 30
workflows reporting p-values < 0.05, indicating significant ranking
position differences between instrument types (Supplemen-
tary Data 2).

Based on the LODOCV and determining that the workflow ranks
are not associated with instrument type, we conclude our bench-
marking ranks are stable and are positively correlated to actual
workflowperformances. This generalizable performance suggests that
optimal workflows are predictable and can be used to guide workflow
recommendations on future (unseen) data.

We observed that top-ranked workflows for settings FG_DDA,
MQ_DDA, FG_TMT, MQ_TMT, DIANN_DIA, and spt_DIA can sub-
stantially fall in performance rankings given changes in the four
remaining workflow steps. Figure 2e presents the top 2 workflows for
each matrix type under settings FG_DDA, MQ_DDA, DIANN_DIA, and
spt_DIA by theirmean pAUC(0.01) and G-mean scores (The top-ranked
workflows under FG_TMT and MQ_TMT are shown in Supplementary
Fig. 2 of Supplementary Information, see detailed descriptions of top-
ranked workflows in Supplementary Tables 1 and 2 of Supplementary
Information). The pAUC(0.01) and the G-mean are used as the repre-
sentative AUC-basedmetric and confusionmatrix-basedmetric for the
convenient visualization, results based on the three remaining per-
formance metrics can be found in Supplementary Tables 1 and 2 of
Supplementary Information. The label and its corresponding color
denote the DEA tool, normalization method, MVI algorithm and
expression matrix type used by the workflow. The overall workflow
rank position is shown in brackets.

Frequent patterns extracted from high-performing workflows
To discover decision rules enriched in top-ranked workflows, we used
machine learning. Under each setting, we encoded every workflow as a
feature vector where every option in a step is considered as a cate-
gorical feature value. We assigned each workflow a performance level
such as high (“H”), relatively high (“RH”), relatively low (“RL”), or low
(“L”); if its rank falls within the top 5%, between top 5% and top 25%,
between top 25% and 50%, and in the remaining 50%, respectively (see
Supplementary Data 3). We used these workflow feature vectors and
their labels to train a CatBoost classifier33 followed by 10-fold cross-
validation (we randomly split the workflows into 10 folds, and each
fold is evaluated against a trained classifier from the other 9 folds of
workflows, see the “Methods” section) for performance evalua-
tion (Fig. 3a).

Workflowperformance levels are predictable, with average F1 and
MCC scores above 0.84. To understand which features are important
for good prediction performance, we examined model feature
importance and found that model performance depends more on the
choice of normalization and DEA tool than on expression matrix type
and MVI algorithms for label-free DDA and TMT data (Fig. 3b; see
Supplementary Data 3 for more details). For label-free DIA data, nor-
malization and DEA are again important but the matrix type also
appears to be important.

As independentmeasures, feature importance (of each feature) is
not always linked directly to workflow performance. Interactions
between features can result in synergies or conflicts depending on
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n =  22 22 15 15 17 17

Fig. 2 | Performance distributions of workflows, leave-one-dataset-out cross-
validation (LODOCV) test results, and top-ranked workflows. a The perfor-
mance distribution of DDAdata quantified by FragPipe-based (FG_DDA)workflows.
b Presents an example to demonstrate the process of the leave-one-dataset-out
cross-validation, where the x-axis shows the averaged ranks of FG_DDA workflows
(across five metrics) obtained from dataset HYEtims735_LFQ; the y-axis shows
corresponding ranks obtained via benchmarking with mean performance of the
remaining datasets. A Spearman correlation of 0.72 with p-value < 2.2e−16 (two-
sided t-test) is obtained (N = 7852). c The distributions of LODOCV results under
different quantification settings. In the boxplots, the mean Spearman correlations
are marked by red triangles, centerline indicates the median, box limits indicate

upper and lower quartiles, whiskers indicate the 1.5 interquartile range. The num-
bers of points for each boxplot (n) are shown above the boxplots. d Displays the
Kruskal–Wallis (KW) test results checking whether workflow ranks are sensitive to
instrument types. The x-axis lists the ranks of the top 30workflows ranked bymean
performances. The y-axis shows the log-transformed p-value of the KW tests. Most
comparisons are non-significant, suggesting workflows are not sensitive to instru-
ment types. e Shows the top 2 workflows for each matrix type under FG_DDA,
MQ_DDA, DIANN_DIA, and spt_DIA settings. The color encodes the matrix type,
and the labels encode selection details on DEA, normalization, and MVI. The
overall ranks are shown in brackets. Source data of a–e are provided as a Source
Data file.
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their compatibility. We fitted linear models to investigate the interac-
tions between features and workflow ranks. In our linear model, the
options in each step of a workflow are set as predictor features, while
the performance ranks of the workflows are set as response features
(see the “Methods” section). Figure 3c displays the log-transformed p-
value against the log-transformed estimated increase in ranking scores
(calculated by Nminus ranking position; Nmeans the total number of
workflows) for FG_DDA workflows. The choices of DEA tools such as
limma, DEqMS34, etc., and concomitant selection of MVI algorithms
such as SeqKNN, missForest35, no-normalization or lossf36,37 normal-
ization, etc., can improve workflow ranks. In contrast, most normal-
ization methods coupled with MVI algorithms such as GMS38 and no-
imputation (no_imp) negatively impact rankings (linear model fitting
results for other settings are discussed in Supplementary Note 1 and
are listed in Supplementary Data 4).

To deep dive into the extent of the rank shifts, we extracted the
ANOVA20 tables from the linear models of the six settings to check the
ranking score differentiation induced by changing the workflow step
options (see the “Methods” section). Under setting FG_DDA, we
observed that the statistical testing based on the mean differences of
workflow groups formed from the options in each workflow step is
significant (p-value < 0.05). The F values (calculated as the ratio of the
between-group variance to the within-group variance, which is used to
indicate the impacts of options changes on workflow rankings) are

consistent with the feature importance scores obtained earlier (see
Supplementary Table 3). We observed similar conclusions in other
settings (Supplementary Fig. 4 and Supplementary Table 3 in Supple-
mentary Information and Supplementary Data 4).

The performance level classification and linear model fitting
demonstrated that optimal workflows were predictable and that cer-
tain options (and combinations of options) were associated with per-
formance. This gives us confidence to use more targeted approaches
to discover high-level rules or frequent patterns associated with high-
performing “H” workflows. These can, in turn, be directly used in
guiding workflow recommendations without being too explicit or
narrow.

We employed the Frequent Patten Growth (FP-growth)
algorithm39 (we also repeated the analyses on low-performing “L”
workflows for comparison) to study 393, 393, 236, 80, 315 and 315 “H”
workflows for FG_DDA, MQ_DDA, FG_TMT, MQ_TMT, DIANN_DIA and
spt_DIA respectively. Frequent patterns with a support ratio (SR,
defined as the fraction of the total workflows containing the pattern)
>0.30 are depicted in Fig. 3d (frequent patterns with SR ≥0.10 but
SR ≤0.30 are listed in Supplementary Data 5). We identified some
common frequent selection patterns for high-performing “H” work-
flows across various settings (cross-setting patterns). Normalization
methods “no_norm” (no additional normalization to data extracted by
quantification platforms with default settings, built-in normalization

n = 10 10 10 10 10 10 10 10 10 10 10 10

Fig. 3 |Machine learning and frequent patternmining provide insights into the
traits of high-performing workflows. a Shows the averaged 10-fold cross-valida-
tion F1 and MCC results for workflow classification using the CatBoost classifier.
The data shown in the barplots correspond to the geometric mean ± geometric SD
of the 10-fold cv. The points present the detailed performance in each round of the
10-fold cv (n = 10, see numbers above the x-axis).b Shows the feature importanceof
CatBoost classifiers in workflow classification. The 0 importance of “Matrix” under

MQ_TMT is due to only one Matrix type being available. c Shows how varying
options in each step of an FG_DDA workflow affect its performance ranking via a
linear regression model. The “Estimate” value provides the estimated coefficients
for each predictor variable in the linear model. The p-value is calculated by a two-
sided t-test. d Lists the discovered frequent patterns associated with high-
performing workflows across different settings (with support ratios higher than
0.3). Source data of a–d are provided as a Source Data file.
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may have been conducted, e.g., FragPipe enables “Normalize intensity
across runs” by default, more details see our Supplementary Note 2)
and “lossf”36,37, and DEA tool “limma” are frequently selected for all the
six settings with support ratio bigger than 0.10 (see Supplementary
Data 5). Among these, “no_norm” is always the most popular normal-
ization choice for “H”workflows of the various settings (MQ_DDA is the
only exception where its corresponding “H” workflows prefer the
inclusion of “lossf”). Normalizationmethod center.median (in addition
to “no_norm” and “lossf”), DEA tools ROTS and DEP (in addition to
“limma”), andmatrix types dlfq (directLFQ intensity) andLFQ (MaxLFQ
intensity23) are also frequently favored by “H” workflows under all 4
label-free data settings. In particular, dlfq is the most enriched
expression matrix type amongst “H” workflows under settings
FG_DDA, MQ_DDA, and DIANN_DIA, having SRs of 0.52, 0.52, and 0.60,
respectively (see Fig. 3d and Supplementary Data 5).

