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Prospective de novo drug design with deep
interactome learning

Kenneth Atz 1, Leandro Cotos1, Clemens Isert 1, Maria Håkansson2,
Dorota Focht2, Mattis Hilleke 1, David F. Nippa 3,4, Michael Iff1,
Jann Ledergerber 1, Carl C. G. Schiebroek 1, Valentina Romeo3, Jan A. Hiss 1,
Daniel Merk 4, Petra Schneider 1, Bernd Kuhn3, Uwe Grether 3 &
Gisbert Schneider 1

De novo drug design aims to generate molecules from scratch that possess
specific chemical and pharmacological properties. We present a computa-
tional approach utilizing interactome-based deep learning for ligand- and
structure-based generation of drug-likemolecules. This method capitalizes on
the unique strengths of both graph neural networks and chemical language
models, offering an alternative to the need for application-specific reinforce-
ment, transfer, or few-shot learning. It enables the “zero-shot" construction of
compound libraries tailored to possess specific bioactivity, synthesizability,
and structural novelty. In order to proactively evaluate the deep interactome
learning framework for protein structure-based drug design, potential new
ligands targeting the binding site of the human peroxisome proliferator-
activated receptor (PPAR) subtype gamma are generated. The top-ranking
designs are chemically synthesized and computationally, biophysically, and
biochemically characterized. Potent PPAR partial agonists are identified,
demonstrating favorable activity and the desired selectivity profiles for both
nuclear receptors and off-target interactions. Crystal structure determination
of the ligand-receptor complex confirms the anticipated binding mode. This
successful outcome positively advocates interactome-based de novo design
for application in bioorganic andmedicinal chemistry, enabling the creation of
innovative bioactive molecules.

Computational de novo design encompasses the autonomous gen-
eration of new molecules with desired properties from scratch1,2.
Chemical language models (CLMs) are machine learning techniques
designed to process and learn from molecular structures represented
as sequences (e.g., simplified molecular input line entry system
(SMILES)-strings3). CLMs have found numerous applications for the de
novo design of novel bioactive molecules4,5. Transfer learning, also

known as fine-tuning, is one of the most prevalent applications of
CLMs in the field of molecular design6–8. Transfer learning in the con-
text of CLMs can be conceptualized as a two-step process. In the first
step, the CLM undergoes pre-training using a vast data set of bioactive
molecules that is not specifically tailored for the task at hand. This
initial phase focuses on developing a foundational understanding of
chemistry and acquiring knowledge about the characteristics of drug-

Received: 13 September 2023

Accepted: 2 April 2024

Check for updates

1ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland. 2SARomics Biostructures AB, Medicon
Village, SE-223 81 Lund, Sweden. 3Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd.,
Grenzacherstrasse 124, CH-4070 Basel, Switzerland. 4Department of Pharmacy, Ludwig-Maximilians-Universität München, Butenandtstrasse 5, 81377
Munich, Germany. e-mail: gisbert@ethz.ch

Nature Communications |         (2024) 15:3408 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-2628-1619
http://orcid.org/0000-0002-2628-1619
http://orcid.org/0000-0002-2628-1619
http://orcid.org/0000-0002-2628-1619
http://orcid.org/0000-0002-2628-1619
http://orcid.org/0000-0002-4176-7887
http://orcid.org/0000-0002-4176-7887
http://orcid.org/0000-0002-4176-7887
http://orcid.org/0000-0002-4176-7887
http://orcid.org/0000-0002-4176-7887
http://orcid.org/0009-0005-3210-7309
http://orcid.org/0009-0005-3210-7309
http://orcid.org/0009-0005-3210-7309
http://orcid.org/0009-0005-3210-7309
http://orcid.org/0009-0005-3210-7309
http://orcid.org/0000-0002-0346-3786
http://orcid.org/0000-0002-0346-3786
http://orcid.org/0000-0002-0346-3786
http://orcid.org/0000-0002-0346-3786
http://orcid.org/0000-0002-0346-3786
http://orcid.org/0009-0004-9774-095X
http://orcid.org/0009-0004-9774-095X
http://orcid.org/0009-0004-9774-095X
http://orcid.org/0009-0004-9774-095X
http://orcid.org/0009-0004-9774-095X
http://orcid.org/0009-0007-3516-1508
http://orcid.org/0009-0007-3516-1508
http://orcid.org/0009-0007-3516-1508
http://orcid.org/0009-0007-3516-1508
http://orcid.org/0009-0007-3516-1508
http://orcid.org/0000-0003-0559-4330
http://orcid.org/0000-0003-0559-4330
http://orcid.org/0000-0003-0559-4330
http://orcid.org/0000-0003-0559-4330
http://orcid.org/0000-0003-0559-4330
http://orcid.org/0000-0002-5359-8128
http://orcid.org/0000-0002-5359-8128
http://orcid.org/0000-0002-5359-8128
http://orcid.org/0000-0002-5359-8128
http://orcid.org/0000-0002-5359-8128
http://orcid.org/0000-0001-8296-6105
http://orcid.org/0000-0001-8296-6105
http://orcid.org/0000-0001-8296-6105
http://orcid.org/0000-0001-8296-6105
http://orcid.org/0000-0001-8296-6105
http://orcid.org/0000-0002-3164-9270
http://orcid.org/0000-0002-3164-9270
http://orcid.org/0000-0002-3164-9270
http://orcid.org/0000-0002-3164-9270
http://orcid.org/0000-0002-3164-9270
http://orcid.org/0000-0001-6706-1084
http://orcid.org/0000-0001-6706-1084
http://orcid.org/0000-0001-6706-1084
http://orcid.org/0000-0001-6706-1084
http://orcid.org/0000-0001-6706-1084
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47613-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47613-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47613-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47613-w&domain=pdf
mailto:gisbert@ethz.ch


like chemical space9. In the second step, the pre-trained CLM is fine-
tuned using a smaller data set comprising molecules that specifically
represent the desired activity and property profile10. This process
refines the CLM’s ability to generate molecules with the desired char-
acteristics. Once trained, the CLM can generate virtual molecular
libraries tailored to the specific task at hand11. Some CLM approaches
integrate reinforcement learning techniques, enabling an additional
level of fine-tuning to optimize the properties of the generated
molecules12,13.

However, the utilization of transfer learning and reinforcement
learning in CLMs entails additional machine learning steps, which can
pose challenges in terms of speed and seamless integration within the
design-make-test-analysis cycle in medicinal chemistry14–16. Further-
more, transfer learning canbeparticularly challengingwhen applied to
a single fine-tuning molecule7,17. It may also present difficulties in
structure-based design applications that rely on explicit information
about theprotein binding site18–21. Although various structure-basedde
novo design methods have been introduced, their prospective appli-
cations have not been extensively explored, highlighting the need to
fully assess the potential of these methods in practical scenarios22,23.

Recent advancements have focused on studying molecular
interaction networks, known as interactomes, which encompass var-
ious types of interactions such as protein-protein interactions, drug-
target interactions, and drug-drug relationships. Analyzing these
interactomes enables the prediction of previously unknown interac-
tions and provides insights into the network topology24–27. Studying
molecular interaction networks as a holistic entity offers a distinct
advantage by allowing the analysis of long-range relationships
between different nodes that are connected through multiple edges.
This approach enables a comprehensive examination of the inter-
connectedness and dependencies among various components within
the network24.

To address the goal of studying the drug-target interactome
comprehensively, we propose an approach that combines a CLM with
interactome-based deep learning (Fig. 1a, b). This approach incorpo-
rates a neural network architecture consisting of a graph transformer
neural network (GTNN) and a CLMutilizing a long-short-termmemory
(LSTM) (Fig. 1c, d, e). Herein, the deep learning model resulting from
this approach is named DRAGONFLY (Drug-target interActome-based
GeneratiON oF noveL biologicallY active molecules). Unlike conven-
tional CLMs that rely on transfer learning with individual molecules,
themethod leverages interactome-based deep learning, which enables
the incorporation of information fromboth, targets and ligands across
multiple nodes. DRAGONFLY is capable of processing small-molecule
ligand templates aswell as three-dimensional (3D) protein binding site
information. It operates on diverse chemical alphabets and does not
requirefine-tuning through transfer or reinforcement learning specific
to a particular application. Furthermore, it enables the incorporation
of desired physical and chemical properties into the generation of
output molecules. This study introduces the prospective application
of DRAGONFLY to structure-based de novo design, specifically for the
generation of ligands with desired bioactivity profiles addressing one
or multiple specific macromolecular targets (Fig. 1f).

Results
DRAGONFLY enables ligand- and structure-based
molecular design
The central component of DRAGONFLY is its drug-target interactome,
which captures the connections between small-molecule ligands and
their macromolecular targets. This interaction can be depicted as a
graph, where nodes represent bioactive ligands and their corre-
spondingmacromolecular targets (Fig. 1a).Distinctnodeswereused to
differentiate between orthosteric and allosteric binding sites within
the same target. Edges were established between ligands and proteins
that have an annotated binding affinity of less than or equal to 200nM

(Fig. 1a) (values extracted from the ChEMBL database28). As a result of
this procedure, an interactome was generated that consisted of
~360,000 ligands, 2989 targets, and around 500,000 bioactivities.
This interactome was specifically designed for ligand-based design
applications. In the case of structure-based design, only macro-
molecular targetswith known3D structureswere considered, resulting
in an interactome containing around 208,000 ligands, 726 targets, and
around 263,000 bioactivities. This data structure based on the inter-
actome facilitated the training of two deep learning models, specifi-
cally for ligand-based and structure-based de novo design (Fig. 1b).

