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Automatic detection of methane emissions
in multispectral satellite imagery using a
vision transformer

Bertrand Rouet-Leduc 1,2,3 & Claudia Hulbert2,3

Curbing methane emissions is among the most effective actions that can be
taken to slow down global warming. However, monitoring emissions remains
challenging, as detection methods have a limited quantification completeness
due to trade-offs that have to be made between coverage, resolution, and
detection accuracy. Here we show that deep learning can overcome the trade-
off in terms of spectral resolution that comes withmulti-spectral satellite data,
resulting in a methane detection tool with global coverage and high temporal
and spatial resolution. We compare our detections with airborne methane
measurement campaigns, which suggests that our method can detect
methane point sources in Sentinel-2 data down to plumes of 0.01 km2, corre-
sponding to 200 to 300 kg CH4 h

−1 sources. Our model shows an order of
magnitude improvement over the state-of-the-art, providing a significant step
towards the automated, high resolution detection of methane emissions at a
global scale, every few days.

Methane is the second largest contributor to global warming, esti-
mated to account for approximately a third of warming to date1,2. The
strong contribution of methane to global radiative forcing, in combi-
nation with its much shorter atmospheric half-life compared to CO2,
makes the reduction of methane emissions critical in the short-term
fight against climate change. Yet, despite recent efforts and regula-
tions introduced around the globe to limit emissions, atmospheric
methane levels are steadily increasing and recently reached an all
time high3.

Methane emissions can be intermittent or persistent in time, with
a small fraction of large sources contributing disproportionally to total
emitted volumes4. The systematic identification and quantification of
such sources is key to prioritizing and validating mitigation actions,
and to building precise methane inventories. Governments and orga-
nizations rely on limited information to introduce remedial actions, as
current detection approaches and inventories suffer from severe
drawbacks. Bottom-up inventories havebeen shown tounder-estimate
emissions, often dramatically2,5–7. Current methane measurements are
limited in scale and/or resolution: detectors mounted on ground
vehicle and plane or drone have limited coverage, while hyperspectral

satellites suffer either from very poor resolution or from limited cov-
erage and the need for tasking8.

Satellite-based methane detection generally relies on identifying
absorption in the short-wave infrared (SWIR) of the backscattered
sunlight, in spectral regions known to be absorbed by methane.
Hyperspectral satellites can provide a high SWIR spectral resolution
that enables the precise determination of methane column con-
centrationdata (XCH4)

9–13 (which canbe further refinedusingmachine-
learning methods14–16). However, hyperspectral satellites trade this
high spectral resolution for either low spatial coverage (e.g., target-
mode satellites PRISMA) or low spatial resolution (e.g., Sentinel 5, with
detection capabilities on the order of several tons/h), thereby pro-
viding limited quantification completeness. In order to circumvent
these limitations, there has been a growing interest in developing
methane detection techniques in data from multi-spectral satellites,
such as ESA’s Sentinel-2 constellation, that scans the entire Earth every
2 to 5 days with high spatial resolution (20m in SWIRbands). However,
multi-spectral satellites make the opposite trade-off, providing high
spatial and temporal resolution along with global coverage at the cost
ofmuch less spectral information (with e.g., a dozen spectral bands for
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Sentinel-2, versus hundreds for hyperspectral satellites). Conse-
quently, methane detections in multi-spectral data tend to be very
noisy, and so far have only provided the ability to detect large
emissions17,18, down to 2 to 3 tons/h over very bright surfaces such as
deserts8 (e.g., Turkmenistan or southern Algeria) and 10+ tons/h in
non-optimal conditions (e.g., the Permian Basin in the U.S.)18.

