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Long reads that cover more variants per read raise opportunities for accurate
haplotype construction, whereas the genotype errors of single nucleotide

polymorphisms pose great computational challenges for haplotyping tools.
Here we introduce KSNP, an efficient haplotype construction tool based on the
de Bruijn graph (DBG). KSNP leverages the ability of DBG in handling high-
throughput erroneous reads to tackle the challenges. Compared to other
notable tools in this field, KSNP achieves at least 5-fold speedup while pro-
ducing comparable haplotype results. The time required for assembling
human haplotypes is reduced to nearly the data-in time.

Haplotyping is the process of distinguishing the alleles that are
inherited together on a chromosome from a parent in a diploid or
polyploid genome. Haplotyping is not only crucial for interpreting the
genetic mechanism underlying biological phenotypes but also a non-
negligible step in heterozygous genome assembly and variant
detection'>. As a traditional bioinformatics analysis, constructing
haplotypes faces the great challenge of dealing with error-prone single
nucleotide polymorphism (SNP) genotypes present in reads due to
sequencing and mapping errors. Haplotyping has been formulated as
several computational problems by bioinformaticians, as reviewed in
ref. 4. Among these formulations, minimum error correction (MEC) is
probably the most popular one and has been implemented by many
successful haplotyping methods®. The existing MEC-based methods
attempt to find a genotype combination to represent a potential
haplotype that maximizes consistency with the observed reads by
flipping as few SNP genotypes as possible.

The third-generation sequencing technologies produce long
reads spanning tens to hundreds of kilobases (kb), providing oppor-
tunities for haplotype construction. With long reads, a single read can
cover more variant sites, making it possible to generate more accurate
genome-scale haplotypes. MEC-based heuristics, for example,
Marginphase®, WhatsHap”®, and HapCUT2°'° have shown promise in

accurately reconstructing haplotypes using long reads at a genome-
wide scale. However, with the growth of read length and data volume,
the computational burden of these model-based methods increases
dramatically. For example, the time complexities of the WhatsHap and
HapCUT2 are O(N29) (d < 15) and O(Mog(N)+Nd\?), respectively, where
N is the total number of variants, d is the maximum coverage per
variant, and V is the maximum number of variants per read. When d or
V reaches tens or over a hundred, which is very common on Mb-level
ultra-long reads, the time complexity increases considerably. In the era
of decreasing sequencing cost and the rapid development of precision
medicine, a large number of human genomes are being sequenced,
still requiring more computationally efficient haplotyping approaches.
In this study, we use strings of SNPs as “pseudo-read” and employ
efficient graph-based assembly algorithms, which have been well-
developed in theory and practice, to solve the haplotype construction
problem. We present a de Bruijn graph (DBG)-based tool, called KSNP,
for haplotype construction and demonstrate that it can generate human
haplotypes from aligned PacBio Continuous Long Reads (CLR), PacBio
High Fidelity (HiFi) reads or Oxford Nanopore Technologies (ONT)
reads in only ~30 min. An analysis of the time cost for each processing
step reveals that 90% of the time is spent on the inevitable reading and
decompression of data from BAM (Binary Alignment/Map) files.
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Results

Overview of KSNP

Following the principle of constructing DBG", KSNP uses a sliding
approach to extract k consecutive SNPs from the reads to form the k-
mers, which are characterized by the genomic positions and genotypes
of the SNPs (Fig. 1). Benefiting from the uniform sequencing coverage
and the length of the long reads, the constructed DBG exhibits strong
connectivity, with connected components that typically span long
genomic regions. However, erroneous k-mers containing incorrect
SNP genotypes arising from the sequencing or mapping errors make
almost all vertices associated with competing edges on the graph and
pose the biggest challenge to obtain unambiguous haplotypes. To
simplify the graph efficiently, KSNP applies a four-step greedy pruning
heuristic (Fig. 2), i.e., (1) fast pruning of the initial graph by cutting off
the competing edges with low weights; (2) removing short tips by
traversing the graph in both forward and backward directions; (3)
identifying the optimal or near-optimal path in bubble regions through
the comparison between the MEC scores of the competing paths; and
(4) processing the remain long branches by completing them into
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Fig. 1| Overview of KSNP algorithm. KSNP is currently implemented for diploid
genome. a The input files of KSNP. b Heterozygous SNPs (blue and orange rec-
tangles) detected on reads. ¢ The featured k-mers (k-SNPs) extracted from SNP
strings on long reads (R1, R2,...), e.g., k=3, are used to construct the DBG. The
transitive edges (dotted arrows) caused by the deletion errors in reads are excluded
in the graph construction. A number marked on an edge represents the corre-
sponding edge depth, equivalent to the number of reads supporting the edge.