The neural networks employed in the study accept a molecular
graph as their input signal. In particular, a 3D graph was utilized for
binding sites, while a 2D molecular graph was used for ligands (Fig. 1c
andd). Subsequently, the input graphundergoes a transformation into
SMILES-strings,which representmoleculeswith the desired bioactivity
andphysicochemical properties. This translationprocesswas achieved
by utilizing a graph-to-sequence deep learning model that combines a
graph transformer neural network29–31 with a long-short term memory
(LSTM) neural network32 (Fig. 1e). The selection of the graph-to-
sequence architecture wasmade to facilitate the development of deep
learning models capable of supporting both ligand-based and
structure-based molecular design.

DRAGONFLY considers synthesizability, novelty, bioactivity,
and physicochemical properties for ligand design
The theoretical evaluation of DRAGONFLY focused on investigating
the incorporation of specific physical and chemical properties into the
DRAGONFLY model, as depicted in Fig. 2a. This evaluation revealed
Pearson correlation coefficients (r) greater than or equal to 0.95 for all
assessed physical and chemical properties. These properties included
molecularweight (r =0.99), rotatable bonds (r =0.98), hydrogen bond
acceptors (r =0.97), hydrogen bond donors (r = 0.96), polar surface
area (r = 0.96), and lipophilicity expressed as MolLogP33 (r =0.97).
These high correlation coefficients indicate a strong relationship
between the desired properties and the actual properties of the gen-
erated molecules.

The study also included the evaluation of novelty, synthesiz-
ability, and predicted bioactivity for the generated molecules.
These criteria were essential in assessing the practicality and
potential value of the designed compounds. To quantify molecular
novelty, a rule-based algorithm was utilized, which captured both,
scaffold and structural novelty. This algorithm, described in Equa-
tions (9)–(12), offers a quantitative measure of the uniqueness of
each molecule in terms of its chemical structure. Synthesizability
was assessed using the retrosynthetic accessibility score (RAScore),
a recently published metric that assesses the feasibility of synthe-
sizing a given molecule34.

Additionally, to estimate the on-target bioactivity of the de novo
designs, quantitative structure-activity relationship (QSAR) models
were developed. The models utilized kernel ridge regression (KRR)-
based machine learning35, and were trained on three molecular
descriptors: ECFP436, unscaled CATS37, and USRCAT38. The descriptors
used in the study encompassed a wide range of structural, pharma-
cophore, and shape-based similarities of the molecules, offering a
comprehensive representation of their characteristics. A combination
of descriptors, including ECFP for structural features as well as CATS
and USRCAT for “fuzzy" features, was employed to capture both,
specific and general molecular attributes. By incorporating these
descriptors, the study aimed to facilitate the identification of mole-
cular similarities between the highly ranked de novo designs and
known bioactive compounds. For themajority of the 1265 investigated
targets, themeanabsolute errors (MAEs) for thepredictedpIC50 values
were equal to or less than 0.6 (Fig. 2b, Fig. S2). Moreover, the KRR
models have shown superior performance to decision tree baseline
methods including gradient boosting and extreme gradient boosting
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(XGBoost) (SI2.2). These results indicate that the developed models
achieved a high level of accuracy in predicting the inhibition constant
of novel molecules within similar domains of applicability for the tar-
gets studied. Furthermore, the performance of the ECFP and CATS
models exhibited a logarithmically decreasing error as the training set
size increased. Beyond a certain data set size (~100 molecules), the
performance of the USRCATmodels reached a plateau, indicating that
additional data did not improve their predictive accuracy (Fig. 2b,
Fig. S3). These findings underscore the effectiveness of utilizing a
combination of descriptors, incorporating both, structural and fuzzy
features, in the performance of the KRR models.

DRAGONFLY outperforms standard chemical language models
for molecular design
The evaluation criteria, which encompassed synthesizability, novelty,
and predicted bioactivity were applied to evaluate virtual libraries
generated de novo (Methods for details on metrices). This allowed for
a comparison between DRAGONFLY and fine-tuned recurrent neural
networks (RNNs). To conduct the comparison, five known ligands each
were selected as templates for twenty well-studied macromolecular
targets, including nuclear hormone receptors and kinases with over
200 known ligands (Tables S2–S3). DRAGONFLY demonstrated
superior performance over the fine-tuned RNNs across the majority of

Fig. 1 | DRAGONFLY architecture and workflow. a Left: To construct the drug-
target interactome graph, the targets are connected to their corresponding ligands
based on reported bioactivities in the ChEMBL database28. Specifically, a connec-
tion is established between a ligand (blue circle) and its corresponding target
(orange circle) if the ligand has been reported with a bioactivity equal to or
<200nM. Right: By representing allosteric and orthosteric binding sites as separate
nodes (shown in green and orange, respectively), the drug-target interactome
graphcaptures the specific interactions and relationships associatedwith each type
of binding site. b Left: During the training phase for ligand-based design, a ligand
molecule (represented as a blue circle) is taken as the input to the model. The
desired output molecules (represented as brown circles) are selected based on
their connection to the input molecule through a common node, indicating that
they share a binding site. Right: For structure-based design, the input for themodel
is the binding site itself, represented as a blue circle. The desired outputmolecules,
represented as brown circles, are ligands that have been observed to bind to the
corresponding binding site. c The protein binding site (here: Janus Kinase 2, PDB-ID
6VNK113) is represented as a three-dimensional (3D) graph, i.e., G= V,E,Rð Þ where G
denotes the graph, V vertices, E edges and R the position in 3D space. All protein
atoms farther away than 5 Å from any atom of the bound ligand were removed,

yielding a pocket-centric representation of the binding pocket. d The ligands are
represented as two-dimensional (2D) graphs, i.e., G= V,Eð Þ. e In the proposed
approach, the node features within the graph are updated through a message
passing process. This can be done using either 2D or 3D message passing,
depending on the nature of the molecular representation. As a result of the sub-
sequent pooling process, a latent space vector is obtained, which captures the
essential characteristics and representations of the molecule. This condensed
representation provides a compact encoding of the molecule’s features, enabling
downstream analysis, prediction, or structure generation tasks. The latent space
vector can be optionally concatenated with a wishlist of desired physicochemical
properties for the output molecule. This allows for the incorporation of project-
specificproperty constraints or objectives in thedenovomolecular designprocess.
MLP denotes Multilayer Perceptron, RNN denotes Recurrent Neural Network, and
LSTM refers to a type of RNN with Long Short-Term Memory cell architecture.
fWorkflow of the presented study including DRAGONFLY validation, DRAGONFLY
application to peroxisome proliferator-activated receptor (PPAR), chemical
synthesis and biological characterization. ADME denotes Absorption, Distribution,
Metabolism, and Excretion, and FEPdenotes Free Energy Perturbation calculations.
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templates and properties examined (Table 1, Tables S4–S6). Further-
more, using the same evaluation criteria, ligand-based design was
compared to structure-based design, with ligand-based design appli-
cations outperforming structure-based models in all investigated
scenarios (Table 2, Tables S4–S6).

To evaluate the potential of DRAGONFLY to generate molecules
that extend into new areas of chemical space, we analyzed the simi-
larity of the generated molecules to both the training data set (i.e., a
subset of ChEMBL28) and an external data set (i.e., PubChem39,
excluding ChEMBL molecules). Our analysis demonstrated that the
generated molecules were as similar to the molecules in PubChem
when compared to themolecules in ChEMBL (Table S7). While there is
a degree of similarity to knownmolecules, DRAGONFLY also produced
a large proportion of molecules with high novelty scores and diverse
structures generating higher structural and scaffold novelty than the
well-established fine-tuned RNN methods (Table 1). These results
suggest that DRAGONFLY is not limited to recapitulating the training
data but also has the capacity to explore and generate molecules in
previously uncharted regions of chemical space, albeit the extent of
this exploration warrants further investigation.

We compared the performance of DRAGONFLYmodels trained on
two widely used chemical alphabets, SMILES-strings3 and self-
referencing embedded strings (SELFIES)40, to quantify the differences.
By employing both string representations in structure- and ligand-
based de novo design, we were able to directly compare their perfor-
mance across various molecular properties (Table 2, Fig. S9). The
DRAGONFLY models trained on SELFIES yielded a higher fraction of
novel molecules among all of the 20 investigated applications
(99.7 ± 0.1% vs. 92.2 ±0.4%, Table 2) with a greater scaffold diversity
(86 ± 1% vs. 53 ± 2%, Table 2) while retaining comparable structural
diversity (98.8 ±0.1% vs. 97.9 ±0.1%, Table 2). However, the DRAGON-
FLY models trained on SMILES-strings more accurately fulfilled the
property requirements, such as greater synthesizability (93.4 ±0.6% vs.
84 ± 1%, Table 1), predicted bioactivity (e.g., MAE= 34.7 ( ± 0.3) vs 31.9
( ± 0.1) for PPARγ, Table 1), aswell as slightly lowermean absolute errors
for physical and chemical properties (e.g., MAE =0.027 ±0.005 vs
0.230±0.007 for hydrogen bond donors, Table 3). Overall, the use of
the two chemical alphabets resulted in comparable numbers of mole-
cules that were predicted to fulfill all desired properties. Because of the
better performance of the SMILES-based models for the objectives of

Fig. 2 | Property translation with DRAGONFLY and quantitative structure-
activity relationship (QSAR)models. a The scatter plots depict the translation of
desired properties into the generatedmolecules, with squared Pearson correlation
coefficients (r2) >0.95 for all investigated molecular properties. The high correla-
tion suggests a strong relationship between the desired properties and the gen-
eratedmolecules. Properties include molecular weight, rotatable bonds, hydrogen
bond acceptors, hydrogen bond donors, polar surface area, and lipophilicity cal-
culated asMolLogP values33. Twoexemplarymolecules4 and 5 and their position in
the six scatter plots are visualized, showing that the desired molecular properties

are accurately represented in the generated molecules. b The double-logarithmic
learning curves depict how the prediction error of ligand-based QSAR models for
three descriptors (extended connectivity fingerprint (ECFP4)36, chemical advanced
template search (CATS, absolute values)37, ultra-fast shape Recognition with atom
types (USRCAT)38) varieswith the size of the data set, focusing onfive selected drug
targets related to nuclear hormone receptors. Each plot displays a horizontal line
representing the mean absolute deviation (MAD) of the training data. The error
bars on the plots represent the standard deviation observed during a 10-fold cross-
validation. Source data are provided as a Source Data file.
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synthetic accessibility, bioactivity, and desired physical and chemical
properties, we used these models in the prospective study.

