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Deep learning predictions of TCR-epitope
interactions reveal epitope-specific chains in
dual alpha T cells

Giancarlo Croce 1,2,3,4, Sara Bobisse3,4,5, Dana Léa Moreno1,2,3,4,
Julien Schmidt1,4,5, Philippe Guillame4,5, Alexandre Harari 1,3,4,5 &
David Gfeller 1,2,3,4

T cells have the ability to eliminate infected and cancer cells and play an
essential role in cancer immunotherapy. T cell activation is elicited by the
binding of the T cell receptor (TCR) to epitopes displayed onMHCmolecules,
and the TCR specificity is determined by the sequence of its α and β chains.
Here, we collect and curate a dataset of 17,715 αβTCRs interacting with dozens
of class I and class II epitopes. We use this curated data to develop
MixTCRpred, an epitope-specific TCR-epitope interaction predictor.
MixTCRpred accurately predicts TCRs recognizing several viral and cancer
epitopes. MixTCRpred further provides a useful quality control tool for mul-
tiplexed single-cell TCR sequencing assays of epitope-specific T cells and
pinpoints a substantial fraction of putative contaminants in public databases.
Analysis of epitope-specific dual α T cells demonstrates that MixTCRpred can
identifyα chainsmediating epitope recognition. ApplyingMixTCRpred to TCR
repertoires from COVID-19 patients reveals enrichment of clonotypes pre-
dicted to bind an immunodominant SARS-CoV-2 epitope. Overall,
MixTCRpred provides a robust tool to predict TCRs interacting with specific
epitopes and interpret TCR-sequencing data from both bulk and epitope-
specific T cells.

T cells are key components of the cellular immune response, providing
defense against infected andmalignant cells. In cancer, inducing newT
cell responses or boosting pre-existing ones has revolutionized cancer
immunotherapy treatments, providing long-term benefits to a sig-
nificant fraction of patients, including some with late-stage
malignancies1–3. The activation of a T cell is triggered by the binding
of the T cell receptor (TCR) to antigen-derived peptides that are pre-
sented on major histocompatibility complex molecules (pMHCs).
TCRs have an extensive sequence diversity, with estimates ranging
from 1015 to 1061 different TCR sequences that can potentially be

generated4–6. This high diversity allows T cells to recognize a large
number of epitopes displayed on different MHC alleles7. As of today,
high-throughput sequencing enables researchers to rapidly map TCR
repertoires in patients8,9. However, it remains challenging to know
which TCRs target specific epitopes. This hinders the development of
treatments that aim at using or engineering T cells to target specific
peptides displayed on MHC molecules, such as cancer neo-
epitopes10,11.

TCRs are heterodimers composed of one α and one β chain. The
TCR sequence diversity is achieved during the V(D)J recombination
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when a unique combination of V and J (for the α chain) and V, D, and J
(for the β chain) germline-encoded segments is selected and assem-
bled. Additional diversity occurs through N- and P- nucleotide inser-
tions at the V(D)J junctions. These regions, referred to as
complementarity-determining regions 3 (CDR3), are mainly involved
in the recognition of the epitope, while two other CDRs (CDR1 and
CDR2) located on the V segments mediate contact primarily with
the MHC12.

Most T cells express a unique α and a unique β chain13. However,
T cells expressing two in-frame-rearranged TCRα or two TCRβ chains
have been observed both inMus musculus and Homo sapiens14–20. It is
currently estimated that approximately 10% of T cells can express two
functionally rearranged α-chains, whereas dual β chains are found in
less than 1% of T cells19,21–25. Many TCR-sequencing analysis tools dis-
regard dual chain T cells26 or consider themost expressed chain as the
one responsible for epitope recognition27.

Several immune assays have been developed to isolate epitope-
specific T cells and sequence the α and β chains of their TCRs7,28,29.
Many approaches use individual pMHC multimers to sort and
sequence T cells recognizing one specific epitope30,31. Recently, the
throughput of such approaches has been expanded by taking advan-
tage of multiplexed DNA barcoded pMHC multimers coupled with
single-cell TCR/barcode-sequencing32. Another approach to enhance
the number of epitopes that can be simultaneously analyzed consists
of stimulating pools of T cells with various combinations of epitopes
and deconvolving the different pools33. Conventional bulk sequencing
methods have been applied to sequence the TCRs in epitope-specific T
cell populations one chain at a time or only the β chain. More recently,
single-cell TCR sequencing has enabled the acquisition of paired
αβTCR sequences. This is particularly relevant for modeling TCRs of
epitope-specific T cells since both chains ultimatelydetermine theTCR
specificity27,34–37. One of the most comprehensive αβTCR sequence
datasets of epitope-specific T cells29,38 was generated by the 10x
Genomics immune profiling platform, coupling DNAbarcoded pMHCs
multimers with single-cell TCR-Seq38. This study identified approxi-
mately 15,000 TCR clonotypes interacting with 44 epitopes in one
single experiment38. These data constitute around 70% of all paired
αβTCR–epitopes currently stored in public databases29,39. Although
recently developed quality control tools suggest that not all these
interactions are of equal quality27,40,41, this type of technology is likely
to play an important role in providing information about the specificity
of TCRs recognizing distinct viral or cancer epitopes.