Frequent patterns related to MVI algorithms are more setting
specific. “MinDet” has the highest SR (0.13) amongst DIANN_DIA “H”
workflows. “SeqKNN”, “missForest”, and “Impseq” are favored MVI
methods by “H” workflows in both settings FG_DDA and MQ_DDA.
Limma is the most favored DEA tool amongst “H” workflows in the
FG_TMT setting (SR =0.43), in MQ_TMT (SR =0.38), and in FG_DDA
(SR =0.25), while ROTShashigh SRs in the “H”workflows under setting
MQ_DDA (SR =0.26), DIANN_DIA (SR =0.42) or under setting
spt_DIA (SR =0.65).

The frequent patternmining approach can also reveal interesting
synergies or avoidances. For example, no-normalization tends to be
associated with protein dlfq intensity in “H” workflows under all four
label-free settings (SRs ranging from 0.15 to 0.18) and is coupled with
LFQ in FG_DDA (SR = 0.11), DIANN_DIA (SR = 0.17) and in spt_DIA
(SR =0.19) “H” workflows. No-normalization is also associated with
three available matrix types of FG_TMT (SR = 0.20 for TMT-Integrator
abundance (abd), SR =0.14 for TMT-Integrator ratio (ratio) and SR =
0.19 for Philosopher intensity (phi))40. dlfq is associated with the DEA
tool ROTS in “H” workflows under all four label-free settings (SRs
ranging from 0.11 to 0.29) and is associated with limma in FG_DDA,
MQ_DDA, andDIANN_DIA “H”workflows. Similarly, LFQ is coupledwith
ROTS in DIANN_DIA and spt_DIA “H” workflows (more details pre-
sented in Supplementary Data 5).

When applying the FP-growth algorithm to “L” workflows (bot-
tom 50%) across different settings, we found that top3, top0, and
top1 (DIA only) intensities are enriched in label-free setting “L”
workflows. We also found that normalization methods “div.mean”,
“div.median” are enriched in FG_TMT and MQ_TMT while “quanti-
les.robust” is enriched in label-free setting “L” workflows. Simple
statistical tools, e.g., ANOVA, SAM, proDA, and t-test are enriched41

across all six settings (Supplementary Data 5). While this does not
mean these options are to be avoided completely, we think that the
inclusion of these options in workflows should be dealt with more
cautiously.

General usefulness of options across different workflow settings
Now thatwehave a senseofwhat optimalworkflows look like based on
associations with high DEA performance, we investigate the value of
each option per workflow step. This helps establish the usefulness of
an option over various workflow settings.

We opted to compare options in each workflow step via a pair-
wise comparison method (see the “Methods” section). The options
are compared across 5 performance metrics. Figure 4a shows an
example of a pairwise comparison of expression matrix types avail-
able for DIANN_DIA and spt_DIA based on pAUC(0.01) scores. The
pairwise difference of pAUC(0.01) for “dlfq-LFQ” is calculated by
subtracting the pAUC(0.01) score of a workflow using the expression
matrix LFQ from the pAUC(0.01) score of the corresponding work-
flow that has replaced LFQ with dlfq. We can infer that incorporating
the dlfq option is better than using LFQ under DIANN_DIA since the

mean pairwise difference is higher than 0 (red points in Fig. 4a).
Similarly, bothdlfq and LFQ are superior to top1 and top3. In addition,
top3 is better than top1. Based on these reciprocal comparisons, we
can derive the following rank order: 1:dlfq, 2:LFQ, 3:top3 and 4:top1.
These matrix types can also be ranked by the remaining 4 perfor-
mance metrics in the same way. Finally, the five performance metrics
are averaged to finalize the order of options in each step (see the
“Methods” section).

Expressionmatrix type: we find that dlfq always works the best on
label-free settings (not applicable to TMT data, as indicated by “NA” in
Fig. 4b), except for spt_DIA (LFQ works a little better than dlfq), fol-
lowed by LFQ. Under the setting, FG_TMT, the TMT-Integrator abun-
dance (abd) is better than the Philosopher intensity (phi) or TMT-
Integrator ratio (ratio) (Fig. 4b).

Normalization: it is surprising to find the “no normalization” (or
“none”) option works consistently well on every setting except
MQ_DDA (Fig. 4c). Does this suggest normalization methods are use-
less?We advise caution on this direct interpretation since the datasets
used are artificial spike-in datasets. Moreover, certain quantification
methods such as dlfq15, LFQ23 and TMT-Integrator42 have built-in pep-
tide-level or protein-level normalization steps. Thus, no additional
normalization is usually required when these quantification methods
have been used. The regression-based normalization method “lossf”
and the simple approach “center.median” demonstrate superior per-
formance compared to other methods. Thus, when normalization
becomes necessary, especially in cases where substantial variances are
observed among the samples within the same class, we recommend
employing these methods.

MVI: there is less consistency here as the performance ranks of
MVI algorithms vary widely across settings (Fig. 4d). We find that
missForest works well with FG_DDA (ranked 1st) and with MQ_DDA
(ranked 3rd). However, missForest is also the most time-consuming
algorithm compared to other top-ranked algorithms (the left heat-
map in Fig. 4d shows the running time, seeMethods). MinProbworks
well with MQ_TMT (ranked 1st), with FG_DDA (ranked 2nd) and with
FG_TMT (ranked 2nd). In addition, MinProb has the highest average
ranking across the six different settings (averaging ranks based on
the 6 settings shown in the last column of Fig. 4d, see the “Methods”
section formore details). This is not surprising, asMinProb addresses
missing-not-at-random (MNAR) missingness, which plagues pro-
teomics data43. MinDet (ranked 1st for DIANN_DIA and 2nd for
spt_DIA) and Impseq (ranked 3rd for DIANN_DIA and 1st for spt_DIA)
are good candidates for imputing DIA data, and they have good
overall ranks for various settings at the same time (average rankings
are 3rd and 2nd, respectively, see last column of Fig. 4d). No impu-
tation (“none” in Fig. 4d) works the best with FG_TMT and is the 3rd
top ranked MVI algorithm with MQ_TMT though it works quite bad
for the other 4 settings (ranked lower than 12th among the 16 algo-
rithms). This may be due to the low missing rates of TMT data
(average missing rate = 0.2%) compared to DIA data (average missing
rate of 3%) and DDA data (average missing rate of 17%, see Supple-
mentary Data 9).

Statistical tools for DEA: limma, ROTS, DEP, and proDA con-
sistently rank amongst the top4options across all 6 settings.However,
proDA runs much slower without appreciable performance gains
(Fig. 4e). Hence, from a practical perspective, the other 3 options are
preferable. For count-based DEA, plgem works best for both FG_DDA
and MQ_DDA. Though we did not compare protein intensity and
spectral count-based tools in DDA data DEA directly, we find that
trend-wise, spectral count-based workflows perform worse than pro-
tein intensity-based workflows (no high-performance workflows
involve spectral count). In Fig. 2e, the best count-based workflows of
FG_DDA and MQ_DDA are ranked lower than 1900 (among a total of
7852 workflows for each setting, see Supplementary Data 2). More
details are provided in Supplementary Data 6.
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Ensemble inference through integration of top-ranked
workflows improves DEA coverage
Top workflows do not report the same differential proteins. This is
especially true for workflows based on different expression matrices
(Fig. 2e, see comparisons in Supplementary Fig. 5 in Supplementary
Information). This led us to consider whether integration of multiple
high-performing DEA workflows is synergistic, i.e., allows us to expand
coverage on differentially expressed proteins. Data integration seems
to be beneficial, as exemplified in earlier studies where merging
intensity-based and spectral counts-based workflows produces
improvements in DEA performance, even without optimization44. To
explore the efficacy of amalgamating information from diverse work-
flows, we designed two ensemble inference approaches.