Here we developed a deep learning architecture tailored for
existing open-source multi-spectral satellite data, with the goal of
automatically identifying methane signatures and deconvolving signal
from noise. We find that our approach drastically improves methane
detection capabilities, enabling to detect emissions one order of
magnitude smaller than the state-of-the-art on the same data. Our
results suggest that our model can detect methane emissions down to
plumes of 0.01 km2, corresponding to methane leak rates of 200 to
300 kg/h (with variations depending onwind conditions). Leaks of this
size account for the vast majority of the estimated methane budget
coming from point sources for most airborne campaigns in California,
Colorado, and the Permian Basin analyzed in a recent survey19. Our
results also show that our model can detect all the methane releases
that have been timed with Sentinel-2 overpasses down to 1100 kg/h,
with a gap in S2 controlled releases below that threshold that we hope
will be filled in future tests of our method. Our approach represents a
significant step towards the automated monitoring of persistent
methane emissions, anywhere on Earth, every few days, and would
require few modifications to enhance detection capabilities in other
multi- and hyper-spectral constellations.

Results
Learning to detect synthetic CH4 plumes in Sentinel-2 data
Deep learning requires large amounts of training data, but limited
ground truth exists formethanedetection inmulti-spectral images.We
therefore rely on synthetic methane plumes instead, in an approach
conceptually similar to our previous work aiming at extracting small
ground deformation signals from radar satellite data20 and at extract-
ing small elasto-gravity signals from seismic data21.

To this end, we gathered a large database of pairs of Sentinel-2
tiles, sampled at two consecutive times with limited cloud cover (less
than 25%) in a number of regions representing a variety of different
climates, topographies, and land uses. This database contains a total of
900 pairs of Sentinel-2 tiles (about 10.8 million km2), from areas that
tentatively do not encompass known potential methane sources (such
as oil & gas fields, landfills, etc.). The data is cut into 2.5 × 2.5 km2

scenes, resulting in about 1,650,000 unique Sentinel-2 samples at two
consecutive acquisition times. The Sentinel-2 data consists in L1C Top-
of-Atmosphere (TOA) reflectance from Sentinel-2A and 2B. These
images are made of 13 different spectral bands with a square pixel
resolution varying from 10 to 60 meters. The input bands are re-
sampled to the 20m resolution of bands 11 and 12.

In order to build a training dataset of Sentinel-2 satellite images
containing synthetic methane leaks, we assume the leaks stem from
point sources. Instead of physically realistic WRF-LES simulation
schemes22, weopted for simpleGaussian plumes to efficiently generate
thousands of different patterns, with the goal of creating a diverse
training dataset without attempting to simulate detailed physical
processes (which tend to be lost in the noise after embedding in S2
data, especially for small leaks). We generated thousands of Gaussian
plumes with various emission rates and wind velocities, to which we
added auto-correlated atmospheric noise to mimick atmospheric
turbulence. The plumes were then embedded into about half the
Sentinel-2 2.5 × 2.5 km2 scenes using the Beer-Lambert law18, at a ran-
dom location.More details on the training, validation, and testing data,
and on the synthetic plume generation and embedding, can be found
in the Methods section below.

We train an encoder-decoder architecture in order to identify the
syntheticmethane plumes embedded into real Sentinel-2 images, with

a transformer encoder. Initially introduced for machine translation,
transformer models23 have achieved state-of-the-art performance in
natural language processing23, computer vision24–26, and audio
processing27,28. The main innovation introduced by early transformers
architectures consisted in including self-attention modules in encod-
ing and decoding blocks, i.e., mechanisms used in sequence modeling
that allow to model dependencies within sequences irrespective of
distance29,30 in the data. In comparison with convolutional networks,
self-attention introduces the ability to capture long distance interac-
tions, and improves training efficiency23,31.

Besides a transformer architecture for the encoder, ourmodel has
a classic U-net architecture32,33, that connects the encoder to the
decoder at different resolutions. The model learns to recognize
methane signals as a sequence-to-sequenceprediction problem,which
delimits the extent of the detected methane plume. The input to the
model is a stack of bands B1, B2, B3, B4, B5, B8, B8A, B9, B11 and B12 at
two times t − 1 and t. The task of the neural network is to find the
methane leak in the input images, defined as classifying the set of
pixels corresponding to the embedded synthetic plume at time t. A
schematic of our training approach is shown in Fig. 1.

