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Robust compression and detection of
epileptiform patterns in ECoG using a real-
time spiking neural network hardware
framework

Filippo Costa 1,2 , Eline V. Schaft 3, Geertjan Huiskamp3, Erik J. Aarnoutse3,
Maryse A. van’t Klooster 3, Niklaus Krayenbühl 4, Georgia Ramantani 4,5,
Maeike Zijlmans 3,6, Giacomo Indiveri 2,5 & Johannes Sarnthein 1,5

Interictal EpileptiformDischarges (IED) andHigh FrequencyOscillations (HFO)
in intraoperative electrocorticography (ECoG) may guide the surgeon by
delineating the epileptogenic zone. We designed a modular spiking neural
network (SNN) in a mixed-signal neuromorphic device to process the ECoG in
real-time. We exploit the variability of the inhomogeneous silicon neurons to
achieve efficient sparse and decorrelated temporal signal encoding. We
interface the full-custom SNN device to the BCI2000 real-time framework and
configure the setup to detect HFO and IED co-occurring with HFO (IED-HFO).
We validate the setup on pre-recorded data and obtain HFO rates that are
concordant with a previously validated offline algorithm (Spearman’s ρ =0.75,
p = 1e-4), achieving the same postsurgical seizure freedom predictions for all
patients. In a remote on-line analysis, intraoperative ECoG recorded in Utrecht
was compressed and transferred to Zurich for SNN processing and successful
IED-HFO detection in real-time. These results further demonstrate how auto-
mated remote real-time detection may enable the use of HFO in clinical
practice.

In patients with pharmaco-resistant focal epilepsy, resective epilepsy
surgery is a key treatment option1. During surgery, intraoperative
electrocorticography (ECoG) may serve to delineate the epilepto-
genic zone2. While interictal epileptiform discharges (IED) in the
ECoG are traditionally used to guide surgical decisions, high-
frequency oscillations (HFO, 80–500Hz) have been identified as a
new and more precise epileptiform pattern in the intraoperative
ECoG; recording HFO may help to tailor epilepsy surgery and
improve postoperative seizure outcome3–5. Co-occurring IED and

HFO (IED-HFO)6,7 and Fast Ripple HFO (250–500Hz)8 have been
shown to indicate epileptogenic tissue with high specificity. The
current state-of-the-art approach for intraoperative HFO analysis
involves visual annotation by experts either during or after surgery4

or offline application of automated software algorithms7,9–12. Intrao-
perative HFO analysis that may improve surgical decisions is cur-
rently confined to a few epilepsy surgery centers13. To make HFO
analysis accessible in clinical practice, a standardized analysis that
yields recommendations to the surgeon within the duration of the
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surgery is needed. Automated real-time detection would significantly
reduce human workload and bias.

Due to their event-based processing, spiking neural networks
(SNN) are particularly well-suited for bio-signal analysis. Recent work
has been done in the detection of HFO with SNN in intracranial EEG14,
ECoG15,16, and scalp EEG17. In particular, HFO detection in the pre-
surgical intracranial EEG14 has been performed using ultra-low-power
mixed-signal neuromorphic hardware (DYNAP-SE)18. This chip allows
the processing of the incoming EEG signal in real time, but it has never
been applied in the intraoperative setting.Moreover, the implemented
SNN was performing single-channel analysis and did not account for
possible artifacts in the EEG that can produce high-amplitude activity
in the HFO band. The SNN tested on ECoG data15,16 introduced an
artifact rejection stage, but the networkwas only simulated in software
and therefore it was not suitable for real-time applications.

Novel algorithms have been introduced to train SNN for robust
signal processing. Recentworks train SNN tominimize the information
bottleneck19–21. This requires compressing the input with an SNN
encoding that preserves task-relevant information. Using the infor-
mation bottleneck as the main objective, these algorithms train SNN
using standard backpropagation through time (BPTT) to trainweights.
For the DYNAP-SE neuromorphic chip, the use of derivative-free
optimization allows training biases that regulate the neural dynamics
without explicit definition of the neural model.

Here, we present a real-time setup that comprises fast lightweight
algorithms in the open-source and real-time software framework
BCI200022 and a SNN implemented in DYNAP-SE to detect HFO and
IED-HFO patterns. We first validate our algorithm in pre-recorded
intraoperative ECoG from 22 patients. HFO rates obtained with our
setup are concordant with a previously validated offline algorithm9

and achieve the same postsurgical seizure freedom predictions for all
patients.We thenperforma remote real-time analysis with our setup in
the intraoperative ECoGof onepatientwith long-distance data transfer
from the University Medical Center Utrecht (UMCU) to the University
Hospital Zurich (USZ) where we detect IED-HFO events that are con-
firmed by expert visual annotations.

The core of the system is the SNN designed in the neuromorphic
hardware and inspired by the key concepts of modularity, high-
dimensional projection of the signal, and sparse temporal coding. We
give a detailed description of the SNN design, showcasing its scalable
and parallel multi-channel analysis, the flexible evolutionary algorithm
used to optimize the network, and a reconstruction method used to
validate the signal compression capabilities of the SNN.

Results
We first describe the setup that was developed for on-line data analysis
in real-time.We usedDYNAP-SE to process intraoperative ECoGdata in
the 4–80Hz and 250–500Hz frequency bands to detect HFO and IED-
HFO (Fig. 1). In the following we describe each step of the processing
pipeline (Fig. 2) in detail.

Signal preprocessing
To validate a real-time scenariowhenusingpre-recordeddata,we used
the BCI2000 FilePlayback module at real speed. To stream intrao-
perative data in real-time, we used the MicromedADC module.

We streamed up to 32 channels in parallel. 32 samples of data
(64ms) were buffered and then processed. Filtering was performed in
the traditional EEG frequency band (4–80Hz) and HFO frequency
band (250–500Hz) with a 64th-order FIR filter. This choice follows the
guideline of employing a high filter order for HFO detection23.

Delta-modulation encoding
ECoG data were streamed and converted into discrete digital pulses
through anAsynchronousDeltaModulator encoding (ADM,Fig. 3) that
we implemented in BCI2000 (ADMFilter module). The ADM proces-
sing transformed the signal into UP/DN pulses, focusing on epilepti-
form patterns as events of interest (EoI). Two parameters govern how
theADMoperates: the threshold level δ, and the refractory period τ. At
the start of the encoding, the first ECoG sample x(0) is set as the
baseline, and two thresholds are created. A UP threshold at x(0) + δ,
and a DN threshold at x(0) – δ. If the signal crosses one threshold at
time t, a corresponding UP or DN pulse is produced, and new thresh-
olds are set at x(t) +δ and x(t) – δ. The minimum allowed inter-pulse
interval is equal to the refractory period τ.