Partial view of
the merged graph

bubbles. After linear traversing, the graph can be quickly simplified to
contain only unambiguous paths, from which the haplotypes are
plainly constructed. More implementation details of KSNP are pro-
vided in “Methods” and the pseudocode of the graph pruning is out-
lined in Supplementary Note 1.

Performance of KSNP

The k-mer size determines the connectivity and the edge depth of the
haplotype graph. Currently, KSNP supports k-values ranging from 2 to
5. A larger k-mer size increases the reliability of the edges while
decreasing the edge depths and the connectivity of the graph. It is
conceivable that a larger k value results in higher haplotype accuracy,
whereas a smaller k value results in a higher recall rate and longer
haplotypes. This was demonstrated in our experiments using eight
CLR and ONT datasets. Using 5-mer on HGOO1, HG002, and HGO05
CLR datasets, which have averagely 6.6, 9.6, and 12.6 heterozygous
SNPs per read, respectively, resulted in a 2-3% lower recall rate than
that of using 2-mer (Supplementary Tables 1 and 3). However, for
HGO1109 and A.thaliana F1 CLR reads, which averagely contain 23.3
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Haplotype-aware DBG with SNP kmers as vertices

d Considering the inherent complementarity of the two haplotypes in diploid
genome, the edges in two subgraphs are merged. The merged graph is self-
symmetric and retains all the information of the two haplotypes HO and H1. Bubbles
and small tips caused by the genotype errors in reads are heuristically pruned
during graph traversal. e After graph pruning, one haplotype is assembled directly
from the graph, and the other is obtained by complementation.
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Fig. 2 | A schematic diagram of graph pruning in KSNP (k= 2). The blue and
orange nodes represent 2-mers from haplotypes HO and H1, respectively, where the
two numbers in a node indicate the corresponding position indices of the two
consecutive SNPs. The solid and dashed arrows represent edges that are retained
and removed in each processing step, respectively. The numbers on the arrows
denote the depth of the edges. This graph is horizontally symmetrical, indicating
the two complementary haplotypes in a diploid genome. a The competitive edges
(dashed arrows) at the same SNP position are removed since they have very shallow
depth in comparison with the dominate path. b The short tip is deleted if the length
of the long path exceeds three times that of the short path. For example, Tipl and

Tip2 are deleted given Long path 1 and Long path 2, respectively. ¢ For a bubble,
KSNP attempts to find an optimal path from the source node to the sink node under
the supervision of MEC scores. For example, KSNP calculates the MEC scores of the
three possible haplotypes in the illustrated nested bubble using the reads involved
in the bubble (not displayed), and the nodes and edges that are not located on the
best path are removed. For a long branch like the one from node [10,11] to node
[13,14], by restoring a previously removed edge between node [12,13] and node
[13,14], the branch can be completed into a bubble and then resolved as a bubble.
d The haplotype blocks are generated by walking out the paths in the pruned graph.

and 36.0 heterozygous SNPs per read, respectively, using 5-mer only
caused a 0.2% and 0.01% drop, respectively, while also reducing
hamming errors. On ONT reads that have longer read length but
relatively higher error rate than CLR reads, we tested KSNP using SNPs
identified by two variant callers, i.e., Longshot" and PEPPER-Margin-
DeepVariant (PMD)". Compared with Longshot, PMD reported fewer
but more accurate SNPs. For SNPs identified by these two variant
callers, using 5-mer significantly reduced the hamming errors at the
cost of less than 0.3% loss of recall rate. Except for the A. thaliana CLR
data, a larger k value consistently decreased the obtained haplotype
N50 length during the experiments. If better haplotype continuity is a
priority, a smaller k value is more desirable (Supplementary
Tables 4 and 5).

