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Rapid room-temperature phosphorescence
chiral recognition of natural amino acids

Xiaoyu Chen1, Renlong Zhu1, Baicheng Zhang 1, Xiaolong Zhang1,
Aoyuan Cheng1, Hongping Liu1, Ruiying Gao2, Xuepeng Zhang 1,
Biao Chen 1 , Shuji Ye 1, Jun Jiang 1 & Guoqing Zhang 1,3

Chiral recognition of amino acids is very important in both chemical and life
sciences. Although chiral recognition with luminescence hasmany advantages
such as being inexpensive, it is usually slow and lacks generality as the
recognition module relies on structural complementarity. Here, we show that
one single molecular-solid sensor, L-phenylalanine derived benzamide, can
manifest the structural difference between the natural, left-handed amino acid
and its right-handed counterpart via the difference of room-temperature
phosphorescence (RTP) irrespective of the specific chemical structure. To
realize rapid and reliable sensing, the doped samples are obtained as nano-
crystals from evaporation of the tetrahydrofuran solutions, which allows for
efficient triplet-triplet energy transfer to the chiral analytes generated in situ
from chiral amino acids. The results show that L-analytes induce strong RTP,
whereas the unnatural D-analytes produce barely any afterglow. The method
expands the scope of luminescence chiral sensing by lessening the require-
ment for specific molecular structures.

Room-temperature phosphorescence (RTP) of organic phosphors,
particularly fromguest-host doped systems, has become a burgeoning
research area in recent years, with the benefits of long-lived lifetimes
and modulation flexibility from structurally versatile chemical entities
such as organic molecules and polymers1–4. Guest-host RTP systems
have made significant advancements in applications of various fields,
including next-generation optoelectronics, high-contrast bioimaging,
chiral recognition, anti-counterfeiting and optical sensors5–15. Recently,
there is growing attention paid to the design and structure-property
relationship investigation on RTP systems with chiral moieties, e.g.,
circularly polarized luminescence (CPL)16–25. Since chirality is an inte-
gral part of nature, more spectroscopic methods for understanding
howmolecular chirality, excited state, and electron spin are correlated
will help elucidate fundamental physical principles and bring about
innovative technological changes26–28.

More recently, we observed chiral-selective phosphorescence
enhancement (CPE) in a donor-acceptor system, which largely stems

from chirality-dependent energy transfer (CDET): more efficient
energy transfer occurs from the triplet excited-state phthalimide (PI)
to the ground-state naphthalimide (NI) if the chirality of the energy
donor and that of the acceptor are the same29. If the CDET process
were universal, i.e., the probability of energy-transfer being more
sensitive to chirality vs. structural complementarity, then one could a
priori use one single energydonor todifferentiate the chirality ofmany
different chiral structures attached to the same energy acceptor,which
manifests the energy-transfer efficiency by emitting stronger or
weaker phosphorescence “afterglows”, respectively. However, the
reported PI/NI system suffers a major drawback as the reaction
between the chiral amine and the π-conjugated phosphor is too harsh
(e.g., reflux at high temperature in acidic solutions) to allow for facile
construction of the chiral donor-acceptor systems. Here, we present a
more universal sensing scheme to allow for rapid chiral recognition
with RTP (Fig. 1a): the amino acid and the highly reactive naphthoyl
chloride canunder ambient conditions easily be converted into a chiral
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energy accepting phosphor, which is used to sensitize RTP from the L-
phenylalanine-based triplet energy donor medium (Fig. 1b). The
L-phenylalanine derivative was selected as the universal triplet energy
donor because it can be produced in large batches with relatively easy
purifying method (crystallization). Firstly, the CDET process (Fig. 1c)
was characterized by synthesizing L-phenylalanine-based energy
donor (F-Ph-L, Fig. 1b) and acceptor (F-Na-L) molecules. Then, a CPE
chiral sensing protocol was developed using the F-Ph-L molecular-
solidmaterial, fabricated asnanocrystals to reduce sensing timeand to
maximize signal intensity, as the solo energydonormediumand tested
for the CPE ratio between F-Na-L and its enantiomer F-Na-D as donors.