The first ensemble inference approach, “ens_multi-quant” inte-
grates DEA results from top1 workflows when different expression
matrix types are specified (this approach is not applicable to MQ_TMT
as only one expression matrix type is available). The other “ens_topk”
integrates DEA results from top-k workflows (see the “Methods” sec-
tion). Detailed comparisons of TOP1, ens_multi-quant, and ens_topk

under different settings are listed in Supplementary Note 1 and Sup-
plementary Data 7.

In general, ens_multi-quant improves performance (Fig. 5a). The
performance gains based on mean pAUC(0.01) range from 1.17% to
4.61% across different settings. For mean pAUC(0.05) and mean
pAUC(0.1), gains range from 0.95% to 4.46% and from 0.93% to 4.45%
were obtained. We observed gains in mean nMCC ranging from 1.00%
to 1.74% under settings MQ_DDA, FG_TMT, DIANN_DIA, and spt_DIA
while decreases of 1.51% were seen under FG_DDA. The performance
gain in terms of the mean G-mean score ranges from 5.79% to 11.14%
and is even more appreciable at 11.14% (or 11.63% if in terms of the
median performance) under DIANN_DIA. Although ens_topk improves
DEA performances under most settings, it is inferior to ens_multi-
quant. The improvement of the mean pAUC(0.01) score ranges from
0.04% to 2.93% (see more details in Supplementary Note 1 and Sup-
plementary Data 8). The hurdle model44 (which transforms p-values to
z-values and then combines the z-values into a χ2 statistic) for p-value
integration is more frequently applied than the Fisher’s method (see
Supplementary Data 8).

24394
24471

n= 24394
24471

24394
24471

24394
24471

24394
24471

24394
24471

Fig. 4 | Impact of expressionmatrix type, normalization, imputation, and DEA
tool on differential expression analysis performance. a Shows the distributions
of pAUC(0.01) differences between a pair ofmatrices shown in the x-axis. The “dlfq-
LFQ” in the x-axis indicates subtracting the pAUC(0.01) value of an LFQ-related
workflow by the corresponding dlfq-related workflow where only matrix types are
different between them. The colors of the boxplots show the settings of the
compared matrix types. In the boxplots, the mean differences are marked by red
points, centerline indicates the median, box limits indicate upper and lower quar-
tiles, whiskers indicate the 1.5 interquartile range. The numbers of points for each
boxplot (n) are shown above the boxplots. b–e Compare matrix types (b),

normalization methods (c), MVI algorithms (d), and DEA tools (e) under different
settings. The left side heatmaps in c–e present the running time (speed in second
(s), in the left heatmap) of the options testedwith the datasetHYEtims735_LFQ. The
colors in the heatmaps show the average ranks of the options in each step based on
five performance indicators. The labels in the heatmaps show the final rank posi-
tions of the options based on their average ranks. The last column of the heatmaps
in c–e shows the cross-setting average ranks (averaging six ranks of different set-
tings). Label “NA” means not applicable to the option under the specified setting
below the heatmaps. Source data of (a–e) are provided as a Source Data file.
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Comparisons within quantification settings and within
instrument types for differential expression analysis
Since we now have a means of predicting optimal pipelines across a
variety of settings, we may ask when optimized to maximize perfor-
mance if some settings are superior to others when it comes to DEA.
We compared workflows under labeled (FG_TMT and MQ_TMT) and
label-free settings, e.g., label-free DDA (FG_DDA and MQ_DDA) and
label-free DIA (DIANN_DIA and spt_DIA).

We chose datasets that are compatiblewith the evaluated settings
(see Table 1). The dataset HYEtims735_LFQ and HYEtims735_DIA
(generated with the same samples and instrument but acquired under
DDA and DIA mode, respectively (see Table 1 and Supplementary
Data 9) were used to compare settings FG_DDA, MQ_DDA, DIANN_DIA,
and spt_DIA. To facilitate comparisons across settings where

differential proteins are reportable, we pooled a reference protein list
by merging proteins detected under different settings. Then, for each
best workflow specific to a setting (prefixed top1), we calculated the
coverage of this reference protein list (see Methods).

From the top4 bars of Fig. 5b, we can see that the twoDIA settings
DIANN_DIA and spt_DIAworkbetter than theDDA settings FG_DDAand
MQ_DDA, with more true positives (TPs) and fewer false positives
(FPs). For example, DIANN_DIA detected 1178 more TPs (3734–2556)
than FG_DDA but found less than half the number of FPs (54 vs. 137).
Compared to MQ_DDA, the TP number reported by DIANN_DIA is
nearly quadrupled (3734 vs. 927), and the FP number is halved (54 vs.
134). Compared against DIANN_DIA, spt_DIA detected 632 less TPs
(3734–3102) and 7 less FPs (54–47). Based on another two pairs of
datasets (HEqe408_LFQ, HEqe408_DIA) and (HYtims134_LFQ,

n = 22 22 22 n = 22 22 22 n = 15 15 n = 15 15 15 n = 17 17 17 n = 17 17 17

n = 22 22 22 n = 22 22 22 n = 15 15 n = 15 15 15 n = 17 17 17 n = 17 17 17

Fig. 5 | Performance by ensemble inference is compared when settings and
instruments are varied. a Compares the performance by ensemble inferences
and those by top 1 single workflows under different settings. The red triangle
shows themean performance. TOP1 refers to the best workflow specific to a given
setting. Ens_multi-quant is an ensemble approach combining top1 workflows
using different expression matrices. Ens_topk is an ensemble approach integrat-
ing the top-ranked k workflows. In the boxplots, the mean performances are
marked by red triangles, centerline indicates the median, box limits indicate
upper and lower quartiles, whiskers indicate the 1.5 interquartile range. The
numbers of points for each boxplot (n) are shown above the boxplots.
b–d Compares the performances by the top-ranked workflows and the ensemble
inference workflows across different settings. The stacked bar plots in b–d show

the absolute counts of reported true positive (TP), true negative (TN), false
positive (FP), and false negative (FN) for differentially expressed proteins (DEPs).
b Compares the best workflows of DDA and DIA settings and investigates the
ensemble inference’s improvement in DEP detection. The label of the bar gives
the setting type, e.g., FG_DDA, or whether ens_multi-quant is used or not. Simi-
larly, c compares the DDA and TMT and ensemble inference-enabled DDA and
TMT best workflows. d shows the comparisons of instrument-specific (datasets
generated by a specific machine) best single workflows (labeled using a setting as
prefix and no suffix of “-ens”, e.g., spt_DIA_tims) with instrument-specific best
ens_multi-quant workflows (suffix as “-ens”) in the detection of DEPs. Source data
of a–d are provided as a Source Data file.
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HYtims134_DIA), we can observe similar performance that DIA works
better than DDA and FG_DDA works better than MQ_DDA. In addition,
DIANN_DIA works better than spt_DIA in 2 out of the 3 pair compar-
isons (see Supplementary Note 1 and Supplementary Data 10).

Only the dataset pair (HYqfl683_LFQ,HYqfl683_TMT11) is applicable
to compare with DDA settings and TMT settings. As seen from the top 4
bars of Fig. 5c, the TP numbers found by the TMT settings (1435 TPs for
FG_TMT and 1015 TPs forMQ_TMT) are nearly doubled that of eachDDA
setting (698 TPs for FG_DDA and 528 TPs for MQ_DDA). Again, much
fewer FPs were found by the TMT settings than the DDA settings (19 and
13 for FG_TMT and MQ_TMT vs. 178 and 47 for FG_DDA and MQ_DDA).