Paired TCR–pMHCs sequence data have been used to train
machine learning approaches that aim at predicting which T cells can
target a specific pMHC directly from the TCR sequences42,43. While
some tools consider only the CDR3 region and/or the V, J segments of
the β chain (e.g., TITAN44, ATM-TCR45, ImRex46, pMTnet47, and
TCRex48,49), others take as input the full sequence of the TCR (i.e., theα
and the β chain)27,35,36,50–55. These methods range from distance-based
classifiers50,52,56 to machine learning or deep learning
models27,35–37,49,53,54,57,58, and they all share the common underlying
assumption that TCRs displaying similar sequence patterns recognize
the same pMHC50,59. A fraction of these tools can be used directly
through command-line or web interfaces (e.g., NetTCR2.135,
ERGO2.037,54, tcrdist350), while others need to be retrained (e.g.,
TCRAI27 and TCRGP57), or have been benchmarked43 but not yet
released (e.g., TCRex48,49 for αβ TCRs, SONIA53 for TCR classification).
Most TCR–epitope interactionpredictorshavebeen trained and tested
for predicting TCRs recognizing specific pMHCs with at least some
known TCRs (referred to as epitope-specific predictions), although
some tools include in theory, the possibility to make predictions for
TCRs recognizing any epitope (referred to aspan-epitopepredictions).
Due to different training data and procedures, it is challenging to
compare the advantages and disadvantages of each approach. To

address this issue, a public benchmark for TCR–pMHCpredictionswas
recently introduced43.

Several conclusions can be drawn from these studies. First, using
pairedα andβ chains is important formodelingTCR specificity27,34–37,43,
and predictors that rely on one of the chains (usually the β chain) have
been shown to be less accurate than methods using both chains43.
Second, algorithms employing different approaches, from distance-
based to deep learning methods, have comparable performance43.
Third, accurate predictions require a minimum number of TCRs
interacting with a specific pMHC. This demonstrates that a key deter-
minant of TCR–pMHC interaction predictions is the quality and epi-
tope coverage of the training set. It further suggests that extrapolating
these predictions to pMHC without known interacting TCRs is
challenging35,43.

In this study,we collect and curate a largedataset of pairedαβTCR
sequences coupled with their cognate pMHC. We leverage these data
to develop a sequence-based predictor of TCR–pMHC interaction,
referred to as MixTCRpred (Fig. 1A). We show that MixTCRpred can
accurately predict TCRs binding to several known viral and cancer
epitopes, outlines how much predictions can be extended to new
epitopes, serves as a valuable control tool for identifying putative
contaminants in existing databases, allows accurate annotation of
epitope-specific chains in dual α T cells, and reveals enrichment of
TCRs predicted to recognize an immunodominant class II epitope in
TCR repertoires of COVID-19 patients (Fig. 1A).

Results
Integration and curation of αβTCR–pMHCs interactions reveal
binding specificities for dozens of class I and class II epitopes
To improve our understanding of the specificity of TCRs for different
epitopes, we collected sequences of αβTCRs targeting specific pMHCs
from several public databases, including VDJdb29, IEDB39, and the
McPAS database60 (Fig. 1B and “Methods”). TCR–pMHC sequence data
from the 10x Genomics immune profiling assay38 were processed
separately to include only cases with a clear signal from one unique
pMHC multimer (see “Methods”). We further collected and curated
TCRs isolated from Mus musculus infected with Lymphocytic chor-
iomeningitis (LCMV) from two recent studies61,62. Duplicated
TCR–pMHCpairs were removed based on V/J gene usage aswell as the
sameCDR3 sequence for both the α- and β-chains. This led to a total of
20,279 distinct TCR sequences interacting with 1253 pMHCs (Fig. 1B).
For the majority of pMHCs, only one or a few TCRs have been
experimentally validated, leading to a heavily skewed TCR distribution
(Fig. 1C, D). For further analysis, only pMHCs with at least ten binding
TCRs were considered, resulting in a total of 17,715 αβTCRs interacting
with 146pMHCs (Fig. 1C and SourceDatafile). As expected,most of the
data relates to peptides presented by human MHCs (127 out of 146
pMHCs), and with a large fraction of HLA-A*02:01 restricted peptides
(Fig. 1E). In contrast, only 19 pMHCs in Mus musculus have been
extensively characterized in terms of TCRs. One important case is the
class II LCVM-derived peptide, DIYKGVYQFKSV restricted to H2-IAb,
for which3650differentαβTCRs obtained from 11 LCMV infectedmice
were available from two different studies61,62.

MixTCRpred accurately predicts TCRs recognizing
specific pMHCs
We used the collected data to train and validate MixTCRpred, a
machine learning predictor of TCR–pMHC interactions (Fig. 2A).
MixTCRpred is a pMHC-specific predictor, where a separate model is
trained for each epitope. Negative data were computationally gener-
ated by sampling TCRs with different or undetermined specificity (see
“Methods”). For each pMHC we chose a ratio 1:5 between positives
(epitope-specific TCRs) and negatives (non-binding TCRs). A list of the
available MixTCRpred models is provided in the Source Data file.
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The architecture of MixTCRpred is depicted in Fig. 2A. From an
input TCR, which is conventionally provided as V, J genes, and CDR3
sequences for both chains, MixTCRpred first extracts the CDR1,
CDR2 sequences (from the V genes) as defined by the International
ImMunoGeneTics Information System63. The CDR1, CDR2, and
CDR3 sequences are then padded and concatenated for the α and β
chains separately. The TCR sequences are numerically embedded
through a machine learning-based embedding, where embedding

vectors are initially sampled randomly and then adjusted in the course
of the training. A transformer encoder64 is then used to identify the
statistical patterns underlying the TCR specificity (see “Methods”). The
final step is a dense classification layer whose output score indicates
how likely the TCR is to interact with a specific pMHC. Comparing raw
scores across different epitopes is challenging due to the inherent
biases of eachmodel. Tomake the predictionsmore interpretable and
comparable, we developed a robust framework to compute the %rank,

