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Bonemarrow stromal cells induce chromatin
remodeling in multiple myeloma cells
leading to transcriptional changes

Moritz Binder1, Raphael E. Szalat1,2, Srikanth Talluri1, Mariateresa Fulciniti 1,
Hervé Avet-Loiseau3, Giovanni Parmigiani2,4, Mehmet K. Samur 2,4 &
Nikhil C. Munshi 1

The natural history of multiple myeloma is characterized by its localization to
the bonemarrow and its interactionwith bonemarrow stromal cells. The bone
marrow stromal cells provide growth and survival signals, thereby promoting
the development of drug resistance. Here, we show that the interaction
betweenbonemarrow stromal cells andmyelomacells (usinghumancell lines)
induces chromatin remodeling of cis-regulatory elements and is associated
with changes in the expression of genes involved in the cell migration and
cytokine signaling. The expression of genes involved in these stromal inter-
actions are observed in extramedullary disease in patients with myeloma and
provides the rationale for survival of myeloma cells outside of the bone mar-
row microenvironment. Expression of these stromal interaction genes is also
observed in a subset of patientswithnewly diagnosedmyeloma and are akin to
the transcriptional program of extramedullary disease. The presence of such
adverse stromal interactions in newly diagnosed myeloma is associated with
accelerated disease dissemination, predicts the early development of ther-
apeutic resistance, and is of independent prognostic significance. These
stromal cell induced transcriptomic and epigenomic changes both predict
long-term outcomes and identify therapeutic targets in the tumor micro-
environment for the development of novel therapeutic approaches.

Multiple myeloma (MM) is a malignancy of plasma cells with marked
genomic heterogeneity and highly variable clinical outcomes1–3. With
the advent of novel therapeutic agents and drug combinations,
response rates and survival outcomes have improved over time,
albeit at the cost of perpetual treatment in most patients4,5. Despite
these therapeutic advances, the natural history of the disease is
characterized by emerging therapeutic resistance and frequent
relapses, eventually culminating in refractory disease. Particularly,
the development of extramedullary disease (EMD) at the time of
relapse represents a turning point in a patient’s trajectory as it

indicates not only acquired therapeutic resistance but also the
acquired ability of a plasma cell clone to survive outside its natural
bone marrow environment6,7. This secondary dissemination of dis-
ease is markedly different in biology and prognosis from primary
plasma cell leukemia8–10. In studies examining the cause of death of
patients with MM, the vast majority of deaths can be attributed to
either disease progression or immediate complications of myeloma-
directed therapy, suggesting that survival outcomes are largely
determined by the development of therapeutic resistance and
ensuing disease progression11,12.
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Themechanisms bywhichMMcells home to the BM and adhere
to BM stromal cells (BMSCs) and extracellular matrix proteins have
been extensively investigated to understand their effects on MM
cell growth and survival 13,14. Several studies have investigated the
molecular impact of the BMSC-MM cell adhesion process. The
interaction between MM cells and BMSCs through adhesion has
been tied to drug-induced apoptosis and NF-kB-dependent tran-
scription and secretion of IL-6, which controls MM cell growth and

survival15,16. The biological role of ERK / MAPK, JAK / STAT, and PI3-K
/ Akt pathways in growth, survival, and drug resistance of MM cells
has also been demonstrated17. Transcriptional changes in MM cells
in response to BMSCs have been associated with resistance to cor-
ticosteroid therapy, but the implications of stromal interactions
with current anti-myeloma therapies remain unknown18. Although
the underlying regulatory mechanisms driving the MM-BMSC
interactions and their sequelae remain mostly elusive, a small

Fig. 1 | The interaction of bone marrow stroma and myeloma cells induces
chromatin remodeling with altered accessibility in known cis-regulatory ele-
ments (CREs) in three myeloma cell lines. a Experimental design to identify
changes in chromatin accessibility and gene expression in three myeloma cell lines
after 72 h of co-culture with bone marrow stromal cells. b Circular scatter plot
showing regions with increased and decreased chromatin accessibility after stro-
mal co-culture across the entire genome. There was widespread chromatin remo-
deling involving a large number of genomic regions with both increased and
decreased chromatin accessibility. We used this approach as a first step to select
111217 candidate regions with altered chromatin accessibility after stromal co-
culture. c Volcano plot showing differentially accessible genomic regions (FDR <
0.050). These 4511 differentially accessible regions represent a subset of the
initially identified 111217 candidate regions. d Venn diagram demonstrating the

overlap between the 4511 differentially accessible regions and three databases of
annotated human cis-regulatory elements. e Euler diagrams and bar graph
depicting the filtering and prediction strategy employed to associate the 4511 dif-
ferentially accessible regions with potential target genes within previously descri-
bed conservedmyeloma-specific topologically associating domains (TADs)48. After
filtering, therewere4288 differentially accessible regions predicted to interactwith
4626 potential target genes in close proximity. The 4288 differentially accessible
regions were predicted to interact with either one or two potential target genes
after applying all filtering criteria. f Position-specific weight matrices showing the
top 3 transcription factors expected to bind in the genomic regions accessible after
stromal co-culture (selected by transcription factor footprinting)53. Motif enrich-
ment analyses are also shown. Among the top enriched transcription factors were
FOS, FOSL2, and KLF5. Source data are provided as a Source Data file.
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number of studies have implicated epigenetic regulatory mechan-
isms. Promoter methylation, histone modifications, and chromatin
accessibility have been found to be involved in the MM-BMSC
interactions and regulation of specific genes involved in cell sig-
naling, osteoblast suppression, and therapeutic resistance19–24. The

causal relationships between the expression of specific genes and
extramedullary dissemination and therapeutic resistance raises the
question whether the underlying regulatory mechanisms governing
the expression of these genes could be exploited for therapeutic
benefit.