The ADMFilter module consisted of an initial tuning phase and an
encoding phase. In the tuning phase, streaming data were segmented
into non-overlapping windows. The amplitude range of each window
was stored, and the ADM threshold level δ was computed as a pre-
defined percentile of the amplitude range distribution. Duration of the
tuning phasewas set at 5 s, the length of non-overlappingwindowswas
set at 50ms for the EEGbandand5ms for theHFOband, the percentile
level was set at 40% for the EEG band and at 50% for the HFO band.
Parameters were kept fixed for all patients.

In our analysis, the selected threshold level preserved the mor-
phology of IED and HFO, while the signal with amplitude below the
threshold was discarded. The ADM processing thus compresses the
continuous ECoG trace and is well-suited for remote analyses that
require data transfer.

SNN processing
The discrete UP/DN pulses were then processed with a hardware
spiking neural network (SNN) implemented on the Dynamic Asyn-
chronous Neuromorphic Processor (DYNAP-SE)18 that performed sig-
nal compression and focused on EoI (Fig. 4). The silicon neurons in the
DYNAP-SE are grouped in four cores of 256 neurons each. Due to their
analog nature, the neuron circuits exhibit a variability induced by cir-
cuit device mismatch factors that arise during circuit fabrication24.
Although circuit parameters are shared between all neurons in the
same DYNAP-SE core, the device mismatch induced variability pro-
duces adistribution of parameters, with sharedmeanvalues, butwith a
coefficient of variation that can be as large as 20%25. Although device
mismatch is typically perceived as a limitation in analog computation,
in our analysis the inherent neural variability is beneficial since it allows
processing the incoming ADM pulses with an ensemble of hetero-
geneous neurons, which has been shown to improve the information
encoding and classification accuracy26,27.

UP/DN pulses from the EEG and HFO bands were processed
separately on two different DYNAP-SE cores (EEG core and HFO core).
One ECoG channel was analyzed by four populations of silicon neu-
rons, two in the EEGcore and two in theHFOcore. Eachpopulationwas
composed of 10 neurons and accumulated activity only from the UP or
DN stream. In the following, we refer to these populations as ACC UP
and ACC DN. Since high-dimensional projection is useful for pattern
separation in the brain, we implemented these two populations in the
DYNAP-SE chip to detect epileptiform patterns and reject artifacts. 40
neurons are therefore allocated for the analysis of one channel, 20 for

IED-HFOHFO

100 ms

125 µV

Fig. 1 | HFO and IED-HFO in ECOG. We analyzed intraoperative ECoG recorded
during resective epilepsy surgery. An HFO is detected in the 250–500Hz band
(red). We process the corresponding activity in the 4–80Hz EEG band (black) to
detect an IED.We define the epileptiform pattern in which an IED co-occurswith an
HFO as an IED-HFO. HFO high-frequency oscillation, IED interictal epileptiform
discharge.
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the EEG band, and 20 for the HFO band. The DYNAP-SE SNN can pro-
cess up to 8 channels in parallel, for a total of 160 neurons in the EEG
core and 160 neurons in the HFO core. For this use case, we used only
two of the four DYNP-SE cores. Moreover, for the analysis of one
channel, we are using only 3.9% of the neurons on the chip. The ana-
lysis of 8 channels in parallel uses 31.2% of the neurons on the chip.

We used an evolutionary algorithm to train the DYNAP-SE SNN.
This derivative-free optimization approach allows training neural
hyperparameters as neural and synaptic time constants without an
explicit definition of the neural dynamics. Thismethod overcomes the
problem of training an SNN with device mismatch, preserving the
benefit of using a network with neural heterogeneity. The choice of a
population-based optimization allowed us to explore multipleminima
regions and to escape local optima.

The evolutionary algorithm selected the best-performing set of
parameters, one for HFO and one for IED detection (Fig. 5). The algo-
rithm worked as follows: parameters were sampled from a volume in
the parameter space. All the sampled parameter configurations were
tested on a ‘tuning snippet’ that was divided into an IN period, during
and shortly after the occurrence of the epileptiform pattern, and two
OUT periods, before and long after the occurrence of the epileptiform
pattern. A scorewas associated to eachparameter configuration based
on the DYNAP-SE activity produced on this snippet. A score was

assigned to each neuron i following score = −α |spikesIN - 1| + β
(spikesIN - spikesOUT). spikesIN are all the SNN events that appeared
inside the IN period of the tuning snippet. spikes OUT are all the SNN
events that appeared in the OUT periods. For α >β >0, a neuron
received an optimal score if it spiked only one time during the IN
period. A global score was then assigned to the neural population
based on the mean score over all neurons and the percentage of
neurons that produced a spike. Best-performing configurations were
set as the centers of the new sampling space. The algorithmproceeded
iteratively. The optimal score was associated with a sparse temporal
coding in which the SNN produced spikes shortly after the epilepti-
form pattern. This coding can increase energy efficiency and proces-
sing speed, and it is explored in the context of learning in artificial
spiking neural networks28. The evolutionary algorithm was run as a
recalibration step at the beginning of every processing session.

Detection
We designed simple rules to detect epileptiform patterns from SNN
activity. ACC UP and ACC DN activities from EEG and HFO bands were
convolved with a linear kernel of duration 100ms. Contributions from
all neurons were summed together, forming one EEG-SNN trace and
one HFO-SNN trace. Periods of spiking activity were segmented, and
for each period in the HFO-SNN trace, we checked for the presence of

Filtering

Channel selection

Signal acquisition/replay ADM tuning

ADM encoding

SNN encoding EOI detection

HFO detection

IED-HFO detection

SIGNAL PREPROCESSING ADM PROCESSING SNN PROCESSING DETECTION

Fig. 2 | Recording and detection setup. The detection of epileptiform activity
patterns consisted of four steps. 1) The signal preprocessing step was performed in
theBCI2000 real-time framework. The ECoG signalwasacquired fromelectrodes in
real-time in the intraoperative setting or it was replayed from pre-recorded data to
simulate a real-time scenario. A channel selection stage sends the selected channel
to further processing steps. A filtering was then performed for each channel in two
filter bands, the EEG band (4–80Hz) and the HFO band (250–500Hz). The two
bands were then sent separately to the ADM processing step. 2) The ADM tuning
stage in BCI2000estimated the baseline amplitude threshold level. The continuous

ECoG signal was then encoded into discrete pulses with the ADM encoding. UP/DN
pulses were continuously stored in a file that was sent for further processing at the
end of the ADM encoding. 3) The stream of pulses was processed by the SNN
implemented in theDYNAP-SEchip. 4)TheDYNAP-SEoutput eventswere sent to an
algorithm for the final detection stage. If a pattern of SNN activity fulfilled specific
conditions, the underlying signal was denoted as an HFO or an IED-HFO. ADM
asynchronous delta modulator, SNN spiking neural network, HFO high-frequency
oscillation, EoI event of interest, IED interictal epileptiform discharge.