Structure-based design with DRAGONFLY generates potential
novel ligands
DRAGONFLY was utilized in a prospective manner for structure-based
ligand design targeting human PPARγ (PPARγ, PDB-ID 3G9E41). The

nuclear hormone receptor PPARγ is one of the three peroxisome
proliferator-activated receptors (i.e., PPARγ/α/δ), that have been
exploited asdrug targets for combatingmultiple diseases, inparticular
metabolic syndrome-related disorders and cancer42–44. Activation of
the PPARsby natural ligands or by synthetic PPAR agonizts triggers the
formation of heterodimers with members of the retinoid X receptor
(RXR) family45. Upon recruitment of specific cofactors, these

Table 1 | Comparison of DRAGONFLYwith afine-tuned recurrent neural network (RNN) approach, assessing the percentage of
molecules meeting various criteria: (i) Unique and novel, (ii) Novelty score ≥ 0.65, (iii) Retrosynthetic accessibility score
(RAScore) ≥ 0.5, (iv) QSAR score ≤ 1μM, and (v) meeting all four criteria

Template / Method Unique and novel / % Novelty score ≥0.65 / % RAScore ≥0.5 / % QSAR score ≤ 1 μM / % All criteria / %

PPARγ

RNN-SMILES 75.4 ( ± 2.7) 28.7 ( ± 1.1) 67.9 ( ± 2.3) 29.6 ( ± 2.4) 5.1 ( ± 0.2)

DRAGONFLY-SMILES 91.8 ( ± 0.3) 47.9 ( ± 1.4) 86.0 ( ± 0.3) 34.7 ( ± 0.3) 9.4 ( ± 0.0)

DRAGONFLY-SELFIES 99.8 ( ± 0.1) 77.4 ( ± 0.1) 82.2 ( ± 0.2) 31.9 ( ± 0.1) 13.3 ( ± 0.0)

LXRβ

RNN-SMILES 92.4 ( ± 2.5) 65.9 ( ± 2.6) 87.9 ( ± 2.8) 28.6 ( ± 0.9) 11.3 ( ± 0.4)

DRAGONFLY-SMILES 94.3 ( ± 0.5) 80.2 ( ± 1.2) 89.1 ( ± 0.5) 26.2 ( ± 0.2) 11.8 ( ± 0.1)

DRAGONFLY-SELFIES 100 ( ±0.0) 91.3 ( ± 0.5) 84.2 ( ± 0.3) 27.9 ( ± 0.2) 11.1 ( ± 0.1)

RARα

RNN-SMILES 69.7 ( ± 5.9) 41.9 ( ± 3.3) 57.2 ( ± 4.3) 30.1 ( ± 1.8) 11.1 ( ± 0.7)

DRAGONFLY-SMILES 92.2 ( ± 0.4) 62.4 ( ± 0.7) 75.6 ( ± 0.5) 32.4 ( ± 0.7) 12.7 ( ± 0.2)

DRAGONFLY-SELFIES 99.8 ( ± 0.0) 87.5 ( ± 0.3) 77.1 ( ± 0.2) 29.6 ( ± 0.3) 14.0 ( ± 0.1)

BRAF

RNN-SMILES 89.2 ( ± 3.5) 35.1 ( ± 3.1) 85.9 ( ± 3.0) 35.0 ( ± 1.3) 6.7 ( ± 0.3)

DRAGONFLY-SMILES 87.9 ( ± 0.6) 46.0 ( ± 0.8) 80.9 ( ± 0.5) 42.9 ( ± 0.5) 10.7 ( ± 0.1)

DRAGONFLY-SELFIES 99.7 ( ± 0.1) 81.1 ( ± 0.6) 77.3 ( ± 0.4) 34.3 ( ± 0.1) 12.4 ( ± 0.0)

BTK

RNN-SMILES 82.0 ( ± 4.4) 64.5 ( ± 4.1) 61.9 ( ± 4.7) 20.7 ( ± 1.8) 4.5 ( ± 0.2)

DRAGONFLY-SMILES 88.9 ( ± 0.7) 53.2 ( ± 0.4) 69.6 ( ± 0.9) 36.3 ( ± 0.7) 8.8 ( ± 0.1)

DRAGONFLY-SELFIES 100 ( ±0.0) 85.8 ( ± 0.7) 68.2 ( ± 1.0) 25.8 ( ± 0.1) 5.8 ( ± 0.0)

JAK2

RNN-SMILES 88.8 ( ± 3.9) 60.2 ( ± 4.2) 79.9 ( ± 3.4) 35.0 ( ± 2.2) 14.5 ( ± 0.8)

DRAGONFLY-SMILES 84.8 ( ± 1.0) 39.4 ( ± 0.9) 69.0 ( ± 1.0) 55.9 ( ± 1.5) 14.8 ( ± 0.2)

DRAGONFLY-SELFIES 99.2 ( ± 0.0) 73.3 ( ± 0.8) 70.5 ( ± 0.5) 50.5 ( ± 1.0) 18.3 ( ± 0.2)

Bold indicates whether the SELFIES- or SMILES-basedmodels achieve a higher value for the investigated property in both structure- and ligand-basedmodels. The values are presented asmean and
standard deviation, based on three runs (N = 3), each sampling 2000 SMILES-strings. The complete list of 20 investigated targets can be found in Tables S2–S6. JAK Janus kinase, PPAR Peroxisome
proliferator-activated receptor, BRAFSerine/threonine-protein kinase B-Raf (rapidly accelerated fibrosarcoma), BTKBruton’s tyrosine kinase, RAR Retinoic acid receptor, LXR Liver X receptor.

Table 2 | Comparison of four Dragonfly methods, namely ligand-SMILES, ligand-SELFIES, structure-SMILES, and Structure-
SELFIES

DRAGONFLY method Valid and unique molecules
/ %

Valid, unique and novel mole-
cules / %

RAScore ≥ 0.5 / % Average Jaccard distance to other
molecules

Ligand-SMILES 93.3 ( ± 0.4) 92.2 ( ± 0.4) 93.4 ( ± 0.6) 0.778 ( ± 0.001)

Ligand-SELFIES 99.9 ( ± 0.1) 99.7 ( ± 0.1) 84.0 ( ± 1.0) 0.805 ( ±0.002)

Structure-SMILES 90.2 ( ± 0.8) 87.4 ( ± 0.9) 90.0 ( ± 1.0) 0.773 ( ± 0.004)

Structure-SELFIES 99.9 ( ± 0.1) 99.6 ( ± 0.1) 78.0 ( ± 2.0) 0.811 ( ± 0.003)

Unique atom scaffolds / % Unique and Novel atom scaffolds
/ %

Unique carbon scaffolds
/ %

Unique and novel carbon scaffolds / %

Ligand-SMILES 85.0 ( ± 0.1) 53.0 ( ± 0.2) 98.4 ( ± 0.3) 58.0 ( ± 0.2)

Ligand-SELFIES 96.9 ( ± 0.4) 86.0 ( ± 0.1) 99.8 ( ± 0.1) 83.0 ( ± 0.1)

Structure-SMILES 84.0 ( ± 0.1) 55.0 ( ± 0.3) 98.3 ( ± 0.3) 56.0 ( ± 0.2)

Structure-SELFIES 96.0 ( ± 0.1) 81.0 ( ± 0.1) 99.9 ( ± 0.1) 83.0 ( ± 0.2)

Bold indicateswhether SELFIES-orSMILES-basedmodels achieve a higher value for the investigatedproperty inboth structure- and ligand-basedmodels. The percentageofmolecules is shown that
fulfill the desired criteria: (i) valid and unique molecules, (ii) valid, unique, and novel molecules, (iii) fraction of molecules with an RAScore of ≥0.5, (iv) average Jaccard distance to other generated
molecules from the same run (indicating diversity), and (v)–(viii) various scaffold metrics, including unique and novel carbon and atom scaffolds. The values are presented as mean and standard
deviation, based on three Dragonfly runs (N = 3), each sampling 2000 SMILES-strings.
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heterodimers transactivate PPAR-responsive elements (PPREs) of tar-
get genes involved in insulin signaling, lipid and glucose metabolism,
immune response, as well as cell cycle and differentiation46,47. Several
activators with different selectivity for the respective PPAR subtypes
have reached advanced clinical trials orwere introduced to themarket.
Aiming to test the method’s ability to generalize, the training of
DRAGONFLY did not include the protein template PPAR or any closely
related structures present in the training data set. Specifically, proteins
belonging to the same sub-family (PPARα, PPARγ, PPARδ) or other
species were intentionally excluded. Themost closely related proteins
in the training datawere found to be thyroid hormone receptor β-1 and
liver X receptor (LXR) β, sharing a sequence identity of 33% and 30%,
respectively, with PPARγ (SI8, Table S8).

To obtain a library of candidate ligands, the ligand-binding site of
human PPARγ protein (PDB-ID 3G9E41) was utilized as the structural
template (Fig. 3a). A total of 300 k molecules were generated, and
subsequent filtering was performed based on specific criteria. These
filters included an upper molecular weight limit of ≤600 g mol-1, a
RAScore threshold of ≥0.5, and a novelty score of ≥0.7. The resulting
subset of molecules obtained from the filtering process was further
ranked using KRR-basedQSAR scoring based on the average predicted
binding affinity (pKI or pIC50), combining the ECFP (double weighted
contribution), CATS, and USRCAT descriptors. Aiming to explore the
potential of the computer-generatedmolecules for dual-target activity
and receptor selectivity, two different scoring procedures were pro-
spectively evaluated. The first procedure focused on selective single-
target affinity to PPARγ. The second procedure involved assigning
equal weights to dual-target affinity towards both PPARγ and PPARδ.
The decision to focus on affinity towards PPAR sub-family members
was made to align with their clinical significance48. Applying these
ranking criteria led to the identification of twice the top-5molecules (1,
2, 6-13), depicted in Fig. 3b.

