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scLENS: data-driven signal detection for
unbiased scRNA-seq data analysis

Hyun Kim1, Won Chang 2, Seok Joo Chae1,3, Jong-Eun Park 4, Minseok Seo5 &
Jae Kyoung Kim 1,3

Highdimensionality andnoise have limited the newbiological insights that can
be discovered in scRNA-seq data. While dimensionality reduction tools have
been developed to extract biological signals from the data, they often require
manual determination of signal dimension, introducing user bias. Further-
more, a common data preprocessing method, log normalization, can unin-
tentionally distort signals in the data. Here, we develop scLENS, a
dimensionality reduction tool that circumvents the long-standing issues of
signal distortion and manual input. Specifically, we identify the primary cause
of signal distortion during log normalization and effectively address it by
uniformizing cell vector lengthswith L2 normalization. Furthermore,weutilize
random matrix theory-based noise filtering and a signal robustness test to
enable data-driven determination of the threshold for signal dimensions. Our
method outperforms 11 widely used dimensionality reduction tools and per-
forms particularly well for challenging scRNA-seq datasets with high sparsity
and variability. To facilitate the use of scLENS, we provide a user-friendly
package that automates accurate signal detection of scRNA-seq data without
manual time-consuming tuning.

Single-cell sequencing, which encompasses genomic, transcriptomic,
proteomic, and epigenomic sequencing, is a prominent tool used
across biological research areas1–4. In particular, single-cell RNA
sequencing (scRNA-seq) data have been widely employed in diverse
downstream analyses, including clustering analysis for identifying cell-
type-specific phenotypes5–7, trajectory analysis for exploring cell dif-
ferentiation and development8,9, ligand-receptor network analysis for
investigating cell-to-cell communication10,11, and gene-oriented analy-
sis for gene regulatory network reconstruction12,13. Despite this wide-
spread use and utility, analysis of scRNA-seq data remains challenging
due to skewed and biased data distribution, stochastic dropout, and
technical noise14–19.

Skewness and bias in scRNA-seq data distribution can result in
overemphasis of highly expressed genes or prevalent cell types, lead-
ing to potential inaccuracies in downstream analysis, such as missing

rare cell types18,19. To mitigate skewness and bias in data, log normal-
ization has been widely used for data preprocessing (Fig. 1 left)15,16,20,21.
However, conventional log normalization can introduce false varia-
bility by amplifying gaps between zero and non-zero values and not
uniformly normalizing genes across different expression levels22,23.
These side effects potentially lead to false discoveries, such as the
misclassification of cells22. While alternative methods have been
developed, including Pearson residuals and count-based factor ana-
lysis models22–24, a recent study surprisingly demonstrated that the
performance of these approaches is sub-optimal compared to log
normalization15. This highlights the emerging necessity for alternative
approaches to log normalization.

Another difficulty in analyzing scRNA-seq data stems from its
sparsity, with a substantial portion of data entries being zeros, which
canpotentially exceed90% in somedata17–19. These zeros can represent
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either the actual absence of mRNA or a loss of information due to
dropout events17,25. To address the biologically irrelevant zeros intro-
duced by dropouts, various imputation methods have been widely
implemented25–29. Specifically, they either replace zeros with non-zero
values27,29,30 or employ zero-preserving imputation techniques to
retainmost zeros as signals25,26. However, such imputation approaches
can lead tomisinterpretation of data since they have the risk of biasing
data, leading to false signal17,28,30,31. Another approach is feature selec-
tion to reduce the number of zeros in the data by selecting highly
variable genes, but this approach often leads to a significant loss of
information contained in non-selected genes18,19,25.

Additionally, scRNA-seq data is generally high dimensional and
noisy14,19,32. To filter out noise and retain only the low-dimensional true
biological signals, various dimensionality reduction methods (DR
methods) have been developed. However, most DR methods require
subjective user decisions to set the threshold that differentiates signal
from noise (Fig. 1 left), introducing manual determination of dimen-
sion reduction8,20,21,33. Such user subjectivity can reduce the reliability
and reproducibility of the results, leading to inconsistent outcomes
across various analyses and thus compromising the objectivity of the

findings34. To address this limitation, recent studies have focused on
leveraging the inherent noise structure to remove noise without rely-
ing on subjective user input32,35,36. For instance, Aparicio et al. intro-
duced a denoising algorithm based on random matrix theory (RMT),
which automatically distinguishes signal from noise in scRNA-seq
data32. However, this method did not exhibit substantial performance
improvements when compared to existing approaches37. This under-
scores that not only effective noise filtering, but also accurate pre-
processing and removing low-quality signals are required to obtain
high-quality biological signals from scRNA-seq data.

In this study, we have developed scLENS (single-cell Low-
dimension Embedding using effective Noise Subtraction) which cap-
tures biological signals accurately and automatically (Fig. 1 right).
ScLENS comprises modified log normalization for unbiased pre-
processing and RMT-based noise filtering and post-filtering of signals
for data-driven signal detection (Fig. 1 right). Specifically, we found
that the most popular preprocessing method, log normalization, dis-
torts signals due to its inability to uniformize cell vector lengths. To
address this, we incorporated an additional L2 normalization step
following log normalization. RMT-based noise filtering was then
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Fig. 1 | Overview of scLENS (single-cell Low-dimensional embedding using the
effective Noise Subtract). Current dimensionality reduction methods employ log
normalization for data preprocessing, which can distort signals in data due to the
high level of sparsity and variance between cells (left). They then reduce the data
using various dimensionality reduction algorithms. However, during this process,
the majority of current methods require the user’s decision to set a threshold to
differentiate signals from noise. Due to signal distortion and manual signal

selection, current methods often fail to capture the high-dimensional data struc-
ture. In contrast, scLENS can prevent signal distortion by incorporating L2 nor-
malization (right). Furthermore, scLENS uses random matrix theory-based noise
filtering and signal robustness test-based filtering to automatically select signals
without manual selection. As a result, scLENS can perform accurate dimensionality
reduction without user bias.
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applied to the normalized data to automatically identify biologically
meaningful signals without user subjective choice. Among these sig-
nals, signals that were robust to binary sparse perturbation of data
were selected, effectively removing low-quality signals caused by
dropoutswithoutdatamanipulation. Byovercoming the long-standing
challenges in scRNA-seq analysis and the limitations of conventional
methods, scLENS outperforms existing downstream analysis tools
based on various preprocessing and DR methods8,20,21,23,27,32,33,38–40.
scLENS especially excels in analyzing complex data featuring high
levels of sparsity, cell’s total gene counts (TGC) variance, and non-
binary information. By automating accurate biological signal detec-
tion, eliminating the need for labor-intensive parameter tuning,
scLENS boosts downstream analysis of scRNA-seq data, fostering a
deeper understanding of complex biological processes.