Performance on synthetic data
The 1,650,000 unique Sentinel-2 samples at two consecutive acquisi-
tion times are split in training, validation, and testing sets. About 75%of
the data is used for training, and comes from tiles over Canada, Egypt,
England, Ethiopia, France, India, Iran, Japan, Kenya, Mali, Mexico,
Morocco, the US, and Saudi Arabia. About 10% of the data is used for
validation, and comes from tiles over the south of Argentina, Belgium,
and China, while about 15% of the data is finally used for testing, and
comes from tiles over Afghanistan and the north of Argentina. The
training, validation, and testing regions are different in order to
improve the generalization of the model retained, which has the best
performance on the validation set.

Figure 2a summarizes the results of evaluating our model on the
testing set, in termsof F1 score (harmonicmeanof precision and recall,
see Methods for details) as a function of signal to noise ratio (SNR,
defined as the ratio of the mean B12 reflectance reduction due to the
synthetic methane plume to the standard deviation of B12 in the
sample). These results show that our model can reliably detect
methane in Sentinel-2 data down to about 5% SNR, about an order of
magnitude improvement over using a threshold on the normalized
Multi-band multi-pass method (MBMP, see Methods), the core com-
ponent of state-of-the-artmethods formethane detection in Sentinel-2
data17,18. Most of the synthetic emissions missed by our model comes
from very small plumes at low SNRs (below 5%). We explain the strong
performance of our model by three main factors: (i) relying on Gaus-
sian plumes randomly embedded in real Sentinel-2 data (insteadof real
plumes or computer-intensive WRF-LES simulations), enables us to
generate a training dataset that is orders of magnitude larger than the
ones typically used in previous attempts at developing deep learning
models for methane detection16,34, thereby enabling to fully train large
deep learning models. (ii) The use of two time-steps as input (con-
ceptually similar to the MBMP approach) enables themodel to use the
first image as a reference image, to which the second image is com-
pared in order to identify transient signals inmethane absorbing band
12, while false positives in band 12 can be discriminated using the other
bands and their evolution over the two time-steps. This comparison is
crucial to distinguish signal from noise and correctly detect methane
plumes, in particular the smaller ones. And (iii) the use of transformers
instead of convolutional neural networks (CNNs) enables ourmodel to
capture the long-range nature of a plume.

Figure 2c shows the receiving-operator curves for classifying
methane-containing Sentinel-2 pixels, which summarizes the true
positive rate and false positive rate of our deep learningmodel and the
MBMP method at different thresholds on their outputs. These results
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show that our deep learningmodel can be used as amethane detector
in Sentinel-2 datawith anextremely low false positive rate (for example
less than 0.03% pixel-wise false positive rate for 85% true positive rate
for the threshold on themodel’s output used tomake Fig. 2a, for all of
the samples in the test set, whose SNR distribution is shown in Sup-
plementary Fig. S1), while no classifier can be built solely from a
threshold on the MBMP method that has a low false positive rate (at
lowSNR).We argue that a very low falsepositive rate is the key tomove
towards a truly automated methane detection method.

Figure 2b shows examples of our approach of embedding syn-
thetic methane plumes in real Sentinel-2 data, and tasking a deep
learning model with retrieving the associated pixels. These examples
come from the test set and aremade fromSentinel-2 data from regions
not included in the training nor validation sets, while the synthetic
plumes also come from a separate test set of plumes. Each column is a
different example, that shows the band B12 data after plume embed-
ding, the detection from the MBMP method and our deep learning
methodwith the thresholds fromFig. 2b, and the ground truth. Except
for the band B12 image, the detections and ground truth are overlaid
on the natural colors RGB image from bands B2, B3 and B4. The
thresholds that determine the classification of a pixel as containing
methane are shown in Fig. 2b, and the same thresholds are used
throughout the manuscript.

Importantly, we note that the false positive rate of our model is
evaluated here on real and unaltered Sentinel-2 data. Only the positive
samples of our databases have a synthetic element, while the negative
samples are original Sentinel-2 data.