The time complexity of KSNP can be expressed as O(Nd(logN + V)
(details in “Methods”). The running time of KSNP is linear, with the
maximum read depth and the maximum variants per read, giving it a
theoretical advantage in handling high-throughput long reads. We
evaluated KSNP along with four widely used haplotyping tools, namely
Longshot? (v0.4.1), Whatshap”® (v1.7), HapCUT2%'°(v1.3.1), and Margin
(v2.3.1) on human and heterozygous A. thaliana genomes. Overall, the
five tools generated comparable results on the eight datasets exam-
ined. In terms of accuracy, Margin and Longshot performed the best,
whereas considering haplotype length and recall, WhatsHap, Hap-
CUT2, and KSNP are the better methods. In terms of computational
resource consumption, KSNP consumed the lowest peak memory and
CPU time, which amount to only 1.2%-19.4% of other tools

Nature Communications | (2024)15:3126



Article

https://doi.org/10.1038/s41467-024-47562-4

Table 1| Performance of KSNP and the four state-of-the-art haplotyping tools on PacBio CLR and HiFi datasets

Dataset?*?® Tool? SE (%) HE (%) Hap N50 (kb) Recall (%) CPU time (s) Wall time (s) RAM (MB)
HGOO1 CLR 50x Longshot 0.63 114 239 9156 13,485 14,186 2970
WhatsHap 0.67 157 241 91.61 20,714 22,050 1843
HapCUT2 0.67 1.84 251 91.66 6100 6478 969
Margin 0.63 0.89 m 90.30 146,551 19,283 2867
KSNP® 0.68 1.82 246 9159 1881 2004 510
HGOO2 CLR 50x Longshot 1.22 153 315 89.86 13,537 14,267 2662
WhatsHap 1.25 2.03 317 89.91 19,141 19,963 1536
HapCUT2 1.25 2.5 324 89.95 6042 6453 802
Margin 1.21 1.38 244 89.17 128,479 16,471 2458
KSNP 1.25 212 321 89.91 1607 1740 476
HGOO2 Longshot 1.26 121 416 93.67 1,285 11,982 2458
HiFi 50x WhatsHap 127 1.48 217 93.68 13,254 13,880 1229
HapCUT2 1.27 141 417 93.68 5125 5483 685
Margin 1.26 117 370 93.42 112,980 15,064 2253
KSNP 1.27 1.46 422 93.68 106 1270 462
HGOO5 CLR 50% Longshot 1.45 277 490 92.75 17,968 18,865 2765
WhatsHap 1.49 4.01 507 92.80 22,968 24,093 1434
HapCUT2 1.49 4.43 528 92.84 8202 8659 946
Margin 1.44 2.40 315 91.23 145,455 18,648 2253
KSNP 1.49 3.98 514 92.80 2088 2268 513
HGOT09 CLR 40x Longshot 0.04 4.92 5080 89.61 20,794 21,930 2662
WhatsHap 0.06 5.42 5323 89.66 22,919 23,917 1331
HapCUT2 0.07 6.1 5717 89.67 9615 10,184 849
Margin 0.03 2.46 3804 89.47 125,506 16,513 2355
KSNP 0.07 5.94 5333 89.66 1304 1449 512
A.thaliana CLR 45x Longshot 0.01 259 4001 85.97 3570 3586 on
WhatsHap 0.01 212 4001 85.98 2610 2655 615
HapCUT2 0.01 2.43 4001 85.99 1753 1759 392
Margin 0.01 2.07 1228 85.37 9619 1202 2150
KSNP 0.01 256 4001 85.98 100 100 152

SE switch error rate, HE hamming error rate, Wall time wall clock time, RAM peak RAM.