ADM UP
ADM DN

100 ms

125 µV

Fig. 3 | Event-based processing of an IED. IED and HFO are epileptiform patterns
that stand out from the mean noise level. Our ADM encoding processed the signal
only when the ECoG amplitude changed by more than a predefined magnitude
(delta δ). In this example, the IED generated a dense packet containing a large

number of UP/DN pulses. After the IED, the pulse rate went back to the baseline
level. ADM event-based processing is an efficient way to compress relevant infor-
mation in the ECoG trace. ADM asynchronous delta modulator, HFO high-
frequency oscillation, IED interictal epileptiform discharge.
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both ACC UP and ACC DN activities. If both were present, we defined
this period as an EoI-HFO. We classify an EoI-HFO that fulfills these
criteria as HFO:

• SNN spikes from the HFO band need to present ≥ 2 neural acti-
vations from the ACC UP population, ≥ 2 neural activations from
the ACC DN population, and a total contribution of ≥ 6 neurons.
This ensures the rejection of low voltage fluctuations.

• Sharp transients in the ECoG produce filtering artifacts. These
events produce a spiking pattern where ACC UP and ACC DN
activities in the HFO band are separated in time. Therefore, the
DYNAP-SE activity in the HFO band needs to present ACC UP and
ACC DN activities that are temporally mixed.

• The duration of SNN activity in theHFOband needs to be ≤ 30ms.
• If SNN activity is present in the EEG band during EoI-HFO
occurrence, its duration needs ≤ 500ms. This step rejects long
high-amplitude artifacts in the ECoG trace that may induce high-
amplitude activity in the HFO band.

If, together with an HFO, we observe SNN activity in the EEG band
with well-separated ACC UP and ACC DN activities and duration ≤
300ms, we classify this pattern as IED-HFO.

Pre-recorded ECoG data in Zurich
We analyzed 22 patients who underwent epilepsy surgery in USZ. The
resection was guided by intraoperative high-density ECoG (hd-ECoG,
5mm contact spacing) for 8 patients and standard grid and strip
electrodes (10mm contact spacing) for 14 patients. The USZ ECoG
dataset was previously analyzed for HFO detection with two different
detectors, the Spectrumdetector and the software SNN (SW-SNN). The
Spectrum detector was developed on UMCU intraoperative ECoG
recordings11 and then applied to the USZ intraoperative ECoG data9,10.

The SW-SNN detector was then applied to the same dataset for the
patients whose resection was guided by hd-ECoG15,16.

Pre-recorded datawere streamedwith the FilePlayback pipeline in
BCI2000 at real speed to simulate a real-time scenario. As an example
of the results of our processing pipeline, in the pre-resection ECoG of
Patient 5 epileptiform patterns detected by the DYNAP-SE SNN had
rates ≥ 1min−1 only in channels that were later resected (Fig. 6). This
was similar to the findings obtained with the Spectrum detector.

The Spearman correlation between the maximum HFO rate for
each patient in DYNAP-SE SNN and Spectrum detectors amounted to
ρ = 0.75 (p = 1e-4). For all patients, our HFO analysis obtained the
same seizure outcome predictions as Spectrum and SW-SNN detec-
tors (Table 1). As for the Spectrum and SW-SNN detectors, in the 8
hd-ECoG patients we obtained PPV = 100%, NPV = 100%, sensitivity =
100%, specificity = 100% and accuracy = 100% (CI [63% 100%]). If we
consider all patients, we reached PPV = 100%, NPV = 70%, sensitiv-
ity = 25%, specificity = 100%, and accuracy = 73% (CI [50% 89%]). The
decrease in sensitivity might arise from the lower spatial resolution
of the standard ECoG contact spacing compared to the hd-ECoG. The
Spearman correlation between the maximum IED-HFO rate for each
patient in the DYNAP-SE SNN and the HFO rate of the Spectrum
detector amounted to ρ = 0.77 (p = 7e-5). If we consider all patients,
in the IED-HFO analysis we reached PPV = 100%, NPV = 70%, sensi-
tivity = 12.5%, specificity = 100%, and accuracy = 68% (CI [45% 86%]).
The additional decrease in sensitivity arises from the lack of IED
in the post-resection recording of Patient 6, therefore classified as
a FN.

Real-time analysis of UMCU ECoG in Zurich
To testwhether we can use the procedure in real-time, we performed a
remote online analysis in collaboration with the UMCU. The ECoG was

a b c

100 ms

125 µV

10 µV

100 ms

UP

DN

UP

DN

ACC UP

ACC DN

ACC UP

ACC DN

Core 0 Core 2

Core 3Core 1
ACC UP activity
ACC DN activity

Fig. 4 | Event-based processing in the neuromorphic chip. a ADM pulses were
processed by two separate cores in the DYNAP-SE neuromorphic chip. One core
processed EEG band activity (Core 1), and one processed HFO band activity (Core 3).
b In each core, a set of identical computational modules processed the ADM signal
(green andpurple boxes). Eachmodule contained twoneural populations: theACCUP

population (orange) received only UP pulses; the ACC DN population (blue) received
only DN pulses. The two populations performed a high-dimensional projection of the
ADM signal to facilitate artifact rejection. c The DYNAP-SE SNN produced output
spikes after the occurrence of an IED (top) and an HFO (bottom). ADM asynchronous
deltamodulator, HFOhigh-frequency oscillation, IED interictal epileptiformdischarge.
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recorded in the surgical theater with a Micromed console that was
running the Micromed SystemPlus software and streamed the digi-
tized data (2048Hz) via the UMCU network to a UMCU hospital
computer. This computer ran the MicromedADC and the signal pro-
cessing module in BCI2000 as the real-time framework. There, the
ADMFilter performed ADM encoding of the signal into a stream of UP
andDNpulses. These lightweight data were then sent toUSZ in Zurich,
where the DYNAP-SE chip performed further processing (Fig. 7). Two
IED-HFO events were detected.

Following the standard UMCU procedure, an expert observer
(E.S.) annotated pathological HFO through visual inspection4. Both
IED-HFO patterns were marked as HFO in the Fast Ripple band
(250–500Hz).