Results
The application of conventional log normalization results in
excessive detection of the signals
Most popular analysis tools for scRNA-seq data, including Seurat,
Scanpy, and Monocle3, employ log normalization with various scaling
factors, typically greater than 1000 by default, as a preprocessing step
to address bias and skewness in data8,20,21. They then reduce the
dimensionality of data to capture true biological signals byfiltering out
noise16,18. During this process, setting a threshold for distinguishing
signal fromnoise is crucial. However, inmost cases, this decision is left
to the user8,20,21,33. To circumvent this subjective choice, we employed a
recently developednoisefilteringmethodbasedon the randommatrix
theory (RMT-based noise filtering)32. RMT-based noise filtering pro-
vides a data-driven threshold that distinguishes biological signals from
random noise in the data (Fig. 2a). Specifically, we first preprocessed
the data using log normalization. Then, by multiplying the log-
normalized data by its transpose, we calculated the cell similarity
matrix (Fig. 2b). Subsequently, using the Eigenvalue Decomposition
(EVD) algorithm, a comprehensive set of eigenvalues of the cell simi-
larity matrix was obtained (Fig. 2c). These values were fitted to a
Marchenko-Pastur (MP) distribution, a universal distribution of
eigenvalues obtained from random matrices. Eigenvalues conforming
to the MP distribution are considered to be noise from a random
matrix, while those deviating from theMP distribution, surpassing the
threshold of the Tracy-Widom (TW) distribution (vertical line in
Fig. 2c), are considered to be potential biological signals32,41. Using 33
detected signal eigenvalues and their corresponding eigenvectors, i.e.,
signal vectors (matrix shown in Fig. 2c), low-dimensional data can be
obtained. However, the 2D embedding obtained with UMAP on the
low-dimensional data failed to capture the high-dimensional data
structure precisely (Fig. 2d). We suspected this inaccuracy arises from
the excessive number of detected signals, which is overly abundant for
differentiating merely three clusters (Fig. 2c).

L2 normalization prevents signal distortion due to conventional
log normalization
To findout the causeof this excessive signal detection, we constructed
a 2000by 2000purenoise randommatrixwith elements drawn froma
Poisson distributionwith amean of 2 (Fig. 2e).When log normalization
was applied to the matrix, all eigenvalues of its cell similarity matrix
(Fig. 2f) followed the MP distribution, i.e., no signal was detected
(Fig. 2g). This can be understood from the cell similarity matrix
(Fig. 2f), whose elements are defined as the inner product between two
cell vectors, with each vector being an array of normalized gene
expression levels from a single cell. As a result, the diagonal elements
in this matrix represent the square of the lengths of the cell vectors,
which are comparable to each other due to log normalization (Fig. 2f).
This general structure allows off-diagonal elements in the matrix to be
interpreted as the directional similarity between cell vectors. Thus, off-
diagonal elements close to zero in the matrix (Fig. 2f) indicate no

substantial directional similarity between cells, explaining the absence
of signal (Fig. 2g). Next, we concatenated the dense random matrix
(Fig. 2e) and the sparse binary matrix with the size 2000 by 8000 to
reflect thehigh sparsity of scRNA-seq (Fig. 2h).When lognormalization
was applied to this sparse random matrix, no signal was detected
again, indicating that signal distortion does not occur even when data
shows high sparsity (Fig. 2i, j).

To further reflect the bias in the cell’s TGC in scRNA-seq data, we
divided the first 400 rows of the dense part of the random sparse
matrixby two, resulting in a cell groupof lowTGC (Fig. 2k). Suchbias in
the TGC, i.e., the differences in sequencing depth, was expected to be
removed by the log normalization. However, unexpectedly, ~400 sig-
nals, surpassing the TW threshold, were detected (Fig. 2m). As the
number of detected signalsmatches the number of cells with low TGC,
we hypothesized that cells with low TGC are associated with artificial
signals. We noticed that 400 diagonal elements of the cell similarity
matrix corresponding to cells with low TGCweremuch larger than the
other diagonal elements (Fig. 2l, red box), unlike the cell similarity
matrix of the dense random matrix (Fig. 2f) and the sparse random
matrix (Fig. 2i). Thismeans that the lengths of 400cell vectorswith low
TGC are much longer than that of the other 1600 cell vectors. As a
result, the inner products with the long 400 cell vectors (Fig. 2l, red
box) became larger than those with the other cell vectors (Fig. 2l,
outside of the red box). In short, the cell similarity matrix no longer
accurately reflects the directional similarity among the cell vectors. In
particular, the increased inner products with the low TGC vectors,
caused by the exaggerated lengths of the low TGC vectors (Fig. 2l),
created an artificial directionality toward the low TGC vectors. This
explains why the 400 eigenvalues of the cell similarity matrix sur-
passed the TW threshold (Fig. 2m). Such distortion of the signal
became higher as higher levels of sparsity and TGC variance were
introduced to random matrix (Supplementary Fig. 1).

The signal distortion occurs because log normalization fails to
introduce uniformity to cell vector lengths when a matrix is highly
sparse and has a bias in TGC, which is typical of scRNA-seq data14,16,18,19.
This is surprising because during the first step of log normalization,
library size normalization eliminates cell-specific bias in data by
dividing gene expression in each cell by its TGC (i.e., step normalizes
the cell vector lengths)15,16,18,21. However, we found that this library size
normalization is disrupted by the follow-up gene scaling step because
it over-amplifies non-zero values in genes containing many zeros,
especially in cells with low TGCs (Supplementary Fig. 2).

Thus, to uniformize the lengths of cell vectors, we added L2
normalization after gene scaling. Although L2 normalization is a very
simple approach, it removed all artificial signals effectively (Fig. 2n, o,
Supplementary Fig. 1). Next, we tested whether L2 normalization can
improve the low-dimensional embedding in Fig. 2d. When L2 normal-
ization was applied to the log-normalized data, cell vector lengths
became identical (Fig. 2p), and thus the number of detected signals
was considerably reduced, from 33 (Fig. 2c) to 6 (Fig. 2q). This yielded
2D embedding (Fig. 2r), which more accurately portrays the high-
dimensional data structure compared to previous one (Fig. 2d). How-
ever, overlaps between clusters still existed in 2D embedding, limiting
resolution (Fig. 2r).

Signal robustness test filters out low-quality signals due to
non-biological zeros
Despite considerable improvement after L2 normalization, we still
observed some overlap between the sub-clusters (Fig. 3a–c). We
hypothesized that this sub-optimal result stems from the noise asso-
ciated with the biologically irrelevant zeros because some zeros in
scRNA-seq data are caused by stochastic dropout events rather than
biological zeros. To handle biologically irrelevant zeros, various
imputation methods have been developed25–29. However, every impu-
tation technique unavoidably alters the original data, potentially
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leading to the misinterpretation of the biological information con-
tained within the data17,28,30,31. Thus, we developed an alternative
method that preserves the original data while filtering out low-quality
signals contaminated by biologically irrelevant zeros.