Fig. 1 | Integration and curation of αβTCR–pMHCs interactions reveal binding
specificities fordozensof class I and class II epitopes. AOverviewof ourpipeline,
including data collection, training of MixTCRpred, and applications. B Summary of
the datasets collected in this study with the corresponding number of TCRs and
pMHCs. C Distribution of pMHCs interacting with different numbers of TCRs. One-

hundred forty-six pMHCs have 10 or more experimentally validated binding
αβTCRs, with a total of 17,715 αβTCRs. D Barplots showing the number of αβTCRs
for the top 20 pMHCs with the most experimentally validated αβTCRs.
E Distribution of TCRs recognizing epitopes restricted to different MHC alleles.
Source data are provided as a Source Data file.
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which indicates how the raw score of a given TCR compares with that
of a large set of randomly generated TCRs (see “Methods” and Sup-
plementary Fig. 1).

To explore the accuracy of our predictions and the impact of the
size of the training set, we first performed a standard 5-fold cross-
validation for each of the 146 MixTCRpred models. Performance was
assessed with the Area Under the receiver operating curve (AUC) (see
the Source Data file). As shown in Fig. 2B, MixTCRpred models
achieved robust predictions for pMHCs with a large number of inter-
acting TCRs: out of 43 pMHCs with more than 50 TCRs, 40 had an

average AUC>0.7, and 34 of them an AUC>0.8. Lower accuracy was
observed for several pMHCs with fewer TCRs.

We next performed a leave-one-sample-out cross-validation to
determine whether MixTCRpred predictions were consistent across
samples within the same study. 15 epitopes had been analyzed in
multiple samples, each of which had at least 10 TCRs. Figure 2C
shows that in themajority of the cases,MixTCRpredwas successful in
predicting epitope-specific TCRs in a new sample, with leave-one-
sample-out performances similar to that of a 5-fold cross-validation.
To assess whether predictions could be transferred across different

Fig. 2 | MixTCRpred accurately predicts TCRs recognizing specific pMHCs.
A Illustration of theMixTCRpredmodel architecture. For each pMHC,MixTCRpred
predicts if a TCR (encoded based on the CDR1, CDR2, and CDR3 α- and β

sequences) would target it. The outputs are the predicted MixTCRpred interaction
score and the corresponding % rank.B 5-fold cross-validation average AUCs for the
146pMHCs included in our dataset. The vertical lines show the standarddeviations.
The dashed lines correspond to random (red line, AUC of 0.5) and perfect pre-
dictions (black line, AUC of 1). C Comparison of the AUC values in leave-one-
sample-out cross-validation (one point for each sample and each pMHC) with the
average AUC values in the 5-fold cross-validations (one point for each pMHC).
N = 73 independent sampleswereused in the leave-one-sample-out cross-validation
forHomo Sapiens and N = 56 forMus Musculus.D Comparison of the AUC values in
leave-one-study-out cross-validation (one point for each study and each pMHC)

with the average AUC values in the 5-fold cross-validations (one point for each
pMHC). N = 33 independent studies were used in the leave-one-study-out cross-
validation for Homo Sapiens and N = 2 for Mus Musculus. E Comparison of
MixTCRpred with other pre-trained tools for Homo sapiens and Mus musculus
pMHCs. The median AUC for each tool is included in parentheses. For each tool
separately, the statistical comparison with MixTCRpred was performed consider-
ing the pMHCs supported bybothmethods.FAUCsofMixTCRpred andother tools
for the 17 pMHCs of the IMMREP22 benchmark dataset. The center line within the
box represents the median value, with the bottom and top bounds of the box
delineating the 25th and 75th percentiles, respectively. Whiskers extend to mini-
mum and maximum values. The p-values were obtained with a two-sided paired t-
test. Source data are provided as a Source Data file.
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studies, we performed a leave-one-study-out validation, including
epitopes with at least 10 TCRs per study. Overall, we observed only
limited loss in predictive power with respect to the AUCs of 5-fold
cross-validations on the same datasets (Fig. 2D). This demonstrates
that MixTCRpred predictions are robust across studies and could be
applied to new studies for the epitopes considered in the
MixTCRpred training set.

This conserved predictive power could result from either con-
servation of TCR sequence patterns captured by MixTCRpred, or the
presence of public clones that are found across different samples/
studies. To shed light on this question, we focused onTCRs specific for
the class II H2-IAb, DIYKGVYQFKSV epitope from LCMV-infected Mus
Musculus samples for which multiple samples from 2 studies were
available (Supplementary Fig. 2). Out of a total of 11 samples, we
observed that most TCRs are unique to one sample (approximately
98%of the epitope-specific TCR repertoire), and only a limited number
of TCR sequences are shared across two or more samples (Supple-
mentary Fig. 2B, C). Despite this low clonal overlap, the CDR3α and
CDR3β display similar motifs across different samples and studies
(Supplementary Fig. 2D). These epitope-specific TCRs came from
mono-allelic Mus Musculus strains elevated in controlled conditions.
Therefore, most of the observed TCRs variability is attributable to the
fact that a large number of different TCRs can be generated to target
the same pMHC as long as they satisfy the statistical constraints
reflected by the sequence patterns and captured by MixTCRpred.
Similar results were obtained for other epitopes (Supplemen-
tary Fig. 3).