ECoG compression and reconstruction
The core of our processing strategy involves two compressive steps.
First, the continuous ECoG signalX is converted into anADMencoding
A that is then processed by the DYNAP-SE neuromorphic chip to pro-
duce the sparse temporal encoding S. X 2 RT , where T is the number
of sampling points. The ADM encoding is A 2 fRNUP ,RNDN g, while the
SNN encoding is S 2 fRNi gi = 1 … P, where NUP is the number of UP pul-
ses, NDN is the number of DN pulses, Ni is the number of spikes from
neuron i, and P is the number of neurons. The ADM tuning phase sets
an amplitude threshold at a predefined percentile of the amplitude
range distribution. The SNN training produces a sparse encoding of
the ADM input. Therefore, we will always obtain a compression with
T >NUP +NDN >

PP
i= 1Ni. We then tested if the encoding preserves

Sampling space center
Low-score sample
High-score sample

a

b

125  µV

100 ms

T

w

Tsynapse

synapse

neuron T

w

Tsynapse

synapse

neuron T

w

Tsynapse

synapse

neuron
T

w

Tsynapse

synapse

neuron

Fig. 5 | Evolutionary algorithm for DYNAP-SE optimization. The neuron biases
in the DYNAP-SE neuromorphic chip were optimized to produce a sparse temporal
encoding of IED and HFO patterns. a Parameter configurations were sampled from
a volume in the parameter space. Sampled configurations were tested on a tuning
snippet. A score was computed for each configuration sample. The configurations
with the highest score were set as the centers of the new sampling volumes. The

algorithm proceeded iteratively. b The tuning snippet was divided into an IN per-
iod, during and shortly after the occurrence of the epileptiform pattern, and two
OUT periods, before and long after the occurrence of the epileptiform pattern. An
optimal score was obtained when SNN neurons spiked only one time during the IN
period. HFO high-frequency oscillation, IED interictal epileptiform discharge, SNN
spiking neural network.

Fig. 6 | Comparison of DYNAP-SE SNN and Spectrum detector. Comparison of
DYNAP-SE SNN and Spectrum9 detectors in Patient 5. The rates obtained with the
DYNAP-SESNN forHFO (black) and IED-HFO (orange) were comparedwith theHFO
rates of the Spectrum detector (gray bars). Most of the channels with high rates
were the same for bothdetectors. In this patient, all the channels with highHFOand

IED-HFO rates were recorded from tissue that was later resected (red labels). The
patient achieved seizure freedom after surgery andwas classified as a true negative
(TN). This supports our hypothesis that the detected epileptiformpatterns indicate
the epileptogenic zone. HFO high-frequency oscillation, IED interictal epileptiform
discharge.
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morphologically relevant information that can be used for signal
reconstruction.

Event-based ADM encoding allowed compressing the ECoG trace
while preserving the morphology of IED and HFO. As an example we
present channel 02-03 in the pre-resection recording of patient 5 with
a duration of ~7min and a sampling rate of 2 kHz. ADMencoding in the
EEG band achieved a compression ratio ~20. Given the UP/DN pulses,
the ECoG trace x tð Þ can be reconstructed. We define the reconstruc-
tion as x̂ðtÞ: Starting from x̂ 0ð Þ=x 0ð Þ, if a UP pulse occurs at time tUP,

then x̂ tUP
� �

= x̂ tUP � ε
� �

+δ, where ε ! 0. If a DN pulse occurs at time
tDN, then x̂ tDN

� �
= x̂ tDN � ε

� �� δ:
The hardware SNN performed a high-dimensional projection of

the ADM signal and further compressed the ECoG trace. In channel 02-
03 of the pre-resection recording of patient 5, the SNN encoding in the
EEG band achieved a compression ratio ~34.

To reconstruct the continuous ECoG signal, it is necessary to
employ a decoder withmemory. RNNs are well-suited for this task and
can be trained with standard gradient-based methods such as

Fig. 7 | Remote recording setup and IED-HFO detection. a We performed a
remote on-line analysis between UMCU and USZ. Data were recorded during sur-
gery atUMCUwith theMicromedSystemPlus software and streamed to a computer
running the BCI2000 frameworkwhere the ADMFiltermodule performed the ADM
signal encoding.TheUP/DNpulseswere then sent toUSZ forDYNAP-SEprocessing.
Epileptiform patterns were detected based on DYNAP-SE activity. b One ECoG
channel in the EEGbandand in theHFOband reconstructed fromUP/DNpulses.We

detected as epileptiform patterns only those EoI where HFO and IED co-occurred
(red dots). c Zoomed view of the epileptiformpattern. DYNAP-SE spikes of the ACC
UP (orange dots) and ACC DN (blue dots) populations are produced shortly after
the IED and the HFO. This assignment agrees with the expert observer in UMCU
(E.S.) whomarked this event as a pathologicalHFO.HFOhigh-frequencyoscillation,
IED interictal epileptiform discharge, ADM asynchronous delta modulator.
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backpropagation through time (BPTT) or target-based methods.
However, especially for long sequences, BPTT training could produce
exploding or vanishing gradients. To avoid that, we employed the full-
FORCE target-based optimization29,30. This method is typically
employed to reproduce neural data recordings and is more robust
than the standard FORCE learning.

The goal of this reconstruction process is to reproduce the ori-
ginal ECoG trace from SNN activity alone. First, a randomly connected
RNN (teacher RNN) received the SNN activity together with the target
ECoG trace, while the internal activity of the RNN neurons was recor-
ded. This process ensured that the internal activity combined the
information of both input and output. A second network (student
RNN) was then trained with a recursive least-squares algorithm to
match the internal activity of the teacher RNNwhen receiving only the
SNN activity as input. A linear readout then extracted the target ECoG
trace from the student RNN activity.

We trained this reconstruction algorithm on the first 100 seconds
of recording from the EEG band of the pre-resection recording of
patient 5 in channel 02-03. We then tested on the following 300 sec-
onds. We analyzed the Pearson correlation between the ECoG trace
and the SNN reconstruction in snippets where both ACC UP and ACC
DN activities were present and the SNN activity was ≤ 500ms. We
obtained similar correlation distributions for our train and test sets,
with amedian Pearson correlation of 0.79 for the train set and 0.73 for
the test set. The reconstruction preserved the main morphological
features of the ECoG trace (Fig. 8).