While exhibiting sufficient structural and scaffold novelty, the
generated molecules also possess a topology commonly observed in
modulators of the PPAR subfamily, as captured by the three different
QSAR models. Specifically, they feature an acidic head group con-
nected to an aromatic core through a linker. Furthermore, this core is
linked to another single- or bicyclic aromatic ring system. While the
propionic acid head group was predominant among the top-ranking
designs, it is worth noting that various other head groups were also
present among the 100 highest-scored de novo molecules. Figure 3c
highlights a selection of non-carboxylic head groups and secondary

amides from this top-100 set. This selection includes a diverse range of
secondary amides as well as pyrimidine-diones, i.e., head groups
known to promote PPARγ modulation49,50. These alternative head
groups demonstrate the structural diversity and potential for explor-
ing different chemistries and bioisosters in the design of novel mole-
cules within the top-ranked subset.

Molecules generated with DRAGONFLY potently and selectively
activate PPARγ
To test the practical applicability and usefulness of the structure-based
molecular design algorithm, the two top-scoring de novo generated
designs (1 and 2) were chosen for chemical synthesis and subsequent
biological characterization. Design 1 was achieved through a con-
vergent synthesis comprising a total of 10 steps, with the longest
sequential route consisting of six steps, with an overall yield of 12%
(Fig. 4a). Design 2 was synthesized through five steps achieving an
overall yield of 0.6% (Fig. 4b). Additionally, regioisomer 3was isolated
during the synthesis of design 2.

Subsequent biological testing of the three molecules (1–3) in a
cell-based reporter gene assay confirmed the intended activity profiles
(SI9). Compound 1 exhibited the desired andpredicteddual activity on
PPARγ and PPARδ at half maximal effective concentration
EC50(PPARγ) = 1.5 ± 0.2μM, and EC50(PPARδ) = 0.24 ±0.05 μM,
respectively (Fig. 5a, Fig. S13). Moreover, compound 1 was character-
ized for its affinity to the ligand binding domain of PPARγ by iso-
thermal titration calorimetry (ITC), yielding a measured dissociation
constant of KD= 0.8 ± 0.1μM, and a molar ratio of one ligand per
proteinmolecule (Fig. 5b). ThisKD value of compound 1 confirmed the
observed direct receptor modulation in the functional reporter gene
assay. Compound 2 demonstrated a noteworthy level of selective
activity on PPARγ with an EC50 value of 2.3 ± 0.7μM, while displaying
no discernible impact on PPARα or PPARδ (Fig. 5c, Fig. S13). This out-
come aligns seamlesslywith the intendeddesign objective. Compound
3 exhibited a dual, partial agoniztic activity profile, acting on both
PPARγ (with an EC50 of 1.8 ± 0.1 μM) and PPARα (with an EC50 of
3.4 ± 0.3μM), while showing no discernible activity towards PPARδ.
Furthermore, the predicted selectivity of compounds 1–3 towards
other nuclear hormone receptor targetswasexperimentally confirmed
for retinoid X receptor (RXR)α, liver X receptor (LXR)α, and retinoic
acid receptor (RAR)α (Fig. 5d).

Computer-designed compounds 1 and 2 underwent initial in vitro
testing to assess their absorption, distribution, metabolism, and

Table 3 | Accuracy of the desired physical and chemical properties of molecules generated by DRAGONFLY

DRAGONFLY method MW Rot. B. HBA HBD PSA LogP

Unit g mol−1 # # # Å2 –

MAD 75.52 2.81 0.981 1.69 27.08 1.25

Ligand-SMILES

MAE 7.7 ( ± 0.2) 0.29 ( ± 0.01) 0.23 ( ± 0.01) 0.027 ( ± 0.005) 4.4 ( ± 0.2) 0.252 ( ± 0.004)

MAD / MAE 9.8 ( ± 0.2) 9.9 ( ± 0.48) 4.3 ( ± 0.21) 63 ( ± 11) 6.1 ( ± 0.2) 4.94 ( ± 0.08)

Ligand-SELFIES

MAE 8.0 ( ± 0.2) 0.88 ( ± 0.040) 0.40 ( ± 0.014) 0.230 ( ± 0.007) 6.8 ( ± 0.21) 0.380 ( ± 0.006)

MAD / MAE 9.4 ( ± 0.2) 3.2 ( ± 0.14) 2.5 ( ± 0.09) 7.3 ( ± 0.3) 4.0 ( ± 0.1) 3.27 ( ± 0.05)

Structure-SMILES

MAE 12.1 ( ± 0.5) 0.42 ( ± 0.02) 0.28 ( ± 0.02) 0.046 ( ± 0.007) 4.6 ( ± 0.1) 0.315 ( ± 0.008)

MAD / MAE 6.2 ( ± 0.3) 6.7 ( ± 0.3) 3.5 ( ± 0.2) 37 ( ± 6) 5.9 ( ± 0.2) 4.0 ( ± 0.1)

Structure-SELFIES

MAE 15 ( ± 0.4) 1.12 ( ± 0.04) 0.50 ( ± 0.03) 0.27 ( ± 0.02) 7.4 ( ± 0.3) 0.426 ( ± 0.008)

MAD / MAE 5.03 ( ± 0.1) 2.5 ( ± 0.09) 2.0 ( ± 0.1) 6.3 ( ± 0.4) 3.6 ( ± 0.1) 2.92 ( ± 0.05)

Bold indicates if the SELFIES- or the SMILES-based models achieved a higher value for the investigated property. Abbreviations:MAD Mean absolute deviation,MAE Mean absolute error,MW
Molecular weight, Rot. B. Number of rotatable bonds, HBA Hydrogen bond acceptors, HBD Hydrogen bond donors, PSA Polar surface area. The numbers are presented as the mean and standard
deviation, with a sample size of N = 3, i.e., 3 DRAGONFLY runs, each sampling 2000 SMILES-strings. MAD / MAE yields a number that indicates by which factor a model is better than the MAD.
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excretion (ADME) properties, and were compared to the phase three
dual PPARα/γ co-agonist aleglitazar41 (SI11, Table S14). Both ligands
exhibited lipophilicity values within the range of 1–2 (logD1: 1.5 2: 1.7),
which falls within the preferred range for orally administered drugs
and is comparable to the logD value of aleglitazar (logD: 1.4).

In terms of permeability through membranes, both molecules
displayed favorable results in the parallel artificial membrane perme-
ability assay (PAMPA), with permeation coefficients (PAMPAPEFF) of 3.9
cm ⋅ s−1 ⋅ 10−6 for compound 1 and 14 cm ⋅ s−1 ⋅ 10−6 for compound 2.
Achieving sufficient cell permeability is crucial for targeting the PPARγ
receptor, located within the cell nucleus. Cellular permeability was
confirmed in the P-glycoprotein (Pgp) efflux assay for compounds 1
and 2, revealing values of 1.6 (15 nm ⋅ sec−1) and 1.2 (60 nm ⋅ sec−1),
respectively. The observed efflux ratio indicates that compounds 1 and
2 are only interacting weakly with the Pgp transporter and thus, hold
high potential to reach multiple cell and tissue types following a sys-
temic application. Moreover, the unbound fractions of compounds 1
and 2 were determined at 0.42% and 0.21%. Such low unbound frac-
tions are attributed to the negatively charged carboxylic acid, similar
to other drug-like molecules containing carboxylic acid groups41.
Furthermore, the clearance values of compounds 1 and2 inhuman, rat,
and mouse microsomes were consistently low (≤10 μL ⋅min−1 ⋅mg−1

protein) when compared to aleglitazar, suggesting the potential for
achieving high oral bioavailability in both humans and rodents for
efficacy studies. Compound clearance rates in human hepatocytes

were determined at 19 μL ⋅min−1106cells−1 for both compounds 1 and 2
(Table S14). Both metabolic and hepatocyte clearance suggest a suffi-
cient metabolic profile, paving the way for further in vivo pharmaco-
kinetic studies. Compounds 1 and 2 exhibited no interaction with the
seven pivotal cytochrome P450 isoenzymes (CYP)—Cyp3A4, Cyp1A2,
Cyp2B6, Cyp2C9, Cyp2D6, Cyp2C19, and Cyp2C8 - at dose-response
experiments up to 20 μM (Table S15). Moreover, both compounds
presented a favorable profile in an expansive panel screen assessing
multiple safety-critical off-targets. Importantly, none of the targets
exhibited binding or inhibition above 60% at a compound concentra-
tion of 10 μM (Tables S13–S16). Furthermore, compounds 1 and 2 did
not indicate any cytotoxicity on HEK293T cells at different time points
aswell as a broad range of cell numbers and compound concentrations
(Fig. 5e, Fig. S16). Collectively, the computer-designed compounds 1
and 2 showcase a promising drug-like profile, signifying substantial
potential for advancement in further drug development.