Finally, all 15 chiral natural amino acids and their unnatural enantio-
mers were screenedwith the established protocol,making themethod
the best among all published luminescence chiral sensing studies with
sensing times as short as a few minutes (Fig. 1d)30–44.

Results
Design and discovery
As an initial proof of concept, four chiral amino acid derivatives were
first synthesized between two acyl chlorides and chiral phenylalanine
(F) derivatives (Supplementary Fig. 1) and rigorously purified. Specifi-
cally, the two chiral amino acids (D and L) were chemically modified
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Fig. 1 | Underlying photophysical principles for constructing chiral room-
temperature phosphorescence (RTP) system utilizing amino-acid building
blocks. a Generalized bimodular design strategy constituting a chiral amino acid
residue and an aromatic chromophore (top); an exemplar guest-host RTP system
based on such molecular design (bottom). b Artist’s impression of guest doping
induced RTP with workable concentration ranges. c Proposed schematic diagrams
for optimal chiral-selective room-temperature phosphorescence enhancement
(CPE) from the best combination of molecular building blocks. ISC: intersystem

crossing; CDET: chirality-dependent energy transfer; higher excited states Sn/Tn

and internal conversion (IC) are omitted for clarity. Inset: photographs of F-Na-L
(left) and F-Na-D (right) in F-Ph-L during and immediately after 254 nm light irra-
diation at 77 K, respectively. d A survey of luminescence chiral sensing for amino
acids (chiral recognition ratios ≥ 3.055) indicates that the current strategy has the
best performance in both sensing time and substrate variety among all published
studies. (Sensing systems that do not list response time30,40,43,44 are listed at
t = 260mins).
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into F-Na-D and F-Na-L (Fig. 2a) by using naphthamide as the excited-
state energy accepting moiety (guest) and benzamide as the energy
donor (F-Ph-D and F-Ph-L, host), the four of which were characterized
by 1H and 13C nuclear magnetic resonance (NMR) spectra, high reso-
lution mass spectrometry (HRMS) (Supplementary Figs. 60–74) and
elemental analysis (EA). Themodel compounds were as optical isomer
pairs with high purity (>99.5%) and high enantiomeric excess (ee)
values (>99.2%), which were verified by chiral high-performance liquid
chromatography (CHPLC, Supplementary Figs. 3 and 4). The circular
dichroism(CD) spectra (Supplementary Fig. 9) also support their chiral
purity with an absolute CD signal of 5-15 mdeg (0.04mM for F-Ph and
0.08mM for F-Na). The absorption (Supplementary Figs. 7 and 8) and
emission spectra (Supplementary Fig. 10a and b) show that the
obtained amino acid derivatives display no RTP in dilute solutions (2-
methyltetrahydrofuran, 2-Me-THF) or in the solid state individually,

while long-lived phosphorescence only emerges at the liquid-nitrogen
temperature (77 K, Supplementary Figs. 10c–f). The radiative decay
from the triplet excited state (T1) to the ground state (S0) is extremely
inefficient presumably due to small spin-orbit coupling (SOC) for the
T1 → S0 transition, which is largely3π-π* in nature. Consequently,
phosphorescence lifetimes on the order of a few seconds can be
observed when nonradiative decay processes are suppressed45. How-
ever, long-lived RTP is produced when the benzamide molecular-solid
host (F-Ph) is doped with the naphthamide guest (F-Na) at a con-
centration as low as 10 parts per million (ppm), although the
mechanism for doping-induced RTP remains elusive46–49.

Chiral-selective RTP enhancement for phenylalanine derivatives
The doped chiral RTP samples were readily fabricated via direct solvent
evaporation without additional engineering processing, since solution-
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Fig. 2 | Chiral-selective room-temperature phosphorescence enhancement
(CPE) for phenylalanine derivatives. a Chemical structure of four chiral
phenylalanine-modified compounds for constructing doped RTP systems.
b Steady-state photoluminescence (PL) spectra of the host matrix and the doped
samples at 298K (λex = 298 nm). c Delayed emission (DE, Δt = 5ms) spectra of the