MixTCRpred compares favorably with other TCR–pMHC inter-
action prediction tools
Next, we benchmarkedMixTCRpredwith other publicly available tools
that take αβTCRs as input. First, we evaluated the performance of our
predictor against the other available pre-trained models accessible
through command-line or web interfaces, i.e., NetTCR2.135, ERGO2.0
(AE), ERGO2.0 (LSTM)37,54 and tcrdist350 (see “Methods”). To this end,
we used the McPAS database as a test set, which is not part of the
training dataset of most tools considered in this validation with the
exception of NetTCR2.1. MixTCRpred was retrained excluding data
from this database as well as overlap in other databases (see “Meth-
ods”). A comparison of the performance was done for the set of
pMHCs that were supported by each tool in their pre-trained version.
Our results demonstrate that MixTCRpred consistently outperforms
other available tools for Homo sapiens and Mus musculus
pMHCs (Fig. 2E).

To extend our benchmark to other methods, including some that
have not yet been released, we capitalized on the recent IMMREP22
dataset43 consisting of curated data for 17 peptides–MHC, each having
at least 50 unique validated binding αβTCR sequences. This dataset
was specifically collected to benchmark the algorithms behind
TCR–pMHC interaction predictors (i.e., using the same training and
test sets for all methods). Upon retraining our tool on the same
training set as all other tools, we observed that MixTCRpred achieved
similar or higher accuracy on the test set (median AUC of 0.891,
Fig. 2F). This indicates that the architecture of MixTCRpred provides
state-of-the-art performance, evenwhen not considering our efforts to
enhance and curate the training set.

We further used the IMMREP22 dataset to assess the role of the
CDR1 and CDR2 sequences in MixTCRpred (Supplementary Fig. 4A).
We observed that predictions with the CDR1, CDR2, and CDR3 as input
features are more accurate than those obtained using only the CDR3
for most pMHCs (Supplementary Fig. 4B), which is consistent with
previous observations35,43. Overall, our results show that MixTCRpred
achieves robust predictions for pMHCs for which several interacting
TCRs have been experimentally determined.

MixTCRpred reveals how much predictions can be extended to
unseen epitopes
To investigate whether predictions may be extended to epitopes not
present in the training set, we adapted MixTCRpred architecture to
incorporate both the peptide and TCR sequences as inputs, resulting in
a so-called pan-epitope predictor. This involved adding an extra
embedding and transformer encoder layer for the epitope sequence
and concatenating it with the TCR before the final classification layer
(Supplementary Fig. 5). Bydoing so, themodel is, in theory, able to learn
correlation patterns between the TCR and epitope sequences, and
potentially predict TCRs binding to epitopes without any known TCR
(i.e., unseen epitopes)35. To avoid overly complex models, we trained a
separate pan-epitope MixTCRpred model for each MHC allele.

To evaluate the performance of the pan-epitope version of
MixTCRpred, we first performed a 5-fold validation to predict TCRs
interacting with epitopes already present in the training set. The pan-
epitope predictor demonstrated performances similar or lower to the
pMHC-specific MixTCRpred predictor (Fig. 3A and Supplementary
Fig. 6A). The lower prediction accuracy of the pan-epitope model was
especially significant for epitopes withmore than 50 TCRs (Fig. 3B and
Supplementary Fig. 6B). Overall, this indicates that incorporating all
available TCR–epitope pairs in the training of MixTCRpred is less
effective for TCR–epitopepredictions than training specificmodels for
each epitope, thereby supporting our choice of an epitope-specific
architecture in the final version of MixTCRpred. These results are
consistent with previous studies35.

Next, we investigated the ability of the pan-epitope model to
predict TCRs interacting with unseen epitopes by performing a leave-
one-epitope-out validation. This analysis revealed limited accuracies,
with amedianAUC of 0.59 (Fig. 3C). Out of 16 cases with AUCs >0.8, 11
of them had an epitope in the training set differing by only one amino
acid (Fig. 3D). We next computed the sequence similarity between
each pair of epitopes restricting to epitopes presented by the same
MHC allele (similarity of 1 corresponds to identical epitopes, see
“Methods”). When the test epitope in the leave-one-epitope-out vali-
dation had high sequence similarity with one of the epitopes in the
training set, the pan-epitope predictor gives, in general, better than
random predictions (Fig. 3D). As the similarity between the test epi-
tope and those in the training set decreases, predictions become close
to random (Fig. 3D). Overall, this suggests a model where predictions
can be transferred to a new epitope almost only when highly similar
epitopes restricted to the same MHC are part of the training set and
have enough experimentally determined TCRs interacting with them.
As an example for this observation, TCRs binding to HLA-
A*02:01,ELAGIGILTV exhibited similar motifs to those binding to HLA-
A*02:01,EAAGIGILTV - the two epitopes differing only at the unex-
posed HLA anchor position (BLOSUM similarity of 0.89) - whereas the
similarity was lower with more different epitopes, such as HLA-
A*02:01,KLVALGINAV (BLOSUM similarity of 0.39) (Fig. 3E). Including
ELAGIGILTV TCR sequences in the model could be informative to
predict EAAGIGILTV TCRs, but not for KLVALGINAV. To evaluate the
likelihood of a given epitope showing high enough similarity to one
epitope in the training set of MixTCRpred, we collected all T-cell epi-
topes in IEDB39. We observed that less than 0.03% have sequence
similarity higher than 0.8 (Supplementary Fig. 7).

