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A terahertz meta-sensor array for 2D strain
mapping

Xueguang Lu1,9, Feilong Zhang 2,3,9, Liguo Zhu4, Shan Peng1, Jiazhen Yan5,
Qiwu Shi 1, Kefan Chen1, Xue Chang1, Hongfu Zhu1, Cheng Zhang 6,7 ,
Wanxia Huang 1 & Qiang Cheng 8

Large-scale stretchable strain sensor arrays capable of mapping two-
dimensional strain distributions have gained interest for applications as
wearable devices and relating to the Internet of Things. However, existing
strain sensor arrays are usually unable to achieve accurate directional recog-
nition and experience a trade-off between high sensing resolution and large
area detection. Here, based on classical Mie resonance, we report a flexible
meta-sensor array that can detect the in-plane direction and magnitude of
preloaded strains by referencing a dynamically transmitted terahertz (THz)
signal. By building a one-to-one correspondence between the intrinsic elec-
trical/magnetic dipole resonance frequency and the horizontal/perpendicular
tension level, arbitrary strain information across the meta-sensor array is
accurately detected and quantified using a THz scanning setup. Particularly,
with a simple preparation process of micro template-assisted assembly, this
meta-sensor array offers ultrahigh sensor density (~11.1 cm−2) and has been
seamlessly extended to a record-breaking size (110 × 130mm2), demonstrating
its promise in real-life applications.

Stretchable strain sensors serving as a bridge between the mechanical
and digital worlds, play a key role in the perception layer of applica-
tions such as the Internet of Things (IoTs), wearable electronics and
soft robotics1–7. In these scenarios, large-area flexible sensor arrays
with anisotropic nodes are urgently required to map actual deforma-
tion, which considers the space-variant and complex-multiaxial fea-
tures of real-life strain distributions.

Traditional strain sensor arrays based on resistive8–18,
capacitive19,20 and piezoelectric21,22 effects integrate strain-sensitive
structures, stretchable electrodes, and interconnection materials in a
tight space23, thereby suffering from limited scalability and detection

resolution. Although novel field effect transistor-based sensing net-
works can significantly improve the perceptual resolution due to their
unparalleled device density16,24, the complex manufacturing processes
pose an obstacle for necessary large-area and practical applications. In
addition to considering the relationship between the compatible array
area and sensor density, multidirectional strain sensing ability should
be merged into strain sensor arrays to adapt to various surface strain
environments. However, existing anisotropic strain sensors mainly
focus on discrete point strain detection as achieved by structural
design25,26 (e.g., cross-strain sensors) and material optimization27–29

(e.g., anisotropic conductive materials). For the arrays of these
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sensors, precise calibration and multidimensional signal decoupling
need to be preferentially addressed to overcome prevailing
challenges6,30. On the other hand, stretchable metamaterials, as an
alternative strategy, possess inherent advantage in constructing con-
tinuously large-scale sensor array and sensors based on polarization-
dependent resonance-strain response have been achieved by pat-
terning metal films on elastomer substrates31–33. However, limited by
the inevitable correlative deformations inmetallic patterns (coupled x-
and y-directional deformations), they are only equipped with small
ultimate-strain sensing capability (up to 6%) and powerless in strain
direction recognition. In addition, due to the limited interfacebonding
and mismatched mechanical properties, metallic patterns in existing
plasmonic metamaterials tend to be damaged or even peel off the
substrate after massive cyclic stretching, thereby constraining their
overall performance and durability.