Fig. 2 | The interaction of bonemarrow stroma andmyeloma cells induces up-
regulation of genes involved in cellmigration and cytokine signaling in human
myeloma cell lines. This up-regulation is supported by the presence of de novo
chromatin accessibility in associated cis-regulatory elements. a Heatmap (unsu-
pervised hierarchical clustering) showing separation of the experimental condi-
tions based on gene expression (presence versus absence of stromal co-culture).
b Volcano plot demonstrating the up-regulation of genes inmyeloma cells due to
interactions with bonemarrow stroma. Genes coding for interleukins, chemokine
ligands, and matrix metalloproteinases were among the top up-regulated genes
(top 5 genes in each direction labeled). c Bar graphs listing the top 10 functional
annotation terms for the 224differentially expressed genes (GO=GeneOntology,
MF = Molecular Function, BP = Biological Process, CC = Cellular Compartment,
KEGG = Kyoto Encyclopedia of Genes and Genomes Pathway, REAC = Reactome
Pathway). These top 10 terms included cytokine and interleukin signaling as well
as cell migration and remodeling of the extracellular matrix. d Volcano plot
demonstrating differential expression of genes with concomitant differential

chromatin accessibility in associated CREs. Genes coding for interleukins, che-
mokine ligands, and matrix metalloproteinases remained among the top up-
regulated genes. The top 3 differentially expressed genes with associated dif-
ferentially accessible CREs are labeled. e Bar graph showing the over-
representation (Fisher’s exact test) of up-regulated genes among the genes with
at least one CRE with altered accessibility nearby (i.e. genes close to CREs with
altered chromatin accessibility after stromal co-culture are more likely to be up-
regulated after stromal co-culture compared to geneswithout suchCREs nearby).
f Venn diagrams demonstrating that the observed association between differ-
ential expression and differential chromatin accessibility in corresponding CREs
is unlikely to have arisen by chance (hypergeometric test). g Bar graphs listing the
top 10 functional annotation terms for the 4626 predicted target genes predicted
to be involved in cis-interactions. These top 10 terms again included interleukin
and cytokine signaling as well as several cancer-related pathways. Source data are
provided as a Source Data file.
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Fig. 3 | The expression of stromal interaction genes is of independent prog-
nostic significance in myeloma and defines a high-risk subgroup of patients
with distinct transcriptomic features. a Venn diagram showing the subset of
genes independently associated with progression-free survival in patients with
newly diagnosed myeloma (UAMS TT2/3, n = 559, GSE24080). The consensus of
forward and backward feature selection in proportional hazards regressionmodels
identified 10 genes that were selected for further study based on their independent
prognostic significance. b Heatmap showing the direction and effect sizes for the
10 genes independently associated with progression-free survival in UAMS TT2/3.
The expression of half of the genes was associated with increased progression-free
survival, the expression of the other half with decreased progression-free survival.
The color gradient reflects the Wald z-score of the regression coefficient for each
gene in the multivariable-adjusted proportional hazards regression model (a nor-
malized measure of the effect size). c Scatter plot (left) showing the separation of
HS5 (turquoise) andMM1S (orange) cells after co-culture in two-dimensionalUMAP
space based on their single-cell gene expression profiles. Euler diagram (right)

showing the validation the predicted cis-interactions in MM1S cells after co-culture
with HS5 using single-cell co-accessibility analysis. d Kaplan-Meier plots showing
the association between the presence of adverse stromal interactions (ASI + ) and
overall survival (Wald test). e Kaplan-Meier plots showing the association between
the presence of adverse stromal interactions (ASI + ) and progression-free survival
(Wald test). f Forest plots demonstrating the independent prognostic significance
(overall survival) of the presence of adverse stromal interactions (ASI + ) in the
derivation cohort and the two validation cohorts, when adjusting for established
clinical, laboratory, and cytogenetic high-risk markers. The center marker repre-
sents the hazard ratio (HR) and the bars the corresponding 95%confidence interval.
g Forest plots demonstrating the independent prognostic significance (overall
survival) of the presence of adverse stromal interactions (ASI + ) in the combined
validation cohorts when adjusting for the established clinical, laboratory, as well as
the UAMS-70 and EMC-92 high-risk gene expression classifier, respectively. Center
marker and bars same as for (f). Source data are provided as a Source Data file.
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These observations suggest that there are specific transcriptional
programs responsible for therapeutic resistance and EMD dissemina-
tion. However, it remains unclear if the presence of structural variation
within the MM cells can fully explain these prognostically important
disease phenotypes. One alternative explanation to a unifying reg-
ulatory mechanism determined by structural variation within the
MM cells are dynamic epigenetic changes incited by interactions with
the tumor microenvironment. The latter is conceivable given the
intricate bidirectional relationship between MM cells and BMSCs14,25.
Stromal cells have been demonstrated to protect MM cells against
cytotoxic treatment and immune related injury by altering gene
expression in the MM cells and suppressing T-cell-mediated anti-
tumor immune responses26,27.

Here, we investigate the chromatin remodeling and associated
changes in gene expression in the MM cells following MM-BMSC
interactions and show their implications for the development of
therapeutic resistance, EMD dissemination, and patient outcomes.

Results
BMSCs induce chromatin remodeling of cis-regulatory elements
in MM cell lines
To identify chromatin accessibility and consequent gene expression
changes induced in MM cells by their interaction with BMSCs, we
performed DNA transposase-accessibility assays (ATAC-seq) and
whole transcriptome sequencing (RNA-seq) in three human MM cell
lines after 72 h of co-culturewith andwithout a human stromal cell line
(Fig. 1a). We observed widespread chromatin remodeling in the MM
cells following co-culture with BMSCs: There were both increases
(formation of euchromatin) and decreases in chromatin accessibility
(formation of heterochromatin, Fig. 1b, Supplementary Fig. 1a). We
identified 4511 regions with altered accessibility among 111217 candi-
date regions by performing differential accessibility analysis (Fig. 1c).
Intersection with public databases of human cis-regulatory elements
(CREs) confirmed that the vast majority of these 4511 genomic regions
represented known CREs (Fig. 1d). However, only few of these regions
were located in conserved MM super-enhancer regions (8 of 4511,
0.18%)28. We identified 4626 potential target genes associated with
4288 CREs using proximity on the linear genome and localization
within conserved MM topologically associating domains as selection
criteria (Fig. 1e, Supplementary Data 1). The 4288 CREs associatedwith
potential target genes were predicted to bind a number of transcrip-
tion factors by transcription factor footprinting, including several
members of the FOS, KLF, and IRF families (Fig. 1f).