We found that the low-quality signals mainly stem from low
expression of genes that do not share a strong common expression
pattern across cells (Supplementary Fig. 3). Thus, they are expected to

be susceptible to slight perturbation of data, which can mask the
spurious correlations of sparse genes. To introduce slight perturba-
tions to the original data, we generated a binary (0 or 1) randommatrix
with a sparsity level of 0.97 or greater and added it to the original
countmatrix (Fig. 3d).We then quantified howmuch the signal vectors
(Fig. 3e) are perturbed by calculating the absolute inner product
between all signal vectors from the unperturbed data and all
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eigenvectors from theperturbeddata (Fig. 3f (i)). Next, we constructed
the column-wise maximum vector of the inner product matrix (Fig. 3f
(ii)), whose i-th component represents the inner product between the
i-th signal vector and itsmost similar eigenvector fromperturbeddata.
We obtainedmultiple column-wisemaximum vectors by repeating the
processwith different perturbationmatrices and then used theirmean
vector to indicate the stability of signal vectors (Fig. 3f (iii)). In parti-
cular, a large i-th component of themean vector indicates that the i-th
signal vector is robust against the data perturbation (Fig. 3f (iii), red
arrows). Utilizing only these three robust signals (Fig. 3f (iii), red box)
among six signals detected using RMT-based signal filtering (Fig. 3b)
enabled accurate distinction of three clusters without any overlaps
between them in the 2D embedding (Fig. 3g). This result underscores
that selecting the correct number of signals is essential for the suc-
cessful downstream analysis.

scLENS (single-cell Low-dimensional Embedding using effective
Noise Subtraction)
By integrating log normalization and L2 normalization into scRNA-seq
data preprocessing, along with implementing signal detection using
RMT-based noise filtering and a signal robustness test, we developed a
dimensionality reduction tool, scLENS (single-cell Low-dimensional
Embedding using effective Noise Subtraction). To facilitate the use of
scLENS, we provide a user-friendly computational package that auto-
mates dimensionality reduction, thus bypassing the need for labor-
intensive and time-consuming parameter tuning (see Supplementary
Information for manuals).

We evaluated the performance of scLENS on real data using
ZhengMix data42, which consists of purified peripheral blood mono-
nuclear cells (Fig. 3h (i)). This dataset has been utilized for various
benchmarking studies since the data include true labels, but it is
challenging to classify the cell types due to high sparsity and variation
in the TGC43,44. Upon applying conventional log normalization to the
data, T-cell subtypes were not clearly distinguished in the 2D embed-
ding constructed from 84 detected signals detected by RMT-based
noise filtering (Fig. 3h (ii) dashed circle). RMT-based noise filtering
detected a reduced number of 42 signals after applying L2 normal-
ization following log normalization, leading to the further refinement
of the 2D embedding (Fig. 3h (iii) dashed circle). This embedding was
more improved by selecting 13 robust signals from 42 signals detected
by RMT-based noise filtering, using signal robustness test-based fil-
tering (Fig. 3h (iv) dashed circles). While this result is automatically
obtained via scLENS without any parameter tuning, the result is com-
parable with the best result of ZhengMix data obtained from massive
parameter tuning with various DR methods (Supplementary Fig. 4)44.

scLENS excels at handling sparse data with high TGC variance
Next, we benchmarked scLENSwith the other 11 popular packageswith
their default settings (see Supplementary Table 1 for details). Among
these, well-known packages like Seurat, Scanpy, andMonocle3 employ
log normalization for preprocessing and Principal Component

Analysis (PCA) with 50 principal components (PCs) by default for DR.
Unlike these methods, ParallelPCA (Horn’s parallel analysis) of PCA-
tools automatically selects PCs based on their statistical significance
against those of randomized data45,46. Similar to ParallelPCA,
Randomly32 also automatically selects the signals based on RMT and
employs log normalization as preprocessing. On the other hand, DR
methods implementing matrix factorization (ACTIONet)33, random
projection (SHARP)38, and autoencoder (scDHA and scVI)27,39 rather
than PCA generally exclude the gene scaling step in log normalization
during the preprocessing. Furthermore, scDHA37 and SHARP38 do not
even use the library size normalization step, which is the first step of
log normalization. We also examined ZINB-WaVE40, employing a
model-based DR method, and scTransform23, using a model-based
normalization method, as alternatives to log normalization.

To benchmark scLENS against other DR methods, we utilized
simulation data generated by scDesign247, which produces simulated
data with true labels. After training on immune cell data6, we simulated
approximately 60,000 simulation cells of ten T-cell subtypes. By
subsampling ~3000 cells each from 60,000 simulated cells, we gen-
erated 13 datasets with different sparsity levels and the coefficient of
variation (CV) of TGC.

From the 13 test datasets, we selected five datasets with similar CV
values of TGC, but varying sparsity levels, to evaluate the impact of
sparsity on the package’s performance. For the data with the lowest
sparsity, scLENS achieved the highest silhouette score (SIL score)
(Fig. 4a, left). After scLENS, three packages—Scanpy, Seurat, and
Monocle3—demonstrated overall good performances, all employing
log normalization (Fig. 4a, left). Unlike these three packages that use a
default of 50 PCs, ParallelPCA, which automatically selects PCs,
showed slightly lower performance than them, but overall, it also
showed a goodperformance. Next, scTransform,which utilizesmodel-
based normalization, along with ACTIONet and scVI, both using log
normalization without gene scaling, exhibited intermediate perfor-
mance (Fig. 4a, left). Following these packages, Randomly, which
employs log normalization as preprocessing and automatically selects
PCs, showed below-average performance. Two packages, scDHA and
SHARP, which use only log transformation during preprocessing and
model-based DR (ZINB-WaVE), showed lower performance levels
(Fig. 4a, left). As sparsity increases, the SIL score of all packages
decreases (Fig. 4a, left). Nevertheless, the decrease in scLENS’s per-
formance was less than that of the other 11 packages (Fig. 4a, left).

The SIL score is a distance-based metric, so it can be sensitive to
noise and outliers in the data. Thus, we used an alternative metric, the
element-centric similarity (ECS), which measures the similarity
between the clustering result obtained using hierarchical clustering
and the ground truth label to evaluate a given DR method’s perfor-
mance (see “Method” section for details). In terms of ECS, scLENS
achieved the highest performance at the lowest sparsity level, which is
consistent with previous results evaluated by the SIL score (Fig. 4a,
right). In addition, as sparsity levels increased, scLENS demonstrated
minimal degradation in ECS, whereas the other DR methods

Fig. 2 | The distortion of log normalization for data with high sparsity and
variation in TGC can be corrected by L2normalization. a ScRNA-seq data can be
viewed as a random matrix perturbed by a low-rank signal matrix. b After log
normalizing the scRNA-seq data, a cell-to-cell similarity matrix was obtained by
multiplying the normalized datamatrix with its transpose. c Eigenvalues of the cell-
to-cell similarity matrix are classified as noise-associated eigenvalues (gray bars),
which lie in the Marchenko-Pastur distribution, and signal-associated eigenvalues
(black bars), which surpass the Tracy-Widom threshold. By utilizing the signal
eigenvalues and their corresponding signal vectors, the low-dimensional data was
reconstructed. d When UMAP was applied to the reduced data to create a 2D
embedding, it failed to accurately represent the high-dimensional data structure.
e To investigate the source of the inaccuracy, wemade a pure noise randommatrix
with elements drawn from a Poisson distribution with mean 2 (Poisson (2)).