host matrix and the doped samples at 298K (λex = 247 nm). d Time-resolved RTP
emission for the two doped samples. (λex = 280 nm from the spectraLED-280 and
λem = 526 nm) e Photographs of combinations of the doped samples during and
immediately after 254-nm light irradiation at 298 K. (The guest-to-host ratio is 0.1%
for all samples in the solid state).
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processed molecular assemblies retain their chirality in the solid-state
according to a method by Beard and Luther et al.50 (see SI for a detailed
description of sample preparation for rigorous spectroscopic investi-
gations). The chiral amino acid derivative F-Ph-L was initially examined
as the host material, which is not photoluminescent in the solid state at
room temperature. The pure guest F-Na-L solid, on the other hand, is
strongly fluorescent but not phosphorescent under the same conditions
(Supplementary Figs. 10 and 11 and Supplementary Table 1). However,
deep blue fluorescence (circa 357nm, τ = 7.65 ns) and green RTP (circa
526nm, τ =637ms) arise simultaneously leading to visibly white pho-
toluminescence when the F-Na-L (0.1%, w/w) guest is mixed with the F-
Ph-L (L@L, Fig. 2b) host. Surprisingly, when the other enantiomer (F-
Na-D) is applied to the F-Ph-L host medium, weaker fluorescence
intensity occurs with even weaker RTP intensity ratio. Delayed photo-
luminescence emissions (DE, Δt = 5.0ms) show that the enantiomeric
RTP enhancement ratio (which is defined as epRTP = IL@L/ID@L) is 9.3
(Fig. 2c), and the L@L sample also exhibits a visually distinguishable
longer time (Fig. 2d, Table 1). It has to be note that, compared with the
pure guest-solid, the doped samples show blue-shifted guest emission
spectra, which is ascribed to a lack of guest dimeric interactions (e.g.,
exciton splitting51) capable of lowering the exciton energy.

Therefore, we have shown that the enantioselective discrimina-
tion for amino acid-based system could be quantified via RTP spec-
troscopy under rigorous test conditions. We next show that the host-
to-guest energy transfer process is key to realizing enantioselective
discrimination. The process was clearly validated by the quenching of
host emission and a substantial shortening of host lifetime (Supple-
mentary Fig. 13 and Supplementary Table 2), where solid sample
mixtures of the same chirality (e.g., L@L) quench host photo-
luminescencemore effectively than those consisting ofmoleculeswith
opposite chirality (e.g., D@L), confirming the CDET process shown in
Fig. 1c. In addition, we compared the 2D excitation-emission-intensity
spectra of L@L andD@L solids (the solid-state absorption spectra are
provided in Supplementary Fig. 8), respectively (Supplementary
Fig. 14), where it is evident that CDET ceases to exist for the D@L
sample (Supplementary Fig. 14b showing that RTP intensity diminishes
at higher photon energy mainly absorbed by the host solid). The 2D
excitation-emission-ep map also supports the conclusion (Supple-
mentary Fig. 14c): ep of RTP is significantly enhanced when the host
solid is photo-excited (240-300 nm) rather thandirect excitation (300-
350nm) of the guestmolecule. When the wavelength-dependent ep of
RTP is plotted against excitation intensity (Supplementary Fig. 14d),
the function coincides with the spectrum of the solid-state absorption
of the L host (Supplementary Fig. 15). To verify the symmetrical con-
dition (i.e., D@D and L@D) for the experiment, F-Ph-D, the enantio-
meric host of F-Ph-L, is also found to achieve enantioselectivity as
shown in Supplementary Fig. 16, where a mirror-image-like relation-
ship of RTP responses is observed toward the enantiomers of the F-Na
guests. From the RTP spectra, the epRTP (ID@D/IL@D) value of 9.5 with a
lifetime of 649ms for D@D (Table 1) confirms the consistency of the
chiral discrimination method using the amino acids-based guest-host
system under the rigorous experimental condition. Conversely,
enantiomeric guest dopants in a racemic host display almost no
spectral and lifetime discrimination (Table 1, Supplementary Fig. 16),
attesting to the mechanistic validity of the CPE process.