Overall, our results show that extending predictions to unseen
epitopes is challenging with the current amount of TCR–pMHC
sequence data, with successful predictions possible only when the
unseen epitope has very high sequence similarity and the same MHC
restriction with at least one epitope in the training set of MixTCRpred.
These findings align with observations from previous studies42,65,66,
further supporting the fact that generalizing predictions to any epi-
tope is currently an unmet challenge, irrespective of the architecture
of the algorithm that is used.
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Fig. 3 | MixTCRpred reveals howmuch predictions can be extended to unseen
epitopes. A Comparison of the 5-fold cross-validation average AUCs to predict
TCRs for epitopes present in the training set. We used the pMHC-specific and the
pan-epitope version ofMixTCRpred, and included a total of N = 120 epitopes in the
analysis. B Comparison of the 5-fold cross-validation average AUCs for pMHC-
specific and the pan-epitope version of MixTCRpred considering N = 37 epitopes
withmore than 50 TCRs. The p-values were obtainedwith a two-sided paired t-test.
C AUC values of the leave-one-epitope out validation for N = 120 epitopes achieved
with the pan-epitope version of MixTCRpred. D Sequence similarity between the

test epitopes and themost similar epitope in the training set, and the AUCvalues of
the leave-one-epitope out validation for a total of N = 120 epitopes. The red dashed
line corresponds to an AUC of 0.8. E Illustration for the extrapolation of
TCR–epitope interaction predictions to unseen epitopes. Epitopeswith very similar
sequences are expected to be recognized by similar TCRs displaying similar
sequence motifs. The center line within the box represents the median value, with
the bottom and top bounds of the box delineating the 25th and 75th percentiles,
andwhiskers are set to 1.5 times the interquartile range. Sourcedata areprovidedas
a Source Data file.
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MixTCRpred provides a quality control tool for scTCR-Seq data
of T cells labeled with DNA-barcoded pMHC multimers
DNA-barcoded pMHC multimers provide a powerful way to simulta-
neously label T cells recognizing distinct epitopes. This approach was
recently usedby 10xGenomics to identify and sequenceTcells specific
for 44 different epitopes38. In this assay, the binding specificity of a T
cell was determined by the DNA-barcoded pMHC multimer with the
highest UMI counts across all possible multimers (Fig. 4A). However,
TCR–epitope interaction predictors trained on this dataset, in general,
achieved poor performances35,40. To shed light on this issue, we cal-
culated for each cell the fraction of UMIs specific to the pMHC multi-
mer with the highest counts, hereinafter Fmax (Fig. 4A and “Methods”).
This revealed high variability of Fmax distributions across donors and
epitopes (Fig. 4B). Next, to mimic the situation where pMHCs multi-
mers without previously known interacting TCRs are being used in
individual donors, we trained and tested a specificMixTCRpredmodel
for each combination of pMHCs and donors, and compared the AUC
obtained from standard 5-fold cross-validation with the median Fmax. A
clear correlation between these two values was observed, indicating
that cases (i.e., donor–pMHCs) with multiple pMHC barcodes per cell
demonstrated low internal consistency in their TCR sequences
(Fig. 4C). These include cases with a large training set (e.g., HLA-
A*03:01, KLGGALQAK, with 19753 specific T cells corresponding to
7182different clonotypes for the 4 donors, Fig. 4B, C). On the contrary,
when the T cell specificity was unambiguous, reflected by a high
fraction of UMIs for a specific pMHC multimer (e.g., the HLA*A-02:01,
GILGFVFTL specific T cells), accurate predictions could be achieved,
indicating high-quality training data. These observations motivated us
to only include data from donor-pMHC with a median Fmax > 0.75 (i.e.,
1704 TCR clonotypes specific for 5 pMHCs, see “Methods”) to train
MixTCRpred.

For most cases with high MixTCRpred AUC, we observed that the
MHC alleles used in the multimers were also found in the corre-
sponding donors (points with a black border in Fig. 4C, donor HLAs in
Supplementary Table 1). One exception consists of donor 4, where the
IVTDFSVIK epitope in complex with HLA-A*11:01 was used. This donor
was HLA-A*03:01 positive, and the two alleles show highly similar

motifs (Supplementary Fig. 8), suggesting that TCRs isolated with the
HLA-A*11:01 multimer may be cross-reactive with the same epitope in
complex with HLA-A*03:01.

Overall, our findings show that MixTCRpred is a valuable quality
control tool for single-cell TCR-Seq data of epitope-specific T cells
labeled with barcoded pMHC multimers in different donors.