f, gWhen applying log normalization to scale the data, its cell similarity matrix had
diagonals with similar magnitudes (f) and no signals (g). h A sparse randommatrix
was created by concatenating the dense randommatrix of (e) with a sparse binary
matrix. i, j After log normalization, no signal was detected from the cell similarity
matrix. k To describe cell-to-cell heterogeneity in total gene count (TGC), values in
the top rows (red box) of the dense part of the randommatrix of (h) were halved.
l In this case, even after log normalization, diagonal entries of the cell similarity
matrix corresponding to the reduced top rows of the data (red box) were bigger
than the others.m As a result, artificial signals were detected. n, oWith additional
L2normalization, the cell similaritymatrix had diagonalswith the samemagnitudes
(n), andno signalsweredetected (o).p L2normalizationwas additionally applied to
the log-normalized data (b). q, r This reduced the number of signal-associated
eigenvalues from 33 to 6 (q) and improved the 2D embedding (r).
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experienced significant declines in ECS (Fig. 4a, right). The more
substantial performance degradation observed in DRmethods using a
fixed number of PCs compared to scLENS is attributable to their
inability to account for the reduced biological information as sparsity
increases. Furthermore, compared to these packages using a fixed
number of PCs, Randomly and ParallelPCA, designed to select the PCs
automatically, showed lower performance, suggesting their sub-
optimal effectiveness in identifying signals in data (Fig. 4a). On the
other hand, scLENS’s capability to identify the optimal number of

signals, which decreases from 22 to 18 with increased sparsity level,
resulted in its 2D embedding providing a more distinct separation of
true cell types compared to the 2D embeddings from the three
packages using a fixed 50 PCs by default (Fig. 4b). As a result, scLENS
achieved the highest performance, in terms of ECS and SIL (Fig. 4a, b).

Next, to investigate the influence of variation in CV of TGC on the
performance of DR methods, we selected five datasets with similar
sparsity levels, but varying CVs in TGC. When CV of TGC was low,
scLENS and Monocle3 achieved the highest performance, while the

Fig. 3 | Low-quality signals due to stochastic dropout can be filtered using a
signal robustness test. a–c Even when L2 normalization with log normalization
was applied to the data (a), the six detected signals (b) led to the 2D embedding
with limited resolution (c). d To filter out the low-quality signals sensitive to the
slight perturbation of data, we generated K perturbed datasets by adding binary
and sparse random matrices to the original count matrix. e We then calculated K
eigenvector sets from the K perturbed datasets’ similarity matrices. f To quantify
the sensitivity of signals, we computed the correlation (i.e., absolute inner product)
matrices (i) of the signal eigenvectors (b) and perturbed eigenvectors (e). Their
column-wise maximum vectors were then obtained (ii) and averaged (iii). The high

value of the average vector means that signal vectors (red arrows) were robust to
data perturbation (iii). g When three robust signals were used for 2D embedding,
the accurate distinction of three sub-clusters was obtained. h When log normal-
izationwas applied to ZhengMix data (i), which are characterized by a high sparsity
and CV of TGC, 2D embedding showed considerable overlap between T-cell sub-
types (ii). With additional L2 normalization, 2D embedding was slightly improved
(iii). After filtering out low-quality signals with signal robustness test, yielding
13 signals, 2D embedding demonstrated clear separations between T-cells
subtypes (iv).
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seven DRmethods using log normalization, log normalization without
gene scaling, andmodel-based scaling (scTransform) as preprocessing
methods, demonstrated good overall performance (Fig. 4c). On the
other hand, scDHA, ZINB-WaVE, and SHARP continued todisplay lower
performance levels at the lowest CV of TGC (Fig. 4c). As CV of TGC
increased, scLENS and scTransform showed no significant perfor-
mance changes (Fig. 4c, right). In contrast, the performance of the
seven DR methods, which use log normalization as preprocessing and
a fixed number of signals by default, showed substantial decreases
with an increasing CV of TGC (Fig. 4c right). Notably, when the CV of
TGC was low, scLENS detected 49 signals, which is close to the default
value of 50 PCs used by Scanpy, Seurat, and Monocle3. In this case,
with 50 PCs bydefault, these three packages performed comparable to
the scLENS by providing 2D embeddings showing the clear separation
between true clusters.However, as the CV of TGC increased, the inter-
cluster distances in the embeddings generated by Scanpy, Seurat,
and Monocle3 became distorted, leading to significant overlaps
between clusters (Fig. 4d). Conversely, scLENS maintained the clear
separation between true clusters in its 2D embedding by effectively

reducing the number of detected signals from49 to 19 as a CV of TGC
increased (Fig. 4c, d). These results emphasize the importance of
accurate signal selection, especially in data with high level of sparsity
and CV of TGC.

scLENS outperforms other DR methods on data with abundant
non-binary information
We evaluated scLENS across a more diverse range of data types by
combining 16 real and ten simulation datasets with the previous
13 simulated T-cell datasets (Supplementary Table 2). Specifically, to
broaden our benchmarking on diverse types of data that encompass
various cell types, we generated 10 additional simulationdatasets from
Tabula Muris data48, obtained from various mouse tissues, with
scDesign247. Furthermore, to evaluate the performance of various
benchmarking packages on real data, we included three real datasets,
Koh49, Kumar50, and Trapnell data51, whose cell labels were determined
independently of the scRNA-seq assay to minimize evaluation bias
towards particular analysis tools used in each study43. In addition, we
used thirteen real datasets generated by mixing the Zheng data42,
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values of around 0.3. b Influence of sparsity on inter-cluster distances in 2D
embeddings generated by Scanpy, Seurat, Monocle3, and scLENS. As the sparsity
level increased, scLENS detected reduced signals from 22 to 18, enabling a more

distinct differentiation of the true cell types in 2D embedding compared to 2D
embeddings of the others using fixed 50 PCs. c SIL scores (left) and ECS scores
(right) for each DR method on datasets with varying CV of TGC and sparsity levels
of around 0.84. d Effect of CV of TGC on cell point distribution in 2D embeddings
produced by Scanpy, Seurat, Monocle3, and scLENS. Source data are provided as a
Source Data file.
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which contains eight pre-sorted blood cell types, while adjusting the
number of cells and the subpopulation ratios.

For the extended datasets, scLENS outperformed all other DR
methods in terms of ECS scores based on both hierarchical clustering
and graph-based clustering as well as SIL score (Fig. 5a). Next, we
compared the performance of scLENS and the other DR methods
depending on the sparsity level, and CV of TGC of the data, in terms of
ECS score obtained by applying hierarchical clustering (Fig. 5b). For
each dataset, we calculated the difference between the ECS of scLENS
and the highest ECS recorded by the other 11 DR methods, referred to
as the relative performance of scLENS. As the sparsity of data increa-
ses, the relative performance of scLENS showed overall increases
(Fig. 5b), consistent with our previous results based on simulated data

(Fig. 4a). On the other hand, there is no correlation betweenCV of TGC
and the relative performance (Fig. 5b), in contrast to our analysis based
on simulated data (Fig. 4c).