2Longshot, WhatsHap, HapCUT2, and KSNP were performed with one thread in the experiments, while Margin utilized eight threads. The k value in KSNP was set to two by default.

(Tables 1and 2). To assess the end-to-end wall clock time, we employed
one thread for single-threaded tools i.e., Longshot, WhatsHap, Hap-
CUT2, and KSNP, and eight threads for Margin, where KSNP exhibited a
speed advantage of 5.0-11.0 times. Upon examining the running steps
of KSNP, we discovered that reading and decompressing of BAM and
VCF files accounted for -83.5% of the end-to-end wall clock time,
whereas constructing and resolving graph accounted for only 5.7%. For
example, on 50x HGOO1 ONT data, the read-in and decompression
time of the input was 33 min, yet the graph processing and haplotype
construction time was only 2min (Supplementary Table 6). The
observation suggests that the speedup of KSNP on haplotype con-
struction had been pushed to the limit. When the sequencing depth is
relatively low, such as ~20x, KSNP can still maintain good performance
(Supplementary Tables 7 and 8).

To investigate the impact of read types on haplotype construc-
tion, we conducted experiments on lllumina, CLR, ONT, and HiFi
datasets of HGO02 genome (Supplementary Table 9) using three fast
haplotyping tools, i.e., Longshot, HapCUT2 and KSNP. The use of HiFi
reads led to a higher recall rate when phasing SNPs identified from the
long reads themselves (HiFi vs CLR vs ONT: 93.7% vs 89.9% vs 89.8% in
average). However, this advantage disappeared when the long reads
were used to phase SNPs called from Illumina reads (HiFi vs CLR vs
ONT: 94.0% vs 93.5% vs 95.2% in average). Compared to CLR and HiFi
reads, ONT reads were capable of generating 30 times longer

haplotypes in terms of N50 length, with a similar switch error rate and a
4 times higher hamming error rate. Therefore, using accurate reads or
longer reads for constructing haplotypes should be decided based on
the user’s requirements for haplotype accuracy and length.

Discussion
Since the PacBio reads were used to phase the variants on the human
genome in 2015 in ref. 14, the read length and sequencing throughput of
the third-generation reads have increased by dozens of times. As the
amount of data increases, users typically use more threads or develop
hardware acceleration solutions to shorten the analysis time. More
efficient algorithms are also desirable to reduce the computational costs
associated with the pipeline (Supplementary Fig. 1). In this study, KSNP
provides an ultra-fast haplotyping algorithm that can save both the time
and computational costs of phasing analysis. The success of KSNP is
attributed to the abilities of DBG in handling sequencing reads, i.e., (1)
DBG can efficiently capture the SNP-k-mer information present in large
quantities of reads, even they contain errors, in a concise graph format;
(2) the prune-search algorithm employed in DBG offers a low-complexity
approach to rapidly determine the correct path; and (3) the multiple
sources of evidence in DBG, including edge weight, path length, and
MEC score can guarantee the reliability of the resulting haplotype.

The simplicity and computational efficiency of KSNP make it
qualified for various haplotype-aware tasks, such as genome assembly,
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Table 2 | Performance of KSNP and the four state-of-the-art haplotyping tools on ONT datasets

Dataset Tool? SE (%) :IE) Hap N50 (kb) Recall (%) CPU time (s) Wall time (s) RAM (MB)
o°

HGOO1T ONT 50x Longshot 0.66 3.27 4576 91.64 21,249 22,540 2765
WhatsHap 0.67 5.14 4902 92.36 19,989 21,018 1434
HapCUT2 0.67 4.64 5208 92.36 10,284 10,930 867
Margin 0.66 113 1504 91.97 151,309 19,650 2253
KSNP 0.67 5.37 4921 92.36 2091 2307 486

HGOO02 ONT 50x Longshot 1.23 5.38 13,074 89.21 30,954 32,919 2662
WhatsHap 1.24 5.76 13,103 90.03 23,909 25,274 1229
HapCUT2 1.24 6.08 13,103 90.03 15,645 16,652 842
Margin 123 3.65 7590 89.73 169,673 22,623 1741
KSNP 1.24 6.18 13,103 90.03 2265 2536 476

HGOO05 ONT 50x Longshot 1.45 5.50 7400 89.50 32,509 34,514 2765
WhatsHap 1.46 7.75 8257 90.42 22,990 24,146 1229
HapCUT2 1.46 6.46 8621 90.42 16,633 17,724 973
Margin 1.45 3.13 3757 90.11 192,759 24,712 1741
KSNP 1.46 6.72 8388 90.42 2558 2866 505

SE switch error rate, HE hamming error rate, Wall time, wall clock time, RAM peak RAM.