Performance on real methane plumes
In order to evaluate our model on real methane leaks, we analyze the
Methane plumes from airborne surveys open-source dataset published
by Carbon Mapper35. This dataset contains methane plumes detected
during several airborne surveys conducted between 2020 and 2021,
performed with both the Global Airborne Observatory (GAO) and the

Next-Generation Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS-NG). The dataset contains a total of 2526 methane plumes,
spanning leak rates from about 8 kg/h to about 9000 kg/h, with a
median emission rate of about 240 kg/h. The airborne campaigns were
conducted in a number of different locations (California, NewMexico,
Utah, Texas, Colorado, Louisiana, and Pennsylvania), and thereby
encompass a variety of different environments, ranging from deserts
to humid and vegetated areas. Furthermore, methane plumes are
detected for a variety of different sources (oil and gas infrastructures,
coal mines, landfills, animal farming facilities, etc.).

By systematically applying our trained deep learning model to
Sentinel-2 multi-spectral images close in time to cataloged airborne
detections, we are able to build statistics evaluating the performance
of our approach on a large number of real methane plumes. For each
methane plumedetected in theCarbonMapper catalog, we crop a pair
of 2.5 × 2.5 km2 Sentinel-2 images that encompasses the plume’s cata-
loged location, and feed it to our deep learningmodel. In each case the
image is centered on the Carbon Mapper cataloged location, but
importantly, in training themethane leaks are uniformly distributed in
the 2.5 × 2.5 km2 inputs, and therefore there is no a priori bias towards
detection near the center of the input (as shown in Fig. S5 in the
Supplementary Materials). This pair of Sentinel-2 images consists in a
referencedate in the 3months prior to the leak, and adetectiondate in
the 7 days prior to the leak.We further restrict our analysis to cloudless
days (less than 0.5% cloud cover), which yields a total of 7724 possible
pairs for the 2526 leaks of the catalog.

We note that a caveat is that plumes may be intermittent, and not
present when our Sentinel-2 images are taken on a different day than
the airborne detections. Previous studies36 suggest that the persis-
tence of leaks (defined in ref. 36 as the average fraction of airborne
detection on different days for a given leak) in the catalog is around 20
to 26%. This average leak persistence is what we also expect to detect
at best with a satellite-based method when attempting to detect the
cataloged leaks on different days than the cataloged detection.

Fig. 1 | Architecture of our methane detector neural network. The model takes
as input ten bands of Sentinel-2multi-spectral data, at two different times t − 1 and t
(20 channels input), and is tasked with finding the input pixels where a synthetic
plume has been embedded, at time t, with time t − 1 being used only as a reference.
The model has an encoder-decoder architecture, where the encoder is a vision

transformer (ViT)26 whose blocks plug into the decoder of a U-Net32 with matching
up-sampling using deconvolutional layers. The input data is fed to the transformer
encoder in the formof a 1D sequence of patches. Themodel is trained on 1,235,000
pairs of Sentinel-2 samples for ten epochs, and the model that has the best per-
formance on the separate validation set is kept.
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Another caveat when evaluatingmethane detections in e.g., oil and gas
sites is that it is to be expected that other leaks (in particular smaller
ones, as leaks follow a power law19) are sometimes present within the
same tile, and may not be cataloged, especially when analyzing data
from different days than the airborne detections.

Figure 3 summarizes the results of our evaluation over seven days
preceding each cataloged leak: for each pair of 2.5 × 2.5 km2 tiles cen-
tered on a cataloged plume’s location and fed to our deep learning
model, we consider the detection of the leak to be successful if our
model detects methane for at two adjacent pixels within 500m of the
leak. Fig. 3 shows the fraction of the cataloged leaks detected by our
method, as a function of leak rate. The Carbon Mapper catalog
regroups data from campaigns performed with two instruments
(AVIRIS-NG and GAO). Our detection results are summarized sepa-
rately for the AVIRIS-NG (black) and GAO (gray) campaigns. For both
instruments, each of the 10 bins shows the average detection rate of

our deep learning model and the average leak size and rate in the bin,
for 332 and 442 pairs of Sentinel-2 images per bin, respectively.