Given the multiple choices for the instruments, e.g., SCIEX Triple
TOF machines, Orbitrap QE-HFX, and TimsTOF pro, we ask which one
can maximize DEA performance. We adopted the 5 datasets from the
same project (ID PXD028735, see Table 1) to conduct such a cross-
instrument-cross-setting comparison (settings are indicated by the
prefixes, and instruments are indicated by the suffixes of the labels for
the top bars in Fig. 5d). The TimsTOF pro (suffix as _tims) worked the
best, discoveringmoreproteins (higher proteome coverage) andmore
TPs no matter under DDA or DIA acquisition modes (see Supplemen-
tary Data 11). SCIEX Triple TOF5600 (suffix as _st5600) detected
smaller numbers of TPs under both FG_DDA (582) and MQ_DDA (601)
quantification settings, which account for only about 20% of the
numbersof TimsTOFprowithDIA and 25%of the numbers ofTimsTOF
pro with FG_DDA. However, this machine also detected fewer FPs (16
with MQ_DDA and 26 with FG_DDA). SCIEX Triple TOF6600 (suffix as
_st6600) worked better than SCIEX Triple TOF5600 with about 200
more TPs and also more FPs (22 increased by MQ_DDA and 63 by
FG_DDA). OrbitrapQE-HFX (suffix as _qe) doubled the sizes of detected
TP numbers compared to SCIEX Triple TOF6600 and kept the same or
increased a little in FP numbers. It even detected more TPs than Tim-
sTOF pro under the quantification setting MQ_DDA (1626 vs. 927). In
conclusion, if possible, TimsTOF pro is recommended for proteomics
data analysis, otherwise Orbitrap QE-HFX is suggested.

We are also interested in whether the use of ensemble inference
can narrow the performance gaps caused by different settings or
instruments. The bottom bars in Fig. 5b–d display the TP and FP
numbers achieved by the best ensemble inferenceworkflows (suffix as
_ens), and these numbers are compared with the performances of the
single best workflows (see Methods). We can see that the ensemble
inference recoveredmore TPs than the single workflows except for the
TMT data analysis (FG_TMT_ens and MQ_TMT_ens only find 1 and 15
more TPs than FG_TMT and MQ_TMT respectively, see Fig. 5c). For
example, 150 (3884-3734) and 150 (3252-3102)moreTPswere reported
by DIANN_DIA_ens and spt_DIA_ens respectively than by DIANN_DIA
and spt_DIA (Fig. 5b). Impressively, the TP number gap due to using
Orbitrap QE-HFX and TimsTOF pro with setting MQ_DDA can be
completely closed, where MQ_DDA_ens reached the TP number from
927 (MQ_DDA) to 1607 (Fig. 5b), which is almost the same as
MQ_DDA_qe and FG_DDA_qe’s 1626 and 1811 (OrbitrapQE-HFX, Fig. 5c).
Similarly, ensemble inference has let Orbitrap QE-HFX (FG_DDA_q-
e_ens) to catch up with the performance of TimsTOF pro (FG_DDA_-
tims) in detecting TPs (2104 vs. 2556, Fig. 5d). In addition, FG_DDA_ens
(3096) detected similar numbers of TPs compared to spt_DIA (3102)
and spt_DIA_ens (3252). However, ensemble inference increases the
false positive rate at the same time. For instance, although FG_DDA_ens
found 540 (3096-2556)moreTPs thanFG_DDA, 485 (622-137)more FPs
were also recommended (Fig. 5b). FG_DDA_st6600_ens found 168
(1030-862)more TPs than FG_DDA_st6600with a sacrifice of detecting
391 (480-89) more FPs (Fig. 5c). We can see more successes in closing
performance gap (setting-specific) albeit with smaller false positive
rate increases when leveraging on ensemble inference, e.g.,
spt_DIA_ens recovered 214 more TPs but with only 26 more FPs com-
paring to spt_DIA testing on dataset HYtims134_DIA (see Supplemen-
tary Note 1). These evidences suggest that integrating different

quantification methods is a promising approach for improving DEA
performance.

Discussion
Recommendations and resources for selecting optimal
workflows
To the best of our knowledge, this is themost extensive benchmarking
study to determine if optimal workflows in proteomics arepredictable.
Based on our findings, we make the following recommendations for
specific quantification settings, considering average performance,
running time, and generalizability:

• For label-free DDA data quantified by FragPipe (i.e., setting
FG_DDA), we recommend a workflow combining protein
directLFQ intensity, no normalization (refers to no additional
normalization to data extracted with default quantification
settings), SeqKNN for MVI, and DEqMS or ROTS (or limma, if
running time is a concern) for DEA.

• For label-free DDA data quantified by Maxquant (i.e., setting
MQ_DDA), we recommend a workflow combining protein
directLFQ intensity, no normalization, Impseq for MVI, and
DEqMS or limma for DEA.

• For label-free DIA data quantified by DIA-NN (i.e., setting
DIANN_DIA), we recommend a workflow combining protein
directLFQ intensity, no normalization, MinDet forMVI, and limma
for the DEA (ROTS can be an alternative DEA method if running
time is not considered).

• For label-free DIA data quantified by Spectronaut (i.e., setting
spt_DIA), we recommend a workflow combining directLFQ
intensity, no normalization, Impseq for MVI, and ROTS for DEA.

• For TMT data quantified by FragPipe (i.e., setting FG_TMT), we
recommend a workflow combining TMT-Integrator abundance,
no normalization, SeqKNN for MVI, and limma for DEA.

• For TMTdata quantified byMaxquant, we recommend aworkflow
combining reporter intensity, nonormalization, bpca forMVI, and
proDA (or limma, if running time is a consideration) for DEA.

• For expression matrices without acquisition platform or quanti-
fication information, we recommend a workflow combining no
normalization, lossf, Rlr45, center.median for normalization
options, MinProb, SeqKNN, Impseq orMinDet forMVI, and limma
or ROTS for DEA.

• Label-free DIA and TMT are recommended for proteomics
experiment design as they are more accurate, with lower
missing rates, and have higher proteome coverages compared
to label-free DDA. However, we don’t have data to compare
between label-free DIA and TMT directly. The choice of label-free
DIA or TMT in experiment design should consider the level of
multiplexing required, the desired dynamic range, and the
budget.

For details on how we arrived at the recommendations
above, please refer to previous sections discussing the benchmarking
(Supplementary Note 1), the frequent pattern mining, options com-
parison in workflow steps, ensemble inference and cross-setting
comparisons.

Next, based on our data assemblage and benchmarking results,
we developed the following resources to help users identify optimal
workflows:

• To choose the best workflows based on our benchmarking results,
we implementedawebserverOpDEA(http://www.ai4pro.tech:3838),
a standalone tool and companion R package (https://github.
com/PennHui2016/OpDEA) to guide which workflow should be
used after specifying the quantification platform and/or the
preferred expression matrix types. Users can conduct single or
multiple DEA analyses with our server, standalone tool or the R
package directly. The results from multi-workflow-based DEA
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can be easily compared and integrated through our tool. The
datasets we used are also available through our webserver.

• Should users wish to try ensemble approaches, we recommend
using ens_multi-quant with label-free DDA and DIA data. We also
recommend combining the two advanced quantification meth-
ods, directLFQ and MaxLFQ, with top0 for DDA data or with top3
for DIA data via the hurdle approach.

• Should users requiremore flexibility andwish to inspect or access
the data for themselves, they can access the benchmarking results
directly in Supplementary Data 2. There is an additional benefit to
using the data directly—users can benchmark their own self-
definedworkflows against our data’s workflow ranking to evaluate
and improve their in-house workflows.

Ranked workflows provide a means for the identification of
algorithms associated with high-performance
Our study highlights the significant impact of quantification methods
(expression matrix type, especially for DIA data), normalization
methods, and DEA tools on DEA performance and, thus, the impor-
tance of paying attention to the selections in these steps. Moreover,
when anewmethodoralgorithm is published, it is often testedwithin a
narrow or specific context, whichmay be unduly favorable to itself. By
comprehensively investigating the impact of tool selections in each
important step of a workflow, we have ameans to assay if an algorithm
(or method) representing options for a workflow step is valuable.
Aggregating our observations, we find:

• Expression matrix types from advanced quantification methods
suchasdirectLFQandMaxLFQare superior to spectral counts and
topN, e.g, top1, top3 or top0 in DEA.

