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Multiplicative joint coding in preparatory
activity for reaching sequence in macaque
motor cortex

Tianwei Wang 1,2,3, Yun Chen 1,2,3, Yiheng Zhang 1,2,3 & He Cui 1,2,3,4

Although the motor cortex has been found to be modulated by sensory or
cognitive sequences, the linkage between multiple movement elements and
sequence-related responses is not yet understood. Here, we recorded neuro-
nal activity from the motor cortex with implanted micro-electrode arrays
and single electrodes while monkeys performed a double-reach task that was
instructed by simultaneously presentedmemorized cues. We found that there
existed a substantialmultiplicative component jointly tuned to impending and
subsequent reaches during preparation, then the coding mechanism trans-
ferred to an additive manner during execution. This multiplicative joint cod-
ing, which also spontaneously emerged in recurrent neural networks trained
for double reach, enriches neural patterns for sequential movement, and
might explain the linear readout of elemental movements.

The motor cortex has long been thought to be central in planning and
generating movement. A large body of evidence demonstrates a cor-
relation between neuronal activity in the motor cortex and a variety of
motor variables, such as direction, speed, distance, and trajectory1–7.
Beyond the single ballistic movements examined in these studies,
multi-step movements, such as sequencing and ordering action, are
crucial in daily behavior8,9. As one of the brain areas conveying highly
accurate information about movement timing10 and kinematics11, the
motor cortex seems to be involved in causal sequencing of multi-step
movements12. Sequential information has been reported to be enco-
ded in the population response before movement initiation13–15. In
addition, most neurons are reported to show activity related to both
target location and serial order16,17. However, most of these studies
instructed the sequence of movement with serial sensory stimuli,
which might result in neural activity that differs from internally gen-
erated motor sequences18–20. In tasks carried out in the absence of
serial sensory inputs, neuronal activity related to sequential contexts
emerges during preparation, and becomes prominent during
execution21,22. Furthermore, despite differences at the single-neuron
level, the neural population preserves a reliable readout of movement
direction. That is to say, both individual movement elements and

sequential information are simultaneously and robustly encoded in the
motor cortex21.

In principle, a continuous action sequence consists of elements
spatio-temporally coordinated in a complex manner, rather than a
series of independent actions23–25. However, the “competitive queuing”
hypothesis suggests that the brain produces sequential movement via
a combination of parallel coding of specific actions26. A recent study on
double reach supports this parallel coding hypothesis, suggesting that
the motor cortex does not fuse two reaches, but recruits two inde-
pendent motor processes sequentially27. The resulting concurrence of
motor execution and motor planning, however, is insufficient for
rejecting the possibility of interaction between movement elements
beforehand. It remains unclear if sequential movement is parallel or
jointly coded in the preparation period.

To further explore the motor preparation and encoding char-
acteristics of sequential movements in a strict behavioral and neuro-
physiological context, we recorded neuronal activity from the motor
cortex via implanted arrays or single electrodes while monkeys were
performing a double reach that was instructed by simultaneously pre-
sented cues that had to be memorized. We found that neuronal activity
could be regressed as amultiplication of directional tunings to reaching
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elements in the preparatory period, and then converted to parallel
coding for both movement elements after movement onset, indicating
the existence of a gain-like interaction in planning the motor sequence.
Neural population dynamics derived from our array-recorded data
indicates that a nonlinear interaction is embodied in the spatial struc-
ture of initial states. In computational simulations, multiplicative coding
for motor sequences spontaneously emerges in a recurrent neural
network, and benefits reliable linear readouts of movement elements.
These results suggest that the motor cortex is profoundly involved in
concatenating multiple movement elements into a sequence, and that a
gain-like multiplication is a key signature of complex serial behavior.

Results
Behavioral task
Three rhesusmonkeys (Macacamulatta, male 5–10 kg) performed the
memory-guided double-reach task (Fig. 1a). A trial began with a green
dot displayed on the center of a touch screen, and the monkey was
required to touch it. After 300ms, in 1/3 of the trials (single-reach, SR),
another green dot was presented as a reaching goal for 400ms (cue
period) at one of the six corners of a regular hexagon (i.e., at directions
of 0°, 60°, 120°, 180°, 240°, or 300°). After the peripheral cue was
extinguished, there was a memory period of 400–800ms. Thus, the

total delay from Cue to GO was 800–1200ms. The monkey was
trained to keep its hand on the central green dot until it was turned off
(GO signal), and then reach the previously cued location to obtain a
reward. In the remaining trials (double-reach, DR), a green square and a
green triangle were presented simultaneously during the cue period.
The square was in the same alternative directions as the SR sur-
rounding targets. The triangle was displaced from the square by
120° clockwise (CW, 1/3 of trials) or 120° counterclockwise (CCW,
1/3 of trials). After the memory period without peripheral cues, the
monkey was required first to reach the memorized square location,
and then to immediately reach the memorized triangle location. The
monkey was rewarded only if it reached the specified target within a
margin of three centimeters, and in the correct order. For a correct
trial, the green square would reappear after the first reach, and
the triangle would appear in purple after the second reach. All
18 conditions (three trial types × six directions)were pseudo-randomly
interleaved. Only correct trials were included in the analysis. Event
markers are denoted as the GO signal (GO), the first/only movement
onset (MO), the first/only movement end (ME), and the second
movement onset (MO2).