Chromatin accessibility of cis-regulatory elements is associated
with increased transcription of their potential target genes in
MM cell lines
As the vastmajority of theseelements are knownCREs,we investigated
whether their accessibility is associated with the transcription of their
predicted target genes. Unsupervised hierarchical clustering sepa-
rated the experimental conditions and revealed marked differences in
gene expression between stroma-exposed and -unexposed MM cell
lines (Fig. 2a). We first examined the gene expression profiles of the
three cell lines before and after stromal co-culture using pairwise
correlation (Supplementary Fig. 1b-d). Gene expression before and
after stromal co-culture are highly correlated (r > 0.90 and p <0.001
for all three cell lines). Next, we categorized transcripts as down-
regulated (decrease in normalized transcript count), stable (no change
in normalized transcript count), and up-regulated (increase in nor-
malized transcript count) after stromal co-culture for each cell line.
There was strong agreement between the three cells lines in terms of
the transcriptional changes in response to stromal co-culture (inter-
rater agreement >0.70 andp < 0.001 for all three cell lines). Differential
gene expression analysis between the two experimental conditions
demonstrated a predominant up-regulation of transcriptional activity

in the MM cells after exposure to bone marrow stroma cells (218 gene
up-regulated, 6 genes down-regulated, Fig. 2b, SupplementaryData 2).
The up-regulated genes included several cytokines, chemokines, and
matrix metalloproteinases. Functional annotation revealed the acti-
vation of pathways related to extracellularmatrix organization and cell
migration in the MM cells (Fig. 2c, Supplementary Data 2). The up-
regulation of these genes was specific to stromal co-culture and not a
baselineproperty of the employedMMcell lines. Among 70 commonly
used MM cell lines at baseline (without stromal co-culture), only two
show increased expression in >50% of the dysregulated genes after
stroma co-culture. Likewise, we did not observe an enrichment in the
expression of the 68 dysregulated genes inMMcell lines with high-risk
IGH translocations (Enrichment Score−0.57,p =0.644, Supplementary
Fig. 2a-b). First, weobserved that therewas significant overlapbetween
the differentially expressed genes and the predicted target genes of
CREswith altered chromatin accessibility (Fig. 2d). Furthermore, genes
with altered chromatin accessibility in their associated CREs were
significantly overrepresented among the differentially expressed
genes (Fig. 2e) and the observed overlap was highly unlikely to have
arisen by chance (Fig. 2f). Additionally, themedian expression of genes
with an associated differentially accessible CRE was higher compared
to genes without an associated CRE, without there being a dosage
effect associated with CREs (Supplementary Fig. 2c). The majority of
the CREs were located outside promoter regions and within 500
kilobases of the transcription start site (Supplementary Fig. 2d). The
effect of these CREs on gene expression decreased as the distance
from their predicted target genes increased (Supplementary Fig. 2e).
Functional annotation of the predicted target genes again revealed
interleukin and cytokine signaling as well as several cancer-related
pathways, extracellular matrix organization, and cell migration
(Fig. 2g, Supplementary Data 3).

MM / BMSC interaction-induced expression of genes has inde-
pendent prognostic significance in patients with newly
diagnosed MM
Next, we evaluated whether the expression of genes governed by
stromal interactions is of prognostic significance in patients with MM.
We used the 68 genes with concordant CRE accessibility and expres-
sion (overexpression and de novo accessibility in associated CREs,
Fig. 2d) to test the association between their expression and
progression-free survival in 559 newly diagnosed uniformly treated
patients with MM. Employing automated feature selection methods,
we identified 10 of the 68 genes to be independently associated with
survival in the derivation cohort (Fig. 3a, Supplementary Table 1–3).
Half the genes were associated with favorable survival while the other
half were associated with decreased survival (Fig. 3b). We further
generated single-cellmulti-omics data (scRNA and scATAC sequencing
from the same cells) to validate the predicted cis-interactions between
enhancer and predicted target genes induced by MM stroma interac-
tions. This experiment confirmed all ten interactions identified from
bulk sequencing data (Fig. 3c, Supplementary Fig. 3a). While the
expression of these 10 genes was of independent prognostic sig-
nificance, 90% of them had not previously been implicated in high-risk
disease (Supplementary Fig. 3b). To investigate the combined effects
of the expression of both protective and harmful stromal interactions,
we devised a simple summary measure of the expression of these 10
genes and dichotomized the obtained values (please see Methods for
details, Supplementary Fig. 3c–f, Supplementary Table 4) to designate
a group of patients with MM cells not having adverse stromal inter-
actions (ASI-) signature and a groupwith presenceofASI (ASI + ). Using
this ASI classifier, we validated the adverse prognostic impact of ASI+
in two independent patient populations Fig. 3d, e). Importantly, the
prognostic significance of ASI was independent of the established
high-risk disease markers (Fig. 3f, Supplementary Table 5–7). In addi-
tion to the minimal or absent overlap between the identified stromal
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interaction genes and existing transcriptome-based high-risk classi-
fiers, the prognostic implications of the former were independent of
the latter (Fig. 3g, Supplementary Table 8-9).

Adverse stromal interactions define a hitherto unrecognized
high-risk subtype of MM and are associated with therapeutic
resistance in patients with newly diagnosed MM
Since the presence of ASI was of independent prognostic significance,
we investigated their potential co-segregation with the established
high-risk disease markers in patients with MM. The presence of tradi-
tional high-risk disease markers was balanced across the extent of ASI
in validation cohort II (MMRF, n = 623, Fig. 4a). Likewise, the distribu-
tion of demographic, laboratory, cytogenetic, and genomic char-
acteristics was similar between patients with adverse stromal
interactions and those without (Fig. 4b). These results were consistent
with validation cohort I (IFM, n = 214): Age at diagnosis (p = 0.658), sex
(p = 0.700), and International Staging System stage (p = 0.962). Fur-
thermore, the mutational spectrum of patients with ASI was not dif-
ferent from those without (Fig. 5a, b). Since in vitro stromal
interactions are known to impact the development of therapeutic
resistance, we further evaluated whether ASI are associated with
response to therapy. We defined early therapeutic resistance as stable
or progressive disease (by IMWG uniform response criteria) three
months after initiation of first-line treatment. The choice of an early
response endpoint was motivated by the high overall response rates
(ORR) and resulting insufficient sample sizes in both MMRF IA16 (ORR
95%, 959 of 1014 patients) and IFM 2009 (ORR 98%, 684 of 700
patients) when attempting to model best overall response to first-line
treatment. The presence of ASI was associated with early therapeutic
resistance in general and with resistance to VRd (bortezomib, lenali-
domide, and dexamethasone) in particular (Fig. 5c). The presence of
ASI remained predictive after adjusting for the established high-risk
disease markers, confirming that none of them were predictive of