Next, we investigated why there is no correlation between the CV
of TGC and relative performance. Generally, the data contains two
types of clustering information: binary and non-binary information.
The binary information comes from the indices (positions) of the zero-
valued elements within the data matrix, while non-binary information
stems from the different magnitudes in non-zero values. The non-
binary information is expected to be more distorted by conventional
log normalization compared to the binary information because the
conventional log normalization can overly amplify the gap between
zero and non-zero values and reduce the variance in the non-zero

Fig. 5 | Performance comparisonof scLENS andotherDRmethods basedon the
amount of binary information. a Benchmarking result of average SIL scores and
ECS values shows that scLENS outperformed all other DR methods b Relative
performance of scLENS (i.e., the difference between its ECS and the highest ECS
recorded by the other 11 DR methods), according to sparsity and CV of TGC. As
sparsity increases, the relative performance of scLENS increases, while no corre-
lation is found between CV of TGC and relative performance. c As non-binary
information derived from the magnitude variances in non-zero values in data
decreases, the shuffling effect in non-zero values becomes weaker. This can be
quantified with smaller ΔSIL values, which are differences in SIL scores of 2D

embeddings obtained by scLENS before and after shuffling non-zero values.
d scLENSoutperformed the otherDRmethodswhen bothCVofTGC andΔSILwere
high. eWhen scLENS andMonocle3 have similar performance (the datasetwith low
ΔSIL and high CV in (d)), their embeddings are minimally affected by shuffling,
indicating that the dataset contains a high proportion of binary information fWhen
scLENS outperforms Monocle3 (the dataset with high ΔSIL and high CV in (d)), the
embedding of scLENS, but not Monocle3 is significantly disrupted by shuffling,
indicating that the dataset contains a high proportion of non-binary information.
Source data are provided as a Source Data file.
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values22 (Supplementary Fig. 6). Thus, we hypothesized that as the
proportion of non-binary information decreases, the distortion of the
log transformation becomesweaker and thus the relative performance
of scLENS decreases. To test this hypothesis, we quantified the pro-
portions of non-binary and binary information in the dataset. Specifi-
cally, we randomly shuffled the non-zero values to disrupt the non-
binary information and then calculated the degree of change in SIL
scores of 2D embeddings obtained by scLENS (ΔSIL = SIL—SILp)
(Fig. 5c, Supplementary Fig. 5). As the proportion of non-binary
information decreases, the effect of shuffling in non-zero values
decreases, and thus ΔSIL decreases (Fig. 5c).

Indeed, the relative performance of scLENS depends on ΔSIL,
measuring non-binary information (Fig. 5d). Specifically, when data
contains mostly binary information and little non-binary information
(i.e., lowΔSIL), scLENS’s relative performance is low regardlessof CVof
TGC (Fig. 5d). For example, in the simulated Tabula Muris data (Sim.
T-muris No. 3 in Fig. 5d), the difference between 2D embeddings of
scLENS before and after shuffling was barely noticeable (Fig. 5e). This
indicates that the clustering for this data is mainly based on binary
information. In such cases, scLENS and Monocle3 have no perfor-
mance differences. On the other hand, for data with high non-binary
information (i.e., high ΔSIL) (Fig. 5d), scLENS outperforms the other
methods. For instance, in simulated T-cell data (Sim. T-cell No. 9 in
Fig. 5d), the 2D embedding of scLENS is completely disrupted by the
shuffling of non-zero values (Fig. 5f top), indicating that the patterns in
non-zero values are critical for the clustering. In contrast, shuffling
shows a little disruption of 2D embedding by Monocle3 (Fig. 5f bot-
tom). This indicates that the embedding of Monocle3 is mainly based
on binary rather than non-binary information. This occurs because
conventional log normalization exaggerates binary information,
thereby causing an artificial reduction in the relative portion of non-
binary information in the sparse data with a high CV of TGC. This
explains a recent puzzling study reporting that dimensionality reduc-
tion involving log normalization on count data generates similar low-
dimensional embeddings to those obtained from binarized data52.
Taken together, when there is enough binary information in a dataset
for clustering (easy case), scLENS and the DR methods based on con-
ventional log normalization have similar performance (Fig. 5d, e). On
the other hand, when non-binary information is critical for clustering
(difficult case), scLENS outperforms the other tested DR methods
(Fig. 5d, f).

scLENS outperforms other DR methods in capturing local
structure in data
So far, the performance evaluation has focused on the clustering and
UMAP embedding performances of 12 packages using a limited num-
ber of real and simulated datasets with ground truths. To extend our
analysis and diversify data types, we performed a downsampling
benchmark approach using kNN-overlap scores, inspired by the study
of Ahlmann-Eltze et al.15. For this analysis, we newly collected 15 deeply
sequenced UMI count datasets and four read count datasets, each
characterized by an average TGC exceeding 25,000 per cell53–62 (Sup-
plementary Table 2). These datasets were then downsampled to an
average TGC of 5000 per cell, aligning with the typical sequencing
depth of 10x genomics data. Subsequently, downsampled and original
data were reduced in their dimensionality after applying 12 DR meth-
ods. We then evaluated the similarity between two kNN-graphs con-
structed from dimensionally reduced original and downsampled data
using the average KNN-overlap score, which estimated each package’s
performance in capturing the original local complex structure from
downsampled data (see “Methods” section for details).

scLENS outperforms the other 11 DRmethods (Fig. 6a), similar to
the result of the clustering performance benchmark (Fig. 5a). Along
with scLENS, scTransform and ACTIONet, which used model-based
normalization and log normalization without gene scaling for pre-
processing, respectively, demonstrated overall good performances
(Fig. 6a). Next, Monocle3, employing log normalization for pre-
processing, showed competitive performance (Fig. 6a). Compared to
the Monocle3, using a fixed number of 50 PCs, two packages, Par-
allelPCA and Randomly, which automatically detect signaling PCs,
exhibited lower performance, indicating their ineffectiveness in
identifying the optimal number of signals in data (Fig. 6a). Following
them, the widely used three packages, Seurat, Scanpy, and scVI,
which utilize log normalization and feature selection to select highly
variable genes during preprocessing, showed sub-optimal perfor-
mance (Fig. 6a). Consistent with the findings in the clustering
benchmark, three packages, scDHA, SHARP, and ZINB-WaVE,
demonstrated lower performances in terms of the average kNN-
overlap as well (Fig. 6a).

Additionally, using the average kNN-overlap score, we compared
scLENS’s effectiveness in determining the optimal number of signals
against two well-known methods: the elbow method and the 95%
variance criterion. For this comparative analysis, we downsampled 19
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original datasets from a previous downsampling benchmark with
ratios ranging from 0.1 to 0.5 and normalized them using log nor-
malization with L2 normalization. We then reduced the normalized
datasets to the top 100 PCs and generated 98 kNN graphs by varying
the number of PCs from 3 to 100. By comparing these graphs to the
reference kNN graph, constructed by applying scLENS to the original
dataset, we computed the average kNN-overlap scores for each num-
ber of PCs. From these scores, three kNN-overlap scores, corre-
sponding to three PC sets selected by scLENS (blue star in Fig. 6b), the
elbow method (red star in Fig. 6b), and the 95% variance criterion
(green star in Fig. 6b), were collected. Subsequently, we normalized
these scores by dividing them by the maximum average kNN-overlap
score (orange star in Fig. 6b) for each dataset to facilitate comparative
analysis across different downsampling ratios (Fig. 6c). In this result,
we found that, as the downsampling rate increases, the 95% variance
criterion’s performance increases, while the elbow method’s perfor-
mance decreases significantly (Fig. 6c). This implies that the 95% var-
iance explained criterion often identifies more PCs as signals than the
optimal number, while the elbowmethod typically selects fewer PCs as
signals in comparison to the optimal number. In contrast, scLENS
consistently chooses a number of signals close to the optimal number
of signals, achieving performance that closely approaches the highest
peak performance (Fig. 6c).