Hand trajectories exhibited a stereotype movement pattern in
each condition for well-trained monkeys. All first reaches started from

200 ms

50
cm

/s

MO ME

Speed

Right Upper-right

Upper-left Left

Lower-left Lower-right

Cue GO

400 ms 400-800 ms

Memory Move

a

CW

CCW

SR

1/3

1/3

1/3

c

SR

CW

CCW

b

200 ms

EMG

MO MEGO
Cue

Fig. 1 | Paradigm and behavior. a Three types of trials were pseudo-randomly
interleaved in each session. In single-reach (SR) trials, monkeys had to perform
memory-guided center-out reach. In double-reach (DR) trials, two targets (a square
and a triangle) were presented simultaneously in the cue period, and then extin-
guished; the monkeys were required to hold the central target for a 400–800ms
memory period until it was turned off (GO signal). Next, monkeys finished reaching
both targets in the sequence of the square to the triangle within 700–1200ms. The
triangles were located 120° from the squares in CW or CCW directions. Monkey

cartoons were created by Miss Jiayue Li. bHand trajectories in different conditions
are grouped by their 1st/only reach direction frommonkey C. Some trajectories are
overlapped due to high similarity. No significant difference was found before the
end of 1st/only reach (one-way ANOVA, p >0.05). c Surface electromyography
(sEMG) and speed in one typical session. The Pearson correlation coefficient of the
speed profile until the first movement end between double reach and single reach
was0.99 ± 0.006 (mean ± sd), and of sEMGof extensor digitorum communis (EDC)
was 0.99 ± 0.005 (mean ± sd) for monkey C.
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the center and moved towards the corresponding target in each con-
dition (Fig. 1b). Muscular activities remained constant during the
preparatory period across different conditions, excluding the possi-
bility that themonkeysmight developdifferent prematuremovements
(e.g., adjust arm orientation) after cue for different conditions. The
Pearson correlation coefficient of speed profiles until ME between DR
and SR was 0.99 ±0.006 (mean± sd), and of surface electro-
myography (sEMG) of extensor digitorum communis (EDC) was
0.99 ±0.005 (mean± sd) for monkey C (Fig. 1c). In addition, the dwell
time on the first target was 194 ± 75ms (mean± sd) for monkey C,
350± 110ms (mean± sd) for monkey G, and 150 ± 47ms (mean ± sd)
for monkey B. The duration of DR was 586 ± 95ms (mean ± sd) for
monkey C, 818± 131ms (mean ± sd) for monkey G, and 481 ± 72ms
(mean ± sd) for monkey B, averaged across conditions. These results
verified the expected transitory dwell on the first target in this task,
and indicated behavioral consistency between SR and the first reach of
DR in the same direction, in terms of hand trajectory, speed profile,
and sEMG.

Heterogeneity in neuronal activity indicated mixed selectivity
All electrophysiological recording sites were in the hemisphere con-
tralateral to the hand used during the task. Only one hand was used by
monkeys B and G, but for monkey C data were recorded first with
single electrodes, and then arrays in the other hemisphere with a
switch of hands. We collected 322 well-isolated task-related neurons
from single-electrode recordings (224 from monkey B, 98 from mon-
key C left hemisphere) and 162 units sorted from array recordings
(44 frommonkeyG, 118 frommonkeyC right hemisphere) in themotor
cortex (Supplementary Fig. 1). Among these, we found considerable
heterogeneity in firing patterns. Figure 2 illustrates four representative
cells. The neuron in Fig. 2a exhibited a two-peak firing pattern in DR,
each peak after movement onset, while it had only one burst in SR.
Notably, the direction with the highest firing rate changed remarkably
in sequential movements. The neuron in Fig. 2b fired with a constant
preferred direction (PD) towards the lower left. Surprisingly, even
though its directional selectivity was remarkably similar for both SR
and DR, the firing rate was significantly higher in DR (according to the
95% confidential interval plotted in the shade), indicating that it con-
veyed information regarding target-movement number. Also, the
preparatory activity would diverge with the 2nd reach before GO and
MO in neurons, as in Fig. 2c, d.

We further examined the proportion of neurons with sequence
selectivity in three periods: preparatory (600ms before GO), pre-
movement (200ms before MO), and peri-movement period (200ms
before ME). Among the 322 neurons recorded by single-electrodes,
52% exhibited significantly different firing rates for SR and DR in the
preparatory period (Wilcoxon rank-sum test, p < 0.05). This propor-
tion increased to 68% in the pre-movement period, and then to 84% in
the peri-movement period (Wilcoxon rank-sum test, p <0.05). As for
the comparison between CW and CCW trials, 30%, 48%, and 72% of
neurons showed significant differences during the preparatory, pre-
movement, and peri-movement periods, respectively (Wilcoxon rank-
sum test, p < 0.05). For the 162 array-recorded neurons, 76%, 86%,
and 95% were significantly tuned to sequence during preparatory, pre-
movement, and peri-movement periods, respectively (Wilcoxon rank-
sum test, p <0.05). In comparing CW and CCW trials, the proportions
were 46%, 66%, and 86% during the preparatory, pre-movement,
and peri-movement periods, respectively (Wilcoxon rank-sum test,
p <0.05). These considerable proportions reveal a substantial
sequence selectivity in the motor cortex.

Additive vs. multiplicative joint coding
The above results show single-neuron responses related to reaching
sequences. However, whether such sequence-related responses result
from joint coding or parallel coding is the next question. Then, based

on the directional tuning function:

FR=a cosðθ� θPDÞ+ c ð1Þ

where θ is the movement direction, θPD is the PD, a and c denote
regression coefficients; we developed two fitting models.

The parallel coding assumes the sequence-related difference
comes from the overlap of two independent tuning components. In
this model, sequential modulation is a parallel process resulting from
the preparation of the secondmovementwhile the firstmovement still
is in flight, as pointed out by ref. 28 Here, we focused on directional
tuning alone, and defined an ‘additive model’ as follows:

FR=a1 cos θ1 � θPD
� �

+a2 cos θ21 � θPD

� �
+ c ð2Þ

where FR is neuronal firing rate, θ1 is the movement direction of the
first reach, θ21 is the secondmovement direction starting from the first
reaching endpoint, that is, in execution coordinates (Fig. 3a), since the
regression result (Fig. 3b) indicates that the second reach is pre-
dominately conveyed in execution coordinates (movement direction,
θ21 in Fig. 3a) rather than visual coordinates (target location, θ2 in
Fig. 3a). θPD represents the intrinsic PD, a1 anda2 are coefficients, and c
is the baseline firing rate. For simplicity, we assumed the PD to be
consistent for both terms at the same time.