treatment response (Fig. 5d, Supplementary Table 10–11). The asso-
ciation with early therapeutic resistance to VRd translated into
decreased progression-free survival both among patients receiving
VRd in MMRF (Fig. 5e) and patients in IFM 2009 (Fig. 3e, Supplemen-
tary Tables 12–13, all patients receiving VRd per protocol). In addition
to being independent from the established high-risk disease markers,
the association between ASI and progression-free survival remained
consistent in both patient populations after limiting the analysis to
patients who achieved a response to first-line treatment (Supplemen-
tary Tables 14–15). This observation supports the notion that the
prognostic significance of ASI is not exclusively due to by their ability
to identify non-responders.

Stromal interaction related gene expression changes recapitu-
late the transcriptional program of extramedullary disease and
lead to accelerated disease dissemination in patients with MM
To test whether MM cells that survive outside their natural bone
marrow environment sustain the expression of such stromal-
interaction-induced genes, we examined the expression of the 68
genes with concordant expression and CRE accessibility (over-
expression and de novo accessibility in associated CREs, Fig. 2d) in
EMD manifestations. We compared MM cells from malignant effu-
sions and circulating plasma cells (CPCs) to their bone marrow
counterparts. We observed concordant expression of the 68 stro-
mal interaction genes in both EMD (Fig. 6a) and CPCs (Fig. 6b).
Conversely, patients with ASI experienced accelerated disease dis-
semination in the form of increased rates of detectable CPCs at the
time of diagnosis (Fig. 6c). Moreover, a greater extent of ASI was
associated with higher numbers of detectable CPCs (Fig. 6d). This
translated into an increased prevalence of disseminated bone dis-
ease at the time of diagnosis (Fig. 6e) and an increased incidence of
progressive bone and soft tissue disease during follow-up (Fig. 6f,
Supplementary Tables 16–17).

Fig. 4 | The presence of adverse stromal interactions (ASI + ) is a distinct high-
risk patient subgroup and occurs in patients with newly diagnosed myeloma.
a Bar graphs and heatmap showing the distribution of high-risk characteristics (ISS
International Staging System, LDH Elevated lactate dehydrogenase, HRT Presence
of a high-risk IGH translocation, −17p = Del(17p), +1q = Gain(1q), TMB high tumor
mutational burden) among 623 patients with newly diagnosed myeloma ranked by

the extent of adverse stromal interactions (Σ ASI). b Bar graphs showing the dis-
tribution of demographic characteristics (MHD = Multi-hit disease; double- or tri-
ple-hit) of patients stratified by ASI + . The scatter plot indicates the statistical
significance for each two-way comparison (ASI+ versus ASI–) after adjusting for
multiple comparisons (Fisher’s exact test).
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Discussion
We observed widespread chromatin remodeling along with a pre-
dominant up-regulation of genes involved in cytokine signaling and
cell migration using transcriptomic and epigenomic data of MM cell
lines after exposure to BMSCs. Interestingly, the vast majority of the
identified regions of altered chromatin accessibility were CREs pre-
dicted to govern the expression of genes involved in cytokine signal-
ing, cell migration, and the regulation of apoptosis. Furthermore, the
accessibility of these CREs correlated with the transcription of their
predicted target genes. These observations support the notion that
altered chromatin accessibilitymay serve as a plausible explanation for
the altered expression of genes involved in clinically important disease
phenotypes21. Our multi-omics integration approach is different from
that of Dziadowicz et al. in that we make a direct connection between

altered chromatin accessibility and gene expression in our model
system, rather than connecting altered chromatin accessibility to a list
of previously established high-risk genes in MM22. The majority of the
identifiedCREswere locatedoutside promoter regions suggesting that
they may represent enhancers. The spectrum of transcription factors
predicted to bind to these enhancers revealed several interesting
candidates including several AP-1 family transcription factors. While
JUN expression has been linked to MM cell proliferation and drug
resistance in model systems, FOS expression has been implicated in
clonal evolution and disease progression in patients with MM29,30.
Enhancers governing the expression of genes involved in the devel-
opment of therapeutic resistance and metastasis are of considerable
interest as potential drug targets for emerging classes of small mole-
culeswith lineage- and context-specific therapeutic effects such as BET

Fig. 5 | The presence of adverse stromal interactions (ASI + ) is not associated
with a specific genotype and is predictive of therapeutic resistance to first-line
therapy. a Box and strip plots showing the number of genome-wide canonical
variants in the first validation cohort stratified by the presence of ASI+
(Mann–Whitney-U test). Bar graphs showing the proportion of patients with exonic
canonical variants in 63 recurrently mutated myeloma driver genes3. The scatter
plot indicates the statistical significance for each two-way comparison (ASI+ versus
ASI–) after adjusting for multiple comparisons (Fisher’s exact test). b Box and strip
plots showing the number of exome-wide canonical variants stratified in second
validation cohortby the presenceofASI+ (same analysis anddata presentation as in
a). c Bar graphs showing the frequency of early therapeutic resistance (Progressive
Disease or Stable Disease by IMWG unified response criteria72 three months after
initiation of first-line treatment; Fisher’s exact test) among patients in the second
validation cohort receiving either any first-line regimen or VRd (bortezomib,
lenalidomide, and dexamethasone). d Forest plots demonstrating the predictive