Median scaling enhances the speed and memory efficiency
of scLENS
Although scLENS demonstrates superior performance compared to
other packages, it requires substantial memory due to its use of whole
cells and genes that remain after quality control (QC). Post-QC,
~10,000 genes typically remain in most datasets, with some cases
exceeding 18,000 genes (Supplementary Data 1). Furthermore, from
these large-sized datasets, scLENS computes the complete sets of
eigenvalues and eigenvectors to fit the MP distribution, which sig-
nificantly increases scLENS’s memory requirements. To reduce these
memory requirements, we allocated only non-zero values and their
indices in the data matrix to memory using SparseArrays.jl module.
However, this approach loses its memory efficiency as a substantial
increase in non-zero values occurs due to mean value subtraction
during gene scaling. To address this, wemodified the gene scaling step
by replacing the subtraction value from the mean of each gene with
their median (see Methods for details). Using the median scaling, we
maintained a high level of sparsity even after the log normalization.

Indeed, scLENS with the median scaling (scLENS-med) requires
lower memory than the original scLENS (Fig. 7a). Specifically, across
the 39 datasets used in the clustering benchmark study, the CPU
memory requirement was reduced by ~2.4 times, and GPU memory
usage decreased by ~1.6 times on average (Fig. 7a). Despite the lower
memory requirement, scLENS-med showed similar and slightly
lower performance in terms of ECS and the average kNN-overlap
score, respectively, compared to the original scLENS (Fig. 7b) across
all 58 datasets used in previous benchmarking (Figs. 5 and 6).
Moreover, scLENS-medwas ~1.7 times faster than the original scLENS
across the same datasets used in the memory performance analysis
(Fig. 7c). This is noteworthy given that the original scLENS already
had reasonable speed compared to the others due to utilizing
GPU (Fig. 7c).

For four large datasets, each containing approximately 20,000
genes but varying in cell count from 25,000 to 100,000, scLENS-med
requires reasonablememory and reasonable speed (Fig. 7d, e). That is,
a dataset with 25,000 cells requires ~23GB of CPUmemory and 20min
while processing 100,000 cells necessitates ~93GB of RAM and
180min (Fig. 7d green and Fig. 7e). This heavy CPU memory con-
sumption occurs during preprocessing and generation of shuffled and
perturbed data for the robustness test, and increases as the number of
data matrix elements increases (Fig. 7d green). In contrast, the GPU
memory consumption does not correlate with the number of cells in
the data (Fig. 7d brown). This is because scLENS computes the same
number of eigenvalues and eigenvectors as genes, usually lower than
the number of cells in large datasets.

Discussion
Although scRNA-seq has provided significant insights into complex
biological systems, the inherent properties of these data, such as
skewness, sparseness, and noise, have limited the information deri-
vable from these datasets. Such issues stem from technical limitations,
including amplification efficiency and stochastic dropout events14–19.
Despite previous efforts to tackle the skewed and sparse nature of
scRNA-seq data, current preprocessing steps can distort signals, and
existing imputation methods are known to generate false
signals17,28,30,31. Furthermore, DR methods for differentiating signals
from noise rely on user input to select a threshold, introducing a
subjective element to analysis. To address these long-standing chal-
lenges, we have developed scLENS. scLENS reduces signal distortion
during the preprocessing step by incorporating L2 normalization and
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as a Source Data file.
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provides a data-driven threshold to differentiate signals from noise by
RMT-based noise filtering. In addition, scLENS removes low-quality
signals arising from stochastic dropout events using a signal robust-
ness test which does not require imputation. As a result, scLENS out-
performs the popular elbow method and 95% variance criterion in
detecting optimal number of signals. Importantly, scLENS exhibited
superior performance for capturing biologically meaningful informa-
tion from high-dimensional data compared to 11 popular packages
(Figs. 4, 5, and 6). scLENS was especially effective when working on
challenging data characterized by high sparsity, high variance between
cells, and a substantial proportion of non-binary information
(Figs. 4 and 5).

While log normalization is the most widely used preprocessing
method, various alternativemethods have beendeveloped to confront
its limitations15,22–24. However, a recent study by Ahlmann-Eltze et al.
showed that the alternativemethods, such as residual-based and latent
gene expression transformation, underperformed compared to loga-
rithmic transformation-based methods that include log
normalization15. However, the conventional log normalization with a
large scaling factor not only significantly amplifies the gap between
zero and non-zero values22 (Supplementary Fig. 6a), but also reduces
the variance in large values (Supplementary Fig. 6b). As a result, cur-
rent analysis tools employing log normalization exaggerate the binary
information in data, making them less effective in capturing the non-
binary information (Fig. 5f and Supplementary Fig. 6c). This explains
why dimensionality reduction involving conventional log normal-
ization generates similar low-dimensional embeddings even after
binarizing data52. To circumvent data binarization, we set a scaling
factor of 1 during the first step of log normalization. However, with a
scaling factor of 1, log normalization can significantly distort the sig-
nals during gene scaling by reintroducing variability into the lengths of
cell vectors (Fig. 2 and Supplementary Fig. 2). To counteract this,
although Booeshaghi et al. recommended L1 normalization, it was
ineffective inmitigating the compounding effect of sequencing depth,
resulting in sub-optimal performances15,63 (Supplementary Fig. 7). On
the other hand, scLENS achieved the highest performance by
employing an additional L2 normalization step as a remedy to correct
signal distortion following log normalization (Fig. 2).

Since scRNA-seq data is noisy, it is essential to separate the bio-
logical signal from technical noise in scRNA-seq data14,16,18,19,32,35–37. One
considerable strategy to accomplish this is applying the feature
selection to select highly variable genes. However, the selection of
genes based on high variance potentially compromise the local
structure contained in low variance genes18,19,25 (Fig. 6a). The other
strategy is applying various DR methods, which extract low-
dimensional signals from high-dimensional data. During this step,
the dimension of these signals (i.e., the number of signals) should
vary according to the datasets, as each dataset has its unique signal
and noise structure. Nevertheless, the determination of optimal
dimensions is usually left to the user’s discretion, which can intro-
duce potential subjectivity into downstream analysis results, thereby
reducing the result’s reliability. To remove user subjectivity in ana-
lysis, several optimal dimension decision methods have been devel-
oped. These include the elbow method and variance criterion, based
on analyzing explained variance64–69, and ParallelPCA, which focuses
on statistical significance against randomized data45,46. However,
these methods exhibited relatively lower performance than other
packages, which might be due to the presumptions of normality,
highly sensitive to outliers, and unable to eliminate user subjectivity
completely64,67 (Figs. 5 and 6). In particular, scLENS based on RMT,
which removes user subjectivity, outperforms the elbowmethod and
variance criterion (Fig. 6c) and ParallelPCA (Fig. 5a and Fig. 6a).
Moreover, RMT-based noise filtering allows us to estimate the
quantity of the information in the data, enabling us to assess the
significance of signals41.