• Check data variance in advance to determine the need for data
normalization. Normalization performed surprisingly badly and
may even worsen the DEA performance. Some advanced quanti-
fication methods (directLFQ and MaxLFQ) have built-in peptide-
level or protein level normalizations, thus usually no additional
normalization is required. We recommend checking the distribu-
tions of the expression matrix in advance to determine whether
normalization is required (and not just do it routinely, especially
when it is not needed). If needed, regression-based normalization
methods, e.g., lossf andRlr, and center.median or center.mean are
good options.

• Simple MVI algorithms such as MinProb and MinDet work well
with DIA and TMT data. This is probably because most missing-
ness in proteomics data is attributable to missing-not-at-
random43,46. However, for bigger projects with many biological
and technical replicates, removing high-missing-rate replicates or
ignoring the missing values during the statistical analysis may be
safer for avoiding bias introduced by MVI algorithms47,48.

• DEA methods limma and ROTS are universally good, performing
well in any quantification setting. proDA, DEqMS, and DEP are
designed specifically for proteomics data and are superior to
generic (albeit simple) statistical methods such as t-tests and
ANOVA.However, proDA is very slowandmaynot be ready for big
data projects comprising thousands of samples.

Limitations
Algorithm parameter tuning. We maintained the default parameters
for every algorithm/method to maintain consistency in the evaluation
process. Moreover, these default parameters are supposed to be
optimized. It is possible that some parameter optimizationsmay result
in some rank changes, especially if the parameter changes are neces-
sary to fit the raw data better.

Several MVI and DEA tools in our evaluations do have tuneable
parameters, such as “k” for “knn” imputation49 or the number of
bootstrapping for ROTS6. While adjusting these parameters can affect
the final DEA performance, it also increases the time cost and may

require additional data for validation. This is not feasible for analysing
real-life data.

To avoid an explosion of simulations, it is useful to look into
adaptive parameter tuning approaches in future work to consider a
wider variety of options in our workflow simulations.

Spike-in data
We used spike-in data to benchmark workflows. Spike-in datasets
mainly simulate technical variation by producing technique replicates
for each sample. In real-world proteomics data, biological variation
always exists and may manifestly quite differently from technical var-
iance. The inability to simulate biological variation exactly may intro-
duce some degree of bias to our benchmarking results. However,
there is currently no universally accepted way of simulating biological
replicates. Attempting to do so at this time may invite skepticism.
There are some promising new approaches based on deep generative
models50 for in silico simulation of biological variation, we will look
at this closely for inclusion in our next round of benchmarking efforts.

Fidelity and applicability to the real world
Although we try to test as many datasets and methods as possible, it
does not mean the predictions and recommendations built on these
will work on any data. We cannot guarantee it. Real-world data is
complex (e.g., with more complex missing patterns, e.g., mixed by
MNAR and MCAR, and bigger cross-run variances) and covers many
situations (scenarios or sources or variation) that cannot exist in our
relatively simpler simulations. Though the conclusions drawn here
may not work universally, still, we think that OpDEA provides a useful
starting point as a recommendation resource. Researchers will no
longer need to simply copy a workflow from some other publication,
with no knowledge of whether the workflow really works well for their
owndata. In this regard, OpDEAhas the potential to positively enhance
proteomics research.

Ensemble inference as a prelude into the potential of multi-view
learning in proteomics
The ensemble inference methods we propose suggest there is value in
data maximization. The ensemble inference viewpoint works by inte-
grating information across multiple perspectives (or “views”) of pro-
teomics data. This approach takes its inspiration from a branch of AI
known as multi-view learning.

Our proposed ensemble inference method relies on simple p-
value combining approaches, e.g., the hurdle approach, to improve
DEA performance. While this approach, particularly ens_multi-quant,
increases coverage of differentially expressed proteins (DEPs), it also
increases false positives (Fig. 5b–d). Still, we think this is promising: As
multiple quantification results show complementary evidence in
recovering true positives, we think insteadof relyingmerely onp-value
combining, we should shift to and explore true multi-view learning
approaches involving machine learning and AI.

Multi-view learning combinesmultiple viewsof the sameobject to
improve generalization performance51, which has been widely used in
computer vision52, recommendation system53, bioinformatics54, etc. In
proteomics, the traditional approach is to only rely on one view of the
data (depending on what is the favored workflow). Wemay regard the
multiplequantification expressionmatrices asmultiple views and learn
via multi-view learning algorithms to improve DEA performance. With
the advent and ready accessibility of advanced computational frame-
works, we can easily execute various workflows processing different
views in parallel and integrate these perspectives with multi-view
learning AIs to improve the coverage, correctness, and interpretability
of findings. We think there is value in pursuing novel AI approaches to
maximize proteomics data by harnessing its multiple “views”. Being
able to predict the optimal workflows compatible with each view is a
necessary step.
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Methods
Quantitative analysis of mass spectrometry-based
proteomics data
DDA data quantification. FragPipe v20.0 was used with its default
quantification parameters. MSFragger-3.825 was adopted for database
search (using default parameters), in which contaminants and decoy
(sequence reverse) protein sequences were added to corresponding
libraries by Philosopher v5.0.040, e.g., 48 human UPS1 proteins +
reviewed UP000002311 Saccharomyces cerevisiae proteome from
uniport database55 for YUltq099_LFQ, YUltq819_LFQ and
YUltq006_LFQ datasets. More details about the databases used for
database search in our benchmarking are listed in Supplemen-
tary Table 1 of Supplementary Data 9. MSBooster-1.1.1156, Percolator
v3.0657 and ProteinProphet58 were used for peptide identification and
protein inference. For quantification, IonQuant-1.9.859 with the match
between runs (ion FDR of 0.01)60, normalize intensity across runs, and
MaxLFQ (minimum ions of 2)23 were used. For label-free DDA data, we
ran the quantification twice with the parameter “Top N ions” set as 0
and 3, respectively, to obtain the top0 (all precursors are considered)
and top3 (only top3 most intense precursors are considered) quanti-
fication intensities. Details of the parameters are listed in Supple-
mentaryNote 2. Thequantification results are stored infiles containing
identified peptides or proteins with their spectral counts or intensities
and other annotation information. We extracted expression levels of
identified proteins in the form of spectral counts or intensities and
organized them as a matrix by setting proteins as rows and samples as
columns. The cells hold the expression levels. This data structure is
referred to as an expression matrix, and it holds varied expression
information. In fact, four types of expression matrixes are obtainable
from FragPipe, including spectral counts, top0 intensities, top3
intensities, and MaxLFQ intensities calculated by the MaxLFQ
algorithm23. In addition, the directLFQ intensities were extracted with
the directLFQ algorithm15 (with the published directlfq tool: https://
github.com/MannLabs/directlfq).

MaxQuant v2.1.0.0 was used as an alternative quantification
platform for label-free DDA data13. Andromeda61 was applied for
database search. We kept most parameters default (see Supplemen-
tary Note 2 for more details) and used the same reference library as
FragPipe. Similarly, match between runs and MaxLFQ label-free
quantification algorithm were used. Again, spectral counts, protein
top0 and top3 (set the Top N peptides as 0 and check the Top3 option
of “Advanced site intensities”) intensities, and MaxLFQ intensities can
be acquired directly fromMaxquant’s “proteinGroups.txt” file for DEA.
The directLFQ intensities were also extracted with the directLFQ
algorithm15. We named the quantification analysis of DDA data with
FragPipe the quantification setting of “FG_DDA” and the quantification
analysis of DDA data with Maxquant the quantification setting
of “MQ_DDA”.

DIA data quantification. For DIA data, DIA-NN v1.8.1 was used for
quantification under its default parameters (see details in Supple-
mentary Note 2), and libraries were predicted from corresponding
databases26. Match between runs was checked, and we ran DIA-NN
under “Optimal results”mode. The top1 (most intenseprecursor-based
quantification), top3, and MaxLFQ intensities were extracted by the
“iq” R package62 (https://github.com/tvpham/iq), and the directLFQ
intensities were extracted by the directLFQ algorithm from the report
file of DIA-NN.