Influences of different guest-to-host ratios in solid-state samples
We next investigated how the guest-to-host content ratio influences
enantioselectivity via both fluorescence and RTP and how medium
chirality influences fluorescence and RTP ep values, using the same F-Ph
and F-Na exemplar pair under rigorous experimental conditions. The PL
spectra are presented in Fig. 3a and Supplementary Figs. 19 and 20:
when the host and guest molecules have the same chirality (i.e., L@L or
D@D), stronger photoluminescence emerges for both the fluorescence
band (monitored at the wavelength range of 330-420nm) and the RTP

band (range of 450-700nm) compared to solid mixtures consisting of
molecules with opposite chiralities (D@L or L@D). For fluorescence,
the multiples of enhancement are limited, ranging from ep = 1.6 to 3.2
for samples with reliable signal-to-noise ratios (≥0.01%). However, the
RTP spectra (Fig. 3b and Supplementary Figs. 19 and 20) show higher ep
values under the same conditions (≥6.0, Fig. 3c). The disparity in ep
values between fluorescence and RTP is attributed to the fact that guest
fluorescence can occur via both Förster and Dexter types of energy
transfer while guest RTP is only limited to the latter type. We then
obtained wavelength-dependent ep values for fluorescence emission as
well, and found that these values are independent of excitation energy
(Supplementary Fig. 21), clearly indicating that the long-ranged dipole-
dipole Förster process is not sensitive to chirality. Based on these
experiments results, we can then deduce that the shorter-rangedDexter
energy transfer, which is the sole energy transfer mode for RTP, is
responsible for such enhanced ep differences. Time-resolved emission
spectra also show that the samples with the same chirality have longer
lifetimes compared to the opponents (Supplementary Figs. 22–24 and
Supplementary Tables 3–5). In contrast, enantiomeric guest molecules
embedded in the racemic host (F-Ph-DL) medium display less pro-
nounced spectral and lifetime discrimination with ep values ≤ 2.0
(Fig. 3d). It is noted that the ep value of a guest-host doping con-
centration of 10 ppm is ≤2.0, since the RTP signal-to-noise ratio is too
low to be reliable. Additionally, when tested at 77K with suppressed
nonradiative transitions, the same spectral reliability is restored with
prominent chiral discrimination again observed (Supplementary
Figs. 25–27), where better visual differentiation is shown in Supple-
mentary Fig. 28 and the CIE Figure in Supplementary Fig. 29).

Exploration of morphology and microstructure
Since the solid-state luminescence is highly sensitive to medium mor-
phology, we also investigate how different processing methods might
influence the surfacemicrostructures. As can be seen from the scanning
electron microscope (SEM) images (Fig. 4a–d) and the power X-ray
diffraction (PXRD) patterns (Supplementary Fig. 30), doping with guest
molecules of different chirality have no observable effect on the
microscopic morphologies for solid-state samples obtained from either
tetrahydrofuran (THF, Fig. 4a, b) or a mixture of chloroform/n-hexane
(CHCl3/HEX, Fig. 4c, d). However, the influence of solvent is tre-
mendous: evaporation from theTHF solution produces crystals ofmuch
smaller sizes with lower aspect ratios, which in contrast to large belt-like
crystals acquired from CHCl3/HEX. The spectroscopic differences were
also measured (Fig. 4e, f), where much stronger RTP intensity and a
higher ep value are achieved for samples obtained from THF. To
investigate the effect of doping on the microstructure of the host
molecules, we measured the sum frequency generation (SFG) spectra
ranging from 2990 cm−1 to 3110 cm−1 (Fig. 4g, h). The SFG spectra show a
strong resonant peak at 3064± 3 cm−1 and a weak shoulder peak at
3053± 2 cm−1, which are assigned to the ν2 and ν7b vibrational modes of
the phenyl group respectively52–54. Both ppp and ssp SFG spectra show
little changes when the guest molecules are doped, indicating that the
microstructure of the host molecules remains largely the same. The
study suggests that doping of guest molecules of different chiralities
does not induce morphological changes in the host material.