Figure 3 also summarizes our detection rate when applying the
exact same methodology in the absence of known leaks, for three
different tests. (i) The blue bin shows our average detection rate when
applying our model to pairs of Sentinel-2 images over southern
New Mexico (but away from the Permian Basin), and provides an
estimated false positive rate of 0.7% in conditions similar to that of the
Permian Basin. (ii) The green bin shows our false detection rate using
the exact samemethodology as elsewhere in this figure but for pairs of
Sentinel-2 images from our test set with no plume embedded. This
yields a false leak detection rate of 0.9%, which is in agreement with a
pixel-wise false positive rate estimated below 0.03% (as shown
in Fig. 2).

(iii) The red bin shows our deep learning model’s detection rate
over the regions surveyed in the Carbon Mapper catalog, but at

Fig. 2 | Performance of our deep learning approach versus a multi-band-multi-
pass (MBMP) approach. a Performance in terms of F1 score (see Methods) of our
deep learning model (in blue), compared with a normalized MBMP method17 (in
black), as a function of signal-to-noise-ratio (SNR). The thick lines are themedian of
40 bins (of equal number of samples along the SNR axis), and the thin lines are the
25 and 75 percentiles. b Examples of Sentinel-2 data with embedded synthetic
plume. Each column is an example at a different SNR, with the first row showing
band 12 after plume embedding, the second row showing the MBMP method, the
third row showing the application of our deep learning model, and the last row
showing the ground truth of the plume’s mask. The examples are placed in (a)
according to SNR (following the gray dashed lines) and F1 scores of the MBMP

(black crosses) and ourmethod (blue crosses). The colorbars are the same for each
row and correspond to the normalized band 12 for the first row, to the classifiers
outputs for rows 2 and 3, and show the plume’s mask for the last row. c Receiver-
operator curve that shows the ratio of true positives to false positives for various
classifying thresholds and for various signal to noise ratio conditions, with the
thresholds used in (a, b) shown as dots. Note that false positives here are not
synthetic, but come from real Sentinel-2 data, as only the added plumes are syn-
thetic. The data shown here are from the test set (for about 40,000 samples), that
comes from different regions than the regions used for training, and the synthetic
plumes used in the testing set are different from the training set plumes.
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random locations and times (instead of centering themodel’s input on
known leaks). This detection rate essentially shows the chances of
detecting a different leak (and/or making a false detection) at random
when assessing the detection of a particular leak of interest in an area
containing methane sources.

Figure 3 shows that our model’s performance is sensitive to the
extent of the plume (as derived from the airborne detection) more so
than the cataloged plume rate inversion (see Supplementary Fig. 8),
with a clear breaking point at 10,000 square meters. The plume rate
shown in the figure gives an estimate of an average leak rate for a given
plume extent, and stems from a simple regression of leak rate versus
plume extent in the Carbon Mapper catalog (see Supplementary
Fig. 2). The cataloged leak locationweuse in Fig. 3 is the centroid of the
cataloged plume mask.

Figure 3 shows that the Carbon Mapper cataloged plumes are
reliably detected by our algorithm in Sentinel-2 data down to about
200 to 300 kg/h, as the fraction of cataloged leaks we detect is close to
the average leak persistence in the catalog, which is the fraction of
leaks that should still be there on average when observing them on a
different day (the satellite observation being on a different day than
the airplane observation). Our detection capabilities are close to the
observation limit (the fraction of persistent leaks) down to 200 to
300 kg/h, afterwhichour detections sharply dropoff, with the smallest
detected plumes being around 60 kg/h. Residual false detections are
mainly due to clouds, rivers, and changes in soil moisture, and will be
addressed in future work. Finetuning on specific regions of interest
could also be performed in order to improve performance and limit
false positives when using the model in practice. These results show
that by leveraging a deep learning model trained on large amounts of
Sentinel-2 data, observing methane in Sentinel-2 data is not restricted

to very large leaks and/or very bright surfaces8, and that a trained
model can detect plumes down to about an order of magnitude lower
than the lower boundof previous Sentinel-2methane detections solely
based on band ratios17,18.