Longshot, WhatsHap, HapCUT2 and KSNP were performed with one thread in the experiments, while Margin utilized eight threads. The k value in KSNP was set to two by default.

genome polishing, and structural variant calling. As reviewed in
refs. 15,16, chromosome-scale haplotyping relies on not only long
reads but sometimes long-range short reads, such as Hi-C data.
Therefore, haplotyping software is more favorable to possess the
ability to handle evidence from multiple sequencing technologies. The
haplotype-aware graph constructed by KSNP is suitable for incorpor-
ating evidence from different data sources, providing more informa-
tion for the graph pruning step. In future developments, we will focus
on enhancing the functionality of KSNP to handle multiple types of
data. For example, the Hi-C sequencing data and genetic data can also
be used to weight the edges, providing more evidence in graph tra-
versing and simplification. We also expect that KSNP can be extended
to handle polyploid genomes, as graph is an ideal data structure for
capturing the similarity and divergence among multiple haplotypes.

Methods

Graph processing in KSNP

Read re-alignment. The input files of KSNP include a sorted BAM” file
containing the aligned reads and a VCF file containing the genotypes of
heterozygous variants. To minimize the SNP genotype errors introduced
by sequencing or mapping, local re-alignment is adopted in KSNP. Par-
ticularly, KSNP extracts a 31 bp sequence around a SNP (i.e., including 15
bases before and another 15 bases after the SNP) from the read, and
aligns the extracted sequence to two target sequences. One is from the
corresponding aligned window in the reference, and the other is gen-
erated by replacing the reference allele (center of the window) with the
alternative SNP allele. The SNP allele with a smaller edit distance is taken
as credible. Efficient Myer’s bit-vector algorithm is used to calculate the
alignment score where each column is represented by one 32-bit word™®.

Graph construction. The corrected SNP genotypes of reads are read
as strings, from which the k-mers are derived with the genomic posi-
tions and genotypes as unique identifiers. Each featured k-mer initially
forms a vertex on the graph. The identical featured k-mers are col-
lapsed into a single vertex. A (k+1)-mer on a read introduces an edge
between its prefix and suffix k-mer vertexes, and the number of the
reads bridging the two connected vertices defines the edge depth.
Considering the natural symmetry of two haplotypes in diploid gen-
ome, the complement of vertices and edges are generated at the same
time to reduce the imbalance of sequencing depth. As such, the graph
is internally symmetrical (Fig. 1).

Graph pruning. The genotype errors introduced in sequencing or
mapping are encoded in ambiguous paths, which would be screened
out in the traversal of the graph. KSNP sequentially performs the fol-
lowing steps to prune the graph (illustrated in Fig. 2):

(1) Fast edge trimming: The initial graph tends to contain a large
fraction of erroneous edges with very low depth. Among the 2
competing edges at the same SNP positions that represent 2¢ different
phasing solutions, the shallow-depth edges are removed in compar-
ison with the maximum edge depth. In particular, if the maximum edge
depth Mis larger than a preset value C, a competing edge with a depth
less than M/2 is cut off. Otherwise, an edge with a depth less than M/5is
removed. C is set to 15 by default in KSNP.

(2) Tips removing: Short branching paths that are unable to extend
into long haplotypes blocks are also removed. More precisely, given
two linear paths starting from the same vertex in the forward or
backward direction, if their lengths are different by a factor of 3, the
shorter one is removed. To process forwardly branching paths, KSNP
starts from the last vertex in graph and walks the graph backwardly. In
this way, KSNP can reduce the possibility of two inspected paths
branching again and improve the efficiency of identifying short paths.
Similarly, KSNP processes backwardly branching paths by taking the
first vertex as the starting point and walking the graph in the forward
direction.