Development of rapid test protocol for amino acids
At this point, we have theoretically shown that CDET-based RTP dis-
parity could be used for amino acids chiral sensing. To apply this
principle in real applications, we now devise a rapid test protocol
under less rigorous conditions for chiral recognition of the free amino
acids L- and D-phenylalanine (Supplementary Fig. 31). The protocol
only requires prefabricated molecular-solid materials from one of the
two host enantiomers F-Ph-L or F-Ph-D (with the L enantiomer used as
an example). As illustrated in the Figure, an aqueous NaOH solution
(1mol L−1) and THF stock solutions of naphthoyl chloride (5mgmL−1)
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were prepared. L- and D-phenylalanine was added into an Eppendorf
tube with 0.5ml THF. Aliquots of the two colorless solutions (NaOH
and NaACl) were pipetted into the tube to instantly generate a yellow-
colored solution. The yellow color quickly dissipates within 5minutes,
indicating the completion of the reaction. 100 μL of the reaction
mixture was diluted with 900 μL dichloromethane and acidized with
25 μL 2M HCl. Then, two drops (circa 50 μL) of the mixture was drop-
cast onto the prefabricated glass slide loaded with 20mg of the
L-isomer of the host solid (powder or film). The sample was visibly air
dried after 1min; the glass slide was then taken for visual inspection
under a 254-nm UV lamp. If a green afterglow lasting for >1 s was

present, it can be determined that the unknown aliquot of themixture
solution contained L-phenylalanine; otherwise, when the afterglow
was weak and RTP emission very short (<0.2 s, more on the cyan-blue
in color), the isomer was then determined to be D-phenylalanine.

Wide substrate scope for chiral recognition of amino acids (AAs)
To show that the F-Ph molecular solid-material is universal for RTP
chiral sensing, we applied the established protocol to other chiral
amino acids shown in Fig. 5. All 19 chiral natural amino acids undergo a
one-step reaction with 2-naphthoyl chloride to form guest molecules
(analytes), and the epRTP values for a total of 19 chiral amino acid pairs
were listed, where 15 of them could be reliably discriminated with an
ep value ≥ 3.0. (Detailed photographs and spectra can be found in
Supplementary Figs. 32–50) It was found that amino acids with aro-
matic groups exhibit the best distinguishability both visually and
spectroscopically (e.g., the indole group). On the other extreme, the
chirality of twobasic amino acids couldnot be discerned at all, unless a
different reaction protocol was applied. The 1H-NMR spectra reveal
that in the 5mins reaction window, no naphthoyl moiety was chemi-
cally attached to the amine group of histamine (H) and arginine (R)
while the reaction was largely completely for the aromatic amino acids
(Supplementary Figs. 51–57). As has been presented in Fig. 1, the chiral
recognition of amino acids using photoluminescence usually requires
lengthy reaction time and relatively high amino acid concentrations
(e.g., 150 eq. to that of the luminescence chiral probe37), which poses a
significant challenge when the amount of amino acid to be sensed is
not abundant. The current protocol, however, requires only a tiny
amount of the amino acid analyte within 5mins, which easily outper-
forms all other reported protocols.

Table 1 | Photoluminescence properties of dopant (w/w=0.1%)
samples at room temperature

Samplesa λF [nm]b τF [ns]c λRTP [nm]d τRTP [ms]e epRTP
f

L@L 357 7.65 526 637

D@L 357 5.09 526 322 9.3g

D@D 357 6.94 526 649

L@D 357 4.25 526 454 9.5g

L@DL 357 4.42 526 986

D@DL 357 3.72 526 968 1.3
aGuest-host molecular solids (w/w=0.1%);
bFluorescence emission maxima of steady-state photoluminescence spectra excited at 298nm;
cApparent fluorescence lifetime (weighted average sum, nanoLED-280);
dRTP maxima of delayed emission spectra excited at 247nm;
eApparent RTP lifetime (spectraLED-280);
fenantiomeric RTP enhancement ratios (epRTP, IL@L/ID@L, ID@D/IL@D or IL@DL/ID@DL).
gthe average result of 3 independent trial processes. (Supplementary Fig. 12)
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Regulation of enantioselective differentiation and mechanism
investigation
Finally, taking advantage of the CDET mechanism, we show that the
enantioselective differentiation of the amino acids-base system can
be optimized with great tunability by designing a heavy-atom-
substituted guest F-Na-Br (Fig. 6a). As shown in Fig. 6b, the epRTP