Figure 4 shows examples of the application of our model to sev-
eral methane plumes cataloged in the Carbon Mapper dataset, for
various regions and leak rates. The plumes’ leak rates and leak rate
uncertainties are those from the catalog. The task of our deep learning
model is only to detect the location of methane plumes in Sentinel-2
data, and the inversion for plume rate could be done as an additional
step, using standard inversionmethods such as the IMEmethod9 or by
fitting a Gaussian plume37. The white crosses indicate the cataloged
leak location, and our detections are in shades of orange. In the
examples shown, inspection of optical imagery suggests that the
emission sources correspond to oil and gas infrastructure (e,g,h,i), a
pipeline (b), natural gasplants (c,f), anoilfield (j), a coalmine (d), and a
dairy farm (a).

Finally, a further test of our algorithm on data from a recent
methane controlled release experiment38 is shown in Figs. S3 and S4 of
the Supplementary Materials. In this test, we show that our model can
blindly detect the 4 controlled releases timed with Sentinel-2 passes,
including a 1.1 ton/h leak that was missed by most groups that parti-
cipated in the experiment. Ourmodelmakes no apriori on the location
of the leak andhas no knowledgeof the localwind, andoutputs little to
no false positives off the plume.

Methane detection in global high resolution multi-spectral data
(Sentinel-2, Landsat 8, etc.) has so far been limited to large emitters
above 1 ton/h and has relied on thresholds on band ratios that gen-
erally require manual masking or manual verification17,18. Here we
showed that deep learning models can provide an alternative that is

Fig. 3 | Sentinel-2 detection of plumes cataloged by NASA’s AVIRIS-NG and
ASU’s GAO airborne platforms. In black and gray: fraction of cataloged plumes
detected by our deep learning model in Sentinel-2 data. For each methane leak in
the CarbonMapper catalog, we retrieve 2.5 × 2.5 km2 Sentinel-2 scenes centered on
the known leak’s location, thatwe feed to our trainedmodel. We consider here that
our model detects the corresponding leak if its output is above a threshold for two
or more contiguous pixels within 500m of the cataloged leak. Each black (resp.
gray) dot and bar shows the mean and standard deviation of 332 (resp. 442)
applications of our deep learning model in the 7 days preceding a cataloged
detection using AVIRIS-NG (resp. GAO), for a total of 7724 applications to 2526
unique catalogedmethane plumes. In blue (resp. green): exact same application of

ourmodel to data from the testing set with no embedded plume (resp. in Southern
New Mexico outside of the Permian), illustrating the associated false positive
detection rate. In red: application to the areas surveyed by the Carbon Mapper
airborne campaigns, at random times and places. Data from Carbon Mapper’s
repository8 of NASA’s AVIRIS-NG and ASU’s GAO detections in their 2020–2021
campaigns in California41, Texas36, Colorado, Arizona, Utah, Louisiana, and Penn-
sylvania. Our method detects most individual methane plumes in Sentinel-2 data
down to 10000m2 (corresponding on average to 200 to 300 kg/h leak rates), as
our detection rate is close to the average persistence (20 to 26%) of the leaks36 that
are in the airborne catalog.
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more robust to background noise and yields a drastically reduced false
positive rate, opening the way towards the automation of methane
detection at global scale.

Here we showed direct evidence on real Sentinel-2 data embed-
ded with synthetic plumes that deep learning models are about an
order of magnitude more robust to background noise (Fig. 2).
In comparing the deep learning detections with airborne detections
of real methane leaks in the U.S, we showed evidence, albeit indirect
due to the time difference between satellite and airborne acquisitions,
that this one order of magnitude improvement carries over to
an operational setting (Figs. 3 and 4). Finally, on controlled releases of
real methane plumes, we directly showed that deep learning can be
used to automatically and blindly detect large methane emitters
(Figs. S3 and S4).

Discussion
Current global methane emissions monitoring systems rely on a
layered and heterogenous approach that may start with global low
resolution hyperspectral satellites that guide finer observations such
as targeted satellites or airborne campaigns. A timely global monitor-
ing system for methane, able to detect emissions down to a few hun-
dreds of kilos per hour, would be a fundamental stepping stone
towards an automated, complementary, and holistic monitoring

system to building inventories of anthropogenic emissions at scale. In
particular, such emissions account for the vast majority of U.S.
methane point-sources in volume from methane-emitting areas ana-
lyzed in a recent survey of airborne campaigns in several States. By
drastically lowering detection capabilities in multi-spectral data, our
results suggest that public, general-purpose multi-spectral satellites
can be turned into powerful methane monitoring tools capable of
reaching detection performances approaching that of hyper-spectral
constellations built specifically for methane detection, with the
potential of generating global methane inventories at fine spatial and
temporal scales.