MixTCRpred reveals epitope-specific chains in epitope-specific
dual α T cells
Approximately 10% of T cells express two distinct α chains on the cell
surface24. Many approaches assume that the chain with higher
expression (higher UMI counts or higher read counts if both chains
have the same UMI count) is the one mediating epitope
recognition27,29. To investigate the validity of this assumption, we
focused on the 10xGenomics dataset38 and selected twopMHCswith a
large number of αβTCRs, namely HLA-A*02:01, GILGFVFTL (839
αβTCRs) and HLA-A*02:01, ELAGIGILTV (169 αβTCRs). Next, we
retrieved T cells expressing two α and one β chains (152 for HLA-
A*02:01, GILGFVFTL, and 18 for HLA-A*02:01, ELAGIGILTV) after fil-
tering out doublets (see “Methods”).

For each epitope, we trained a specific MixTCRpred model with
the αβTCR sequences from single α T cells. We then used it to predict
the binding of TCRs fromdual α T cells (αxαy-β), by considering eachα
chain separately (αx–β and αy–β TCRs, see Fig. 5A). In most cases, the
two α chains exhibited significantly different MixTCRpred scores
(Fig. 5B). The best predicted MixTCRpred binder coincided with the α
chainwith higher expression in approximately 60%of the dualαTcells
(85 cases out of 152 for the HLA-A*02:01, GILGFVFTL, and 11 out of 18
for the HLA-A*02:01, ELAGIGILTV) (Supplementary Fig. 9A). To vali-
date that theα chainwith the bestMixTCRpredprediction (hereinafter
chainα1) was the one involved in epitope recognition,we selected a set
of 6 dual α T cells for HLA-A*02:01, GILGFVFTL and 5 for HLA-A*02:01,
ELAGIGILTV (Tables 1 and 2 and Supplementary Fig. 10). RNA encoding
α1βTCR and α2βTCR from these dual α T cells was synthesized and
electroporated into TCR–Jurkat cells. After overnight incubation, TCR
transfected cells were interrogated by pMHC-multimer staining (see
“Methods”). Figure 5C demonstrates that α chains predicted by

Fig. 4 |MixTCRpredprovidesaqualitycontrol tool for scTCR-SeqdataofT cells
labeled with DNA-barcoded pMHC multimers. A Illustration of a T cell labeled
with DNA-barcoded pMHC multimers, together with the distribution of UMI for
different pMHCmultimers and the corresponding Fmax. B Fmax values for each T cell
in each donor-pMHC sample. The center line within the box represents themedian
value, with the bottom and top bounds of the box delineating the 25th and 75th
percentiles, respectively. Whiskers are set to 1.5 times the interquartile range.

C Comparison between the median Fmax in each donor-pMHC sample and the AUC
of the correspondingMixTCRpredmodel. The size of each point is proportional to
the number of clonotypes. The black border indicates matches between the donor
MHC alleles and the MHC of the multimer. The Pearson correlation and the cor-
responding two-sided p-value are reported. Source data are provided as a Source
Data file.
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Table 1 | List of the six dual α TCRs specific to the HLA-A*02:01, GILGFVFTL epitope, which were selected for experimental
validation

TRBV CDR3 TRB TRBJ TRAV (α1) CDR3 TRA (α1) TRAJ (α1) TRAV (α2) CDR3 TRA (α2) TRAJ (α2)

1 TRBV19 CASSIGSYGYTF TRBJ1-2 TRAV38-1 CAFMISAGGTSYGKLTF TRAJ52 TRAV12-2 CAVIGGGADGLTF TRAJ45

2 TRBV19 CASSIRSSYEQYF TRBJ2-7 TRAV12-2 CAVNQGGGSQGNLIF TRAJ42 TRAV30 CGTEWEARLMF TRAJ31

3 TRBV19 CASSTGVYGYTF TRBJ1-2 TRAV38-1 CAFMTNAGGTSYGKLTF TRAJ52 TRAV30 CGTERSGGSNYKLTF TRAJ53

4 TRBV19 CASSIGLYGYTF TRBJ1-2 TRAV38-2DV8 CAYSVNAGGTSYGKLTF TRAJ52 TRAV40 CLLEVFFGNEKLTF TRAJ48

5 TRBV19 CASSSRAGGEQYF TRBJ2-7 TRAV5 CAENEGGGSQGNLIF TRAJ42 TRAV30 CGTRKNDYKLSF TRAJ20

6 TRBV19 CASSQGSWGYTF TRBJ1-2 TRAV38-1 CAFMIGAGGTSYGKLTF TRAJ52 TRAV20 CAVFFEGGATNKLIF TRAJ32

The α1 chain is the best MixTCRpred prediction.

Fig. 5 | MixTCRpred reveals epitope-specific chains in epitope-specific dual α
T cells. A Overview of our pipeline to investigate epitope-specific chains in dual α
T cells. B MixTCRpred scores of the two TCRs in dual α T cells specific to HLA-
A*02:01, GILGFVFTL (N = 152) and to HLA-A*02:01, ELAGIGILTV (N = 18). Chain α1 is
defined as the one with the best MixTCRpred score. The center line within the box
represents the median value, with the bottom and top bounds of the box deli-
neating the 25th and 75th percentiles, respectively.Whiskers are set to 1.5 times the

interquartile range. The p-values were obtained with a two-sided independent t-
test. C Multimer staining of the TCRs with the predicted α chain (chain α1) and
TCRs with the other α chain (chain α2) for the dual α T cells used in our experi-
mental validation. D Fraction of correctly predicted α chains by MixTCRpred,
considering the most expressed chains, and with exact matches in αβTCRs from
single α T cells. Source data are provided as a Source Data file.
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MixTCRpred were binding to the pMHCs in all cases, while the other
chains did not bind. Similar results were not obtained with predictions
based on the highest UMI count, which identified the correct epitope-
specific α chains only in 50% and 60% of the tested cases (Fig. 5D and
Supplementary Fig. 11).