ratio is also related to the phosphorescence radiative transition rate
from T1 to S0 (kP) of the guest, in addition to the rate of CDET from
the host to the guest. Presumably, by introducing a heavy atom (e.g.,
bromine) to the guest, the rate of kP would then be increased, which
could lead to higher epRTP values. The two brominated chiral guests
were synthesized and carefully characterized with high purity and
e.e. values (Supplementary Figs. 5 and 6, and Supplementary
Figs. 73–84), and were then applied to test the hypothesis. To
exclude the influence of differing nonradiative decay rates (knr) and
to obtain the intrinsic chiro-optical relationship, phosphorescence
spectra were collected at 77 K. As shown in Fig. 6d, the brominated
guest doped system exhibits CPE, where host-guest systems with the
same chirality (i.e., L-Br@L or D-Br@D) exhibit much stronger
phosphorescence than their counterparts with the opposite chirality
(D-Br@L or L-Br@D). More importantly, the epRTP values are 2×
higher than systems doped with the unbrominated guest (Fig. 6c),
and almost 4× higher than doped systems with the brominated host
(Fig. 6e, f). The low epRTP value of the brominated host system is
probably due to excessive external heavy atoms in the host (99%),

which is attributed to the simultaneous increase in the RTP inten-
sities of both the D- and L-guests. Not surprisingly, the systems with
Br-substituted guests also possess better visual differentiation: L-
Br@L displays strong green emission with green afterglow, whereas
D-Br@L has weak cyan emission with blue afterglow from the host
phosphorescence, indicating inefficient triplet-triplet energy transfer
(Fig. 6g). The results point to the possibility of using CDET and CPE to
optimize fine-tuning to achieve the best recognition conditions,
which can potentially be expanded into other systems, showcasing
the advantages of organic RTP sensing.

Discussion
In summary, we have provided a universal design strategy to con-
struct an amino acids-based chiral guest-host RTP system. The sys-
tem possesses enantioselective discrimination photoluminescence
performance in the solid state, especially chiral-selective phosphor-
escence enhancement (CPE) with a 25.8-fold intensity and a lifetime >
600ms. By using this concept, the most rapid as well as the most
diverse chiral recognition protocol of chiral amino acids is estab-
lished by using one single nanocrystalline material enabled by effi-
cient chirality-dependent energy transfer in triplet excited states. It
has to be noted that significantly reduced CPE ratios (e.g., 21.5
(tryptophan) to 4.3 (alanine), 9.3 (F-Ph-L) to 4.0 (F-Ph-L-2), Fig. 5 and
Supplementary Fig. 58) could be noted if the energy-transfer unit
(e.g., the benzamide or the aromatic ring on the amino acid) is
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absent, further validating the different theoretical foundation of the
current protocol. The enantioselective differentiation capacity of
the system can also be regulated by the radiation transition rate
of guest molecules. We anticipate that the method could be
extended to the RTP chiral recognition of other naturally occurring
amino compounds.

Methods
Materials
Tert-butyl D-phenylalaninate hydrochloride, oxalyl dichloride,
D-isoleucine andD-asparagine were purchased fromShanghaiMacklin
Biochemical Co., Ltd. Tert-butyl L-phenylalaninate hydrochloride and
N-Acetyl-L-phenylalanine were purchased from Shanghai Aladdin Bio-
ChemmTechnologyCo., Ltd andN-Acetyl-L-phenylalaninewaspurified
by recrystallization by with chloroform and n-hexane. All other
reagents and solvents were obtained from Energy Chemicals and were
used as received. Water was deionized with a Milli-Q SP reagent water
system (Millipore) to a specific resistivity of 18.2MΩ.cm.Analytical thin
layer chromatography (TLC) was performed using glass plates pre-
coated with silica gel and zinc phosphate (0.25mm). TLC plates were
visualized by exposure to UV light at 254nm. Flash column chroma-
tography was performed using silica gel 60 (230–400 mesh) with the
indicated solvents.