However, since the visual targets in our task were presented
simultaneously, rather than sequentially as in many previous
studies9,15,16,28, the monkeys were more likely to prepare the entire
reaching sequence beforehand19,24. In this case, the different responses
in DR might not simply result from the overlap of the “preparation-
execution”, but from interaction between the tuning components
corresponding to two reaches. Therefore, this raises the possibility of
joint coding, for which an interactive term is essential. For computa-
tional convenience, and as inspiredby a previous study suggesting that
hand speed may act as a “gain field” to the directional cosine tuning
function29, we propose a “multiplicativemodel” to depict the potential
nonlinear gain-modulation between both elemental movements:

FR=a1 cos θ1 � θPD
� �

+b cos θ21 � θPD
� �

cos θ1 � θPD

� �
+ c ð3Þ

where b is a coefficient and other notations as in Eq. 2. If we set
Δθ= ðθ21 � θ1Þ=2, then the multiplicative term in Eq.3 can be trans-
formed into a summation form that includes a doubled frequency
(Eq. 4).

b cos θ1 � θPD

� �
cos θ21 � θPD

� �
=
b
2
cos 2 θ1 � θPD +

Δθ

2

� �� �
+
b
2
cosΔθ

ð4Þ

To further examine the interaction between element movements
and to avoid overfitting in the regression analysis, in addition to the
standard paradigm described in Results (Fig. 1a), we trainedmonkey C
to perform an extended version of the task with multi-angle, in which
the angle between the square and triangle could be 60° or 120° in both
CW and CCW directions as well as 180°. This multi-angle task has 36
conditions in total (six SR and 30 DR).

We tested these two possibilities on condition-averaged normal-
ized firing rates with a 200-ms sliding window30. The fitting results of
an example neuron are shown in Fig. 3c, in comparison with its
actual PSTHs. This neuron obviously had a sequence-related mixed
selectivity, because its peri-movement activity varied with different
subsequent movements, and the preparatory activity was also condi-
tion-dependent, though with small variation. The response recon-
structed by the additive model (Eq. 2) reproduced the peri-movement
firing pattern, but it did not capture the sequence-specific modulation
during preparation. In contrast, themultiplicative model (Eq. 3) better
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captured neural activity during the preparatory period, while losing
that during the peri-movement period. In Fig. 4, we plotted directional
tuning curves of the same example cell with its actual firing rates
(Fig. 4, left panel), along with reconstructed firing rates by additive
(Fig. 4, middle panel) ormultiplicative (Fig. 4, right panel) models. The
real firing rate for plotting and fitting was normalized and averaged
around MO (−100–100ms to MO, peri-MO) and around ME
(100–300ms to MO, peri-ME), respectively. Here, we assume the
neuron has the same θPD in a certain time bin across conditions in each
model. However, because of the modulation of 2nd reach directions
(whethermultiplicativeor additive), the apparent PD (i.e., thedirection
with the highest FR) may change compared to the θPD, for peri-MO
(Fig. 4a), the neural tuning curves consisted mostly of two peaks and
were only replicated by the tuning curves of the multiplicative model.
This was not accidental, because frequency doubling is a corollary of
the product of two trigonometric functions (Eq. 4). For peri-ME
(Fig. 4b), apparent PD shifted with conditions in data, and only the
additive model yielded a similar outcome. These results suggest that
different coding rules cause distinctly different firing patterns. The
multiplicative interaction contributes to the period changing, whereas

the additive relation can easily lead to PD shifts while retaining the
periodic identity. Comparing two epochs, the two coding possibilities
could co-exist and might alternate.

To further investigate the temporal dynamics of joint-coding
rules, we proposed a “full model” to combine the two modulation
forms:

FR=a1 cosðθ1 � θPDÞ+a2 cosðθ21 � θPDÞ+b cosðθ21 � θPDÞ
cosðθ1 � θPDÞ+ c

ð5Þ

where descriptions of notations are the same as in Eq. 2 and Eq. 3,
defining a1 as the first reachweight, a2 as the additive weight, and b as
themultiplicativeweight. Thefluctuationof the regression coefficients
(a1, a2, and b) reflects the time-varying contribution of the corre-
sponding terms, thus enabling the full model to profile the transition
of coded objects.

We compared the goodness-of-fit of the full model with that of
the additive model, the multiplicative model, and a single cosine
model (Eq. 1, 1st reach direction), by the standard of the population-
averaged adjusted R2 (adjusted R2, a statistical method to compensate

SR

CW

CCW

a

c

b

d

s/ekips
08

500 ms

s/ekips
001

500 ms

80
sp

ik
e/

s

500 ms

15
0

sp
ik

e/
s

500 ms

MO MO

GO MO

Fig. 2 | Examples of cells in the motor cortex showing heterogeneous firing
patterns. In each panel (a–d), the six subplots show PSTHs of the same neuron in
three conditions with the first reach toward the corresponding location (e.g., the
upper-right subplot denotes the first reach to 60°). Rasters are plotted at the top of
each PSTH (20-ms SD Gaussian kernel, mean ± 2 standard error). Spike trains in SR

(black line), CW (blue line), and CCW (red line) trials are aligned to the first/only
movement onset (MO) in (a, b, d), but aligned to GO-cue in (c). The time of GO
(magenta dots), MO (green dots), the second movement onset (MO2, cyan dots),
and the second movement end (yellow dots) are presented in the raster. Monkey
cartoons were created by Miss Jiayue Li.
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Fig. 3 | Directional fitting of single neuron response. a Visual vs. movement
coordinates. Unlike the first reach, which was uniformly represented as a vector
from the center to the square targets, the second reachmight be encoded in either
visual (from the center to the triangle, the blue vector, θ2) or motor (from the
square to the triangle, the orange vector, θ21) coordinates. b The changing R2 of
cosine models in three coordinates was obtained with sliding windows
(bin = 200ms, step = 20ms):first reach direction (gray) fits best beforeMO; second
reach direction in execution coordinates (in Exe., red) fits well throughout the
whole trial; second reach direction in visual coordinates (in Vis., blue) fits poorly

before MO. c The fitting result of an example neuron. Each row shows conditions
with the same first reach (black arrow); the second reach is plotted in different
colors (CW60° in green, CW 120° in blue, 180° in purple, CCW120° in red, CCW60°
in orange; here angle is according to the target locations in cue period). Four
columns left to right are: Normalized data PSTHs; normalized firing rate recon-
structed by the addictive model, the multiplicative model, and the full model,
respectively. All activity is aligned to MO (marked by the gray dots under the
timeline, the blue shadow indicates 600ms before MO, and the orange shadow
indicates 250ms after MO. Time window is −800–600ms to MO).
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for the difference in numbers of parameters between the full model
and other models, see Methods) for M1(Fig. 5a, array data from mon-
key C). The full model performed best; it was also able to describe
the tuning property of the example neuron throughout the whole
trial (Fig. 3c, Full). The goodness-of-fit for all models gradually
increased during preparation, and the multiplicative model was sig-
nificantly better than the additive model at MO (two-tailed Wilcoxon
signed-rank test, p = 1.2e-05). Nevertheless, the additive model per-
formed better after MO. Similar results were found in the standard
behavioral paradigm (CW or CCW 120° in Fig. 1) among all monkeys
(Fig. 5b, array data from monkey G; Supplementary Fig. 2, single-
electrode recording from monkeys B and C). The effect size r
(see Methods) also indicates there is a small to medium effect for the
multiplicative model during the preparatory period for each monkey
(Supplementary Fig. 3).