power (early therapeutic resistance) of the presence of adverse stromal interac-
tions (ASI + ) in the second validation cohort. For all first-line regimens the sample
size allowed multivariable-adjustment for the established clinical, laboratory, and
cytogenetic high-risk markers. For first-line VRd, the limited sample size dis-
couraged us from extensive modeling (unadjusted odds ratios given). The center
marker represents the odds ratio (OR) and the bars the corresponding 95% con-
fidence interval. e Kaplan-Meier plot showing the association of ASI+ with
progression-free survival among patients in the second validation cohort receiving
first-line VRd (Wald test). This association remained consistent after adjusting for
age, sex, ISS, HRT, and−17p (HR 1.59, 95%CI 1.01–2.51,p =0.044,n = 176). Therewas
no evidence for a violation of the proportional hazards assumption (p =0.327)71.
Data are presented as standard Tukey boxplots (with the box encompassing Q1 to
Q3, the median denoted as a central horizontal line in the box, and the whiskers
covering the data within ±1.5 IQR in c, d). Source data are provided as a Source
Data file.
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bromodomain inhibitors28,31. It is important to note that a stromal cell
line model system was used to provide a uniform interaction and the
observed changes in gene expression reflect a specific response to
stromal exposure. Future studies evaluating the impact of bone mar-
row microenvironment heterogeneity on MM cells at single-cell reso-
lution will be required to further extend our findings18.

Plasma cell disorderswith EMDmanifestations includeplasmacell
leukemia, MM with CPCs, and with soft tissue plasmacytomas. All of
these disease states are associated with drug resistance and poor
survival outcomes compared to their counterparts without EMD
manifestations6,32,33. The presence of EMD has raised a number of
questions in the past as MM cells are known to depend on their
interaction with BM stromal elements. Moreover, these interactions
provide growth and survival signals to MM cells and also lead to
development of drug resistance. Our results suggest that the MM cells
which are able to survive as EMDoutside of the BMmicroenvironment
may have acquired the same transcriptional characteristics as induced
by this interaction and hence may be able to grow out independently.
Examining the expression of the stromal interaction genes in extra-
medullary plasma cells, we demonstrated that the gene expression
observed in patients with adverse stromal interactions is similar to the
transcriptional program of EMD.We did observe gene expression akin
to EMD inMMcells from a considerable number of patients with newly
diagnosed MM, supporting the hypothesis that there is a specific
transcriptional program that can be activated even in the absence of
the bone marrow microenvironment (EMD-like phenotype). This sug-
gests that theMMcells of a subset of patients have already acquired an

adverse EMD-like transcriptional program at the time of diagnosis,
long before they developmulti-drug resistance and symptomatic EMD
manifestations.Wedid find evidenceof this EMD-like phenotype in the
form of increased numbers of CPCs, more widespread skeletal mor-
bidity, and accelerated bone and soft tissue disease dissemination
among patients with adverse stromal interactions.

Integrating gene expression and chromatin accessibility in MM
cell lines, we identified 68 genes characterized by transcriptional up-
regulation in response to stromal exposure supported by euchromatin
formation in nearby CREs. We selected 10 prognostically significant
MM-stromal interaction genes for further study, 6 of which (AKAP12,
ARAP3, FSTL1, GADD45A, IL6, VCAN) had previously been implicated in
stromal interactions either by differential expression or
accessibility18,22. Using a simple summarymeasure of the expression of
these 10 prognostically significant stromal interaction genes, we
demonstrated that the presence of stromal interactions in patients
with newly diagnosedMM (increased expression of adverse genes and
/ or decreased expression of protective genes) is a prognostic factor
with impacton survivaloutcomes independent of the establishedhigh-
risk disease markers including other transcriptome-based classifiers.
Similarly, stromal interactions were observed across a wide spectrum
of patients with MM and did not co-segregate with the established
high-risk features, demographic characteristics, the overall burden of
structural variation, or structural variation in the coding regions of
putative driver genes. We also observed that the expression these
geneswas strongly associatedwith survival outcomes in three separate
patient populations with newly diagnosed MM, receiving

Fig. 6 | Adverse stromal interactions cause a transcriptomic program that is
akin to the gene expression profile of extramedullary disease (EMD) and are
associated with accelerated disease dissemination. a Gene Set Enrichment
Analysis demonstrating the concordant expression of the 68 overexpressed genes
with de novo chromatin accessibility in their associated cis-regulatory elements
(see b) in 303 malignant extramedullary plasma cells (obtained from malignant
ascites andpleural effusions) compared to 177malignant bonemarrowplasma cells
(BMPCs) from the same patient population (GSE106218; permutation test, p value
adjusted for multiple comparisons using family-wise error correction). b Gene Set
Enrichment Analysis demonstrating the concordant expression of the same 68
genes in 2688 circulating plasma cells (CPCs) compared to 2688 BMPCs from the
same population (permutation test, p value adjusted for multiple comparisons
using family-wise error correction). c Bar graphs showing the distribution of
patients with detectable CPCs by flow cytometry at the time of diagnosis in the

stratified by ASI+ (Fisher’s exact test). d Box and strip plots demonstrating an
increase in detectable CPCswith a greater extent of adverse stromal interactions (Σ
ASI; Mann–Whitney U test). e Bar graphs showing the distribution of patients with
imaging findings of multiple disseminated bone lesions at the time of diagnosis
stratified by ASI+ (Fisher’s exact test). f Kaplan-Meier plot showing the association
of the presence of adverse stromal interactions (ASI + ) with the development of
new bone lesions or soft tissue plasmacytomas during follow-up (or increase in the
size of existing bone lesions or soft tissue plasmacytomas; Wald test). This asso-
ciation remained consistent after adjusting for age, sex, ISS, LDH, HRT, −17p, and
+1q (HR 2.18, 95% CI 1.35–3.51, p =0.001, n = 442). There was no evidence for vio-
lations of the proportional hazards assumption (p =0.212)71. Data are presented as
standard Tukey boxplots (with the box encompassing Q1 to Q3, the median
denoted as a central horizontal line in the box, and the whiskers covering the data
within ±1.5 IQR in d).
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contemporary anti-myeloma therapies. The function of four of these
genes has already been studied by us or others (IL6, PTK2, AIM2 and
GADD45A) and two additional genes had previously been implicated in
MM biology or prognosis (AKAP12 and VCAN)18,34–37. As exemplified by
these genes, adverse stromal interactions can induce the expression of
genes involved in tumor proliferation and may be a plausible expla-
nation for the development of EMD inMM. Further in-depthmolecular
and cell signaling investigations will be required to delineate func-
tional impact of these genes in MM.