Discussion
The work presented is at the crossroads of clinical epilepsy research
and neuromorphic computing. Leveraging the versatility of the
BCI2000 real-time framework, we developed a detection pipeline that
makes use of low-power neuromorphic hardware for implementing
real-time SNN processing. We applied this approach to HFO and IED-
HFO detection in the ECoG trace. We used the BCI2000 real-time
framework to stream the ECoG and to realize an ADM encoding that
converts the signal intoUP/DNpulses, therebydrastically compressing
the data. We then fed the UP/DN pulses into the SNN realized in low-
power neuromorphic hardware. We finally used the SNN output to
detect HFO and IED-HFO. In the validation phase with pre-recorded

data, the results of our setup agreed well with a previously validated
offline algorithm. In one UMCU surgery, intraoperative ECoG was
compressed in real-time and transferred to Zurich. The detected IED-
HFO agreed with the annotation of the human expert. The occurrence
of these events can inform the surgeon within the duration of the
surgery.

SNN design principles
We introduce a new DYNAP-SE SNN that succeeds in the real-time
intraoperative scenario. The SNN is designed following three main
principles (Fig. 4):

• Modularity. In our design, we develop a simple computational
module composed of two neural populations. Here we are
inspired by the modular organization of the cerebral cortex.
Replicas of the same module are instantiated across the chip and
process signals fromdifferent frequencybands and channels. This
module is simple since it is based only on feedforward connec-
tions. It is interpretable since the SNN output is only related to
either UP or DN pulses. It is flexible since it can analyze different
frequency bands and channels. It is scalable since it can be repli-
cated across the chip to perform parallel computation.

• High-dimensional projection. Here we are inspired by the brain
where it is a key principle for pattern separation31. In our design,
eachACCUP / ACCDNpopulation is composed of 10 neurons and
receives input from a single UP or DN pulse stream. While each
neuron in one population receives the same input, the inherent
analog device mismatch provides the heterogeneity needed to
produce decorrelated output. This decorrelation allows setting
simple rules for the epileptiform pattern detection based on the
temporal mixing of ACC UP and ACC DN activities and the overall
duration of the activity in the SNN.

• Sparse temporal coding. This principle was exploited in a recent
neuromorphic design for odor recognition32. In our design, we
implement anevolutionary algorithmas a flexible tool to optimize
the SNN and to produce a sparse temporal encoding for every
epileptiform pattern of interest. Optimization requires only a
single snippet of the epileptiform pattern. The score function of
the algorithm drives the optimization process, inducing the SNN
neurons to spike only once shortly after the occurrence of the

Fig. 8 | ECoG reconstruction from DYNAP-SE SNN events. An RNN is trained to
reconstruct ECoG snippets from SNN events. a Pearson correlation between the
ECoG trace and the SNN reconstruction is computed for each snippet in the train
and test sets. The correlation distribution for the train set (gray) has a median of

0.79 (gray star). The correlation distribution for the test set (black) has amedian of
0.73 (black star). b Two reconstruction examples. The SNN reconstruction (black)
preserves the main morphological features of the ECoG trace (purple). RNN
recurrent neural network, SNN spiking neural network, ECoGelectrocorticography.
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epileptiform pattern. The low output event ratemakes this design
more efficient than other coding approaches that encode infor-
mation in the neuron’s firing rate. In our application on ECoG, this
encoding preserved relevant morphological features of the ECoG
signal.

Main advances over previous approaches
Our study presents an advance over previous neuromorphic com-
puting approaches that have been applied for the detection of HFO in
ECoG with a software-simulated SNN15 and on presurgical intracranial
EEG with a hardware SNN14. Building on these previous studies, the
current study introduces a new scalable computational module that is
replicated across the DYNAP-SE chip for epileptiform pattern detec-
tion in parallel across 8 channels (Fig. 4). Instead of manually tuning
the hardware biases as in the previous approach14, the SNN is opti-
mized here with an automated flexible evolutionary algorithm that
requires only a single tuning snippet for each epileptiform pattern of
interest (Fig. 5). This is also an advanceover standardmachine learning
approaches that require large training datasets. Sparse decomposition
of ECoG data has been validated to detect pathological HFO33,34. We
here produce an efficient sparse temporal encoding that allows
designing simple rules to detect epileptiform patterns by explicitly
using the device mismatch.

Compared to conventional AI chips, in our approach ‘the hard-
ware is the software’35. The neural heterogeneity, a key feature of the
algorithm, is a feature of the chip. Another benefit of using a neuro-
morphic chip regards data transmission. Contrary to traditional von
Neumann architectures, in the DYNAP-SE chip, we only need to
transmit the information about firing times. In this application, weonly
use a shallow network and we can perform pattern detection solely
based on the sparse spatio-temporal spiking patterns of this single
layer. This highly reduces the power consumption and reduces the
data transmission rate, since only spike times and neuron identities are
needed to detect an event.

Measurement perspective
From a measurement perspective, HFO has a rare appearance (a few
perminute), short duration (some tens ofmilliseconds), low amplitude
(up to a few µV), and the generators of HFO are confined to a small area
of the brain tissue (up to a fewmm). All these characteristicsmakeHFO
demanding to detect against the noise level. One needs to optimize the
signal-to-noise ratio (SNR) for HFO detection in the measurement
chain13. As one link in the chain, a low noise amplifier has improved
HFO detectability10,36. As another link in the chain, a higher electrode
contact density9,37 and a lower electrode contact impedance38 have
enhanced HFO detectability. We add here an SNN realized in low-
power neuromorphic hardware and embedded in a real-time frame-
work to detect these low-amplitude events.

A research line is adding spatial information to spiking neural
networks for biomarker discovery in scalp EEG data recorded with the
standardized 10-20 electrodemontage39,40, mapping the signal of each
electrode to a neuron in the SNN, preserving spatial relations between
nodes and adding plastic recurrent connections to include spatio-
temporal interactions. In our work, we optimized the processing for
ECoG signals that were acquired with individually placed grid elec-
trodeswith an inter-electrodedistanceof 5mm.Given the small area of
HFO generators9,37, we performed independent processing for each
bipolar channel.

The low sensitivity in predicting poor seizure outcomes must be
viewed in the larger perspective of the recording procedure. One
aspect is the low signal-to-noise ratio for HFO as a challenge for the
recording technology9,10,13,36–38. More relevant may be the limited spa-
tial coverage of the recording electrodes. There are good reasons to
include only seizure-free patients for the validation of biomarkers41:
While for seizure-free patients it is clear that the epileptogenic zone

has been identified and removed, for patients with poor outcomes this
is less clear. Wrong seizure outcome prediction for patients that are
not seizure-free may arise from several reasons, among them the low
sensitivity of the biomarker, the misplacement of the electrodes out-
side the epileptogenic zone, the effects of anesthesia to suppress
epileptiform patterns, or the inability of the algorithm to detect the
biomarker. All these reasons may contribute to the low sensitivity
when predicting poor seizure outcomes.