To investigate the binding pose of compound 1, X-ray structure
determination of the ligand-protein complex with PPARγ was con-
ducted (Fig. 6a, SI10). Compound 1 was bound to one of two protein
molecules in the asymmetric unit. Moreover, the observed binding
pose showed how the relevant structural motifs of the design con-
tribute to ligand-receptor interaction. Compound 1 bound in the
orthosteric site lined by helices H3 and H11. The buried propionic acid
head group is engaged in four intermolecular hydrogen bridges. Three
of them are established with the side chains of Tyr473, His323, and Ser289,

Fig. 3 | Results of structure-based de novo design with DRAGONFLY. a The
scatter plot presented showcases the molecules designed de novo by utilizing the
human peroxisome-proliferator-activated-receptor (PPAR)γ binding pocket as a
template (PDB-ID 3G9E41). The plot displays the quantitative structure-activity
relationship (QSAR) score representing the predicted binding affinity to PPARγ
against the novelty score. The desired region for the generated molecules, which
satisfies both, novelty and the predicted bioactivity requirements, is highlighted by

a blue box located in the upper right corner of the plot. b Molecular structures of
the five top-ranking de novo designs. The ranking criteria were PPARγ + PPARδ
dual-target affinity and structural novelty (left, 1 & 6–9), or PPARγ single-target
affinity and structural novelty (right, 2, 6 & 10–12). c Examples of non-carboxylic
head groups and secondary amides from the top-100molecules ranked for PPARγ,
where the gray shaded R group represents an aromatic moiety connected to a
linker. Source data are provided as a Source Data file.
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whereas the fourth one is a water-mediated hydrogen bond with
residue His449. In the empty PPARγ site, the carboxyl C-terminus of
TYR477 is blocking the site by binding in a similar position as the pro-
pionic acidheadof the ligand. The ligand’s tailmoiety is exposed to the
solvent, and the propylene glycol-like linker allows the ligand to enter
the hydrophobic part of the binding pocket, where the two aromatic
ring systems engage in additional interactions with the pro-
tein (Fig. 6a).

To computationally assess the binding of compounds 1 and 2 to
PPARγ, absolute protein-ligand binding free-energy perturbation

(ABFEP) calculationswerecarriedout51,52. Compounds 1 and2 aswell as
different ligands from ChEMBL with known sub-micromolar PPARγ
activity (ChEMBL IDs: ChEMBL391987, ChEMBL241299,
ChEMBL213355, ChEMBL212591) were modeled into the PPARγ-alegli-
tazar X-ray crystal structure (PDB ID: 3G9E)41. Compounds 1 and 2 have
calculated Δ Gibbs Free Energy (ΔG) values of -20.1 kcal ⋅mol−1 and
-19.7 kcal ⋅mol−1, respectively. These values are in the range of other
knownPPARγ ligandswith sub-micromolar activity, further supporting
the relevance of the proposed molecules for PPAR modulation
(Table 4, Fig. S17).
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Fig. 4 | Chemical synthesis of compounds 1, 2 and 3. a The synthesis of compound
1 employed a convergent approach, starting from commercially available building
blocks 13 and 18, and spanning a total of 10 steps. The longest sequential route
involved 6 steps. The overall yield achieved for the synthesis of 1was 12%. b For the

synthesis of compounds 2 as well as its regioisomer 3, the starting material used
was a commercial building block24. These compoundswere synthesized througha
sequential five-step synthesis. The overall yield obtained for compound 2was0.6%,
while compound 3 was isolated with a yield of 0.5%. For details see SI13.

Article https://doi.org/10.1038/s41467-024-47613-w

Nature Communications |         (2024) 15:3408 8



Discussion
The generative deep learning method referred to as DRAGONFLY was
evaluated in the context of ligand-based and structure-based mole-
cular design tasks. The collective results specifically highlight the
success of structure-based de novo design of potent partial agonizts
for PPARγ. These molecules effectively interact with the receptor in a
canonical binding mode, while also demonstrating the desired selec-
tivity towards the receptor and favorable ADME properties.

By leveraging an interactome-based deep learning approach and
employing a graph-to-sequence neural network architecture, DRA-
GONFLY addresses certain challenges commonly encountered in
generativemolecular designmethods. This approach demonstrated to
(i) achieve similar or even superior results compared to a respectively
fine-tuned RNN-based CLM for drug-like ligand templates, (ii) enable
structure-based design using 3D protein binding sites, and (iii) effec-
tively incorporate desired physical and chemical properties into the
generated molecules. Its ability to combine structure-based and
ligand-based approaches, as well as its capacity to incorporate desired
properties makes it a potentially useful tool for medicinal chemistry.

The design algorithm has demonstrated its capability to suc-
cessfully generate molecules with desired properties by incorporating
an additional encoding within the input. This encoding allows for the

translation of various drug discovery-relevant properties with high
accuracy into the generated molecules. Properties such as molecular
weight, the number of rotatable bonds, hydrogen-bond acceptors,
hydrogen-bond donors, polar surface area, and lipophilicity can be
effectively encoded and incorporated into the molecular design pro-
cess. This means that the algorithm can generate molecules that not
only possess the desired structural characteristics but also meet spe-
cific physical and chemical property requirements. The ability to
accurately translate these user-defined properties into the generated
molecules is a potentially substantial advantage of the approach. It
enables researchers to identify novel molecules with specific proper-
ties and optimize them for desired therapeutic effects, bioavailability,
and safety profiles. In an initial assessment, the top-ranking computer-
generated molecules revealed favorable in vitro ADME properties.

The results of the study also indicate that ligand-based de novo
design outperformed structure-based models for the majority of
investigated molecular properties. This performance difference could
be attributed to the complexity of the input and the availability of
training data. Whereas a small-molecule graph typically comprises up
to 200 edges describing covalent bonds, protein binding sites repre-
sented by 3D graphs are considerably larger with an average scaling
factor of 60. Furthermore, the ligand-based data set used in the study

Fig. 5 | Biological characterizationof compounds 1–3.The graphs in panels a and
c display a nonlinear fitting curve derived from the mean values of three mea-
surements (N = 3). The graph in panel d showsmean values of threemeasurements
(N = 3). Error bars, represented by whiskers, indicate the standard deviations.
a Peroxisome proliferator-activated receptor (PPAR) activation by compounds 1, 2
and 3 using a hybrid reporter gene assay. b Result of an isothermal titration
calorimetry experiment (N = 2) measuring direct binding of compound 1 to PPARγ.
c Dose-response curves from a hybrid reporter gene assay for compounds 2 and 3

measuring PPARγ activation. d Receptor selectivity of compounds 1, 2, and 3 for
activation of liver X receptor (LXR)α, retinoic acid receptor (RAR)α, and retinoid X
receptor (RXR)α. e Cytotoxicity of compound 1 on HEK293T cells for two time
points (i.e., 16 h and 24 h), 10different concentrations (i.e., 0.05–20 μM) and 10000
cells ⋅well−1 (N = 3). Scale reference: The axes are scaled through neutral control
(i.e., Dimethylsulfoxid [DMSO], set to 0) and inhibitor control wells (i.e., 20μM
Staurosporine114, set to −100). Source data are provided as a Source Data file.
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consisted of around 501 k distinct bioaffinity values, whereas only
about 236 k bioaffinities were accessible to the structure-based train-
ing procedure. This disparity in training data availability may con-
tribute to the superior performance of the ligand-based design
models. Nevertheless, it is important to acknowledge that one benefit
of structure-based design applications is their flexibility in not man-
dating exceptionally high-quality query ligands for the generation of
molecules. This applicability can be valuable for in silico library design
in scenarios where relevant ligand information is limited or unavail-
able, e.g., for newly identified disease-relevant macromolecular
targets.

Such a scenario was emulated in the prospective application to
PPARγ. However, it is worth noting that in this study, QSAR models
were employed for scoring, and thesemodels were trained on existing
ligand activity data. The successful machine learning from the relevant
training data is evident in the discovery that compound 1 interactswith
the receptor in the canonical binding mode53, as evidenced in the
crystallographic complex. Further studies will be essential to combine
DRAGONFLY with scoring functions not involving known active query
ligands for bioaffinity assessment. Structure-based scoring for binding
pose estimation, bioactivity prediction and virtual screening has
indeed shown to be one of the most challenging topics in computa-
tional drug design54. Prominent among the existing structure-based

scoring models are free energy perturbation (FEP) techniques51,55,
geometric deep learning approaches56–59, machine-learned force
fields60, and purely statistics-driven models61–63, which currently
receive considerable attention. Moreover, emphasis will be directed
towards the utilizationofDRAGONFLY applications to create bioactive
ligands for proteinmodels derived from apo protein structures (where
no ligand is bound), and structure prediction methods like
AlphaFold64. Understanding the algorithm’s performance in these
scenarios will provide valuable insights into its applicability and
potential limitations in de novo drug design with structure-based
ligand scoring and predicted protein structures.

The comparison between DRAGONFLY models trained on
SMILES-strings and SELFIES demonstrated similar overall results in
terms of different templates and properties. However, certain trends
were observed: Libraries generated using SELFIES exhibited a higher
level of diversity and novelty, while libraries generated using SMILES-
strings achieved higher accuracy in incorporating desired molecular
properties such as synthesizability, physical and chemical properties,
or predicted bioactivity. These findings unveil specific strengths and
trade-offs associated with de novo design approaches based on
SELFIES and SMILES strings. Both methodologies have their advan-
tages and limitations, and the choice between them depends on spe-
cific requirements and available data.

The combination of DRAGONFLY with scoring functions incor-
porating compound synthesizability, novelty, and bioactivity towards
one ormultiple targets using various descriptors was demonstrated to
be feasible. By applying a tailored combination of these properties, we
achieved promising results, i.e., in the exemplary case of PPARγ. The
approach allowed for the identification of top-ranking molecules that
exhibited sufficient structural and scaffold novelty, synthesizability,
and a desired bioactivity profile across multiple targets. While mole-
cular novelty has been extensively discussed in recent literature, most
studies mainly focus on descriptor similarity using structural
fingerprints65,66. We showed that incorporating additional scaffold
criteria can enhance the novelty of top-ranking molecules. By assign-
ing higher weights to different descriptors, distinct outcomes were
observed. When higher weights were assigned to the ECFP fingerprint
descriptor, the generated molecules exhibited higher structural simi-
larity to known ligands. This approach favored the exploration of the

Table 4 | Absolute protein-ligand binding free-energy per-
turbation calculations

ChEMBL ID ΔG / kcal ⋅mol−1 pEC50

Compound 1 -20.1 5.83

Compound 2 -19.7 5.64

ChEMBL391987 -22.3 6.94

ChEMBL241299 -18.4 6.51

ChEMBL213355 -19.1 6.82

ChEMBL212591 -19.7 6.64

The numbers represent the calculated absolute protein-ligand binding free-energy perturbation
(ABFEP, ΔG) for compounds 1 and 2, and ligands from the ChEMBL database with known sub-
micromolar PPARγ activity (database entries ChEMBL391987, ChEMBL241299, ChEMBL213355,
ChEMBL212591). The ABFEP calculations were executed with default parameters over a simu-
lation period of 5 ns. (see Methods).