Previous research has shown that the detection and remediation
of a relatively small number of methane leaks can have a very large
effect on reducing anthropogenic methane emissions8. However,
finding these leaks amounts to finding a needle in a haystack, as the
possible sources are innumerable and scattered around the globe, and
except for the largest leaks, the methane plumes involved are only a
few hundred meters in scale. This work represents a step towards the
precise, systematic monitoring of methane emissions, anywhere on
Earth, every few days. Moreover, the upcoming launch of Sentinel-2C
and 2D in 2024 and 2025, respectively, and the inclusion of satellites
from NASA’s Landsat constellation in future work, should enable our
method to reach a near daily global detection capability. Future

Fig. 4 | Examples of Sentinel-2 deep learning detection of cataloged leaks. All
the 2526 leaks cataloged in the airborne Carbon Mapper dataset are shown in red
on themap. The images surrounding themap show the application of ourmodel to
a fewexamples (black circles on themap), selected in various regions. In eachof the
images, the location of the cataloged plume is shown with a white cross in the
center of the image, and the plumes detected by ourmodel are shown in shades of

orange, overlaid on the natural colors from bands B2, B3 and B4 from the same
Sentinel-2 sample (the second acquisition fed to our model, see Fig. 1). The
methane leaks can be attributed to oil and gas infrastructure (e, g, h, i), a pipeline
(b), natural gas plants (c, f), an oil field (j), a coal mine (d) and a dairy farm (a). The
leak rates and uncertainties shown here come from the rates in the catalog.
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developments of our method will include further reducing the
remaining false positives, notably by building ensembles of models
and incorporating auxiliary data (e.g., water cover, wind, cloud masks,
overall atmospheric methane concentration, etc.), and combining our
methane detections with source rate quantification methods. In order
to scale-up towards global detection of point sources of methane, we
will implement our entire pre-processing and deep detection in the
cloud. Last but not least, future work will also include collaborating to
assess our method on methane controlled release experiments timed
with Sentinel-2 and below 1100 kg/h.

We showed that our approach has the potential to provide global
high frequency and high resolution detection of a large fraction of
emitted methane from persistent point-sources, and we hope that its
use will provide a building block towards the systematic quantification
and accounting of methane, ultimately helping with the prioritization
and validation of atmospheric methane mitigation.

Methods
Database of Sentinel-2 images
We download L1C Top-of-Atmosphere (TOA) reflectance data cap-
tured by ESA’s Sentinel-2 constellation (Sentinel-2A and Sentinel-2B)
through PEPS. We performed a visual inspection of the optical and
landcover extent of the selected tiles to avoid, as much as possible,
potential sources of point-sourcemethane emissions. L1C TOA images
are composed of 13 different spectral bands; of particular interest is
band 12 in the SWIR, which is the only Sentinel-2 band that strongly
overlaps with the methane absorption spectrum (along with band 11,
but to a much lower extent, which we neglect). The spatial resolution
of these images ranges from 10 × 10 to 60 × 60m2 per pixel according
to the spectral band considered, with a 20 × 20m2 resolution in band
12. All spectral bands are re-sampled to the 20m resolution of band 12,
using nearest neighbor resampling. We keep the resolution of the
SWIR bands unchanged.

We download time series of L1C images from various regions
chosen to encompass a variety of climates (deserts, humid and vege-
tated areas), topographies, and land cover (water bodies, forests, etc.),
avoiding as best as we can areas containing known or potential
methane point sources (e.g., oil and gas fields or landfills). Because
clouds are opaque to our signals of interest, we avoid Sentinel-2 tiles
that contain more than 25% cloud cover (as reported in the images’
metadata). This results in a total of about 900 pairs of 110 × 110 km2

tiles. These tiles are then sub-divided into smaller windows of
2.5 × 2.5 km2, and saved into HDF5 files for faster sampling during
training.