(3) Bubbles resolving: After faster trimming, the major unre-
solved issues in the remaining graph are the bubble structures.
Typically, a bubble begins at source node s with two outdegrees
and ends at a sink node ¢ with two indegrees. Between sand ¢, there
are two disjoint paths which encodes two different phasing solu-
tions in this genome region. A supper bubble might contain
nested bubbles and present more complexity of phasing. Although
it is not strictly accurate, we refer to both of these structures as
“bubbles” for the sake of convenience in the subsequent descrip-
tion of the processing steps. For each bubble, KSNP attempts to
find an optimal path from the source node to the sink node with
the minimum MEC score. If the number of paths in a bubble is
fewer than 512, we can consider every possible solution and cal-
culate its MEC score using the involved reads. The path with the
minimum MEC score is the optimal path, and all other paths are
removed. Nevertheless, such brute-force method is impractical for
a complicated bubble that might contain the exponential number
of paths due to its nesting structure. We adopt a heuristic

Nature Communications | (2024)15:3126



Article

https://doi.org/10.1038/s41467-024-47562-4

algorithm to solve the complex bubbles. We first choose the path
with the maximum weight sum by dynamic programming (DP) in
linear time, and then iteratively modify the path by replacing its
edges with alternatives that could produce better MEC scores. We
design a list of templates and follow them to switch on some
alternative edges (Supplementary Note 2). Path updating stops
until the MEC score is no longer improved or the number of
iterations exceeds 512. In most cases, the calculation of MEC score
converges after tens of iterations.

MEC score is calculated based on the reads involved in the bubble.
However, in some cases, the read sets of multiple bubbles have inter-
sections, meaning that a read is involved in more than one bubble. In
such cases, it is impossible to calculate the MEC scores of individual
bubbles separately, so the bubbles that have intersecting read sets are
combined into to a larger bubble and solved as a whole.

(4) Branches resolving: After going through the previous steps,
there might remain branching paths with relatively long length in the
graph. These branching paths are very likely incomplete bubbles, with
missing edges due to insufficient sequencing or previously trimming.
By restoring essential previously removed edges on the graph, the
branches could be connected to the main path, forming bubble
structures, which can then be resolved as Step (3).

Haplotype block generation. After graph pruning, the primary hap-
lotype blocks are generated by walking out the paths in the pruned
graph. The spurious short blocks are filtered out if they are contained
in a large block. To improve the haplotype continuity, blocks with
overlapped SNPs are joined together if they are spanned by long reads.
MEC score is used to determine which of the two complementary
haplotypes to connect.

Time complexity of KSNP

In the read re-alignment of KSNP, the Myer’s bit-vector algorithm is
adopted to the calculation of DP matrix where each column can be
solved in O(1) time if the size of query sequence is smaller than the
machine word size. Both the query and target sequence length are set
to 31 bp. Because the scale of DP matrix is constant, the only factor in
re-alignment complexity is the number of DP matrices. Nd can repre-
sent the total number of reads, therefore, the time spent on re-
alignment is O(NdV), where N is the total number of variants, d
represents the maximum coverage per variant, and V indicates the
maximum number of variants per read.

In DBG construction, the time spent is O(Nd(log N +V)), where
LogN indicates the time of binary searching of the first allele on a read,
and V SNPs are taken as k-mers. In fast trimming edges and removing
tips, the time complexity is linear to the number of edges. The graph
contains at most 2 *}(N — k) edges, in which  is a fixed parameter less
than 5. The time complexity of linear traversal on graph is O(N). In
bubble resolving, the reads involved are used to calculate MEC score for
each candidate path in the bubbles. The number of examined paths in
a bubble is limited to a constant threshold. In the worst-case scenario,
where all reads are involved, the time complexity required for bubble
resolving is O(NdV).Overall, the time complexity of KSNP
is O(Nd(logN +V)).