Instrumentation
NMR spectra were recorded on a Bruker AV400 NMR spectrometer at
room temperature, 400MHz for 1H and 101MHz for 13C. Chemical
shifts of NMR spectra are reported in ppm relative to the signals cor-
responding to the residual protio DMSO. Elemental analysis (EA) was
performed on an Elementar Vario MICRO elemental analyzer. Elec-
trospray ionization (ESI) mass spectra were recorded on an Acquity
UPLC-Xevo G2 QT mass spectrometer (Waters). Gel filtration chro-
matography was performed using a chiral column (CHIRALPAK® AD-H
0.46 cm I.D. x25 cm × 5 μm, DAICEL) conjugated to an Agilent 1260
Infinite HPLC system. The absorption wavelengths used were set at
250nm and 285 nm for F-Ph-DL, F-Ph-L and F-Ph-D, 238 nm and
270nm for F-Ph-Br-DL, F-Ph-Br-L and F-Ph-Br-D, and 280nm and
335 nm for F-Na-DL, F-Na-L and F-Na-D, 286nm and 315 nm for F-Na-
Br-DL, F-Na-Br-L and F-Na-Br-D. Circular dichroism (CD) spectra were
recorded on a JASCO J-1500 circular dichroism spectrometer. UV-Vis
absorption spectra of solutions were recorded on a PERSEE TU-1901
UV-Vis spectrometer. UV-Vis absorption spectra of solids were recor-
ded on a UV-Visible-Near infrared Spectrophotometer - Solid 3700
DUV. The steady-state emission spectra were recorded on a Horiba
FluoroMax-4 spectrofluorometer (Horiba Scientific), using a vertically
mounted 150-W ozone-free cw xenon arc lamp as the light source. The
delayed emission spectra were also recorded on a Horiba FluoroMax-4
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spectrofluorometer, using a 10-W xenon flash lamp as the excitation
source. The lifetime data were acquired with a FluoroHUB TCSPC.
Lifetime data were analyzed with Data Station v6.6 (Horiba Scientific).
Photographs were taken by a Canon EOS 90D camera. Quantum yield
of the doped samples was measured on a Quantaurus-QY Plus UV-NIR
absolute PL quantum yield spectrometer C13534-12. Scanning electron
microscopy (SEM) images were taken on a Zeiss Gemini 500 Schottky
Field Emission Scanning Electron Microscope at 1.0 kV. Powder X-ray
diffraction patterns were recorded on a Multifunctional Rotating-
anode X-ray Diffractometer - Rigaku SmartLab.

Sample Preparation
All samples were prepared by mixing solutions of host and guest
molecules, followed by evaporation under ambient conditions. Except
for the mixture solvent of trichloromethane and n-hexane used in the
exploration of morphology and microstructure, tetrahydrofuran was
chosen as the solvent for all other samples to achieve the best spectral
properties. Specifically, a 1000μl solution with a concentration of
100.00mgmL−1 of the host molecule wasmixed with a solution with a
certain concentration of the guest molecule in a 20-mL vial. The
sample as a clear solution was then allowed to evaporate under
ambient conditions for several days. The crystalline solid was thor-
oughly dried in vacuum before optical measurements. The pure host
solid sample (control) was obtained by the same procedure by adding
the certain solvent without guest molecules to exclude any possible
influence from solvents. For the guest solutions at lower concentra-
tions (i.e., 0.100 mg mL−1, 0.0100 mg mL−1, and 0.00100 mg mL−1),
serial dilution was employed. For example, a stock solution (1000μl
with a concentration of 1.00mgmL−1) in tetrahydrofuran was pipetted
into a volumetric flask (10mL) and dilute with tetrahydrofuran to
volume,which yielded a tetrahydrofuran solutionwith a concentration
of 0.100 mg mL−1. The exact mass of the guest molecule can be
calculated by pipetting a certain volume of the guest solution
when preparing the doped samples. It’s important to note that all the
mixed solid samples are calculated by mass fraction. Additionally,
the molecular weight of the guest molecules (F-Na and F-Na-Br) is
greater than that of the host molecules (F-Ph and F-Ph-Br). Conse-
quently, the molar fraction will be numerically smaller than the mass
fraction. For instance, 10−3 by mass ratio of F-Na to F-Ph is the
equivalent of 9.4 × 10-4 by molar ratio.

Data availability
All relevant data generated in this study are provided in the supple-
mentary information and also are available from the authors upon
request. Source data are available. Source data are provided with
this paper.
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