Herein, a Mie resonance-based THz meta-sensor is proposed to
detect arbitrary-directional strain in a two-dimensional (2D) plane
using the deep decoupling feature between the plane-wave excited
electrical dipole (ED) andmagnetic dipole (MD) resonances34–36, which
are independent to the x- and y-directional deformations, respectively.
Our meta-sensor array is constructed by encapsulating a high-

permittivity zirconia (ZrO2) microsphere array in a poly-
dimethylsiloxane (PDMS) substrate (Fig. 1a), and its size can reach
110 × 130mm2 (containing ~1580meta-sensors, each ofwhich has a size
of ~3 × 3mm2) via a simple micro template-assisted assembly strategy.
Combined with existing THz scanning technology (Fig. 1b), applied
biaxial strain in a large area are mapped with a high spatial resolution
(~3mm) as a result of the ultrashort wavelength of the incident THz
waves (e.g., ~0.7mmat0.4215 THz – the initial ED resonance frequency
and ~0.9mm at 0.3220 THz – the initial MD resonance frequency).
Comprehensively considering the device size and sensing resolution
(Fig. 1c and Supplementary Table S1), this flexible strain meta-sensor
array shows great potential for future applications in the sensing layer
of flexible IoTs and wearable devices.

Results and discussion
Bidirectional strain detection strategy
Classical Mie resonance theory indicates that by deliberately tuning
the permittivity (much larger than that of its surroundings) and dia-
meter of a dielectric microsphere, a couple of MD and ED resonances
can be generated at different frequencies when interacting with spe-
cified normal incident waves, resulting in the magnetic field (H-field)
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Fig. 1 | Artistic rendering of a meta-sensor array. Schematic diagram of the
proposed stretchable meta-sensor array (a) and its detection principle (b). The
meta-sensor node and its basic unit cell are enlarged in the inset of a. The rela-
tionship between the applied strain states (including amplitude and direction) and
the ED/MD resonance excited by the THzwave are supplied in the inset ofb. cArray

size and sensor density chart of the existing sensor arrays (plotted in different
colors according to different working mechanisms), with this work presented as a
red star (detailed comparisons of the references in c with our design can be found
in Supplementary Table S1).
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and electric field (E-field) being strongly localized in its center37,38

(Supplementary Note S1). This orthogonal field response may be
regarded as the basis for bidirectional strain detection. Based on cor-
responding Mie theory, an ED resonance at 0.4510 THz and an MD
resonance at 0.3260THz are achieved using a well-selected micro-
sphere (Fig. 2a) with a dielectric constant of 33 and a diameter
of 160μm.

To investigate the physical mechanism involved, the near-field
distribution inside the microsphere is investigated using CST Micro-
wave Studio 2021 (Fig. 2b). For the ED resonance, the E-field oscillating
along the y-direction is strongly localized at the center of the x-y plane
(upper left of Fig. 2b), and the orthogonal H-field with similar behavior
concentrates at the identical cutting plane regarding the MD reso-
nance (upper right of Fig. 2b). In addition, the corresponding toroidal
H-field (lower left of Fig. 2b) and E-field (lower right of Fig. 2b) are
observed as expected at the orthogonal planes, consistent with the
electromagnetic induction theorem prediction. The above analysis
implies that the proposed dielectric resonator supports independent
couplingwith the E-field andH-field of the incident THzwaves through
the ED and MD resonances operating at different frequencies, while
demonstrating excellent isolation between them. Based on this
advantage, with arrayed dielectric microspheres, if these two

resonances can be noninterferingly tuned by changing the micro-
sphere spacing (e.g., once the ED resonance is tuned, the MD reso-
nance always remains stable), a bidirectional strain sensor will be
theoretically realized.

To verify this hypothesis, an array with an initial periodicity of
Px = Py = 300μm (Fig. 2c) is constructed with the predesigned micro-
sphere. Then, a controlled-variable approach is adopted to reveal the
influence of microsphere spacing (Px and Py) on the ED and MD reso-
nances. As shown in Fig. 2d, the increase in Px (Py is fixed) induces the
ED resonance to move towards lower frequencies, but the MD reso-
nance remains at approximately 0.3260THz. For comparison, when Py
increases from thepreset value, theopposite phenomenaareobserved
in Fig. 2e. The MD resonance shows a significant redshift, while the ED
resonance remains at 0.4510 THz, which agrees well with our
assumption (the corresponding simulated THz spectra are provided in
Supplementary Fig. S1).