Fig. 6 | Protein-ligand co-crystallization. Crystal structure complex of the ligand-
binding domain of human nuclear receptor PPARγ and compound 1. (a) Illustration
of the asymmetric unit containing two protein molecules, one of which shows
compound 1 bound. Refined cartoon structure of the complex showing compound
1 (stickmodel in blue) bound to chainA and chain B empty (chainAon the right and
chain B on the left). (b) Close-up view of the binding pose of compound 1 (blue)

with hydrogen bonds to residues Tyr473, His323, and Ser289 as well as a water-
mediated hydrogen bond toHis449 shown asdashed lines (PDB-ID: 8PBO). The black
arrowhead marks the entry to the binding pocket of the receptor. To facilitate
perceptibility, certain protein residues have been omitted from the illustration.
Source data are provided as a Source Data file.
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known chemical space and enabled the design of molecules with
recognizable structural features. In contrast, assigning higher weights
to the two “fuzzy" descriptors, CATS and USRCAT, resulted in top-
rankingmolecules that deviated further from the structurally explored
space, as expected67,68. This latter approach focused on prioritizing
novelty and divergence from known ligands, allowing for the
exploration of new chemical territories. These findings highlight the
flexibility and versatility of the scoring functions and the ability to
customize the weights of different descriptors to achieve specific
objectives. By balancing the importance of structural similarity,
novelty, and other desired properties, we were able to guide the
generation of molecules that met the desired criteria for the targeted
application, such as PPARγ in this case.

The chemical synthesis of two top-ranking de novo designs,
designated as compounds 1 and 2, along with regioisomer 3, turned
out to be comparably cumbersome, requiring 10 and 5 synthesis steps,
respectively. This observation together with low yields point to lim-
itations of the employed scoring function for synthesizability, moti-
vating the development of better measures safeguarding
straightforward synthesis of molecules designed with a generative
models. For example, a hybrid structure generator for DRAGONFLY
that combines rule-based molecule selection with predictive deep
learning models could be envisaged69,70.

Subsequent biological evaluation of compounds 1–3 was carried
out using the human PPARγ ligand-binding domain. Both, cell-based
activity and direct binding, could be confirmed. These investigations
led to the identification of novel PPAR modulators that exhibited low
micromolar to high nanomolar activity. Importantly, the intended
behavior and specificity characteristics for which the twodesigns were
originally prioritized received confirmation through experimental
verification. These results highlight their ability to target PPAR with
precision, while also sidestepping pronounced influence on closely
affiliated nuclear hormone receptors, like RXR, and a sizeable panel of
other undesiredoff-targets. This outcomedemonstrates the efficacyof
the structure-based DRAGONFLY de novo design approach in gen-
eratingmolecules with the desired properties and biological activities,
including selected ADME properties. The observed lack of CYP inter-
action up to a compound concentration of 10 μM is a crucial aspect in
avertingdrug-drug interactions, which is of particular relevance for the
treatment of metabolic syndrome, where patients frequently require
concurrent administration of multiple drugs71. These results represent
a substantial milestone as they showcase the successful application of
a generative deep learning model for molecular de novo design that
incorporates ligand activity and selectivity on multiple targets, as well
as panel selectivity within the same protein class, exemplified in the
context of nuclear hormone receptors.

The concept of interactome-based deep learning was introduced
to de novo molecular design as a means to maximize the information
learned about interaction networks between drug targets and their
ligands. It could be demonstrated that by employing an interactome-
based training procedure, some of the limitations encountered by
transfer-learning-based CLMs can bemitigated. It is important to note
that the concept of interactome-based deep learning is not limited to
the specific neural network architecture or drug-target graph pre-
sented in this study. There is room for exploration within various fra-
meworks and methodologies. For instance, other neural network
architectures, such as sequence-to-sequence models using transfor-
mer neural networks72, or graph-to-graph-based architectures utilizing
diffusion-based models20, could be implemented. These variations
would enable additional ligand-based design approaches. The graph-
to-graph models would extend the capability to incorporate 3D
information for structure-based molecular design, while sequence-to-
sequence models would be limited to protein sequence information.
Furthermore, the drug-target interactome could be expanded to
include additional targets beyond those considered in the presented

study. For example, RNA binding sites, protein surface binders such as
molecular glues or certain macrocycles, or protein-protein interac-
tions could be included. This expansion of the interactome would
enable the exploration of distinct design possibilities and target-
specific applications.

In the presented context, interactome-based deep learning serves
as a proof-of-concept for “zero-shot" learning that can be further
adapted and customized for specific applications in small molecule
drug discovery, ultimately leading to more efficient hit-and-lead dis-
covery in bioorganic and medicinal chemistry. By leveraging data-
driven deep learning and interaction networks, this approach offers
new avenues for foundation models enabling tailored molecular
design strategies and the discovery of innovative drug candidates.

Methods
Neural network architecture
The DRAGONFLY method employs a graph neural network
architecture73–75. This approach utilizes a GTNN model to encode the
input molecular graph, which is represented as a 2D graph for ligands
and a 3D graph for protein binding sites. The GTNN transforms the
graph into a condensed one-dimensional (1D) feature vector. Subse-
quently, this feature vector is decoded back into the corresponding
molecular string, using a CLM based on an RNN-LSTM32,76 architecture
for the molecule generation process.

Graph transformer neural network. Message passing: The atomic
features were embedded and transformed using a multilayer Percep-
tron (MLP) to obtain atomic feature vectors h0

i . Message passing as
suggested by Satorras et al.77 and used in other 3D-based prediction
tasks78,79 was applied to L = 3 layers, iteratively applied over all atomic
representationsh0

i . Edgeswere introduceddifferently in the 2Dand3D
graph representations. In the 2D graph, edges were established
between atoms connected by covalent bonds. On the other hand, in
the 3D graph, edges were formed between all atoms situated within a
radius of 4 Å from each other. This approach ensured that the mole-
cular structures were accurately represented in both 2D and 3D for-
mats, effectively capturing the most relevant interactions occurring
between atoms. In each iteration of the message-passing layer, the
atomic representations underwent a transformation as described by
Equation (1).

hl + 1
i =ϕ hl

i ,
X
j2N ðiÞ

ψ hl
i ,h

l
j

� �0
@

1
A, ð1Þ

for 2D graph structures, and Equation (2)

hl + 1
i =ϕ hl

i ,
X
j2N ðiÞ

ψ hl
i ,h

l
j ,ri,j

� �0
@

1
A, ð2Þ

for 3D graph structures.
In Equations (1) and (2)hl

i is the atomic representationhof the i-th
atom at the l-th layer; j 2 N ðiÞ is the set of neighboring nodes of atom i
connected via edges; ri,j the inter-atomicdistance represented in terms
of Fourier features, using a sine- and cosine-based encoding; ψ is an
MLP transforming node features into message features mij:
mij =ψðhl

i ,h
l
j ,ri,jÞ for 3D graphs, and mij =ψðhl

i ,h
l
j Þ for 2D graphs; ∑

denotes the permutation-invariant pooling operator (i.e., sum) trans-
forming mij into mi: mi =

P
j2N ðiÞmij; and ϕ is an MLP transforming hl

i
and mi into hl + 1

i . The atomic features from all layers ½hl = 1
i ,hl = 2

i ,hl = 3
i �

were concatenated and transformed via an MLP, resulting in final
atomic features Hi. The features Hi were subsequently pooled into a
molecular representation via a graph multiset transformer (GMT) and
further transformed via two MLPs to the two 1D latent space
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representations l1t =0 and l2t =0. A detailed description of the GMT
module can be found elsewhere30.

Long-short-term memory neural network. LSTM neural networks
represent a specific category of recurrent neural networks renowned
for their capacity to understand and produce sequences of characters.
Their proficiency in comprehending sequential data and capturing
intricate temporal connections renders them suitable for de novodrug
design applications. In this context, the LSTM architecture was inte-
grated to convert the acquired hidden states from the GTNN (i.e.,
lt = 01 and lt = 02) into a molecule represented in string form (SMILES
or SELFIES). l1t =0 and l2t =0 are used as the initial hidden states of the
LSTM architecture. At each time step t the next character of the
sequenceωt+1 is predictedgiven the twohidden states l1t and l2t , the two
memory cell states c1t and c2t , and the embedding kt of the previous
character in the sequence ωt. This transformation is conducted using
four non-linear transformations via Equation (3):

gi = σðWixkt +bix +Willt�1 +bilÞ
gf = σðWf xkt +bfx +Wf llt�1 +bf lÞ
go = σðWoxkt +box +Wollt�1 + bolÞect = tanhðWcxkt +bcx +Wcllt�1 +bclÞ
ct =gf � ct�1 +gi � ect
lt =go � ct

ð3Þ

where lt and ct represent the hidden state and thememory cell state at
time t, respectively.gi,gf andgo represent the input, forget, andoutput
gates, respectively. σ and⊙ indicate the sigmoid activation function
and theHadamard product80, respectively. ect represents the candidate
memory cell state, which is used to update the previous memory cell
state ct−1. W and b are the weights and biases used for the corre-
sponding linear transformations. The resulting updated hidden state lt
is then transformed using a softmax activation function to obtain a
logit vector ŷt (i.e., a vector with the dimension of the alphabet Ω) via
Equation (4):

ŷt = softmaxðWyllt +bylÞ ð4Þ

Throughout the training phase, the cross-entropy loss was computed
based on ŷt and the ground truth yt. The ground truth vector yt was
structured with zeros in all positions except for the character’s
anticipated location, which was assigned a value of 1 for each
prediction in the sequence. Subsequently, this calculated loss was
backpropagated seamlessly through the LSTM and GTNN networks in
an end-to-end manner. The training process involved the application
of teacher forcing, as described in the work by Lamb et al.81.