Generation of synthetic methane plumes
Deep learning models require a large number of examples to be
trained in a robust manner, and physics-based plume simulations such
as WRF-LES models22 are slow to run and would not enable us to
generate a sufficiently large amount of data. We opt instead for our
own, simplified simulations, based upon Gaussian plumes39. The
plumes are generated as follow:

• We randomly select an emission rate and wind velocity.
• We generate the associated Gaussian plume using the Gaussian
plume model analytical solution39.

• We add 2D colored noise to the generated plume, with the goal of
mimicking atmospheric turbulences.

We generate about 20,000 of such plumes, and make sure to
divide them into separate datasets for training, validation, and testing
(one synthetic plume is never used both in training and testing). Note
that informationon emissions rates, etc. is not preserved, as the taskof
our deep learningmodel is only to detect Sentinel-2 pixels that contain
methane.

Embedding of synthetic plumes into Sentinel-2 images
The last step in building the training, validation, and test data consists
in embedding those synthetic plumes into a portion of the processed
Sentinel-2 L1C data. The plumes are embedded into the spectral band
12 of these images using the Beer-Lambert law.

Half of our training, validation, and testing data are augmented
with synthetic plumes (positive examples), and half are kept without
any modification (negative examples). The same Sentinel-2 image is
never used in training and testing simultaneously (and furthermore are
sampled from different regions of the globe). This results in a final
training database of about 1,235,000 unique Sentinel-2 samples, a
validation database of about 165,000 samples, and a testing database
of about 245,000 samples.

Model architecture and training
Our deep learning model has a U-net architecture, with its encoder
portion replacedbyaViT, and its decoder left as a convolutional layers,
with matching up-sampling using deconvolutional layers. The ViT
portion of our model is the base variant introduced in the original
paper26, with a patch size of 16, which we train from scratch along with
the decoder portion of the model.

We note that our architecture design stems from trial and error
and outperformed more traditional purely convolution U-net archi-
tectures (see Supplementary Fig. S6). Amore systematic explorationof
model architectures will be the topic of future work.

Our deep learning model is trained on batches of 64 samples of
pairs of 128 × 128Sentinel-2 tiles, inwhich randomGaussian plumes are
embedded. The model is trained for 10 epochs using the Adam varia-
tion of stochastic gradient descent40, with a learning rate that starts at
10−3 and is progressively reduced by 0.1% when there is no improve-
ment in validation performance after 10 batches. The model that has
the best performance on the validation set is kept.

Multi-band multi-pass methane detection method
MBMP results shown in Fig. 2 are based on the equation below,
adapted from17:

MBMPðtÞ= at
12B

t
12 � at

11B
t
11

at
11B

t
11

� at�1
12 Bt�1

12 � at�1
11 Bt�1

11

at�1
11 Bt�1

11

, ð1Þ

with at
12,a

t
11,a

t�1
12 ,at�1

11 normalization coefficients of the corresponding
band and time. The methane detection derived from the MBMP
method and compared against throughout the paper is then a
threshold on the opposite of Eq. (1) (a decrease in B12 reflectance can
indicate methane), with a threshold of 0.5, shown on the ROC curve,
such that for high SNR theMBMP-basedmethane detector approaches
a perfect F1 score (as seen on Fig. 2).

Validation metrics on synthetic data
The classification error in Fig. 2 is assessed with the F1 score, the har-
monic mean of precision and recall:

F1 =
2

precision�1 + recall�1 =
2TP

2TP+ FP+FN
ð2Þ

with TP the true positives, FP the false positives and FN the false
negatives.

The classifier built from our deep learning model is correspond-
ingly when our model’s output is above a certain threshold (0.2 in
Fig. 2a, corresponding to the blue dot in Fig. 2b).

Data availability
All the Sentinel-2 data used here is freely available from the European
Space Agency on various repositories, such as PEPS used for this study
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(https://peps.cnes.fr). The Carbon Mapper dataset is open-source and
avalaible at: https://doi.org/10.5281/zenodo.7072824.

Code availability
The code to reproduce the figures from the manuscript is available at:
https://codeocean.com/capsule/1815965.
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