After completing this feasibility analysis, the physical principles
behind these phenomena were further explored. Prior to that, the
coupling types between the dipoles are defined as follows: side-by-side
alignmentof thedipolemoments denotes transverse coupling, and the
counterpart with end-to-end alignment is longitudinal coupling (inset
of Fig. 2c). Then, we identified the physical mechanism of the
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Fig. 2 | Analytical study of Mie resonance and its array. a Schematic diagram of
the intrinsic ED and MD resonances of a dielectric microsphere (with a dielectric
constant of 33 and a diameter of 160μm) excited by THz waves (top) and its
simulated result (bottom).bSimulated E-field andH-fielddistributions at thecenter
cross section of themicrosphere regarding the ED (left) andMD (right) resonances.
c Schematic diagram of the ED and MD distribution in the array of dielectric
microspheres. The inset on the left shows two couplingmodes: transverse coupling
(side-by-side alignment in blue dashed square) and longitudinal coupling (end-to-

end alignment in red dashed square) between the dipoles. The inset on the right
illustrates the unit cell parameters (Px = Py = 300 μm) and the boundary condition.
Simulated resonance frequencies (including ED and MD resonances) versus cell
periodPx (d) and Py (e). The insets of (d) and (e) present the simulated E-field (i) and
H-field (ii) distributions across the center x-y plane of the microspheres as Px (d)/Py
(e) = 300μm (left side of the dashed square) and Px (d)/Py (e) = 460μm (right side
of the dashed square).

Article https://doi.org/10.1038/s41467-024-47474-3

Nature Communications |         (2024) 15:3157 3



resonance change law considering dipole coupling theory39–41. In
Fig. 2d, e, the E-field distribution (on the center x-y plane of the
dielectric microsphere) for the ED resonance and the H-field dis-
tribution (on the center x-y plane of the dielectricmicrosphere) for the
MD resonance are provided for comparing the mutual coupling vary-
ing between the initial state and the strain applied one. As shown in
insets (i) of Fig. 2d, e, the moment of the single ED (namely, the local
coupling intensity) remains stable regardless of the period increasing
in the x- or y-direction. Therefore, the dominant factor contributing to
the ED resonance frequency shifting can only be attributed to the
mutual coupling format between the adjacent dipoles – i.e., transverse
coupling presented in inset (i) of Fig. 2d rather than longitudinal
coupling (inset (i) of Fig. 2e). Moreover, a similar conclusion that the
MD resonance frequency shifting is determined by the transverse
coupling between the MDs can be drawn by comparing insets (ii) of
Fig. 2d, e. To further quantify the ED and MD resonance frequency
shifting as a function of Px and Py, respectively, a Lagrangian model is
applied by solving the Euler-Lagrangian equations of motion to reveal
the effect of the transverse coupling and longitudinal coupling as
follows (see Supplementary Fig. S2 and SupplementaryNote S2 for the
detailed derivation process):

f EDs ≈ f ED0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + κED
ET � κED

EL

q

ð1Þ

fMD
s ≈ fMD

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1 + κMD

HL � κMD
HT

s

ð2Þ

where f ED0 /fMD
0 and f EDs /fMD

s denote the initial frequencies and coupled
frequencies of the ED/MD resonance. κED

ET /κ
ED
EL represents the trans-

verse/longitudinal interaction coefficient between the EDs, while
κMD
HT /κ

MD
HL is the counterpart between the MDs. Because transverse

coupling plays a dominant role in tuning the ED and MD resonances,
κED
ET and κHD

HT are the key parameters to be considered. From the aspect
of the dipole interaction energy (VED

ET and VMD
HT ), κ

ED
ET and κMD

HT can be
linked to the periods Px and Py via:

κED
ET / V ED

ET =
p2
e

4πε0P
3
x

ð3Þ

κMD
HT / VMD

HT =
p2
h

4πε0P
3
y

ð4Þ

where pe and ph are the magnitudes of the dipole moments of the ED
and MD, respectively. ε0 is the dielectric constant of free space. Based
on the above analysis (Fig. 2d, e), the pe and ph amplitudes remain
stable across varying excitations of the THz field. Therefore, according
to Eq. (3), the dominant transverse ED coupling gradually decays as Px
increases. Then, by substituting the reduced κED

ET into Eq. (1), a
remarkable redshift of f EDs canbederived, consistent with the previous
trend shown in Fig. 2d. Continuing this analysis, the trend of fMD

s , as
shown in Fig. 2e, can also be explained in detail.