Spectronaut 1827 was used as an alternative platform for DIA data
quantification. We used the same sequence databases as DIA-NN used
and predicted libraries by Spectronaut 18 (used the directDIA27 work-
flow for quantification). Similar to DIA-NN, we extracted top1, top3,
MaxLFQ intensities with the “iq” package and extracted directLFQ
intensitieswith thedirectlfq tool from the reportfile of Spectronaut 18.
The detailed parameters are described in the Supplementary Note 2.

Similarly, the quantifications of DIA data with DIA-NN and Spectronaut
were named quantification settings “DIANN_DIA” and “spt_DIA” for
convenience.

TMT data quantification. Both FragPipe (v20.0) and Maxquant
(v2.4.4.0) were adopted for TMT quantification. For FragPipe, similar
to the DDA data quantification, we enabled the MSBooster, and per-
colator and ProteinProphet were used for peptide identification and
protein inference. The TMT-Integrator and the Philosopher were used
for quantification, with most of the parameters as default40. Detail
descriptions of the parameters are available in Supplementary Note 2.
We extracted the TMT-Integrator abundance and TMT-Integrator ratio
from the TMT-Integrator reports (in the tmt-report folder, https://
github.com/Nesvilab/TMT-Integrator), and the Philosopher intensities
were extracted from the “protein.tsv” file of the specified result folder.
For Maxquant, we selected the quantification type according to the
quantification level specified in the publication of the dataset, e.g., the
“Reporter ion MS2” with “10plex TMT” was selected for analyzing
dataset HEqe277_TMT10. Most of the other parameters were set as
default (see Supplementary Note 2 for detailed description). Only the
“Reporter intensity corrected” values were extracted from the “pro-
teinGroups.txt” file. We used “FG_TMT” and “MQ_TMT” to indicate the
quantification analysis of TMT data with FragPipe and Maxquant,
respectively.

Expression matrix type, normalization, imputation, and DEA
statistical tools used in benchmarking
For label-free DDA data quantified with FragPipe and Maxquant, five
types of expressionmatrices are obtainable, including spectral counts,
protein top0 and top3 intensities, MaxLFQ intensities calculated by
MaxLFQ algorithm23, and the directLFQ intensities15. As for DIA quan-
tification with DIA-NN or Spectronaut, four types of protein intensities
are obtainable, including top1, top3, MaxLFQ (LFQ), and directLFQ
(dlfq). For TMT data quantified by FragPipe, the TMT-Integrator
abundance (abd), TMT-Integrator ratio (ratio), and Philosopher
intensity (phi) are available, while for TMT data quantified by Max-
quant, only the reporter intensity (reporter) was used (see above
section and Figs. 1a, 2e and Supplementary Fig. 2).

Two preprocessing procedures (normalization and imputation)
are conducted (Fig. 1a). Many methods have been proposed to nor-
malize expression data and impute missing values. It’s impossible to
evaluate every normalization and imputation method. And so, only
popular and readily accessible ones were used.

For normalization methods, we used those found in the MSnbase
v2.22.0 R package63 including “sum”, “max”, “center.mean”, “cen-
ter.median”, “div.mean”, “div.median”, “quantiles”, “quantiles.robust”
and “vsn”(variance stabilization)64. The two regression-based normal-
ization methods “lossf”36,37 and “Rlr”45, the total ion current normal-
ization (TIC) and the Mean/Median-balanced quantile (MBQN)65

normalization methods were also evaluated (we conclude them in
Fig. 1d). If no normalization is used, then we designate the normal-
ization method as “none”.

For MVI methods, we also used those found in the MSnbase
v2.22.0 R package, such as “bpca” (Bayesian principal component
analysis)66, “knn” (k-nearest neighbors)49, “QRILC” (quantile regression
imputation of left-censored data)47, “MLE” (maximum likelihood
estimation)67, “MinDet” (deterministic minimum)19, “MinProb” (prob-
abilistic minimum)19, “min”68, “zero”19 and “nbavg” (neighbor
averaging)69, and another six popular imputation methods such as
mice (Multivariate imputation by chained equations)70, Impseq
(Sequential imputation)17,18, Impseqrob (Robust sequential
imputation)71, GMS (generalized mass spectrum missing peaks abun-
dance imputation)38, SeqKNN (sequential KNN imputation)16,17, mis-
sForest (random forest)35. Again, if no imputation is performed, we
designate the imputation method as “none”.
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We took DEA tools from those implementations in Bioconductor
v3.1572 and those we collected from published literature. From Bio-
conductor (Bioconductor—BiocViews: https://www.bioconductor.org/
packages/release/BiocViews.html#___DifferentialExpression), we used
DEA tools designed specifically for proteomicsdata.We chose themby
popularity, given their download numbers (their ranks are shown in
brackets; smaller means more popular). Our list includes DEP (272)73,
DEqMS (452)34, plgem (769)74, proDA (480)75. Popular and commonly
used DEA tools limma (15)76 and edgeR (25)77 are not originally
designed for proteomics data but are also downloaded quite fre-
quently andmade it into our list. Other general tools such as ANOVA20,
t-test21, beta_binomial78, MSstats79, SAM21, and ROTS6 are collected
from literature7,44 or related websites. Each DEA tool has a preferred
expression matrix type: edgeR, plgem, and beta_binomial are good
with spectral counts; while other tools are either agnostic or work well
directly with protein intensities. Some other DEA tools are more
demanding: MSstats and DEqMS require additional information
beyond protein intensities, whereas MSstats require feature-level
data79, and DEqMS needs peptide or spectral counts34. More descrip-
tions of the normalization, imputation, and DEA methods are pre-
sented in Supplementary Note 2.

In summary, for label-free DDA data, based on quantification
results from FragPipe orMaxquant, 7852workflows are compared (see
Supplementary Data 2 for detailed workflow lists), and for label-free
DIA data quantified with DIA-NN or Spectronaut, 6284 workflowswere
compared (Supplementary Data 2). In the case of TMT data quantified
by FragPipe, 4720 workflows were compared. In the case of Maxquant
used for quantification, 1584 workflows were compared.

Performance evaluation metrics
The prepared datasets were processed to produce corresponding
expression matrices (Fig. 1). These expression matrices were then
analyzed by workflows combining a particular expression matrix type,
normalization method, MVI algorithm and DEA tool. The
Benjamini–Hochberg method80 is used for FDR control if no built-in
method is applied.

Two types of performance measures were used, including partial
area under receiver operator characteristic curves (pAUC) and confu-
sion matrix-based metrics:

Partial area under receiver operator characteristic curves (pAUC).
The receiver operator characteristic curve (ROC) is generated by
plotting true positive rates (TPR) against false positive rates (FPR)
under various thresholds to classify samples into two categories28. The
area under the ROC (AUC) is a widely used performance indicator to
evaluate the power of a classifier in classification tasks. The partial AUC
is proposed for restricting the evaluation of given ROC curves in the
range of FPRs that are considered interesting for diagnostic
purposes28. In our performance evaluations, the confidence score of a
given protein to be a true differentially expressed protein is calculated
by 1-q-value, where q-value is its Benjamini–Hochberg adjusted
p-value. The FPR is restricted to FPR ≤0.01, FPR ≤0.05, and FPR ≤0.1,
respectively, to calculate three performance indicators, i.e.,
pAUC(0.01), pAUC(0.05), and pAUC(0.1) for a stricter performance
evaluation.