Computation at the edge
Compared to conventional AI chips, the neuromorphic approach
offers computation with very low power consumption. In particular, as
highlighted in a previous publication, the DYNAP-SE neuromorphic
chip carries out the HFO processing with a sub mW power budget14.

In this work, we also show that a key advantage of using neuro-
morphic chips over low-power AI chips is the event-based processing
that leads to low data transmission. To detect the relevant pattern
(HFO in the 250–500Hz band) ECoG has to be recorded with a high
sampling rate ( ≥ 1 kHz) leading to large amounts of data which pro-
hibit remote real-time analysis. In the Utrecht-to-Zurich analysis, the
event-based ADM method (Fig. 3) performed local computation,
resampling the data adaptively and allowing the transfer of lightweight
sparse pulses for further processing (Fig. 7).

Our pipeline establishes the computational infrastructure and has
the technical expertise available at a single site with other hospitals
forwarding their data for processing to this site. Centralizing com-
puting resources at one site ensures that remote hospitals will have
access to this analysis. In this work, we establish the pipeline for epi-
leptiform pattern detection ‘as a remote service’ with low data
transmission.

The spike-based temporal encoding in the SNN compresses the
signal even further. To validate this second signal compression stage,
we applied a signal reconstruction method based on the full-FORCE
target-based algorithm29 that learns to reconstruct the ECoG trace
using the SNN events as input and showed that this reconstruction
preserves the relevant patterns in the ECoG (Fig. 8).

For the presented remote processing task, and in the outlook of
an implantable device that can process the ECoG signal close to the
recording site, the neuromorphic approach offers a great advantage in
terms of low data rate42.

While our approach requires training the neuromorphic chip with
a computer in the loop, new neuromorphic architectures have been
developed and allow on-chip training21,43–46. This new generation of
neuromorphic chips can bring us closer to implantable brain-machine
interfaces with event-based processing and low-power consumption.

We applied the key concepts of modularity, high-dimensional
projection, and sparse temporal coding to implement an SNN in the
DYNAP-SE hardware. The scalability of the design, the flexibility of the
evolutionary algorithm, and the efficiency of the sparse spike-based
compression enabled automated intraoperative HFO analysis in real
time. With the BCI2000 open-source framework and the lightweight
signal transfer, this remote pipeline can easily be implemented in
multiple centers, allowing to perform this analysis ‘as a service’.

Methods
Patients
We included intraoperative subdural ECoG recordings from 23
patients with drug-resistant epilepsy (median age 17 years, range
[1–67], 12 females, Table 1). The sex of participants was determined on
self-report and sex was not considered in data analysis. 22 patients
underwent epilepsy surgery at USZ. The resection was guided by
intraoperative high-density ECoG (hd-ECoG) for 8 patients and stan-
dard (low-density) grid and strip electrodes for 14 patients, post-
resection ECoGwas available, and the follow-up duration after surgery
was≥ 12 months. One patient underwent epilepsy surgery at the
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University Medical Center Utrecht (UMCU) where the resection was
guided by an intraoperative strip electrode.

Inclusion and ethics
The collection of patient data and their analysis was approved and
performed in accordance with the guidelines and regulations of the
local research ethics committees (Kantonale Ethikkommission Zürich
2018-02171, RESPect database, UMCU MREC 18-109C). All patients
and/or their parents provided informed consent to reuse their clinical
data for research purposes.

Anesthesia management
According to the USZ standard protocol for epilepsy surgery, anes-
thesia was induced with intravenous application of Propofol
(1.5–2mg kg−1) and Fentanyl (2–3μg kg−1). Intratracheal intubation was
facilitated by Atracurium (0.5mg kg−1), which was stopped afterward
to avoid muscle relaxation. Anesthesia was maintained with Propofol
(5–10mg kg−1 h−1) and Remifentanil (0.1–2μg kg−1 min−1). Twenty min-
utes before ECoG recording, Propofol was ceased and anesthesia was
sustained with Sevoflurane (Minimum alveolar concentration (MAC)
<0.5). The depth of anesthesia was monitored by the bispectral index
typically in the range 35-40.

According to the UMCU standard protocol for epilepsy
surgery, anesthesia was performed with Total Intra-Venous Anes-
thesia (TIVA). Propofol was used to induce and maintain anesthesia
and combined with analgesics (Sulfentanil or Remifentanil) and
muscle relaxants (e.g., Rocuronium). Just before ECoG recording,
anesthesiologists paused the Propofol administration, while the
administration of analgesics was continued. Propofol was restarted
after 5–15min.

Recording setup
At USZ, hd-ECoG was recorded using high-density subdural grid elec-
trodes in a 4 × 8 electrode array (Ad-Tech Medical, https://
adtechmedical.com/). The hd-ECoG electrodes had a contact expo-
sure diameter of 2.3mm and an inter-electrode distance of 5mm. The
standard ECoG electrodes had a contact exposure diameter of 5mm
and an inter-electrode distance of 10mm. We used a needle electrode
placed in the dura as an electrical reference. We recorded the con-
tinuous ECoG for offline processing (Nicolet CSeries amplifier, nat-
us.com, AD conversion 16 bit, sampling rate 2 kHz, 1–800Hz pass
band). All ECoG data was re-referenced to a bipolarmontage along the
length of the grid.

At UMCU, ECoGwas recordedwith a subdural strip electrodewith
1 × 6 contacts, a contact exposure diameter of 2.3mm, and an inter-
electrode distance of 10mm (Ad-Tech Medical) with a Micromed
amplifier (micromedgroup.com, AD conversion 16 bit, sampling rate
2048Hz, 0.15 Hz high pass) and Micromed software (SystemPlus).

Statistics
In the clinical validation of the results, we follow the same approach as
refs. 9,15. Following ref. 4, we defined:

• True positive (TP): a patient where the post-resection ECoG
contained HFO with a rate ≥ 1min−1 and the patient was not
seizure-free after surgery (ILAE 2–6).

• False positive (FP): a patient where the post-resection ECoG
contained HFO with a rate ≥ 1min−1 and the patient was seizure-
free after surgery (ILAE 1).

• False negative (FN): a patient where the post-resection ECoG
contained HFO with a rate < 1min−1 and the patient was not
seizure-free after surgery (ILAE 2-6).

• True negative (TN): a patient where the post-resection ECoG
contained HFO with a rate < 1min−1 and the patient was seizure-
free after surgery (ILAE 1).