Despite the advantages of the RMT-based approach, it necessi-
tates the computation of all eigenvalues of the large cell-to-cell simi-
larity matrix, requiring significant memory resources. Although we
considerably reduced the memory demand of scLENS by replacing
conventional gene scaling (z-score scaling) with median scaling, its
operationon large datawithwhole genes still requires a computerwith
high specifications (Fig. 7). To circumvent this, one can use approx-
imation of the spectral density of the similaritymatrix, which estimates
the range of the eigenvalues without calculating all eigenvalues when
handling data obtained from tens of millions of cells70. Additionally,
projecting all cells or genes using a model, such as a random forest
learning method, trained on sub-sampled data could provide another
alternative for analysis7. In the future, these strategies could be utilized
to effectively manage the memory requirements associated with large
scRNA-seq datasets, mitigating computational challenges while pre-
serving the integrity of the analysis results.

Biologically irrelevant zeros in scRNA-seq data can hinder the
accurate capture of biological signals in data. The most popular solu-
tion to resolve this challenge is replacing zeros with imputed values
obtained from various imputation methods25–29. However, every
imputation method inherently modifies the original data, and thus
original signals can be compromised after imputation17,28,30,31. Indeed, a
recent study found that original data performed better than using
imputeddata in theoverall performanceof downstreamclustering and
dimensionality reduction methods17. Due to the addition of a signal
robustness test, scLENS does not require any imputation step or the
modification of the original data to address biologically irrelevant
zeros (Fig. 3). Additionally, since this signal robustness test does not
require any assumption regarding signals, it can be integrated with the
various DR methods, including linear DR methods such as PCA and
nonlinear DR methods such as neural networks.

In summary, by addressing signal distortion induced by sparsity
and effectively filtering out different types of noise, scLENS performed
better than most popular scRNA-seq analysis packages, including
those using signal selection options, such as ParallelPCA and elbow
method (Fig. 5a and 6). Notably, scLENS showed superior performance
for datasets even with high sparsity and high variance between the
samples (Figs. 4 and 5b, d). Furthermore, as high sparsity and noise
level are common characteristics of single-cell sequencing data2–4,
including the single-cell assay for transposase-accessible chromatin
using sequencing (scATAC-seq) and single-cell proteomics data,
scLENS potentially has broad applicability across single-cell sequen-
cing analysis.

Methods
Preprocessing
Cells with fewer than 200 expressed genes and genes expressed in less
than 15 cells were filtered out for quality control (QC). In addition, cells
were discarded if the proportion of mitochondrial genes was larger
than 5% to remove multiplets or low-quality cells8,20,21,32.

Afterquality control,weapply the standard lognormalization8,20,21,32

while setting the scaling factor L to be one.

X log-trans
ij = log 1 +

X raw
ijP
jX

raw
ij

L

 !

Xgene-scaled
ij =

X log-trans
ij � μj

σj

ð1Þ

for all i= 1, . . . ,M and j = 1, . . . ,N, where X raw
ij is the original gene

expression for the i-th cell and j-th gene,M is the number of cells, N is
the number of genes, and σj is the standarddeviationof j-th gene’s log-
transformed expression levels. μj is the mean or median of j-th gene’s
log-transformed expression levels for scLENS and scLENS-med,
respectively. We then applied L2 normalization to obtain an M by N
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data matrix whose i,jð Þ-th element is

Xij =
Xgene-scaled
ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j Xgene-scaled
ij

� �2r ð2Þ

RMT-based noise filtering
After computing the cell similarity matrix (G=XXT=N) of the normal-
ized data X , we calculated eigenvalues and eigenvector matrix V of G.
Following the fitting procedure suggested by Aparicio et al.32, MP
distribution was fitted to the eigenvalue distribution of the cell simi-
larity matrix G. By employing the parameters of the fitted MP dis-
tribution, we determined the TW threshold. This threshold represents
the critical point, beyondwhich an eigenvalue has a 0.05 probability of
being observed under the TW distribution of a random matrix. Sub-
sequently, signal eigenvalues that exceed this threshold and their
corresponding eigenvectors (i.e., signal vectors) V sig were identified
and selected. Note that the product of the square root of n signal
eigenvalues and the corresponding eigenvectors V sig is mathemati-
cally equivalent to an n-dimensional PC score matrix calculated by
multiplyingn PCs to the normalizeddata in PCA. Therefore, selecting n
PCs after PCA corresponds to detecting n signals from the similarity
matrix in scLENS.

Signal robustness test
To test the robustness of signals obtained with RMT-based noise fil-
tering, we perturbed the original data with a binary random matrix
with a high sparsity level. The sparsity level for the perturbationmatrix
was determined through the following iterative procedure: For each
iteration, we first generated a binarized matrix by replacing the non-
zero values in the original data with ones. We then perturbed this
matrix by adding a binary random matrix generated with the sparsity
level given for the current iteration. After preprocessing on the
binarized and perturbed matrix, we computed two sets of eigenvec-
tors from their respective similarity matrices. We then calculated the
minimum of their correlation. Starting from an initial sparsity level of
0.999, we gradually decreased the sparsity level for the perturbation
matrix until this minimum correlation was less than the average cor-
relation between two eigenvector sets derived from two different
random matrices with the original data’s sparsity level. Usually, the
selected sparsity level was larger than 0.97.

Next, we generated 10 perturbed datasets by adding the pertur-
bation matrix with the selected sparsity level to the original count
matrix. After preprocessing on 10 perturbed datasets, 10 perturbed
eigenvector sets of their similarity matrices (V 0 = V 0ð1Þ,V 0ð2Þ, . . . ,V 0ð10Þ� �

)
were obtained. With 10 perturbed eigenvector sets, we subsequently
computed 10 maximum absolute correlations (C*i) of each signal
vector (vi =V

sig
*i ), whichwas obtained by applying the RMT-based noise

filtering on the original data:

Cij = max
1≤ k ≤N

V 0 ið Þ
� �T

� V sig
����

����
kj

 !
, where i= 1, 2, . . . ,10: ð3Þ

We defined each signal’s average of the 10 maximum correlations
as its robustness value.

Robustnessof signal j =
1
10

X
i
Cij ð4Þ

Signals with a robustness value greater than 0.5 were selected as
robust signals. Finally, we constructed reduced data with the signal
eigenvalues and signal vectors corresponding to the selected robust
signals.

UMAP
We used UMAP71 after reducing the dimension of data to get the 2D
embeddings for the evaluation of performances. We employed the Julia
package (UMAP.jl) using parameters with the number of nearest
neighbors of 15 and a minimum distance of 0.01 to emphasize the local
data structure. When applying UMAP, the metric used to calculate dis-
tances between data points was set to cosine similarity. This is a more
appropriatemetric for estimating the similarity of cell vectors’direction.

Clustering
Two types of cluster assignments were used for the performance
evaluation. The first type was obtained by implementing hierarchical
clustering72 on 2D embedding. The second type was obtained by
applying the widely used graph-based clustering algorithm, the Leiden
algorithm73, to a shared nearest neighbors (SNN) graph. This graphwas
constructed from low-dimensional embedding generated by each
package, using three parameters for SNN graphs: 20 neighbors, an
edge cutoff threshold of 1/15, and cosine similarity as the distance
metric. After performing multiple hierarchical and graph-based clus-
tering with varied cut tree heights and resolution parameters,
respectively, we selected the two types of cluster assignment that
exhibited the maximum ECS similarities to the ground truth for each
package. Using these selected two types of cluster assignments as the
best clustering outcomes for each package, we evaluated the cluster-
ing performance of each package.