Thus, a theoreticalmodel based on a dielectricmicrosphere array
has been built to bridge the resonance shifting with the microsphere
spacings along orthogonal (x- and y-) directions. When illuminated
with y-polarized THzwaves, the ED resonance is stimulated andmoves
towards a lower frequency as the x-directional microsphere spacing
increases, while the MD resonance remains almost unchanged. The
opposite phenomenon (the ED resonance remains stable, but the MD
resonance shifts to a lower frequency) occurs for the MD resonance
when Py is magnified, providing guidelines for designing an ortho-
gonally bidirectional strain sensor.

Meta-sensor array architecture and characterization
Based on the design strategy described above, a meta-sensor array
consisting of a ZrO2 microsphere array (array period Px = Py = 320μm,
microsphere diameter d = 161μm) embedded in an elastomeric PDMS
substrate (with a thickness of ~320μm for efficiently transmitting THz
waves shown in Supplementary Fig. S3) is designed (Fig. 3a) by ana-
lyzing the influence of the PDMS matrix on the inherent ED/MD reso-
nance (Supplementary Fig. S4 and Supplementary Note S3), and
fabricated (Fig. 3b and Supplementary Fig. S5) to independently detect
and quantify the bidirectional strain. The relative permittivity of ZrO2

and PDMS are 33 and 2.4, respectively. The relevant fabrication pro-
cess is shared in SupplementaryNote S4, and a simplemicro template-
assisted assembly strategy was adopted to array the ZrO2 micro-
spheres, by which the working area of our sensor array can be flexibly
extended according to the easily fabricated template size. In turn, a
sample with a size of 110 × 130mm2 (the largest one to our best
knowledge) is implemented.

Prior to investigating the strain sensing behavior of the well-
designed meta-sensor array, the mechanical properties of the fabri-
cated sample and a pure PDMS film have been tested. Despite exhi-
biting a reduced stretchability compared to pure PDMS (ε = 243%), our
device can still withstand a mechanically fractured tensile strain of
ε = 156% (Fig. 3c). Further, a THz time-domain spectroscopy is utilized
to check the transmission spectral information when external single-
directional stress (along the x- or y-direction) is applied to the sample.
The corresponding results are shown in Fig. 3d, e. When the sample is
stretched along the x-direction, the measured ED resonance gradually
shifts from0.4216 THz to0.3507 THz (right side of Fig. 3d) as the strain
increases from 0 to 65%, which is in accordance with the simulated
results (left side of Fig. 3d). Note that when the applied strain exceeds
65%, the ED resonance will become unrecognizable due to the
attenuation of the transmission amplitude (Fig. 3d). In contrast, as the
y-directional strain increases from 0 to 70%, the measured MD reso-
nance (left side of Fig. 3e) is the same as the simulation (right side of
Fig. 3e) and gradually decreases to 0.3049 THz from 0.3218 THz. (see
Supplementary Fig. S6 for analyzing the y-directional strain detection
limit –70%) It is worth noting that the remaining resonance (e.g., MD
resonance during stretching in the x-direction, ED resonance during
stretching in the y-direction) in these two processes barely shifts
(Fig. 3f, g), further proving the dominant contribution of transverse
coupling to resonance shifting. The Poisson’s ratio of the substrate
(0.4) was considered when conducting the simulations. These results
indicate that this meta-sensor can simultaneously sense the strain
amplitude anddirection through the independent responses of ED and
MD resonances to the strains in the x- and y-directions, respectively.
This meta-sensor also exhibits excellent durability and strong stability.
The transmission signal passing through the sample remains stable
over 5000 tensile cycles, during which the applied strain is repeatedly
varied from 0 to ~65% @ x direction/~70% @ y direction (Supple-
mentary Fig. S7).