The positive predictive value was calculated as PPV=TP/(TP + FP),
negative predictive value as NPV =TN/(TN + FN), sensitivity = TP/
(TP + FN), specificity = TN/(TN + FP), and accuracy = (TP+ TN)/N. Sta-
tistical analysis was performed with the Scipy Python package. We
used the Clopper-Pearsonmethod for estimates of the 95% confidence
intervals (CI). We used the two-sided Spearman’s method to calculate
the correlation. Statistical significance was established at p < 0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The pre-recorded ECoG with BCI2000-compatible data, ADM encod-
ing, SNN encoding, and epileptiform patternmarkings, are available in
the OpenNeuro database (https://doi.org/10.18112/openneuro.
ds004944.v1.1.0).

Code availability
The custom ADM module, a demo to run ADM conversion, and the
code to detect epileptiform patterns from DYNAP-SE activity are pro-
vided at https://doi.org/10.5281/zenodo.10959559. (Windows:
BCI2000 3.6.7010, Python 3.10.11; Linux: Python 3.8.10).

References
1. Jehi, L. et al. Timing of referral to evaluate for epilepsy surgery:

expert consensus recommendations from the surgical therapies
commission of the International League Against Epilepsy. Epilepsia
63, 2491–2506 (2022).

2. Stecker M. M. & Arle J. E. in Neurophysiology in Neurosurgery (ed.
Deletis, V). Elsevier (Elsevier, 2020).

3. Jacobs, J. et al. High-frequency electroencephalographic oscilla-
tions correlate with outcome of epilepsy surgery. Ann. Neurol. 67,
209–220 (2010).

4. Zweiphenning, W. et al. Intraoperative electrocorticography using
high-frequency oscillations or spikes to tailor epilepsy surgery in
the Netherlands (the HFO trial): a randomised, single-blind, adap-
tive non-inferiority trial. Lancet Neurol. 21, 982–993 (2022).

5. Dimakopoulos, V. et al. Protocol for multicentre comparison of
interictal high-frequency oscillations as a predictor of seizure
freedom. Brain Commun. 4, fcac151 (2022).

6. Cai, Z. et al. Noninvasive high-frequency oscillations riding spikes
delineates epileptogenic sources. Proc. Natl Acad. Sci. USA 118,
e2011130118 (2021).

7. Dimakopoulos, V. et al. Blinded study: prospectively defined high-
frequency oscillations predict seizure outcome in individual
patients. Brain Commun. 3, fcab209 (2021).

8. van’t Klooster,M. A. et al. Tailoring epilepsy surgerywith fast ripples
in the intraoperative electrocorticogram. Ann. Neurol. 81,
664–676 (2017).

9. Boran, E. et al. High-density ECoG improves the detection of high
frequency oscillations that predict seizure outcome. Clin. Neuro-
physiol. 130, 1882–1888 (2019).

10. Fedele, T. et al. Resection of high frequency oscillations predicts
seizure outcome in the individual patient. Sci. Rep. 7, 13836 (2017).

11. Fedele, T. et al. Automatic detection of high frequency oscillations
during epilepsy surgery predicts seizure outcome. Clin. Neuro-
physiol. 127, 3066–3074 (2016).

12. Remakanthakurup Sindhu, K., Staba, R. & Lopour, B. A. Trends in the
use of automated algorithms for the detection of high-frequency
oscillations associated with human epilepsy. Epilepsia 61,
1553–1569 (2020).

13. Ramantani, G. et al. Passive and active markers of cortical excit-
ability in epilepsy. Epilepsia 64, S25–S36 (2023). Suppl 3(Suppl 3).

Article https://doi.org/10.1038/s41467-024-47495-y

Nature Communications |         (2024) 15:3255 10

https://adtechmedical.com/
https://adtechmedical.com/
https://doi.org/10.18112/openneuro.ds004944.v1.1.0
https://doi.org/10.18112/openneuro.ds004944.v1.1.0
https://doi.org/10.5281/zenodo.10959559


14. Sharifshazileh, M., Burelo, K., Sarnthein, J. & Indiveri, G. An elec-
tronic neuromorphic system for real-time detection of high fre-
quency oscillations (HFO) in intracranial EEG. Nat. Commun. 12,
3095 (2021).

15. Burelo, K. et al. A spiking neural network (SNN) for detecting high
frequency oscillations (HFOs) in the intraoperative ECoG. Sci. Rep.
11, 6719 (2021).

16. Burelo, K., Sharifshazileh, M., Indiveri, G. & Sarnthein, J. Automatic
detection of high-frequency oscillationswith neuromorphic spiking
neural networks. Front. Neurosci. 16, 861480 (2022).

17. Burelo, K., Ramantani, G., Indiveri, G. & Sarnthein, J. A neuro-
morphic spiking neural network detects epileptic high frequency
oscillations in the scalp EEG. Sci. Rep. 12, 1798 (2022).

18. Moradi, S., Qiao, N., Stefanini, F. & Indiveri, G. A scalable multicore
architecture With heterogeneous memory structures for dynamic
neuromorphic asynchronous processors (DYNAPs). IEEE Trans.
Biomed. Circuits Syst. 12, 106–122 (2018).

19. Yang, S. & Chen, B. SNIB: improving spike-based machine learning
using nonlinear information bottleneck. IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems (IEEE, 2023).

20. Yang, S. & Chen, B. Effective Surrogate Gradient Learning With
High-Order Information Bottleneck for Spike-Based Machine Intel-
ligence. IEEE Transactions on Neural Networks and Learning Sys-
tems, (IEEE, 2023).

21. Yang, S., Wang, H. & Chen, B. SIBoLS: Robust and Energy-efficient
Learning for Spike-based Machine Intelligence in Information Bot-
tleneck Framework. IEEE Transactions on Cognitive and Develop-
mental Systems (IEEE, 2023).

22. Schalk, G., McFarland, D. J., Hinterberger, T., Birbaumer, N. &
Wolpaw, J. R. BCI2000: a general-purpose brain-computer inter-
face (BCI) system. IEEE Trans. Biomed. Eng. 51, 1034–1043 (2004).

23. Zijlmans, M. et al. How to record high-frequency oscillations in
epilepsy: a practical guideline. Epilepsia 58, 1305–1315 (2017).

24. Pelgrom, M. J., Duinmaijer, A. C. & Welbers, A. P. Matching prop-
erties of MOS transistors. IEEE J. solid-state circuits 24,
1433–1439 (1989).

25. Zendrikov, D., Solinas, S. & Indiveri, G. Brain-inspired methods for
achieving robust computation in heterogeneous mixed-signal
neuromorphic processing systems.Neuromorphic. Comput. Eng.3,
034002 (2023).