Confusion matrix-based evaluation. The classification metrics cal-
culated from the confusion matrix, such as the normalized Matthew’s
correlation coefficient (nMCC)29 and the geometric mean of specificity
and recall (G-mean)30 were used as additional evaluation indicators
where nMCC and G-mean are calculated as follows:

MCC=
TP×TN� FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTP+ FPÞðTP+FNÞðTN+FPÞðTN+FNÞ
p ð1Þ

nMCC=
1
2
ðMCC+ 1Þ ð2Þ

Specificity =
TN

FP+TN
ð3Þ

Recall =
TP

TP+FN
ð4Þ

G�mean=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Specificity × Recall

p
ð5Þ

where True Positive (TP) is the truly differentially expressed protein
has |logFC | ≥ log2(1.5) and q-value < 0.05, False Positive (FP) is the truly
non-differentially expressed protein has |logFC | ≥log2(1.5) and q-
value < 0.05, True Negative (TN) is the truly non-differentially
expressed protein that cannot pass the threshold of |logFC | ≥log2(1.5)
and q-value < 0.05 while False Negative (FN) is the truly differentially
expressed protein that cannot pass the threshold of |logFC | ≥log2(1.5)
and q-value < 0.05. The q-value is the FDR-adjusted p-value.

The metric pAUC is a rank-based global performance indicator
where its value is calculated by specifying an FPR range, e.g., ≤0.01.
However, in aDEA task, wemay always be interested in the reliability of
detected differentially expressed proteins at a given logFC and q-value
threshold but not an FPR range, which cannot be deciphered from the
pAUC score. Thus, we combined the confusion matrix-based metrics
nMCC and G-mean with the pAUC scores to conduct a more compre-
hensive performance evaluation.

Workflow ranking
Workflows were ranked by five performance metrics, including
pAUC(0.01), pAUC(0.05), pAUC(0.1), nMCC, and G-mean separately. A
workflow’s final rank is given by averaging its five ranks, as shown
below.

rankfinal =
rankpAUC 0:01ð Þ + rankpAUC 0:05ð Þ + rankpAUC 0:1ð Þ + ranknMCC + rankG�mean

5
ð6Þ

Leave-one-dataset-out cross-validation
To confirm whether our benchmarking results can be used for
recommending optimal workflows for newcoming datasets, we con-
duct the leave-one-dataset-out cross-validation (LODOCV). Taking the
label-free DDA data as an example, there are 12 datasets for bench-
marking (see Table 1 for more details). In a LODOCV, each time we use
11 out of 12 datasets to rank workflows (benchmarking), the contrasts
in the remaining dataset are regarded as newcoming datasets. We
calculated the Spearman correlation coefficient between the workflow
ranks based on benchmarking with the 11-datasets and the true
workflow ranks of the newcoming data. The higher the correlation is,
the more accurate recommendations could be made with our
benchmarking.

Kruskal–Wallis test
The biggest contrast number of the 24 gold standard datasets is 3.
Thus it is impossible for us to check whether the benchmarking is
sensitive to the dataset used for performance evaluation with statis-
tical methods (the group size is no bigger than 3). The DDA, DIA, and
TMT data were generated by different types of instruments (see
Table 1), e.g., newer ones such as Tims TOF or older ones such as LTQ
Orbitrap Velos. For the 20 contrasts (SCIEX Triple TOF5600 and SCIEX
Triple TOF6600 were excluded) of the 12 DDA datasets, we group
them into 3 categories, including Tims TOF pro (N = 8), LTQ-Orbitrap/
Velos (N = 7) and other Orbitrap machines (N = 5). Each of the 20 con-
trasts was used to rank the workflows based on the 5 indicators (above
benchmarking method). Then, we conducted the Kruskal–Wallis test32
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to check whether a workflow’s rankings based on the three groups of
contrasts have the same median at a threshold of p-value ≤0.05.
Similarly, for the 17 contrasts of the DIA data, 2 instrument groups are
available such as the Tims TOF pro (N = 7) and the other Orbitrap
machines (N = 10). For the TMTdata, we cannot split them into groups
with the minimum size requirement of N ≥ 5, so no Kruskal–Wallis test
was conducted.

CatBoost classification and the linear model
The CatBoost is a new gradient boosting toolkit supporting solving
categorical features-based machine learning tasks33. To confirm that
the performance level of a workflow is predictable with the informa-
tion of its option in each step, 10-fold cross-validation was applied to
validate the classification accuracy of a CatBoost classifier (with the
python package of CatBoost-1.2.2) in classifying workflows. We first
labeled the workflows as “H”, “RH”, “RL” and “L” if their ranking posi-
tions are located in the top 5%, 5–25%, 25–50%, and 50–100%,
respectively. Then, the workflows were encoded as feature vectors
with their options in each step as categorical features. At last, the
workflows were split into 10-folds randomly, and in each of the 10
rounds, 9 out of the 10 folds data were used to train the CatBoost
classifier and predict the performance levels of the workflows in the
remaining fold. The hyperparameters were mostly left as default, e.g.,
“iterations” of 1000, “depth” of 6, “l2_leaf_reg”, etc., while the “learning
rate”was set as 0.3 for speeding up the training. ThemetricsMCC and
F1-score were used as performance indicators and the average per-
formance of the 10-round was recorded. The feature importance was
evaluated by fitting the CatBoost classifier with all the workflows and
their labels. The F1-score is calculated by:

Precision=
TP

TP+FP
ð7Þ

F1 =
2 � Recall � Precision

Recall + Precision
ð8Þ

We also fitted linear models to check the interactions and syner-
gies of predictor variables, i.e., the options in each step (with dummy
coding where the categorical variables, e.g., the normalization, are
recoded into a set of separate binary variables) and the response
variable, i.e., the ranking score of a workflow. The ranking score is
calculated by:

ranking score =N � rankingposition ð9Þ

whereNmeans the number of workflows considered, e.g.,N = 7852 for
workflows accepting DDA data analyzed by FragPipe. Ranking position
means the number indicating the order of the performance of a
workflow among all the workflows. Ranking position of 1 means the
best, and smaller the better. The “Estimate” values (also known as
coefficients) are used to indicate the average increase in the response
variable associated with a one-unit increase in the predictor variable,
assuming all other predictor variables are held constant. Bigger
“Estimate” absolute value means higher impact of the predictor
variable on the response variable. Positive “Estimate” value means
positive impact; otherwise negative impact (see Supplementary
Note 1). The p-value < 0.05 indicates the predictor variable is
significant to the response variable. The interactions between
categorical variables are discussed in Supplementary Note 1.

We also extracted the classic ANOVA (analysis of variance)20 table
from the above linear model to check the affections of categorical
variables (i.e., expression matrix type, normalization, imputation, and
DEA tool) on the response variable. The F-value (the ratio of the var-
iation between sample means to the variation within the samples)
calculated from the F-test81 was used as the indicator of the impact of

category variable changes on the response variable. The p-value < 0.05
indicates the sample means are significantly different (see Supple-
mentary Note 1).

Frequent pattern growth algorithm
The frequent pattern growth algorithm (FP-growth)39 is a frequent-
pattern tree (FP-tree)-based mining method for mining the complete
set of frequent patterns by pattern fragment growth. It is efficient and
scalable for mining both long and short-frequent patterns. The Python
package mlxtend-0.23.0 was used to implement the FP-growth algo-
rithm. The support ratio (SR) is defined as the fraction of the total
items containing the pattern and is used tomeasure the popularity of a
pattern in all available items. We set the SR threshold as 0.1 (10%). The
FP-growth algorithm is used to extract patterns from both high-
performing workflows (with the label of “H” where they are ranked at
top 5%) and low-performing workflows (bottom 50% workflows with
labels of “L” workflows).

Comparisons among choices in a single step of a workflow
After obtaining quantification results from a quantification setting,
such as analysis of label-free DDA data with FragPipe (setting of
FG_DDA), a comprehensive DEA workflow integrates several key
selection steps, including:

(a) An expression matrix that contains the expression levels of
identified proteins;

(b) A normalization method to reduce bias or noise;
(c) An algorithm for imputing missing values in the selected

expression matrix;
(d) A DEA tool for conducting the final differential expression

analysis.
Each step plays a crucial role. To examine the impact of a parti-

cular step, we simply maintained the options for other steps while
varying the options of the step under investigation. To compare any
two options for a given step, e.g., protein top1 intensity and protein
MaxLFQ intensity in step (a), we calculated performance differences of
workflow pairs where they are alike in every other way except the
choice of option. Different options in each step can be ranked by their
pairwise comparisons. For a given step, we first count the frequencies
of the options winning in pairwise mean performance comparisons.
Then, the option with a bigger frequency will be ranked higher. If two
options have the same win frequencies, then their median perfor-
mances will be compared for ranking. All five performance indicators
were used to rank the options separately, the average rank of the 5
independent ranks was used as the final rank (similar to the above
workflow ranking).