In addition, the sensitivity of our meta-sensor has also been ana-
lyzed from the aspect of the smallest detectable strain and the mini-
mum detectable strain variation. Considering the spectral resolution
of the THz time-domain spectroscopy system (0.001 THz), the theo-
retically smallest detectable strain values can be determined by shift-
ing the resonance frequencies to lower frequencies by 0.001 THz from
the initial 0%-strain states (0.4215 THz @ x-directional strain;
0.3220 THz @ y-directional strain). This results in a minimum detect-
able strain of 1.25% @ x-directional strain and 2.7% @ y-directional
strain, as shown in insets (i) of Fig. 3f, g. Using the similar analysis
approach, the theoretically minimum detectable strain variations of
our meta-sensor also were obtained as 0.63% @ x directional strain
(from 64.37% to 65%) and 2.7% @ y-directional strain (from 0 to 2.7%)
(inset (ii) of Fig. 3f and inset (i) of Fig. 3g). (see Supplementary Note S5
for analyzing the minimum detectable strain variations) Then, the
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corresponding experiments under the aforementioned strain states
were conducted, and ~0.001-THz resonance frequency shifting is
observed (Fig. 3h–j and Supplementary Fig. S8), which is consistent
well with the simulated predictions. Further, the maximum gauge
factor (GF) of our device is also calculated (Supplementary Note S6),
which is as ~0.413 @ x directional strain and ~0.09 @ y directional
strain (Fig. 3k). While the GF and stretchability of ourmeta sensormay
not outperform existing ultra-stretchable and highly sensitive strain
sensors42,43, our design excels in independently detecting bidirectional
strain, recognizing arbitrary strain direction and mapping 2D strain
distribution, which are still major challenges faced by current strain
sensors.

Although our design has exhibited excellent performance for
identifying preset strain along the x- or y-direction, the natural stress in
real life is always along arbitrary directions. Therefore, based on the
orthogonal decomposition feature, two orthogonally external forces
(along the x- and y-directions) are simultaneously loaded at the pro-
posed meta-sensor to evaluate its arbitrarily directional strain detec-
tion performance. As shown in Fig. 4a, with the x-directional strain
varying from 4% to 32% by 4% per step, the strain applied in the y-
direction is fixed at 4%, 8%, 12%, 16%, 20%, 24%, 28% and 32%. In such

cases, the ED resonance gradually shifts to a lower frequency as the x-
directional strain increases, while the MD resonance always remains
localized at a certain value only associated with the y-directional
deformation ratio (4% @ 0.3213 THz, 8% @ 0.3199 THz, 12% @
0.3187 THz, 16%@0.3178 THz, 20%@0.3167 THz, 24%@0.3160 THz,
28% @ 0.3154THz, and 32% @ 0.3144 THz). By switching the strain
loading, the opposite phenomenon can be revealed in Fig. 4b, i.e., the
MD resonance frequency decreases with increasing strain in the y-
direction,while the ED resonance always stays at a specific value,which
is only related to the x-directional deformation ratio (4%@0.4177 THz,
8% @ 0.4157THz, 12% @ 0.4131 THz, 16% @ 0.4104 THz, 20% @
0.4059 THz, 24% @ 0.4000THz, 28% @ 0.3946THz, and 32% @
0.3894 THz). These phenomena demonstrate that our design favors
independent and noninterfering monitoring of the orthogonal strains.
Additionally, the experimental results agree well with the simulated
results shown in Supplementary Fig. S9, further proving the veracity of
our strategy.