Evaluation metrics of haplotype construction

To evaluate the performances of the haplotype assemblers, we used six
criteria including switch error rate, hamming error rate, haplotype
N50, recall rate, CPU time, and the peak RAM consumption. A switch
error occurs when the phase between two adjacent SNPs in the
assembled haplotype is discordant compared with the true haplotype.
The switch error rate is calculated as the number of switch errors
divided by the total number of phased SNPs minus one. The hamming
error rate is the percentage of wrongly phased SNP sites in a haplotype
against the true paternal or maternal haplotype. For example, given an

assembled haplotype “01000” and the true haplotype “00000”, the
switch error rate is 2/(5-1) and the hamming error is 1/5. The recall rate
is calculated as the number of correctly phased SNPs divided by the
number of all phased SNPs in ground truth dataset. The length of a
haplotype block is the distance between its first and last phased SNPs.
The haplotype N50 is the length L of the haplotype block for which 50%
of the total length of blocks are of length greater than L. The value is
calculated by sorting the blocks from the largest to the smallest and
accumulating them one by one until they reach 50% of the total length.

Data processing in the experiments

For HGOO1, HG002, and HGOOS samples, high-confidence phased
variants were extracted from Genome in a Bottle (GIAB) files (Sup-
plementary Table 10) as ground truth data. For HGO1109, the Illumina
reads of two parents were mapped to GRCh37 reference genome using
BWA-MEM? (v0.7.17), and the parental SNPs were identified using
bcftools mpileup pipeline. For A.thaliana F1 (Col-0 x Cvi-0) sample?,
because the TAIR10 reference genome was constructed based on Col-0
sample, the SNPs between Cvi-O and the TAIR1O could be used as
ground truth to evaluate the haplotype assembly of A. thaliana F1. The
PacBio long read of Cvi-O were aligned to the TAIR1O reference gen-
ome using BLASR” (v5.1) and the homozygous SNPs were identified
using Longshot™ (v0.4.1).

All downloaded datasets were randomly sampled to 45x-50x
coverage of the genomes and aligned to the haploid reference gen-
omes using BLASR” and minimap2** with default parameters. Besides,
for CLR data, there was no significant difference between the final
haplotype results based on aligner BLASR* and minimap2**. Minimap2
is recommended when running KSNP for the sake of speed (Supple-
mentary Tables 2 and 3).

For CLR and HiFi reads, the heterozygous SNPs were identified
using Longshot (v0.4.1, options --no_haps --max_cov 500). For ONT
reads, besides Longshot, the PMD pipeline were also performed to
identify SNPs (release r0.7, options --ont_r9 _guppy5_sup). Only the
heterozygous variants satisfying the following criteria were used in the
phasing experiments: (1) with “PASS” tag in FILTER filed; (2) the DP4
depth is 0.5x-2x of the average sequencing depth; (3) with “0/1” tag in
GT filed; and 4) the frequency of ALT allele is within 20-80%. We chose
PMD as the SNP caller for ONT reads in the follow-up experiments
(Supplementary Tables 4 and 5).

The experiments in this study were conducted on a high-
performance computing cluster node with 24 cores. To accelerate
the experimental processes, we split the input BAM and VCF files of the
human genome into 22 parts by chromosomes and accordingly sub-
mitted 22 separate computational tasks. For single-threaded tools such
as WhatsHap, HapCUT2, Longshot, and KSNP, all the 22 tasks were
submitted simultaneously. As for Margin, we used eight threads within
each task, and the 22 tasks were executed sequentially. The CPU time
and end-to-end wall clock time for each task were recorded using the
“/usr/bin/time” command.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

All the datasets used for evaluation were obtained from public data-
bases. The accession numbers and data links are listed in Supple-
mentary Table 10. The command lines used in this study are provided
in Supplementary Note 3.

Code availability

KSNP code is available at github: https://github.com/zhougiansolab/
KSNP. The version of KSNP used in this study can also be accessed
through a permanent link https://doi.org/10.5281/zenodo.10863978.
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