26. Chelaru, M. I. & Dragoi, V. Efficient coding in heterogeneous neu-
ronal populations. Proc. Natl Acad. Sci. USA 105, 16344–16349
(2008).

27. Perez-Nieves, N., Leung, V. C., Dragotti, P. L. & Goodman, D. F.
Neural heterogeneity promotes robust learning. Nat. Commun. 12,
5791 (2021).

28. Comsa, I. M. et al. Temporal coding in spiking neural networks with
alpha synaptic function. In: ICASSP 2020–2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP))
(IEEE, 2020).

29. DePasquale, B., Cueva, C. J., Rajan, K., Escola, G. S. & Abbott, L. full-
FORCE: a target-based method for training recurrent networks.
PLoS ONE 13, e0191527 (2018).

30. Liu, L. B., Losonczy, A. & Liao, Z. tension: a Python package for
FORCE learning. PLOS Comput. Biol. 18, e1010722 (2022).

31. Cayco-Gajic, N. A. & Silver, R. A. Re-evaluating circuit mechanisms
underlying pattern separation. Neuron 101, 584–602 (2019).

32. Imam,N. &Cleland, T. A. Rapid online learning and robust recall in a
neuromorphic olfactory circuit. Nat. Mach. Intell. 2, 181–191 (2020).

33. Besheli, B. F. et al. A sparse representation strategy to eliminate
pseudo-HFO events from intracranial EEG for seizure onset zone
localization. J. Neural Eng. 19, 046046 (2022).

34. Besheli, B. F. et al. Averaged sparse local representation for the
elimination of pseudo-HFOs from intracranial EEG recording in

epilepsy. 2023 11th International IEEE/EMBS Conference on Neural
Engineering (NER)), (IEEE, 2023).

35. Laydevant J, Wright LG, Wang T, McMahon PL. The hardware is the
software. Neuron. 112, 180–183 (2024).

36. Fedele, T. et al. Prediction of seizure outcome improved by fast
ripples detected in low-noise intraoperative corticogram. Clin.
Neurophysiol. 128, 1220–1226 (2017).

37. Zweiphenning, W. J. E. M. et al. The resolution revolution: com-
paring spikes and high frequency oscillations in high-density and
standard intra-operative electrocorticography of the same patient.
Clin. Neurophysiol. 131, 1040–1043 (2020).

38. Dimakopoulos, V., Neidert, M. C. & Sarnthein, J. Low impedance
electrodes improve detection of high frequency oscillations in the
intracranial EEG. Clin. Neurophysiol. 153, 133–140 (2023).

39. Saeedinia, S. A., Jahed-Motlagh, M. R., Tafakhori, A. & Kasabov, N.
Design of MRI structured spiking neural networks and learning
algorithms for personalized modelling, analysis, and prediction of
EEG signals. Sci. Rep. 11, 12064 (2021).

40. Kasabov N. K. Time-Space, Spiking Neural Networks and Brain-
inspired Artificial intelligence. (Springer, 2019).

41. Travnicek,V., Klimes, P., Cimbalnik, J. & Frauscher, B. Response: can
biomarkers of the epileptogenic zone be characterized in patients
rendered seizure free alone? Epilepsia 64, 1695–1695 (2023).

42. Chen, J. et al. NeuroBMI: A new neuromorphic implantable wire-
less brain machine interface with A 0.48 µW event-driven noise-
tolerant spike detector. In: 2023 IEEE 5th International Conference
on Artificial Intelligence Circuits and Systems (AICAS)).
(IEEE, 2023).

43. Yang, S., Wang, H., Pang, Y., Jin, Y. & Linares-Barranco, B. Inte-
grating visual perception with decision making in neuromorphic
fault-tolerant quadruplet-spike learning framework. IEEE Transac-
tions on Systems, Man, and Cybernetics: Systems (IEEE, 2023).

44. Richter O, et al. DYNAP-SE2: a scalable multi-core dynamic neuro-
morphic asynchronous spiking neural network processor. Neuro-
morphic Comput. Eng. 4, 014003 (2024).

45. Cartiglia, M. et al. Stochastic dendrites enable online learning in
mixed-signal neuromorphic processing systems. In: 2022 IEEE
International Symposium on Circuits and Systems (ISCAS)).
(IEEE, 2022).

46. Rubino, A., Cartiglia, M., Payvand, M. & Indiveri, G. Neuromorphic
analog circuits for robust on-chip always-on learning in spiking
neural networks. In: 2023 IEEE 5th International Conference on
Artificial Intelligence Circuits and Systems (AICAS). (IEEE, 2023).

Acknowledgements
We thank V. Dimakopoulos for help in reformatting the data to BIDS and
uploading the data in OpenNeuro. We acknowledge grants awarded by
the Swiss National Science Foundation (funded by the SNSF 204651 to
J.S. and G.I. with G.R. as project partner, and by SNSF 208184 to G.R.
with J.S. as project partner) and by the European Research Council (ERC
starting grant 803880 to M.Z. that funded M.Z., E.S., M.v.t.K), the Anna
MuellerGrocholski Foundation, and theVontobel Foundation toG.R. The
funders had no role in the design or analysis of the study.

Author contributions
F.C., J.S., M.Z., E.A., G.H., G.I. designed the experiments. F.C. set up the
data analysis pipeline and performed data analysis. G.R., N.K., M.Z.
provided patient care. E.S., M.v.t.K. were responsible for data collection
in UMCU. F.C. did statistics and prepared the figures. F.C., J.S., G.R.,
M.v.t.K. wrote the manuscript. All authors approved the final version of
the manuscript.

Competing interests
The authors declare no competing interests.

Article https://doi.org/10.1038/s41467-024-47495-y

Nature Communications |         (2024) 15:3255 11



Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-47495-y.

Correspondence and requests for materials should be addressed to
Filippo Costa or Johannes Sarnthein.

Peer review information Nature Communications thanks Nikola Kasa-
bov, and the other, anonymous, reviewer(s) for their contribution to the
peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-47495-y

Nature Communications |         (2024) 15:3255 12

https://doi.org/10.1038/s41467-024-47495-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Robust compression and detection of epileptiform patterns in ECoG using a real-time spiking neural network hardware framework
	Results
	Signal preprocessing
	Delta-modulation encoding
	SNN processing
	Detection
	Pre-recorded ECoG data in�Zurich
	Real-time analysis of UMCU ECoG in�Zurich
	ECoG compression and reconstruction

	Discussion
	SNN design principles
	Main advances over previous approaches
	Measurement perspective
	Computation at the�edge

	Methods
	Patients
	Inclusion and�ethics
	Anesthesia management
	Recording�setup
	Statistics
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