An alternative approach to identify epitope specific α chains is to
look for exact matches of the αx-β or αy-β TCRs in our comprehensive
database of single α T cells. Exactmatches could be found for 96 cases
for HLA-A*02:01, GILGFVFTL, including only 3 cases (TCR-1, -4, and -5)
for the TCR sequences experimentally tested, and none for the HLA-
A*02:01, ELAGIGILTV epitope (Fig. 5D and Supplementary Fig. 8B).

Overall, these results indicate that MixTCRpred offers a robust
framework for identifying epitope-specific chains in dual α T cells and
overcomes limitations of methods such as UMI counts, or exact TCR
sequence matches in single α T cells.

MixTCRpred reveals enrichment of TCRs specific for an immu-
nodominant SARS-CoV-2 epitope in COVID-19-positive patients
αβTCR repertoires have been sequenced in several COVID-19 patients
to characterize the T cell response to SARS-CoV-2 infection, but the
precise epitope targets have largely remained unknown. Earlier
investigations have identified T cells specific to SARS-CoV-2 by exam-
ining TCRs that are enriched in COVID-19-positive patients with
respect to healthy patients67, or that are oveshared betweenCOVID-19-
positive patients68. Cross-referencing the COVID-enriched TCRs with a
bulk TCR dataset with known specificity for certain SARS-CoV-2
peptide69 also enabled the identification of epitope targets for a sub-
stantial number of clonotypes67.

As a complementary approach, here we utilized MixTCRpred to
explore the presence of TCRs specific to a known immunodominant
class II SARS-CoV-2 epitope (TFEYVSQPFLMDLE from the SARS-CoV-2
spike protein and restricted to HLA-DPB1*04:01) in TCR repertoires.
We collected αβTCR repertoires of CD4+ T cells from multiple studies
that isolated T cells from the peripheral blood of both COVID-19-
positive and COVID-19-negative patients70–72. This collection included
T cells that were stimulatedwith a range of SARS-CoV-2 proteins70,71, as
well as T cells that were sequenced directly ex-vivo without any
stimulation72, with a total of 205,930 CD4+ T cells from 138 COVID-19-
positive patients and 46 healthy donors (see “Methods”). The HLA
alleles of the patients were not provided.

Next, we calculated the proportion of TCRs thatwerepredicted to
target the TFEYVSQPFLMDLE epitope within each TCR repertoire. A
threshold of 0.01 was used on MixTCRpred %rank (see “Methods” and
Supplementary Fig. 1). Across all three studies, we observed an
enrichment and overall higher fraction of CD4+ T cells predicted to
target this immunodominant epitope in repertoires from COVID-19-
positive patients (Fig. 6A, B). Among our predictions, we also observed
several cases of expanded CD4+ T cells (Fig. 6C). The overall ratio of
T cells predicted to be TFEYVSQPFLMDLE specific was particularly
pronounced in samples from the Bacher et al. study70. In this study
CD4+ T cells were stimulated with peptides from the SARS-CoV-2 spike
protein that included the TFEYVSQPFLMDLE peptide. Conversely, in

the Meckiff et al. study71, a different peptide pool was used for sti-
mulation, which did not encompass the TFEYVSQPFLMDLE peptide73,
and the overall enrichment was less prominent. The expanded clones
were less frequent in unstimulated cells from PBMC, as expected for
epitope-specific CD4+ T cells. Our results indicate that MixTCRpred
offers a robust framework for in silico analysis of epitope-specific
T cells directly from TCR repertoires and reveals enrichment of T cells
predicted to be specific for the immunodominant
DPB1*04:01,TFEYVSQPFLMDL epitope in COVID-19-positive patients.

Discussion
TCR sequencing enables researchers to rapidly determine the TCR
repertoire of clinically relevant samples like tumors. One of the main
promises of TCR–pMHC interaction predictors is the ability to identify
in silico TCRs recognizing specific epitopes directly from such TCR
repertoire data. In this work, we trained a predictor of TCR–pMHC
interactions for a set of epitopes with enough known TCRs. These
epitopes covermany commonviruses, aswell as somecancer antigens.

Our work indicates that reasonable prediction accuracy requires
at least 50 αβTCRs. These results provide a strong motivation for
global initiatives to collect many TCRs recognizing diverse epitopes,
andwe anticipate that both the data collected and curated in thiswork
and the MixTCRpred framework will contribute to this global
endeavor.

Several existing tools have attempted to extrapolate predictions
to other epitopes, including epitopes without any known TCRs (i.e.,
unseen epitopes), by considering both the TCR and the epitope
sequences in the input of their machine learning framework. While
some approaches have reported some success47, other studies
have reached the conclusion that extending predictions to any epitope
is currently not feasible65,66. Our results, which align with previous
findings45,46,74, suggest that cases where predictions could be extra-
polated to new epitopes consist mostly of epitopes having very high
similarity and the same MHC restriction to an epitope in the training
set. As of today, these cases represent only a tinyminority of all known
epitopes. Moreover, we cannot fully exclude some level of circularity
since TCRs tested with a given epitope may have been selected based
on their similarity with TCRs interacting with another highly similar
epitope. These observations indicate that extrapolation to any epitope
is still an unsolved challenge. Our work also suggests thatmixing TCRs
interacting with different epitopes when training TCR–pMHC inter-
actionpredictors, in general, doesnot improve andmayeven lower the
prediction accuracy, thereby justifying our choice to train a separate
predictor for each epitope.