While the presence of adverse stromal interactions identified yet
another high-risk subtype of MM, its implications for therapeutic tar-
get discovery may be unique. The property that sets adverse stromal
interactions apart from all other established high-risk disease markers
is their ability to predict response to treatment. We observed a more
than two-fold increase in the odds of early therapeutic resistance in
patients receiving the current standard of care (VRd) and found similar
predictive abilities when generalizing to all first-line regimens. Inter-
estingly, the stromal interaction related changes in expression we
observed neither involved any of the genes reported by Ubels et al.
(predictive of response to proteasome inhibitors) nor any of the genes
reported by Bhutani et al. (predictive of response to immunomodu-
lators) even though VRd is the archetypal regimen containing both
drug classes38,39. The adverse stromal interactions identified here pre-
dicted response to contemporary anti-myeloma therapies, which is
different from previously identified transcriptomic and epigenomic
classifiers18,22. Once the data from ongoing clinical trials and the use of
novel cellular therapies in clinical practice become mature, it will be
important to investigate the role of stromal interactions in the devel-
opment of resistance to CAR T-cell and bispecific antibody therapies27.
Going back to the notion that survival outcomes in MM are largely
determined by the development of therapeutic resistance and EMD
manifestations, identifying a group of genes associated with both rai-
ses the possibility that these genes are not merely high-risk disease
markers but may be causally related to these outcomes so crucially
important to patients with the disease.

In summary, we identified a transcriptional program in MM cell
lines that is induced by bone marrow stroma and associated with
chromatin remodeling of CREs. We discovered that the expression of
such stroma-induced genes recapitulates the transcriptional program
of EMD in patients and represents a hitherto unrecognized high-risk
subtype of MM associated with early development of therapeutic
resistance, accelerated disease dissemination, and increased morbid-
ity and mortality. Identifying novel transcriptomic and epigenomic
targets in the tumor microenvironment is of considerable interest for
the development of therapeutic approaches to prevent emerging drug
resistance and to further improve outcomes of patients with MM.

Methods
This research complies with all relevant ethical regulations of the
participating institutions that approved the study protocol.

Cell culture experiments
The human MM cell lines MM.1 S (ATCC cat # CRL-2974), RPMI-8226
(ATCC cat # CCL-155), INA-6 (DSMZ cat # ACC-862) representative of
different genetic backgrounds, and the human stromal cell line HS5
(ATCC cat # CRL-3611) were cultured in RPMI-1640 medium supple-
mented with completemedium (10% fetal bovine serum, 100 units/mL
penicillin, 100 µg/mL streptomycin, and 2 mM L-glutamine) at 37 °C
and 5% CO2. Recombinant human IL-6 at a concentration of 1 ng/mL
(R&D Systems,Minneapolis, United States) was added to INA-6 culture
medium. The MM.1 S, RPMI-8226, and HS-5 cells were obtained from
ATCC and authenticated using ATCC STR profiling protocols. INA-6
was obtained fromDMSZ and authenticated using DMSZ STR profiling
protocols. All cell lines tested negative forMycoplasmacontamination.
For co-culture experiments, the MM cell lines and HS5 were passaged

and cultured separately for 24 h in a 75 cm2
flask. After 24 h of culture

and once HS5 50% confluency was observed, the MM cells were
manually counted and 10millionMMcellswith 90%or greater viability
(assessed using Tryptan Blue staining), were transposed into 20ml of
fresh RPMI-1640 medium and either added into a 75 cm2

flask con-
taining HS5 cells or cultured alone in a new flask. After 72 h of culture,
total cells were collected from each condition using adherent culture
protocol and Trypsin-EDTA to remove attached cells. Cells were
counted and viability was assessed. CD138+ plasma cells were then
purified using anti-CD138 microbeads (Miltenyi Biotech, Auburn, Uni-
ted States). CD138 +MM cells and HS5 cells from each condition were
then aliquoted separately to performadditional experiments including
RNA extraction for RNA-seq and cell preparation for ATAC-seq.

RNA-seq
RNA was extracted from CD138 +MM cells using the RNeasy MiniKit
(Qiagen, Germantown, United States). RNA quantity was evaluated
using the Qubit RNA Assay Kit (Life Technologies, Carlsbad, United
States) and RNA quality was determined on the Bioanalyzer using the
RNA Pico Kit (Agilent, Santa Clara, United States). We used at least
500 ng of total RNA for each sample. Next, library preparation was
done with NEBNext Ultra RNA Library Prep Kit for Illumina (New Eng-
land BioLabs, Ipswich, United States), was converted into aDNA library
following the manufacturer’s protocol. Library quantity was deter-
mined using the Qubit High Sensitivity DNA Kit and library size was
determined using the Bioanalyzer High Sensitivity Chip Kit (Agilent).
Finally, libraries wereput through quantitative PCR using theUniversal
Library Quantification Kit for Illumina (Kapa Biosystems, Wilmington,
United States) and run on the 7900HT Fast quantitative PCR machine
(ABI, Grand Island, NY). Libraries passing quality control were diluted
to 2 nM using sterile water, and then sequenced on the HiSeq
2000 system (Illumina, San Diego, United States) at a final con-
centration of 12 pM sequenced with paired end 75 bp reads, following
the manufacturer’s protocols. After data quality control, reads were
aligned to the GRCh38 reference genome using STAR and transcript
counts calculated using featureCounts40,41. Pre- and post-alignment
data quality control was performed using FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Differential gene
expression analysis was performed using DESeq2 using default para-
meters (summary estimates across the biological replicates are
reported), sample and gene clustering using heatmap.2 using default
parameters with Euclidean distance (https://CRAN.R-project.org/
package=gplots), and visualization of differentially expressed genes
using Stata42. Functional annotation of the differentially expressed
genes was performed using gProfiler43.