To scrutinize the changing encoding pattern, we plotted the
averaged absolute coefficients of the full model across time (Fig. 5,
right panel). The weights of the first reach and the multiplicative term
ramped up over the chance level (given by a permutation test, see
Methods)duringpreparation,whereas the additiveweight remained at
the chance level in preparation and mainly increased after MO. This
contemporaneous activationof coefficientswas similar to the situation
in the prefrontal cortex, where neurons were modulated by both
direction and sequence31–33. Similar dynamics were found in all mon-
keys (Supplementary Fig. 2), suggesting a common transition from a
gain-modulation interplay during motor preparation to a concurrent
coding during motor execution. This concurrence has been reported
by the previous study27.

So far, we have analyzed the linear and nonlinear components
comprised in neural encoding for double-reach and their inter-
changeable predominance. The multiplicative joint coding, revealed
by the multiplicative model and validated by the multiplicative weight
in the full model, now becomes a key concern because it would be
apparently a unique signature of continuous motor sequences.

Multiplicative coding embodied in initial states
According to our regression analyses, themultiplication of the tunings
corresponding to the first and second reaches could be intrinsic in
sequence-related preparatory activity. From the dynamical systems
perspective, preparatory activitywouldbe set to a subspace optimal as
initial states to trigger motor generation34. We expected a spatially
inclusive distribution of initial states to accord with mathematical
multiplication.

To verify this hypothesis, we performed a supervised dimen-
sionality reduction procedure. Firstly, principal component analysis
(PCA) was applied to the preparatory neural activity during a period of
600ms before GO. Next, Fisher’s linear discriminant analysis (LDA)
was utilized to find the optimal discriminant projection in accordance
with tagged conditions35. In this PCA-LDA analysis, selected principal
components from PCA (the number was chosen by cross-validation)
were applied to LDA. Figure 6 shows the results frommonkey C’s array
data. We first analyzed neural activity in SR trials and built an SR sub-
space. Neural states clustered by conditions, as visualized in the 2D
projections foundby LDA (Fig. 6a). Then, we projected bothDR and SR
data onto the SR space and found that neural states of both DR and SR
trials clustered according to their first or only reach direction (Fig. 6b).

Fig. 4 | Joint tunings of the example neuron aroundmovement onset and end.
a Directional tuning curves of the example cell in Fig. 3 were plotted around MO
(−100–100ms to MO, peri-MO). Left: Normalized firing rates in DR were trial-
averaged and plotted in corresponding condition colors (DR trial number = 614, 20
trials per condition; mean ± 2 standard error). Tuning curves were fitted by Fourier

expansion separately. Middle: Tuning curves of firing rates reconstructed by the
addictive model. Right: Tuning curves of firing rates reconstructed by the multi-
plicativemodel. R2 showed the goodness-of-fit of themodel tuning curve. b Similar
to (a), directional tuning curves around ME (100–300ms to MO, peri-ME).
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This suggests that despite the proposed sequence modulation in
preparatory activity for single neurons, the neural population pre-
served a linear representation for the preceding movement. However,
the explained variancewas higher for SR thanDR (Formonkey C array,
the explained variance of SR is 8.4%; that of DR is 6.9%. For monkey B,
the explained variance of SR is 9.0%, and DR is 6.6%. For monkey C
single electrode, the explained variance of SR is 6.2%, and DR is 5.6%.
For monkey G, the explained variance of SR is 31.6%; that of DR is
27.5%.). To neutralize the tuning for the immediate movement, we
used DR trials with the same 1st reach direction alone for the PCA-LDA
analysis. Therefore, neural states could be projected onto dimensions
maximizing thedifferencebrought by the second reachdirections (i.e.,
six clusters). We separately performed the LDA analysis for each of the
six first movement directions, as shown in the subplots of Fig. 6c. The
tenfold cross-validation accuracies are higher than the chance level in
all directions (the tenfold cross-validation accuracies are 0.59, 0.64,
0.58, 0.60, 0.43, 0.43, from 0° to 300° subplots in Fig. 6c). There were
great differences between SR (circles) andDR (othermarkers) clusters,
indicating that the initial states for sequential movements were dis-
tinctive. Interestingly, in some conditions, DR trials obviously clus-
tered in order from CW 60° to CCW 60°, and the CW and CCW states
were located on both sides of the 180° states. This structural spatial

distribution of LDA states is supported by Mahalanobis distances
(Supplementary Fig. 5) between clusters in Fig. 6c, and may signify a
condensation of subsequent movement information in the strong
representation of occurrent movement. In addition, the results for
other monkeys for the DR task showed a similar tendency (Supple-
mentary Fig. 6).

We also examined the temporal dynamics of the information
carried by the neural population by decoding both directions in
DR trials. We trained LDA decoders in a sliding window (bin
width = 300ms, step = 20ms) and plotted the tenfold cross-validation
accuracy in Fig. 6d. Both movement directions can be decoded
above the permutation level beginning with the preparatory period.
Thefirst reach canbeperfectlydecoded,while the second reach shows
a lower accuracy, and is still ramping 400ms after MO, which is close
to the MO2. This result suggests that the planning of the first reach is
earlier and more dominant than that of the second reach. The second
reach information is implicitly embedded in the population response,
beginning with the preparatory period and explicitly emerged during
the execution period. This conclusion still holds true in a more rigor-
ous decoding in the preparatory subspace (Supplementary Fig. 7). The
temporal properties are displayed in the decoding results, alignedwith
the coefficients weights of the Full model in Fig. 5.
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compared the goodness-of-fit at MO (−100–100ms to MO) between the multi-
plicative and additive models, each dot represents the result of a neuron. Right:
Mean of absolute coefficient values (± 2 standard error in error band). The coef-
ficient weight of the permutation test was plotted in light shade as the chance level.
b The results of array data from monkey G.