Molecule sampling
Temperature sampling was employed as a mechanism to facilitate the
generation of a diverse array of output molecules using a trained
DRAGONFLY model7, achieved through Equation (5):

Pðŷt + 1 =ωjŷt =0,:::,ŷtÞ=
expðŷωt =TÞPΩ
ω expðŷω

t =TÞ
ð5Þ

where T is the temperature value, and P the probability of the output
representation ŷt + 1 being the character ω given all previous outputs.
The character sampling process was regulated by the temperature
parameter T. When T is set to a high value (T→∞), character prob-
abilities tend to equalize across all characters. Conversely, as T
decreases towards 0, the highest likelihood predicted by ŷt + 1

approaches 1. In the context of DRAGONFLY applications, four distinct
temperature values (0.2, 0.5, 0.8, 1.1) were investigated. A value of

T = 0.5 was found to strike the most favorable balance between
novelty, diversity, the prediction of active compounds, and synthe-
sizability, as indicated by the outcomes presented in Figs. S9–S10.

Atom featurization
Small molecules: The atomic properties of small-molecule ligands were
encoded via the following embeddings: 10 atom types [H, C, N, O, F, P,
S, Cl, Br, I], two ring types [True, False], two aromaticity types [True,
False], and four hybridization types [sp3, sp2, sp, s].

Proteins: The protein binding site was defined by all protein atoms
that are within a 5 Å radius to a ligand atom. The atomic properties of
the respective protein binding sites were encoded using the following
four features: (i) an embedding of the atom types using 22 different
embeddings, (ii) an embedding of the combination of amino acid and
atom types covering 225 different embeddigs, (iii) the distance to the
closest atom of the bound small-molecule ligand, (iv) the calculated B
factor, aiming to quantify protein flexibility and intrinsic disorder at
the corresponding atom (Section S3).

Bond types: Edges were represented by inter-atomic distance in
terms of Fourier features, using a sine- and cosine-based encoding for
3D graphs82. No edge features were used for 2D graphs. Edges were
introduced between covalently bound atoms for the 2D graphs, and
between all atoms within a 4 Å radius from each other for the 3D
graphs.

Hyperparameters
The selected hyperparameters for the neural network led to a com-
bined count of trainable parameters amounting to 6.94million
(3.49million for the GTNN encoder and 3.45million for the LSTM
decoder) for the ligand-based design DRAGONFLY model. Similarly,
the structure-based design DRAGONFLY model encompassed
7.01million trainable parameters (3.56 million for the GTNN encoder
and 3.45million for the LSTM decoder).

Scoring
Quantitative structure-activity relationship. Kernel ridge regression
(KRR) was employed to establish QSAR models based on descriptors
and fingerprints. Kernel-basedmachine learning, rooted in the work of
Krige83, resides within the realmof supervised learning techniques and
has found application across a spectrum of machine learning
investigations84–87. The assessment of similarity between two mole-
cules i and j was carried out utilizing the Laplacian Kernel (Eq. (6)):

kðxi,xjÞ= expð� jjxi � xjjj1
σ

Þ ð6Þ

where xi is the molecular descriptor or fingerprint of molecule i and σ
is the length scale hyperparameter. Herein, σ was set to 51.2, after
screening 0.12i for i in range (1, 20). Three different molecular
descriptors were applied in this study, namely, extended-connectivity
fingerprints (ECFP, radius = 2, dimension = 512)36, chemically advanced
template search (CATS) with absolute feature frequencies67,88, and
ultrafast shape recognition with pharmacophoric constraints
(USRCAT)38. Once the kernel matrix K = k(xi, xj) was calculated, the
fitting coefficients α were computed via the inverse of the kernel
matrix K via Equation (7):

α = ðK+ λIÞ�1y ð7Þ

where λ denotes the regularization strength (herein, optimized to
10−7), I the identity matrix, and y the labels of the molecules (herein
bioactivity to the investigated target). Given a labeled data set with N
molecule-label pairs fðxi,yiÞNi= 1g, a function was obtained thatmaps the
molecular descriptor of a novelmolecule xq to its predicted bioactivity
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ŷq via Equation (8):

ŷqðxqÞ=
XN
i

αi � kðxi,xqÞ ð8Þ

Molecular novelty. The novelty of the generated molecules was
assessed through two distinct metrics: structural novelty score (SECFP)
and scaffold novelty score (Sscaffold). The structural novelty score
(SECFP) was established based on the Jaccard distance (1 minus Tani-
moto similarity89) concerning the most similar molecule within the
training data set using ECFP36 descriptors. The Jaccard distance attains
a value of 1 between two molecules when they possess no common
structural attributes as identifiedbyECFP (bitswithin the ECFP vector).
Conversely, it reaches a value of 0 when two distinct molecules share
identical structural features (identical ECFP vectors). The scaffold
novelty score (Sscaffold) gauges the novelty of both the atom scaffold
(commonly referred to as the Murcko scaffold90) and the carbon
scaffold (also known as the skeleton scaffold91) present in a generated
molecule. Atom scaffolds were determined by considering the rings
and branches of a specific template molecule. In this process, sub-
stituents were eliminated, while the identity of atoms and bonds
remained unaltered (as detailed in SI2.4). Carbon scaffolds were
identified by the carbon framework of a molecule, wherein all non-
hydrogen atoms were transformed into carbon atoms and all bonds
were replaced by single bonds (illustrated in Fig. S7). The scaffold
novelty score was formulated by incorporating both atom and carbon
scaffold scores. Each of these scores determined whether the corre-
sponding scaffold was present in any molecule within the training set,
as determined by Equations ((9)– (11)).

Satom =
0, if atom scaffold in training set

0:1, otherwise

�
ð9Þ

Scarbon =
0, if carbon scaffold in training set

0:1, otherwise

�
ð10Þ

Sscaffold = Satom + Scarbon ð11Þ

Both structural and scaffold novelty contribute to the overall novelty
score, i.e., Equation (12), ranging from 0 (for molecules very close to
molecules the training set) to 1.2 (for molecules with no ECFP overlap
with the training set and no shared scaffolds).

Snovelty = SECFP + Sscaffold ð12Þ

Molecular property analysis
Molecular data sets were generated using a DRAGONFLYmodel, which
was trained on a comprehensive data set excluding proteins and
ligands associated with 20 specified targets. These targets are listed in
Tables S2 and S3. For each target 2000 random molecules were
selected. The physicochemical properties of these molecules were
computed and subsequently used as input for the DRAGONFLYmodel.
The properties of the generatedmolecules were visualized in a scatter
plot (Fig. 2a) and summarized inTable 3. The scatter plot illustrates the
relationship between the actual and predicted properties of the
molecules. The mean absolute errors (MAEs) and Pearson correlation
coefficients (r) were calculated to assess the predictive performance of
the DRAGONFLY model. These statistical measures were derived by
comparing the extracted properties of the generated molecules
against the properties of the original data set.

Drug-target interactome preprocessing
The data necessary for constructing the drug-target graph, referred to
as the “interactome," was sourced from two distinct databases:
ChEMBL28 (Version 29) and PDBBind92 (Version 2020).

Preprocessing ChEMBL data. To acquire the necessary interactome
data, the ChEMBL29 database28 was queried. Similar to prior studies93,
this data extraction process was divided into two stages: In the initial
step, a compilation of biological targets was obtained. Subsequently,
compounds were extracted for which specific activities against any of
these targets were annotated. Single-protein targets that possessed
assay information for a minimum of 10 compounds with unique
internal identifiers were retrieved from the ChEMBL database. A series
of activity and annotation filters were then applied to these com-
pounds. The molecules underwent neutralization, and any salts and
solventswereeliminated. For compounds comprisingmultiple distinct
fragments following this “washing" procedure, all but the fragment
with the highest number of heavy atomswere discarded. Furthermore,
molecules containing <3 or >100 heavy atoms, as well as radical spe-
cies, were excluded from the data set. This procedure yielded a data
set of 742 k unique SMILES-strings with annotated biologic affinity.
Using a cut-off of a binding affinity of 200nM, removing duplicates, a
maximal SMILES-string length of 97 (using the longest SMILES-length
from five randomized sampled SMILES-strings) for the ligand, and a
minimum number of five ligands per target resulted in a drug-target
graph consisting of 501 k unique binding affinities for 360 k unique
ligands and 2989 unique target-IDs.

Preprocessing PDBbind. The PDBbind database (Version 2020) was
obtained by downloading it from the link http://www.pdbbind.org.cn/
download.php, which yielded a collective count of 19,443 protein-
ligand structures. After filtering out structures annotated with
“incomplete ligand structure", “covalent complex," or “incomplete
ligand structure", a total of 19,000 entries remained. Additionally, a
more refined filtering process was conducted, excluding structures
with ligand molecular weights outside the range of 100–1200 g mol-1

and binding affinities >10 μM. This filtration yielded a collection of
17,824 structures. This curated list of entrieswas then cross-referenced
with the target-IDs present within the drug-target graph used for
ligand-based design. This specific graph contained 501,000 unique
binding affinities encompassing around 360,000 unique molecules
and 2989 unique target-IDs. The outcome of this mapping effort
revealed a total of 8351 distinct protein structures associated with 744
unique target-IDs. By refining the drug-target graph to exclusively
include target-IDs with annotated PDB structures, the modified graph
encompassed around 263,000 unique binding affinities spanning
around 208,000 unique molecules and 744 unique target-IDs. The
connection between PDB-IDs and target-IDs within ChEMBL was
facilitated through UNIPROT-IDs, given that both databases provide
UNIPROT-IDs for individual proteins.