ATAC-seq
For each condition, 50,000 CD138+ MM cells were aliquoted and pre-
pared in duplicates as previously reported28. Cells were lysed for
10min at4 °C in lysis buffer (10mMTris-HCl pH7.4, 10mMNaCl, 3mM
MgCl2, 0.1% IGEPAL CA-360). After lysis, the pellets were subject to a
transposition reaction (at 37 °C for 60min) using the TD buffer and
transposase enzyme (Illumina Nextera DNA preparation kit, FC-
121–1030). The transposition mixture was purified using a MinElute
PCR purification kit (Qiagen). Library amplification was performed
using custom Nextera primers and the number of total cycles deter-
mined by running a SYBR-dye based qPCR reaction. Amplified libraries
were purified using a PCR purification kit (Qiagen) and sequencedwith
paired end 75 bp reads on an NextSeq instrument (Illumina). After data
quality control, reads were aligned to GRCh38 using bowtie244. Pre-
and post-alignment data quality control was performed using FastQC
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/).
Aligned reads fromwere sorted and indexed using samtools and peaks
were called using MACS2 using default parameters44,45. First, differen-
tially accessible candidate genomic regions were identified using

Article https://doi.org/10.1038/s41467-024-47793-5

Nature Communications |         (2024) 15:4139 9

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://CRAN.R-project.org/package=gplots
https://CRAN.R-project.org/package=gplots
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/


MACS2 by treating the samples within each experimental condition as
biological replicates. Second, differentially accessible genomic regions
were selected from the candidate regions by implementing a DiffBind-
like differential accessibility analysis by treating the peaks as individual
features and the samples within each experimental condition as bio-
logical replicates (summary estimates across the biological replicates
are reported)46. To annotate and associate these regions with potential
target genes the Genomic Regions Enrichment of Annotations Tool
(GREAT) was used47. The cis-interactions predicted by GREAT were
then further filtered to avoid violation of the conserved MM topolo-
gically associating domain boundaries derived from Hi-C experiments
in RPMI and U26648. Candidate cis-regulatory elements were validated
using the ENCODE, GeneHancer, and Hacer databases and visualized
using Intervene49–52. Functional annotation of the predicted target
genes wasperformedusing gProfiler43. Candidate transcription factors
potentially binding these accessible regions were identified by tran-
scription factor footprinting with TOBIAS53. Additional motif enrich-
ment analyses were performed with HOMER54.

scRNA-seq + scATAC-seq
Co-cultured MM1S and HS5 cells were processed for single-cell Multi-
ome ATAC + Gene Expression (10X Genomics) with a targeted nuclei
recovery of approximately 10,000. Nuclei were isolated according to
the Demonstrated Protocol: Nuclei Isolation for Single Cell Multiome
ATAC + Gene Expression (10X Genomics, CG000365 Rev A).
Approximately one million cells were added to a 5.0mL low binding
tube and centrifuged (300 × g for 5min at 4 °C) using a swinging
bucket rotor. Cells were washed twice with PBS +0 .04% BSA and were
passed through40uMFlowmi cell strainer to remove any clumps. After
pelleting the strained cells, the cell pellet was resuspended in 100 µL of
chilled 10X Genomics Lysis Buffer (10mM Tris-HCl pH 7.4, 10mM
NaCl, 3mM MgCl2, 0.1% Tween-20, 0.1 % NP-40 Substitute, 0.01%
digitonin, 1% BSA, 1mM DTT, 1 U/μL RNase inhibitor 40U/mL) by
pipette-mixing 10 times. Cells were incubated on ice for 3min, fol-
lowed by dilution with 1mL of chilledWash Buffer (10mMTris-HCl pH
7.4, 10mMNaCl, 3mMMgCl2, 0.1% Tween-20, 1% BSA, 1mMDTT, 1 U/
mL RNase inhibitor 40U/mL). Nuclei were then centrifuged (500×g for
3min at 4 °C), and the supernatant was slowly removed. The nuclei
were washed one additional time with 1mL Wash Buffer. Nuclei were
resuspended in chilled diluted nuclei buffer (1X Nuclei Buffer, 1mM
DTT, 1 U/mL RNase inhibitor 40U/mL); the concentration was deter-
mined using a hemocytometer and the samples were adjusted to a
concentration appropriate for our targeted nuclei recovery. The
single-cell ATAC library construction and gene expression library
construction was carried out as described in the Chromium Next GEM
Single Cell Multiome ATAC + Gene Expression User Guide (CG000338
RevA). ATACandGEX librarieswere sequenced separatelyon anHiSeq
4000 (Illumina) before demultiplexing, alignment to the reference
genome, and post-alignment quality control. A total of 8,293 single
cells passed standard scRNA-seq and scATAC-seq quality control
metrics (number of detected features,mitochondrial gene expression,
transcription start site enrichment). MM1S and HS5 cells were com-
putationally separated based on their single-cell gene expression
profiles using a 1000-gene classifier. The classifier consisted of the top
500 differentially expressed genes between pure MM1S and pure HS5
cells (asmeasured by bulk RNA-seq). Among theMM1S cells, single-cell
chromatin accessibility was analyzed and cis-regulatory interactions
were identified using Cicero with default parameters55.