Furthermore, in Fig. 4c, d, the dynamic ED and MD resonance
frequencies during stretching have been extracted from Fig. 4a, b to
directly exhibit the corresponding relation between the bidirectional
strains applied to our sensor and its resonance shifting. This facilitates
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y-direction. Extracted resonance information from d and e are plotted in f and g.
The insets of f and g present the simulated smallest strains (i in f and g) and
minimumstrain variations (ii in f and i ing) that canbe recognized. Thedata in f and
g are presented as mean± s.d. of n ≥ 6 independent measurements.
h–j Corresponding measured results for verifying the smallest strains and mini-
mum strain variations. k Relative resonance frequency variation (Δf/f0)-strain
relationship.
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its practical applications in arbitrary-directional strain recognition. To
further investigate the strain direction detection performance, a test
setupwas built, as depicted in Fig. 4e. In this setup, a right-angle clamp
was adopted to securely hold fix the sample and effectively resist any
correlative deformation induced by the Poisson’s ratio of the PDMS
matrix. In the meantime, the sample was reshaped into a quarter disk

with the radius of 3 cm (Fig. 4e), facilitating precise calibration of the
stress direction. In the confirmatory experiments, the sample was
stretched in 5 directions (θ = 15°, 30°, 45°, 60°, and 75°) and in each
direction five stretches with gradually increasing strain were con-
ducted. During stretch, the corresponding strains along x (εx) and y (εy)
directions were independently picked out by our meta-sensor array
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(Fig. 4f, and the corresponding experimental transmittance spectra are
supplied in Supplementary Fig. S10). Eventually, following the princi-
ple of orthogonal decomposition, the strain directions can be accu-
rately recognized and quantified by comparing the measured
transverse and longitudinal strains using the equation:
θ= arctanðεy=εxÞ. The minor discrepancies shown in Fig. 4g effectively
confirm the strain direction detection ability of our meta sensor.

In addition to these advantages, our design undoubtedly offers
the unique feature of mapping the in-plane strain distribution with
high resolution due to its small meta-sensor and large density array.
The size of a single meta-sensor (~3 × 3mm2, approximately four
operating wavelengths) is determined by comprehensively consider-
ing the maximum detection resolution and minimum boundary
impact. To prove this outstanding functionality, the sample subjected
to a complex strain was tested with the help of a 2D THz scanning
platform (Fig. 5a). This prestrain was generated by a two-axis stretch-
ing clamp (Supplementary Fig. S11). Before testing, the surface of the
sample was marked with a 10 × 10 grid array shown in Fig. 5a, b
(3 × 3mm2 per pixel is the same-sized as the single meta-sensor). The

state of the grids before and after stretching was recorded photo-
graphically (Fig. 5b), and then the real-applied strain was calculated
through visual data-based computation (Fig. 5c). Simultaneously, the
transmission spectrum information (Supplementary Table S2) of the
sample was measured by the 2D scanning setup supporting the grid-
by-grid measurement (Fig. 5a), for which the THz focal spot and its
scanning stepwere both set to 3mm in accordance with the size of the
single meta-sensor and per grid. Then, according to the relationship
between the strain magnitude and frequency shift established pre-
viously, the surface strain state of the sample is supplied in Fig. 5d,
which is highly consistent with the visual data-based computation
results (Fig. 5c, and the recorded visual data are supplied in Supple-
mentary Tables S3 and 4). To further quantify the test error of our
strategy, the relative error to the visual computational analysis
(regarded as exact strain values) was calculated in Fig. 5e. The max-
imum test error occurs at (10, 1) (denoting the coordinates of the grid;
the former for row number and the latter for column number)
regarding the x-directional deformation (upper in Fig. 5e), and only
reaches 1.8%. The test error for the y-directional deformation (lower in
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Fig. 5e) is also smaller than 2.5% – the maximum relative error locating
at grid (1, 1), and thus the impressive test accuracy endows our device
great potential for real-life strain measurement.