Article https://doi.org/10.1038/s41467-024-47511-1

Nature Communications |         (2024) 15:3153 7



Multiplicative coding preserves linear readout of
immediate reach
As several previous studies have pointed out12,21,36,37, with a fixed linear
readout like in the population vector (PV) or dimensional reduction
method, the initial reach direction is captured during preparation,
despite the sequence-related modulation at the single-neuron level
(Supplementary Fig. 8). This is extremely interesting for the popula-
tion vector, calculated from each neuron’s PD, is expected to be sen-
sitive to PD changes. But in sequential movement, this isn’t observed.
Some studies hypothesized this may be due to the neuronal connec-
tion coordination. We speculate that linear readout in sequential
movements benefits from multiplicative joint coding, considering
nonlinear mixed selectivity is believed to form high-dimensional
neural representations that guarantee the linear readout of particular
parameters38.

To explore this, we simulated 200 neurons (see Methods39),
defined their intrinsic PDs (thefixedparameter θPD), and generated the
single reach (SR) response with a single cosine model. Then generated
the sequence modulated response for the initial reach under additive
andmultiplicativemodels. The generated responses are in an epoch of
600ms from preparatory activity until the 1st reach end. Those addi-
tive andmultiplicative neuronswere regulated by a fixed second reach
direction (CCW 120°). We present the responses of three sets of the
response of one neuron with θPD = 336° in Fig. 7a. Obviously, the
direction inducing the highest firing rate changed in additive and
multiplicative modulated responses, compared to the “single cosine”
response (Fig. 7b). We used the fixed θPD for the calculation of PV.
Interestingly, PVs of the multiplicative responses correctly and stably
pointed to the initial reach direction as in the SR responses, whereas
PVs in the additive responses deviated from the desired direction

(Fig. 7c). These simulations show that multiplicative coding can pre-
serve a robust fixed linear readout of immediate reach direction under
sequence modulation.

Multiplicative joint coding emerged in recurrent neural network
(RNN) generating motor sequence
Due to their flexibility and time-varying characteristics, RNNs are
increasingly welcomed as models matching a dynamical system40–42.
To find out whether a dynamical system can also capture the subtle
joint-coding rule found in the motor cortex, we trained an RNNmodel
to perform the double-reach task.

The three-layer RNN received the Cartesian coordinates of two
reaches and aGo signal as input (Fig. 8a). The target-relevant cueswere
presented simultaneously, though instructing sequential actions. In
contrast to previous work in which RNNs were instructed to generate
velocity39 or EMG43, ourmodelwas required toproduce PV. This design
was preferred for these reasons: first, the variables related to actual
movement, like velocity and EMG, have to lag behind the neural
activity due to transmission delay from cortex to muscle. In contrast,
PV could be real-time, and thus reflect more temporal features; also,
this design is consistent with our hypothesis that multiplicative joint
coding benefits linear readout of movements (Fig. 7).

We trained 100 networks with different random seeds, these
models performed well (R2 = 0.94 ±0.02, mean squared error (MSE) =
0.05 ±0.02, mean± SD; see Methods). We selected one of them as an
example (R2 = 0.97±0.01, MSE = 0.03 ± 0.02). The model nodes exhib-
ited comparable temporal dynamics with real neurons recorded in the
present study. Here we show two example nodes under four specific
conditions (Fig. 8b). For node 032, the two bumps of its response
indicate that it is closely related to the ongoing movement, which is
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Fig. 6 | Neural population embedded sequential modulation during the pre-
paratory period. a Projection on SR space. Neural states of SR trials (n = 125) were
clearly clustered according to their reaching directions. b Neural states of DR trials
(n = 614) also clustered into six groups according to their first reach direction when
projected onto the SR space. The explained variances of the two dimensions were
calculated. c LDA classified neural states of trials with the same first reach direction
into clusters grouped by second reach directions, forming an initial state space for

the subsequentmovement. Colors indicate the firstmovement directions; DR trials
are presented in the same color family of related SR trials. Markers indicate the
second reaching direction. The ellipses show the covariance projection of related
conditions. d Decoding accuracy for both reach directions in double-reach trials,
using monkey C array DR trials. Trial conditions were shuffled 100 times to calcu-
late permutation levels which are plotted in light shade curves.
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typical for neurons in M1. It also seems to have ‘direction selectivity’,
the only exceptive movement direction for the first reach (in cyan)
induces obviously distinguished response. Node 012, however, only
responds to the second reach, though maintaining input-driven
dynamics during the preparatory period.

Observing richer preparatory dynamics than expected, we won-
dered whether the temporal dynamics of components corresponding
to different movement courses were consistent between model and
neural data. Therefore, we tested the ‘full model’ fitting on nodes of
our models. The profile of regression coefficients of model nodes
largely resembles that of real data (Supplementary Fig. 9a, Fréchet
distance = 0.41 ± 0.04 compared with monkey C’s array; In contrast,
this formonkeyC’s single electrode recordingswas0.39, formonkey B
was 0.56, for monkey G was 0.23. The average distance between
monkey C’s array and the permutation was 1.08; see Methods). As
shown in Fig. 8c (Fréchet distance =0.36), while the weight of the first
reach peaks at MO and decays afterward, the weight of the additive
term, which relates to the second reach, reaches its apex around MO2
with a smaller magnitude. During the preparation, the weight of the
multiplicative term maintains a considerable influence. This suggests
that the proposed multiplicative joint coding for sequential move-
ment, here a double reach, also emerges in a dynamical system. The
multiplicative coding even existed in a network with two triggers
(Supplementary Fig. 10, the only difference in the training is that the
Go signal pulses twice).