Numerous drug targets exhibit multiple binding sites, including
orthosteric sites and various allosteric sites94. Although such details
were not present in the ChEMBL database, recognizing these distinct
binding sites was deemed essential for effective drug-target inter-
actome learning.molecules known for their allostericmodulation were
extracted from the reference cited as Ref. 95. Subsequently, the drug-
target graph underwent a modification whereby target-IDs encom-
passing both allosteric and orthosteric ligands were treated as distinct
target-IDs.

Chemical alphabet
DRAGONFLY models underwent training using two distinct chemical
alphabets: SMILES strings3 and SELFIES40. To discern the distinct
character types in both types of strings, 10 randomly generated
SMILES strings were created for eachmolecule within the data set. For
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SMILES strings, all observed characters surrounded by brackets ([]), as
well as some frequently occurring functional groups (e.g., sulfoxide,
nitro, ketone, nitrile) were encoded as a single token (SI5). In both
string types, three supplementary characters were introduced to serve
as markers for the beginning, end, and padding of the strings: x, y, and
z for SMILES-strings, and [\\X], [\\Y], and [\\Z] for SELFIES. Following
this procedure, a SMILES-string alphabet ΩSMILES was established,
comprising a total of 57 characters. A SELFIES alphabet ΩSELFIES was
constructed, encompassing a total of 85 characters (as detailed in
Table S1).

Absolute free binding energy calculations
Molecules 1 and 2 aswell asdifferent ligands fromChEMBLwith known
PPARγ activity (ChEMBL IDs: ChEMBLl391987, ChEMBL241472,
ChEMBL241299, ChEMBL213355, ChEMBL212591) were modeled into
the PPARγ-aleglitazar crystal structure (PDB ID: 3G9E)41. The chosen
reference molecules from the ChEMBL database were selected based
on their structural similarity to compounds 1 and 2 (i.e., possessing (i) a
carboxylic acid as head group, (ii) an alkyl or polyethylene glycol lin-
ker, and (iii) an aromatic tail), and their comparable binding affinity
(i.e., EC50 values ≤5 μM and ≥ 100 nM). After structure preparation,
ABFEP simulationswerecarried outwith Schrödinger software (release
2023-4) using default settings and a simulation time of 5 ns for both
complex and solvent96. The lowest calculated free energies were
obtained for the co-crystallized ligand aleglitazar (EC50 = 21 nM) and
ChEMBL241472 (EC50 = 140nM) (Fig. S17).

Cytotoxicity assay on HEK293T cells
HEK293T cells were seeded at the indicated number per well in DMEM-
high glucose, complemented with glutamax, pen-strep, and 10% FBS,
in a total of 40 μl of medium. The cells were incubated overnight at
37 °C. Compounds were added to the cells at the indicated con-
centrations, resulting in a final Dimethylsulfoxid (DMSO) concentra-
tion of 0.2%. The compounds were incubated on the cells for either
16 h or 24 h. At the specified time point, the medium was carefully
removed from the vessel, leaving only 2 μl in the wells. Celltiter-glo
(CTG) reagent (G7572, Promega) was prepared according to the
manufacturer’s instructions. Plates with cells were equilibrated at
room temperature for 30min. Subsequently, 25 μl of CTG reagent was
added to the cells. The plates were then shaken for 2min and incu-
bated for an additional 15min at room temperature. Luminescencewas
read afterward with BG Pherastar.

Biological characterization
Compounds 1–3were characterized in a hybrid reporter gene assay for
their agoniztic effect on human nuclear receptors PPARα/γ/δ, RXRα,
FXRα, RARα in HEK293T cells. Compound 1was tested in an isothermal
titration calorimetry (ITC) assay to measure direct binding affinity to
the ligand-binding domain of PPARγ. ADME properties weremeasured
in standardized assays at Roche.

Hybrid reporter gene assays. PPAR activation was determined in
uniform Gal4-hybrid reporter gene assays for the PPARα, PPARγ and
PPARδ isoforms in HEK293T cells (German Collection of Micro-
organisms and Cell Culture GmbH, DSMZ) which were transiently
transfectedwithpFR-Luc (Stratagene, La Jolla, CA,USA; reporter) and
pRL-SV40 (Promega, Madison, WI, USA; internal control) and one
pFA-CMV-hPPAR-LBD97 clone, coding for the hinge region and ligand
binding domain of the canonical isoform of human PPARα, PPARγ,
PPARδ or respectively. Cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM), high glucose supplemented with 10% fetal
calf serum (FCS), sodium pyruvate (1 mM), penicillin (100 U ⋅ml-1),
and streptomycin (100 μg ⋅ml-1) at 37 °C and 5%CO2 and seeded in 96-
well plates (3 × 104 cells per well). After 24 h, mediumwas changed to
Opti-MEM without supplements and cells were transiently

transfected using Lipofectamine LTX reagent (Invitrogen) according
to the manufacturer’s protocol. Five hours after transfection, cells
were incubatedwith the test compounds inOpti-MEM supplemented
with penicillin (100 U ⋅ml-1), streptomycin (100 μg ⋅ml-1) and 0.1%
DMSO for 16 h before luciferase activity was measured using the
Dual-Glo Luciferase Assay System (Promega) according to the man-
ufacturer’s protocol on a Tecan Spark luminometer (Tecan
Deutschland GmbH, Germany). Firefly luminescence was divided by
Renilla luminescence and multiplied by 1000 resulting in relative
light units (RLU) to normalize for transfection efficiency and cell
growth. Fold activation was obtained by dividing the mean RLU of a
test compound by the mean RLU of the untreated control. All sam-
ples were tested in at least three biologically independent experi-
ments in duplicates. For dose-response curve fitting and calculation
of EC50 values, the equation “[Agonist] versus response (variable
slope—four parameters)” was used in GraphPad Prism (version 7.00,
GraphPad Software, La Jolla, CA, USA) with fold activation data. The
reference agonizts GW7647 (PPARα)98,99, pioglitazone (PPARγ)100,101

and L165,041 (PPARδ)102,103 were used to validate the assays and to
monitor assay performance. Nuclear receptor selectivity profiling
was performed with corresponding pFA-CMV-hNR-LBD clones and
suitable reference agonizts on RARα (pFA-CMV-hRARα-LBD104, 1 μM
tretinoin), LXRα (pFA-CMV-hLXRα-LBD104, 1 μM TO901317) and RXRα
(pFA-CMV-h RXRα-LBD105, 1 μM Bexarotene).

Isothermal Titration Calorimetry (ITC). ITC experiments were con-
ducted on an Affinity ITC instrument (TA Instruments, New Castle, DE)
at 25 °C with a stirring rate of 75 rpm. PPARγ LBD protein (30μM,
prepared as described previously106) in buffer (20mM Tris pH 7.5,
150mM NaCl, 5% glycerol) containing 5% DMSO was titrated with the
test compound (1) (100 μM in the samebuffer containing 5% DMSO) in
21 injections (1 × 1μl and 20 × 5μl)with an injection interval of 120 s. The
test compound was titrated into buffer, and the buffer was titrated to
the PPARγ LBD proteins under otherwise identical conditions. The ITC
results were analyzed using NanoAnalyze software (TA Instruments,
New Castle, DE) with an independent binding model.

Protein-ligand co-crystallization
The following constructwasused for expression and co-crystallization.
PPARγ (L204-Y477) (UniProt ID: P37231-2): MGSS-6His-SG-TEV-(L204-
Y477). Molecular weight: 33465 Da. Large-scale expression of human
PPARγ was conducted in E. coli BL-21 (DE3) cells (SI10). Subsequently
co-crystals of PPARγ were grown using 6mg ⋅ml-1 protein in buffer:
20mM Tris-HCl pH 8.0, 1mM TCEP, 0.5 mM EDTA and 1 mM design 1
mixedwith equal amounts of reservoir: 0.1M Tris-HCl pH 7.5 and 1.6M
ammonium sulfate (Fig. S14). The structure was determination and
refinement yielding the elucidated co-crystal structure with a resolu-
tion of 1.85 Å as depicted in Fig. 5 (Table S13 and Fig. S15).

Off-target screening
To test the specificity of compound 1 and 2, bothwere subject to panel
screen against 50 safety-relevant off-targets107. Both compounds have
shown a clear profile not reaching ≥50% inhibition or binding at a
concentration of 10 μMwith the exception for PPARγ (Tables S9–S12).

Chemical synthesis
Compounds 1–3 were synthesized starting from commercial building
blocks. The synthesis and the full analytical characterization of thefinal
compounds and intermediates are described in SI13.

Co-crystallization
Compound 1 was co-crystalized with the ligand binding domain of
human PPARγ (Leu204–Tyr477) (UniProt ID: P37231-2). The crystal-
lographic structure is accessible from the Protein Data Bank108 (PDB ID:
8PBO). Details about construct design, protein expression and
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purification, crystallization, data collection, and structure determina-
tion and refinement can be found in SI10.

Data availability
Source data is provided in Source_Data.zip and available on Figshare,
https://doi.org/10.6084/m9.figshare.25234159, represented by https://
doi.org/10.6084/m9.figshare.25234159109. The individual files in the
ZIP file are named according to their location in the manuscript, for
example, Figure_2_MolLogP.csv or Figure_6.pdb. Source data are pro-
vided with this paper.

Code availability
A reference implementation of the DRAGONFLY method based on
PyTorch110 and PyTorch Geometric111 is available at https://github.
com/ETHmodlab/dragonfly_gen(rep. https://doi.org/10.5281/zenodo.
10671327, https://zenodo.org/record/10671327)112.
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