Evaluation metrics
Silhouette score. The silhouette scores of each cell were calculated
using the difference between the mean intra-cluster distance (a) and
themean closest-cluster distance (b)74. The silhouette score for the i-th
data point representing a single cell is

si =
bi � ai

max ai,bi

� � ð5Þ

Weutilized the average silhouette score (SIL score: sh i) to evaluate
the performance.

SIL score is in the range [−1, 1]. The best SIL score is 1. On the other
hand, a SIL score of 0 indicates overlapping clusters and a negative SIL
score usually means that cells were misclassified.

ECS. The existing clustering comparison metrics, such as an adjusted
Rand index (ARI), Fowlkes-Mallows index (FM index), and normalized
mutual information (NMI), have critical biases which undermine their
usefulness75. For example, if one of the cluster assignments being
compared has many clusters, the NMI value tends to be high75. Fur-
thermore, the FM index tends to be high when one of the cluster
assignments being compared includes a large cluster. ARI also has an
unintuitive tendency when cluster assignments have a skewed cluster
size75. These biases of existing metrics lead to a counterintuitive con-
clusion. In contrast, the element-centric similarity (ECS) can measure
the similarity between two cluster assignments without such biases
and provides an intuitive quantification of clustering similarity75.

To calculate the ECS, two cluster-induced element networks were
constructed from two cluster assignments (lα ,lβ) being compared.
These networks consist of edges connecting nodes that belong to the
same cluster. Given these networks, two personalized PageRank (PPR)
affinities (f αij ,f

β
ij), which indicate the attribute of cell i for another cell j,

were obtained. Using these affinities, the ECS is defined as,

Sαβ =
1
N

XN
i = 1

1� 1
2d

XN
j = 1

f αij � f βij
��� ���

 !
ð6Þ

We use the default value of the damping factor d =0.975. The best
ECS is 1, and the worst ESC is 0.
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Average kNN-overlap score. To estimate the overlaps between two
kNN graphs constructed, respectively, from the original and down-
sampled data, we initially counted the number of common edges that
connect identical pairs of nodes. This count of common edges was
then normalized bydividing (n× k)/2, representing themaximum total
number of edges in a kNN network, where n is the number of cells and
k is the number of neighbors. Subsequently, by varying k from 5 to 50,
we computed 46 normalized counted numbers of edges, and defined
their average as an average kNN-overlap score,

1
46

X50
k = 5

n × k
2

� 	�1Xn
i,j = 1

jidxi \ idxjj
2

ð7Þ

where idxi is the list of nearest neighbors’ indices of cell i. An average
kNN-overlap score of 1 signifies that two compared graphs are
identical, indicating complete overlap. Conversely, an average kNN-
overlap scoreof 0 denotes the absenceof any common edges between
the two graphs, indicating no overlap.

Benchmarking packages
We compared 12 packages, including scLENS (Supplementary Table 1).
We followed the standard processes with default values as suggested
on the package websites and relevant papers. For the scVI package, we
selected and used 10,000 genes using a function called ‘high-
ly_variable_genes’ from Scanpy.

Statistics & reproducibility
To ensure the reproducibility of our signal detection method, we
conducted a signal robustness test by performing ten perturbations
and estimating the average angle change of each signal vector across
these perturbations (Fig. 3). We measured the amounts of non-binary
information using the ΔSIL scores, which were calculated by randomly
shuffling the non-zero values of datasets with known ground truth
labels (Supplementary Fig. 5).

For the benchmark study on the effects of data sparsity and high
TGC (Total Gene Counts) variance on performance, we generated
~60,000 simulated immune cells. Tominimize unintended effects due
to sample size, we sampled ~3000 cells using weighted random sam-
pling based on the probability weights of cells’ TGC to create
13 simulated immune cell datasets from the pool of ~60,000 cells. In
contrast, for the real ZhengMix datasets42, to ensure a diverse range of
cluster sizes and ratios between clusters, we subsampled and mixed
cells of different types using weighted random sampling based on the
probability weights of the target size of cell types.

To generate downsampled datasets, we utilizedweighted random
sampling with probability weights proportional to each cell’s gene
expression levels.

No data were excluded from the analyses. The Investigators were
not blinded to allocation during experiments and outcome
assessment.

Versions of packages
Version 1.0.0 of the scDesign2 package was used for generating
simulation data. Versions of R and Python packages for benchmark
studies are provided in Supplementary Table 1. R-based packages were
run using R version 4.3.2, Python-based packages were run using
Python version 3.11.5, and scLENS was built using Julia 1.8.5 and tested
with Julia 1.10.0.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The real datasets used in this study are publicly available and can be
accessed through the following sources: Koh49, Kumar50, and Trapnell51

datasets were obtained from the GitHub repository [https://github.
com/markrobinsonuzh/scRNAseq_clustering_comparison]. Zheng
datasets42 were obtained from 10x Genomics datasets [https://www.
10xgenomics.com/resources/datasets]. The Tabula Muris dataset48

was obtained from the Tabula Muris Project [https://tabula-muris.ds.
czbiohub.org/]. The immune cell dataset6 was obtained from the
Cross-tissue Immune Cell Atlas [https://www.tissueimmunecellatlas.
org]. The mouse fibroblasts dataset61 was obtained from ArrayExpress
under the accession code E-MTAB-10148. The perinatal mouse hema-
topoietic stem cells dataset62 was obtained from ArrayExpress under
the accession code E-MTAB-13293. The fibroblast and HEK cells
dataset58 were obtained from ArrayExpress under the accession code
E-MTAB-8735. The siRNA KnockDown dataset61 was obtained from the
GitHub repository [https://github.com/sandberg-lab/lncRNAs_
bursting/tree/main/data]. The JM8 cells dataset57 was obtained from
Gene Expression Omnibus (GEO) database under the accession code
GSE103568. The HEK293FT, K562, and human PBMC cells datasets60

were obtained from ArrayExpress under the accession code E-MTAB-
11467. The humanbrain cells dataset54 was obtained from theHemberg
Lab repository [https://hemberg-lab.github.io/scRNA.seq.datasets/
human/brain/#darmanis]. The scRNA-seq dataset with cells from
mouse zygotes to blastocysts53 was obtained from the Hemberg Lab
repository [https://hemberg-lab.github.io/scRNA.seq.datasets/mouse/
edev/#deng]. The mouse embryos dataset55 was obtained from the
Hemberg Lab repository [https://hemberg-lab.github.io/scRNA.seq.
datasets/mouse/edev/#goolam]. The colorectal tumor cells dataset56

was obtained from the Hemberg Lab repository [https://hemberg-lab.
github.io/scRNA.seq.datasets/human/tissues/#li]. Source data for
Figs. 4–7 and Supplementary Figs. 6–7 have been provided with this
paper. A selection of the real datasets and all simulated datasets used
in this study are available in the GitHub repository [https://github.
com/Mathbiomed/scLENS] and archived at Zenodo76. Source data are
provided with this paper.

Code availability
The Julia codes for the scLENS, and the codes for the R and Python
packages used in the benchmark study are available in the Mathbio
GitHub: https://github.com/Mathbiomed/scLENS. The package ver-
sion used for the analyses in the paper has been assigned a citable DOI
through Zenodo (https://doi.org/10.5281/zenodo.10839592)76.
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