Furthermore, we found a similar initial state geometry in the
neural latent space, by PCA. During preparation, the states with the
same first reach direction were located nearby and then slightly

separated according to the second reach direction (Fig. 8d left). This
structure was validated by the distance between states within the first-
reach cluster, compared with that within DR conditions (Fig. 8e right
and Supplementary Fig. 9b). During execution, the neural states clus-
ter according to the ongoing reach direction (Supplementary Fig. 11).
However, the causality is unclear given the perturbation on RNN via
knocking down the nodes with different magnitude of coefficient
weights failed to cause a significant difference in performance deficits
among weights (Supplementary Fig. 9c).

Discussion
In order to understand how the motor cortex generates motor
programs for consecutive arm movement sequences, we recorded
neuronal activity when monkeys performed double-reach direc-
ted at simultaneously cued memorized targets. We found that
pre-movement activity carries sequence information in a hetero-
geneous manner. Regression analysis shows that neuronal tuning
to first and second reaches can be well explained by multi-
plicative and additive models in the preparatory and execution
periods, respectively. Dimensionality reduction analysis demon-
strates that neural states during preparation sub-clustered
according to the second reach within the optimal subspaces of
the first reach. Simulation via model neurons points out the merit
of multiplicative joint coding in maintaining robust linear readout
for the ongoing movement direction. An RNN model trained for
double-reach tasks can simulate the real encoding properties,
which are marked by conspicuous nonlinearity. Taken together,
these results suggest that the primate motor cortex is profoundly
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Fig. 7 | Simulation of neural tunings on population vector during single and
double reach. a Exampleneuronsof three simulateddatasets. Averagedfiring rates
of different conditions (first reach directions) are shown in corresponding colors.
These three examplemodel neuronswere simulated according to the single cosine,
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c Population vectors of three simulated datasets. Population vectors were calcu-
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correct reaching direction is upward. The population vector of the multiplicative
dataset is pointed in the same direction as the PV of the single cosine dataset, while
the PVs of the additive dataset shift away from the desired reaching direction.

Article https://doi.org/10.1038/s41467-024-47511-1

Nature Communications |         (2024) 15:3153 9



involved in forming plans for multi-step movements. In addition,
the transition between the newfound multiplicative joint coding
and overlapped independent coding hints at a shifting neural
encoding mechanism for motor sequences.

Previous studies have revealed that the motor cortex not only
carries information regarding upcoming movements, but also reflects
sensory and cognitive factors during both preparation and execution
periods6,9,12,16,17. Nevertheless, how this “sequence selective” response
reflects motor sequence has not yet been answered. A recent work
following the dynamical systems perspective found that ‘the pre-
paratory subspace was occupied twice, once before each reach’, thus
suggested that each of the movement elements were encoded inde-
pendently in the motor cortex rather than holistically. However, if
individualmovementswere independently planned, the reaching error
should accumulate, whichhas not yet beenobserved44. Furthermore, it
was demonstrated that holistic planning might enhance motor learn-
ing, but such an effectwould not occurwhen different follow-throughs
were rehearsed individually45. This finding strongly suggests that
sequential planning is associated with special neural states in pre-
paration, in accordance with our findings. Although population
response in the preparatory subspace showed little diversity before
MO, the decoding accuracyof the second reach also ramped above the
permutation accuracy before MO and rose to 50% after MO (Supple-
mentary Fig. 7). Based on the results, we propose that elemental
movements in sequential reach are modulated by the second move-
ment in the sequence whose identity is fully defined and transferred
into independent coding after MO. Also, unlike in the parietal cortex,
neuronal activity in the motor cortex exhibits strong heterogeneity46,
which often comes from mixed selectivity of behavioral parameters
and tuning dynamics29,47–49. Given these considerations andour results,
we propose that elements in a consecutive movement sequence

should be interactively planned in a spatio-temporally coordinated
manner beforehand.

As one of the cortical regions carrying much information
regarding movement timing10 and kinematics11, the motor cortex pre-
sumably participates in encompassing and coordinating sequence
components. In the present study, both reaching targets were turned
off 400–800ms before GO, encouraging the monkeys to plan the
whole reaching sequence in the preparatory period. Our results
revealed that neurons tended to jointly encode double reach in a
multiplicative manner during preparation. The multiplicative model’s
performance degraded afterMO, perhaps because joint codingmainly
exists during preparation, as a reaching sequence is decomposed into
motor elements, the lack of an additive term makes it incapable of
capturing the parallel components after MO27. The concept of the
multiplicative model originated from gain-modulation50,51, and a work
regarding the question of whether the neural response was con-
structed with nonlinear interactions between parameters, rather than
their linear combination29. In the case of sequential movements, this
issue becomes whether sequential elements are planned conjunctively
or independently. As the primary nonlinear interaction, multiplication
is a common form of gain-modulation that has been widely found in
mixed selectivity50,51. This codingmanner can provide new dimensions
formotor preparation and learning52, and according to our simulation,
it can also consolidate the linear readout for impending movements.
Because such mixed selectivity of parameters enlarges the neural
space encoded by a certain number of neurons35,38,52, the dimension-
alities induced by multiplicative coding may perform as the null space
of impending movement.

Although our analyses of joint coding are based on directional
tuning, we did not mean to imply that the motor cortex exclusively
encodes movement direction. Rather, we treated the directional
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tuning as a marker of interaction, rooted in the heterogeneous neu-
ronal response. Since the motor cortex is recognized to play a
straightforward role in generating descending commands for muscle
activity production53,54, future studies should also take into account
muscle activity to explain how joint coding benefits the generation of
compound double reaches from a dynamical systems perspective43.
However, it is a limitation of the present study that sEMGdatawere not
sufficient to explore this issue.

Regarding joint coding embodied in the motor cortex as a key
signature to encompass movement elements in the planning of con-
secutive sequences, we are not claiming that it seeds a neural dyna-
mical system that can autonomously generate the entire motor
sequence. Instead, sequential behavior emerges from a large brain
network, including parietal-frontal circuits9,55 and subcortical areas like
the thalamus and basal ganglia56. Now that the dynamical evolution in
themotor cortex necessarily relies on external inputs fromother brain
areas57, an intriguing question is how intrinsic dynamics and external
inputs interplay to generate a motor sequence, including the role of
the proposed joint coding in the motor cortex. To go further, collec-
tive studies across multiple brain regions and experimental interven-
tions are needed.