In summary, we reported a meta-sensor array that can realize
high-resolution identification and quantification of in-plane strain
states over a large area (110 × 130mm2). Our meta-sensor array com-
prises high-permittivity ZrO2 microspheres in a square array encap-
sulated within a PDMS substrate through a micro template-assisted
assembly strategy. Microsphere spacing in the x- and y-directions
independently affect the ED and MD resonance frequencies, respec-
tively. Considering their linear relationship when the external strain is
nomore than 28%, the strain information across ourmeta-sensor array
can be quantified. Particularly, combined with the existing THz scan-
ning technology, this meta-sensor array successfully mapped the
direction and magnitude of an arbitrary strain distributed across a 2D
plane with the relative test error superior to 1.8%. Overall, our meta-
sensor array offers several attractive features compared with previous
strain sensor arrays, such as the capability to recognize strain direc-
tion, high resolution, large area coverage and low cost (Supplementary
Table S1). Furthermore, the fabrication process is compatible with
other surface treatment technologies, such as superhydrophobic
treatment, endowing the meta-sensor with a self-cleaning capacity to
avoid environmental interferences (such as dust and water) (Supple-
mentary Fig. S12, Supplementary Note S7 and Supplementary
Video S1–4). Although the transmission-type THz meta sensors have
beendeveloped for thedetectionof strainmagnitude anddirections, it
is indeed facedwith the challenge that THz signal can hardly penetrate
human body. With the strategy we proposed, a reflection-type meta-
strain-sensor was achieved to address this issue, and the feasibility has
been verified by simulation and experiment (Supplementary Note S8
and Supplementary Figs. S13–15).

Methods
Fabrication of strain meta-sensor array
The fabrication process of the strain meta-sensor array is shown in
Supplementary Fig. S5. The ZrO2 microspheres of suitable and
homogeneous size were first selected based on simulation analysis.
Subsequently, to obtain an even and flat supporting layer for ensuring
the microspheres distributed on the same horizontal plane in the
PDMSmatrix, liquid PDMS (the base and crosslinking agent at a weight
ratio of 10:1) after defoaming was scraped onto a polyethylene ter-
ephthalate (PET) supporting substrate by a high precision scraper (HQ-
TB-G, Huaqi Instrument Co., LTD, China) with the accuracy of ±0.5μm.
Then, it was placed in an oven at 70 °C for ~10min to pre-cure the
PDMSadhesive layer (~80μm). Particularly, a PET supporting substrate
is necessary for the fabrication process of the sample to avoid curling
of the ultra-thin soft PDMS film.

Next, the screen-printing template (mesh slightly larger than the
diameter of themicrosphere) was attached to the PDMSadhesive layer
and the selected microspheres were placed on it. Then, the micro-
spheres were pushed into the holes and assembled as an specific array
with the help of a soft brush providing an external force (Fe) shown in
Supplementary Fig. S5a. After removing the template, the above
structure was encapsulated with liquid PDMS and further cured in the
oven at 70 °C for ~25min. Finally, the predesinged stretchable meta-
sensor array is achieved by peeling it from the PET supporting sub-
strate.With ourmethod, the ZrO2microspheres are nearly on the same
horizontal plane (Supplementary Fig. S5b) and the microsphere posi-
tion deviation has little effect on the overall performance of our device
(Supplementary Fig. S16).

THz time-domain spectroscopy measurement
The THz time-domain spectroscopy (QT-TRS1000, Quenda, China)
was used to measure the transmittance of the meta-sensor sample at
various strain states. First, the sample was fixed by the self-made

stretching fixtures (Supplementary Figs. S11 and S17), by which an
external strain canbeflexibly loaded as needed. The incident THzwave
was then collimated and focused on the sample, and the THz receiver
collected the time-domain signals with sample information. After
Fourier transform of time-domain signals (meta-sensor sample) and
normalization with the reference signal (without sample), the trans-
mittance spectra were obtained. When conduct the measurement,
each THz signal was collected 100 times per test round for calculating
the average value aswell as six sets of parallel tests for determining the
corresponding standard error.

Data availability
The data supporting the findings of this study are available within the
Article and its Supplementary Information. Source data are provided
with this paper. Other raw data generated during this study are avail-
able from the corresponding authors upon request. Source data are
provided with this paper.
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