Ensemble inference
We proposed two ensemble inference strategies: (1) integration of no
less than 2 of top 1st workflows using spectral counts, protein top0,
top3, MaxLFQ, and directLFQ intensities for label-free DDA data (we
name it ens_multi-quant), and (2) integration of top Kworkflows in our
overall rankings (ens_topk). For label-free DIA data, ens_multi-quant
integrates at least two of the top 1st workflows using top1, top3,
MaxLFQ, and directLFQ intensities. For TMT data, ens_multi-quant is
only applicable when FragPipe is used for quantification where TMT-
Integrator abundance, TMT-Integrator ratio, and Philosopher intensity
are available for integration. Usually, the log2 fold change (log2FC) and
FDR adjust p-value (q-value) are two key statistics to infer whether a
protein is differentially expressed; our ensemble inference should
integrate sub-workflows’ log2FCs and p-values into a log2FC and a p-
value (then calculate a q-value from the integrated p-value) as
ensembled statistics for the visited protein. For the integration of
log2FC, we choose the log2FC having the biggest absolute value
among all the sub-log2FCs as the ensembled log2FC. For p-values, five
methods were used.
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Hurdlemodel. The first one is Goeminne et al.’s hurdle model44 where
the p-values were transformed to z-values and combine them in a χ2

statistic:

χ2hurdle =
X

i= 1:K

z2i ð10Þ

where χ2 statistic follows a χ2 distribution with t degrees of freedom if t
out of K sub-p-values exist, and if t = 1, then the integrated p-value
equals to the existing one. Q-values will be obtained by an FDR-
adjustment with Benjamini–Hochberg’s method.

Fisher’smethod. The secondmethod is Fisher’s combined probability
test (Fisher’s method)82. Fisher’s method firstly combines K sub-p-
values as a χ2 statistic in the way of:

χ22K = � 2
X

i= 1:K

logpi ð11Þ

wherepi is the ith p-value, and χ2 has a chi-squared distributionwith 2K
degrees of freedom, then an integrated p-value can be determined.
Similarly, Benjamini–Hochberg adjusted p-values are calculated.

Voting methods. The remaining three methods are based on voting
strategies wherewe regard the K statistical tests asK voters. Anyone of
the K p-values pass the threshold e.g., p-value < 0.05, then we say the
integrated test is significant, so we use minimum p-value (min p) of
these K p-values as the integrated p-value. Similarly, if we adopt the
strictest condition where we request all K p-values should pass, then
maximum p-value (max p) is used as integrated p-value. The last one is
called majority win, where if more p-values pass then the integrated p-
valuepass, thus themedianofKp-values (medianp) is used. At last, a q-
value is obtained by the Benjamini–Hochberg method.

The ens_multi-quant workflows and ens_topk workflows are also
ranked in the same way as ranking single workflows according to the
five performance indicators.

Cross-setting and cross-instrument comparison
Workflows analyzing proteomics expression data obtained from six
quantification settings, e.g., FG_DDA, DIANN_DIA, etc., were bench-
marked separately since the protein lists from different settings are
always quite different as various peptide identification and protein
inference are adopted. In addition, the spike-in DDA, DIA, and TMT
datasets are always obtained from different proteomics projects and
generated by different instruments, making the direct comparisons of
DDA, DIA, and TMT quantification difficult.

Among the 24datasets, there are 4pairsofdatasets from the same
projects that used the same instrument but applied different quanti-
fication techniques, namely, the pair of HYEtims735_LFQ and HYE-
tims735_DIA, pair HYtims134_LFQ and HYtims134_DIA, pair
HEqe408_LFQ and HEqe408_DIA, and pair HYqfl683_LFQ and
HYqfl683_TMT11. The first 3 dataset pairs have been used to compare
settings of FG_DDA, MQ_DDA, DIANN_DIA, and spt_DIA, while the last
dataset pair is only suitable for comparing FG_DDA, MQ_DDA, with
FG_TMT, and MQ_TMT. To solve the problem of protein list incon-
sistency under distinct settings, wemerged all proteins from different
settings and removed those protein groups with more than one pro-
tein. The top 1st workflows under each setting were chosen for a fair
comparison, and the missing proteins from a specific setting com-
pared to the merged protein list were padded with logFC =0 and q-
value = 1 (all regarded as non-differentially expressed). The top 1st
ens_multi-quant was also compared. Thus, different top 1st workflows
for various settings can be compared by counting the numbers of true
positives (TPs), true negatives (TNs), false positives (FPs), and false
negatives (FNs).

The first 4 datasets HYE5600735_LFQ, HYE6600735_LFQ, HYE-
qe735_LFQ, and HYEtims735LFQ, together with HYEtims735_DIA were
generated by the proteomics project of PXD02873531 where the same
protein mixtures were digested under the same experimental condi-
tion and then submitted to different instruments. We thus also con-
ducted the cross-instrument comparison of the top 1st single
workflows and top 1st ens_multi-quant workflows of settings FG_DDA,
MQ_DDA, DIANN_DIA, and spt_DIA in the way like the above cross-
setting comparison.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw proteomics data used in this work can be downloaded under
the ProteomeXchange IDs or Proteomic Data Commons Study Iden-
tifiers listed in Table 1. The datasets HYE5600735_DDA,
HYE6600735_DDA, HYEqe735_DDA, HYEtims735_DDA, and HYE-
tims735_DIA used in this study are available in the PRIDE database
under accession code PXD028735. The datasets HYtims134_DDA and
HYtims134_DIA used in this study are available in the PRIDE database
under accession codePXD036134. ThedatasetHEtims425_DDAused in
this study is available in the PRIDE database under accession code
PXD021425. The dataset YUltq006_DDA used in this study is available
in the Proteomic Data Commons database under accession code
PDC000006 (https://proteomic.datacommons.cancer.gov/pdc/
TechnologyAdvancementStudies/). The dataset YUltq099_DDA used
in this study is available in the PRIDE database under accession code
PXD002099. The dataset YUltq819_DDA used in this study is available
in the PRIDE database under accession code PXD001819. The datasets
HEqe408_DDA andHEqe408_DIA used in this study are available in the
PRIDE database under accession code PXD018408. The datasets
HYqfl683_DDA and HYqfl683_TMT11 used in this study are available in
the PRIDE database under accession code PXD007683. The dataset
HYEtims777_DDA used in this study is available in the PRIDE database
under accession code PXD014777. The datasetMYtims709_DIA used in
this study is available in the PRIDE database under accession code
PXD034709. The datasets HEof_n600_DIA andHEof_w600_DIA used in
this study are available in the PRIDE database under accession code
PXD026600. The dataset HEqe777_DIAused in this study is available in
the PRIDE database under accession code PXD019777. The dataset
HEqe277_TMT10 used in this study is available in the PRIDE database
under accession code PXD013277. The datasets HYms2-
faims815_TMT16, HYsps2815_TMT16, and HYms2815_TMT16 used in
this study are available in the PRIDE database under accession code
PXD020815. More details of these datasets can be found in Table 1 in
Supplementary Data 9. All the quantification results, extracted
expressionmatrices, and our benchmarking results are available at our
website: http://www.ai4pro.tech:3838 or through Zenodo at https://
doi.org/10.5281/zenodo.10482353 for raw quantification results,
https://doi.org/10.5281/zenodo.10953347 for extracted expression
matrices and https://doi.org/10.5281/zenodo.10953480 for bench-
marking results. Source data for all the figures are provided with this
paper. Source data are provided with this paper.

Code availability
The Python and R codes used for benchmarking and data analysis are
available at https://github.com/PennHui2016/OpDEA/tree/main/
codes_DEA_benchmarking. The R package and its source codes of
our tool OpDEA are available at: https://github.com/PennHui2016/
OpDEA (or through Zenodo at https://doi.org/10.5281/zenodo.
10867031). The webserver is available at http://www.ai4pro.tech:
3838. The standalone tool is available at http://www.ai4pro.tech:3838
or through Zenodo at https://doi.org/10.5281/zenodo.10958381.
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