Methods
Experimental preparation
Three male rhesus macaques (monkeys B, C, and G, Macaca mulatta,
5–9 kg) were trained to perform a cohesive double-reach task (Fig. 1a).
In each session, the monkey sat in a custom-designed primate chair.
Stimuli were back projected onto a vertical touch screen (Elo Touch-
systems, 19”; sampling at 100Hz, spatial resolution <0.1mm) ~30 cm in
front of the monkey. In the recording sessions using microelectrode
arrays (Utah array, Blackrock), hand position was monitored optically
via reflective markers attached to the wrist (Vicon Inc.), besides,
acceleration and surface electromyography (sEMG) were recorded via
a wireless sensor (Delsys Trigno Lab) attached to the targetedmuscles.
All procedures were in accordance with NIH guidelines and were
approvedby the InstitutionalAnimalCare andUseCommittee (IACUC)
of the Institute of Neuroscience, CAS.

Behavioral task
In addition to the standard version of the paradigm described in
Results (Fig. 1a), to further examine the interaction between move-
ment elements, we trained monkey C to perform an extended version
of the task withmulti-direction, in which the angle between the square
and triangle could be 60° or 120° in both CW and CCW directions as
well as 180°. This multi-direction task has 36 conditions in total (six SR
and 30 DR).

Data collection and analysis
For single-electrode recording, monkeys B and C were implanted with
a standard recording cylinder (diameter = 19mm) located overM1 and
caudal PMd in the left hemisphere, guided by pre-scanned MRI and
stereotactic coordinates. Recording sites are shown in Supplementary
Fig. 1. Recordings were made using glass-coated tungsten electrodes
(AlphaOmega, ~1.5MΩ impedance at 1 kHz). The activity was recorded
online by an AlphaOmega Lab SNR system, and sampled at 44 kHz.
After recordings, raw data were sorted offline according to an online
template by Spike2 (Spike2 7.15, CED). For multi-electrode recording,
monkeys G and C, respectively, were implanted with a 96-channel and
two 128-channel Utahmicroelectrode arrays (BlackrockMicrosystems,
Salt Lake City, UT) in the motor cortex of the right hemisphere (Sup-
plementary Fig. 1). Recording sites were located using MRI and cortex
surface features. Array-recorded raw data were sorted offline by
Wave_clus58. All monkeys were restricted to using the hand con-
tralateral to the recorded hemisphere when performing the task. Data
from monkey C were first obtained with a single microelectrode, and

subsequently from an array in the other hemisphere with a switch
of hands.

In total,wecollected 279 and 117well-isolatedunits frommonkeys
B and C through single-electrode recording, respectively. Among
these, 224 units frommonkey B and 98 frommonkey Cwith significant
directional preference (One-wayANOVA, p <0.05) in single reachwere
chosen for further analysis. For multi-electrode recording, we col-
lected 169 and 63 well-isolated units of one session from monkeys C
and G, respectively. Among these, 118 units from monkey C and 44
from monkey G with significant directional preference (one-way
ANOVA, p <0.05) were used. The selected neurons formed a three-
dimensional NKT (N: neuron number, K: trial number, and T: spike
time) dataset for regression and state-space analysis.

Peri-stimulus time histograms (PSTHs)
For each unit, we calculated its PSTHs with time aligned to event
markers such as the GO signal, the first/only movement onset
(MO), the first/only movement end (ME), and the second move-
ment onset (MO2). We defined MO as the moment when the
monkey’s hand left the touch screen and ME as the time when
the monkey’s hand touched the target on the screen. All firing
rates were smoothed with a Gaussian kernel (SD = 20ms). The
mean standard error (mean SE) of the firing rate was estimated
from ten bootstrap samples.

Regression
We adopted the directional tuning model1,29 to fit neural responses in
the double-reach task. We fitted the normalized condition-averaged
firing rates in a 200ms sliding windowwith a 20ms step (usingMatlab
function “fit’ and ‘fitnlm”). First, we fitted the double-reach data as
follows:

FR=a cosðθ� θPDÞ+ c ð6Þ

where θ is the movement direction, θPD is the PD, a and c denote
regression coefficients. Both the first and the second reach direction
wereused for regression to seewhichdirection is better represented at
that time bin (Fig. 3b). Then we regressed double-reach data with the
following models:

Additive model:

FR=a1 cos θ1 � θPD
� �

+a2 cos θ21 � θPD

� �
+ c ð7Þ

Multiplicative model:

FR=a1 cos θ1 � θPD
� �

+b cos θ21 � θPD
� �

cos θ1 � θPD

� �
+ c ð8Þ

Full model:

FR = a1 cosðθ1 � θPDÞ+a2 cosðθ21 � θPDÞ+b cosðθ21 � θPDÞ
cosðθ1 � θPDÞ+ c

ð9Þ

where a1,a2,b,c are regression coefficients, θ1 is the first movement
direction, θ21 is the second movement direction from the first reach
endpoint, θPD is the preferred direction.

Note that both the additive and multiplicative models have four
coefficients, while the full model has five. To compensate for this dif-
ference, we use the adjusted R2 rather than actual R2,

R2
adj = 1�

n� 1
n� p

� �
SSE
SST

ð10Þ

where SSE is the sum of squared error, SST is the sum of squared total,
n is the number of observations, and p is the number of regression
coefficients. Because actual R2 likely increases with added predictor
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variables in the regression model, the adjusted R2 adjusts for the
number of predictor variables in the model. This makes it more useful
for comparing models with a different number of predictors.

We also compared the goodness-of-fit between the multiplicative
and additive models using the Wilcoxon signed-rank test. We plot a
line (purple for the multiplicative model, blue for the additive model)
when one is significantly (p <0.0005) better than the other.

In addition, we calculated the effect size r = Z=
ffiffiffi
n

p
using function

“wilcoxonPairedR” in package “rcompanion” of R (Mangiafico, S.S.
2016. Summary and Analysis of Extension Program Evaluation in R,
version 1.19.10. rcompanion.org/handbook/59). The r value could be
interpreted as a small effect in 0.1–0.4, amediumeffect in 0.4–0.6, and
a large effect ≥ 0.6.

To get the chance levels of each coefficient and to reflect
the effect of modulation, we performed a permutation test with 1000
repetitions separately for the coefficient of the first reach, multi-
plicative term, and additive term in reference of Sober and Sabes60.