Patient populations
The 559 patients with newly diagnosed MM treated on the TT2 / TT3
clinical trial protocols with thalidomide and bortezomib containing
regimens between 1998 and 2006 were used as for discovery (deri-
vation cohort, GSE24080)56,57. Gene expression in the derivation
cohort was measured on an Affymetrix Human Genome U133 Plus 2.0

microarray. Two hundred and fourteen patients with newly diagnosed
MM treated on the IFM 2009 clinical trial protocol with a lenalidomide
andbortezomibcontaining regimenbetween2010 and2012wereused
for validation (validation cohort I). Gene expression in the validation I
cohort was measured by RNA-seq. Additionally, 635 patients treated
with various novel agent containing regimens from 2011 on as part of
the MMRF CoMMpass study were used for validation (validation
cohort II, IA16)58. Gene expression in the validation II cohort was
measured by RNA-seq. The IA16 data was accessed through theMMRF
Researcher Gateway (https://research.themmrf.org). The gene
expression of 2688 circulating plasma cells and 2688 bone marrow
plasma cells of patients with MM was estimated using the data
reported by Ledergor et al. (GSE117156)59. The 2688 bone marrow
plasma cells were randomly sampled from the 12672 bone marrow
plasma cells in the data repository to balance the sample sizes for
comparison. In GSE117156, single-cell gene expression was measured
using MARS-seq and we used log-normalized counts as input for Gene
Set Enrichment Analysis (GSEA)60. The gene expression of 303 extra-
medullary plasma cells and 177 bone marrow plasma cells of patients
with MM was estimated using the data reported by Ryu et al.
(GSE106218)61. In GSE110499, single-cell gene expression was mea-
sured using the Fluidigm C1 platform and the normalized measures of
single-cell gene expression (TPM) available in the data repository were
used as input for GSEA.

Σ ASI as a summary measure of adverse stromal interactions
We identified 10 stromal interaction genes independently associated
with progression-free survival in the derivation cohort (GSE24080).
These 10 genes were selected among the 68 genes with concordant
gene expression and chromatin accessibility changes. The 10 genes
represent the consensus of forward (p = 0.200 for addition to the
model) and backward feature selection (p = 0.200 for removal from
the model) in proportional hazards regression models. Five of the 10
genes (FSTL1, FSCN1, VCAN, GADD45A, and AKAP12) were associated
with increased overall survival (HR below 1.0 in the final multivariable-
adjusted proportional hazards regression model including all 10
genes). The other five genes (AIM2, ZEB2, IL6, ARAP3, and PTK2) were
associated with decreased overall survival (HR above 1.0) in the same
model. First, we quantile-normalized the expression of each of the 10
genes by creating deciles of their expression (1 = lowest expression, 10
= highest expression). The Σ ASI is defined as (the sum of deciles of
expression of the adverse genes) plus (the sum of 10minus the deciles
of expression of the favorable genes). Therefore, a Σ ASI of 0 indicates
the maximum expression of all favorable genes and minimum
expression of all adverse genes. Conversely, a Σ ASI of 90 indicates the
maximum expression of all adverse genes andminimum expression of
all favorable genes. R andStata code to calculate theΣASI classifier and
pertinent survival analyses are provided as supplementary software
(Supplementary Software 1). We dichotomized the Σ ASI at 50 desig-
nating a group without (ASI-, Σ ASI < 50) and a group with ASI (ASI + , Σ
ASI ≥ 50). This dichotomizationwas chosen to achieve approximately a
70/30 split between standard-risk and high-risk patients. Conse-
quently, approximately one third of the patients was classified as ASI+
in all cohorts (derivation = 29%, validation I = 32%, validation II = 30%).

Data analysis
Data are presented as median (range) unless denoted otherwise.
Medians were the preferred measure of central tendency and non-
parametric hypothesis tests were used for comparisons unless stated
otherwise. Continuous variables were compared using the Mann-
Whitney-U test (difference between two groups), the Kruskal-Wallis
test (any difference between more than two groups), or Cuzick’s non-
parametric test for trend (trend across more than two groups)62–64.
Categorical variables were compared using Fisher’s exact test65. The
statistical significance of regression coefficients was evaluated using
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the Wald test66. All hypothesis tests (other than the hypergeometric
tests) were two-sided and p-values below 0.05 were considered sta-
tistically significant. ThemethoddescribedbyBenjamini andHochberg
was used to control the false discovery rate (FDR)67. Overall and
progression-free survival estimates were calculated using the method
described by Kaplan and Meier68. Overall survival was defined as the
time fromdiagnosis to death and patients who were alive at the end of
follow-up were censored. Progression-free survival was defined as the
time from diagnosis to disease progression or death. Patients who
were alive and had not progressed at the end of follow-up were cen-
sored. The log-rank test was used to compare time to event data across
subgroups69. Multivariable-adjusted (Cox) proportional hazards
regression models were used to assess the association between the
covariates of interest and survival outcomes70. Violations of the pro-
portional hazards assumption were evaluated using scaled Schoenfeld
residuals71. Logistic regression was used to assess the association
between covariates and response to therapy. Early therapeutic resis-
tance was defined as Stable Disease (SD) or Progressive Disease (PD)
after threemonths of treatment72. The EMC-92 and UAMS-70 high-risk
classifiers were calculated as described by Kuiper et al. and Shaugh-
nessy et al., respectively37,73. The overlap between gene sets was
visualized using venn (https://CRAN.R-project.org/package=venn).
Circular scatter plots were generated using circlize74. R was used for
data processing and analysis, Stata for visualization42,75.

Statistics & reproducibility
The sample size was chosen based on the RNA-seq power calculation
(at least 80% power to detect a 3-fold or greater change in gene
expression at an α-level of 5%). Average sequencing coverage and the
coefficient of variation were empirically derived from a large number
of human RNA-seq experiments76. No data were excluded from the
analyses. The experiments were not randomized. The Investigators
were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawbulk and single-cell RNA andATAC sequencing data generated
in this study have been deposited in the Gene Expression Omnibus
(GEO) database under accession code GSE220144. Publicly available
datasets analyzed during the current study are available in Gene
Expression Omnibus: GSE2658 (gene expression microarray data)37

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE2658],
GSE106218 (single-cell gene expression data)61 [https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE106218], GSE24080 (gene expres-
sion microarray data)77 [https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE24080], GSE117156 (single-cell gene expression data)59

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE117156],
and GSE110499 (single-cell gene expression data)61 [https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE110499]. The MMRF IA16 bulk
gene expression data was accessed through the MMRF Researcher
Gateway (https://research.themmrf.org)58. The IFM dataset analyzed
during the current study are available from the authors upon reason-
able request. The remaining data are available within the Article file,
Supplementary Information file, Supplementary Data files, or Source
Data file. Source data are provided with this paper.

Code availability
R and Stata code to calculate the Σ ASI classifier and pertinent survival
analyses are provided as Supplementary Software (Supplementary
Software 1).
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