PCA-LDA analysis for neural states
NKT datasets were used in this analysis. Neuronal firing rates were
calculated with a 300 ms bin width (T =2) and normalized by Z-score
(MATLAB function “zscore”) to avoid bias fromhighfiring rate neurons.
NKT data were reshaped into K×NT, where K is trial number, N is
neuron number, and T is bin number. For building the SR space (in
Fig. 6a, b), we applied PCA only on the SR trials to get the principal
component coefficients (and for DR space in Fig. 6c, we applied PCA
only on the relevant trials). The data was reduced to K × P. The number
of PCs, P, was chosen by tenfold cross-validation to avoid overfitting.
This step alsohelped avoid singularmatrices for LDA and reduced data
noise35. Then we ran LDA to project the P-dimensional matrix onto a
C-dimensional space, where C is the number of trial conditions. LDA
can find axes that best separate the categories. After this, we applied
QR decomposition to get the orthonormal basis for the neural state
space61. Each trial was finally described by C � 1 components derived
from selected neural activity. We chose the first two components
covering the largest variance to plot the 2D projection of trial data and
the ellipse of covariance; each data point represented the neural state
in a trial.

Simulation of population vector in sequential reach
We adopted the simulation method of ref. 39 to generate surrogate
data based on single cosine, additive, and multiplicative models. The
preparatory and peri-movement activity were simulated with 200
neurons in six directions. The averaged neuronal firing rate f n,c for
neuron n, in condition c, at time t is given by

f n,c t,τn,σ
� �

= bn, ce
� t�τn�μ0ð Þ2

2σ2 + ε, t ≥ τn
φbn, c + ε, t < τn

8<
: ð11Þ

where σ is the duration parameter, τn is the response latency of each
neuron (normally distributed), φ is the preparatory activity amplitude
constant fixed at 0.2, μ0 is constant given by μ0 = σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2lnφ

p
, and ε is

random noise (SD =0.01). bn,c is the gain for neuronal condition pre-
ference. For data of the cosine model, which is expected to mimic
neuronal activity in SR trials, bn,c is simply tuned to reach directions as

bn,c =
1 + cos θ1 � θPD

� �
2

ð12Þ

The additive surrogate data were based on the parallel coding
hypothesis that sequential movements are planned independently

with the overlap in the peri-movement period; bn,c is given by

bn,c =
1 + cos θ1 � θPD

� �
+ cos θ21 � θPD

� �
3

ð13Þ

The multiplicative surrogate data were based on the gain-
modulation hypothesis, the interaction of both movement directions
in sequential reach contributed to the neuronal response,

bn,c =
1 + cos θ1 � θPD

� �
+ cos θ1 � θPD

� �
cos θ21 � θPD

� �
3

ð14Þ

For the above definitions, θ1 is the first movement direction, θ21 is
the second movement direction relative to the 1st movement end-
point, and θPD is the preferred direction.

Model training
Our RNN model was designed to simulate the situation where double
reach was accomplished by a pure dynamical system. The input was
movement direction for two sequential reaches, in the form of 2D
Cartesian coordinates ½cos θ1

� �
, sin θ1

� �
; cos θ2

� �
, sin θ2

� ��, where θ1 and
θ2 represent the first and relative second movement directions,
respectively. Because the model was built to generate population
vectors (PVs), we constructed “desired PVs” instead of using real data
for generality. The output was read out as ½r cos θð Þ,r sin θð Þ�, where θ is
the present movement direction, and r reflects the intensity of inte-
grated response for the population. We used Gaussian functions to
emulate the time-varying magnitude. To ensure the trend at critical
timemarkers was similar to the actual situation, we separated the two-
peak PV profile into four sections: fromGO toMO, fromMOto the first
touch, from MO2-50ms to MO2, and from MO2 to the second touch,
and spliced them together after respective optimization and normal-
ization. We used 36 standard conditions in training and validation, as
mentioned in the multi-direction task.

The nodes in the RNN model were evolved according to a stan-
dard continuous dynamical equation39:

τ _xi tð Þ= � xi +
XN
k = 1

Jikrk tð Þ+
XI

k = 1

Bikuk tð Þ ð15Þ

where τ is a time constant, N is the number of network nodes, and I is
the number of the inputs. The activity of nodes is represented by x,
whose firing rates are determined by

r =
0, x <0

tanhðxÞ, x ≥0

�
ð16Þ

The output was read out linearly as:

zi =
XN
k = 1

Wikrk tð Þ ð17Þ

where z represents the two PV readouts ði= 1,2Þ. In this model, the
connection weight among nodes is denoted by matrix J, the con-
nectivity between hidden nodes and input uðtÞ is defined by matrix B,
and the weight matrix between hidden nodes and output is W .

The size of our RNN was fixed at 200. We initialized the internal
connection matrix J to be normally randomized(mean =0, SD = g/√N;
g = 1.5), the input connectionmatrixB and output connectionmatrixW
to be both uniformly randomized (between −10−3g/√N and 10−3g/√N),
and chose a time constant τ = 50ms in the light of previous work39,62.

All three weights were adjustable and optimized during training.
We used the summation of the error function added with a regularity
term as a cost function43. The error function was the mean squared
error between the model output and the desired PV. The regularity
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term penalized the magnitude of the squared firing rate averaged by
neuron size, time bins, and condition numbers. The training was fin-
ished with PyTorch, and the weights were optimized by Adam (adap-
tive moment estimation).

To compare the pattern of coefficients, we visualized the three
time-varying coefficients as a normalized 3D trajectory, and calculated
the Fréchet distance between trajectories of different sessions or
monkeys.

For the perturbation, the high group included those nodes
with the highest 10% weights, while the low group included those
nodes with the lowest 10% weights, and the random group ran-
domly picked 10% of all activated nodes. Each time, given a
trained network, ten nodes from a certain group were randomly
selected and then knocked down (all relevant connections set to
zero). Then we tested the modified network with the same vali-
dation set to see the perturbed performance. We bootstrapped
this 100 times and got the statistics.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used in this study are available at https://doi.org/10.5281/
zenodo.10637304 Source data are provided with this paper.

Code availability
The custom-written codes used to analyze data from this study are
available at https://github.com/Twwang13/Double_Reach.
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