Application of MixTCRpred to data generated with the 10x
Genomics immuneprofiling platform38 suggests that several cases (i.e.,
pMHC–donor pairs) may include a substantial fraction of con-
taminants. This observation has important consequences since 10x
Genomics data currently constitute 70% of all paired αβTCR–epitopes
in VDJdb28 and66% in IEDB39. Filtering out putative contaminants led to
the removal of roughly 85% of the 10x Genomics data, which is con-
sistent with estimates of contaminants in other studies27,40. Some of

Table 2 | List of the five dual α TCRs specific to the HLA-A*02:01, ELAGIGILTV epitope, which were selected for experimental
validation

TRBV CDR3 TRB TRBJ TRAV (α1) CDR3 TRA (α1) TRAJ (α1) TRAV (α2) CDR3 TRA (α2) TRAJ (α2)

1 TRBV6-3 CASTLGEGSEAFF TRBJ1-1 TRAV12-2 CRVGGGADGLTF TRAJ45 TRAV21 CDRGRGTSYDKVIF TRAJ50

2 TRBV4-2 CASSQGAFSVEQYF TRBJ2-7 TRAV12-2 CAVKGGGADGLTF TRAJ45 TRAV14DV4 CAMSISYNNNDMRF TRAJ43

3 TRBV6-1 CASSDTETGGLETQYF TRBJ2-5 TRAV12-2 CAVNGARLMF TRAJ31 TRAV5 CAETTGALYSGAGSYQLTF TRAJ28

4 TRBV5-8 CASSFGALNTEAFF TRBJ1-1 TRAV12-2 CAVCSGGYNKLIF TRAJ4 TRAV8-2 CDRYSTLTF TRAJ11

5 TRBV14 CASSFQGLGTEAFF TRBJ1-1 TRAV12-2 CAVNNAGGTSYGKLTF TRAJ52 TRAV13-2 CAEKDDKIIF TRAJ30

The α1 chain is the best MixTCRpred prediction.
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these studies includeHLAmismatchbetween the donor and the pMHC
multimers in the filtering criteria40. Our results support this approach
but suggest integrating the notion of HLA binding motif divergence
and keeping cases of mismatched HLAs with similar binding motifs
(e.g., HLA-A*03:01 and HLA-A*11:01). The remaining TCR–pMHCs pairs
demonstrate consistent TCR sequence patterns and good internal
AUC. Thesedatawere highly valuable for improving and expanding the
epitope coverage ofMixTCRpred. We anticipate that improvements in
both DNA barcoded multimer technology and post-processing tools
will enable researchers to collect large amounts of TCR–pMHCs
interactions in the near future with this technology. Such data will be

instrumental in characterizing the TCR specificity of viral or cancer
epitopes and possibly one day for training TCR–pMHC interaction
predictors for any epitope.

Our work shows that MixTCRpred can accurately identify the
epitope-specific chain in dual α T cells recognizing specific epitopes,
even when this chain did not have the highest UMI count and was not
present among the single α chain T cells. These results have important
implications for the processing of single-cell TCR-sequencing data
from epitope-specific T cells. For instance, several entries in the
VDJdb29 report the α chain with the highest UMI count, while the
MixTCRpred score is much higher for the other α chain. These include

Fig. 6 | MixTCRpred reveals enrichment of TCRs specific for an immunodo-
minant SARS-CoV-2 epitope in COVID-19-positive patients. TCR repertoires of
stimulated CD4+ from Bacher et al.70 (14 COVID-19-positive and 3 COVID-19-
negative patients) Meckiff et al.71 (21 positive and 5 negative patients), and of
unstimulated CD4+ from Stephenson et al.72. A Fraction of T cells predicted to be
TFEYVSQPFLMDLE specific for each patient. The center line within the box
represents the median value, with the bottom and top bounds of the box

delineating the 25th and 75th percentiles, respectively.Whiskers are set to 1.5 times
the interquartile range. The p-values were obtained with a two-sided independent
t-test. B Overall fraction of T cells with undetermined specificity (in gray) or pre-
dicted to be specific for the immunodominant TFEYVSQPFLMDLE epitope (in
blue). C Clone size of each TCR clonotype. Source data are provided as a Source
Data file.
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the α sequences TRAV30, CGTEWEARLMF, TRAJ31 and TRAV20,
CAVFFEGGATNKLIF, TRAJ32 for the HLA-A*02:01 GILGFVFTL epitope,
as well as TRAV5, CAETTGALYSGAGSYQLTF, TRAJ28 and TRAV13-2,
CAEKDDKIIF, TRAJ30 for HLA-A*02:01 ELAGIGILTV epitope, which we
experimentally validated as non-binders (Tables 1 and 2 and Source
Data file). TCR–pMHC interaction prediction tools like MixTCRpred
will help address this issue and improve the quality of data stored in
these databases.

The clear differences observed between the scores of the two
chains in dual α T cells also indicate that most of these cases were not
doublets and that, in general, only one α chain is responsible for the
epitope specificity and cases where both α chains recognize the same
epitope appear to be very rare. Our observations further suggest that
thehighestUMI criteria shouldbe usedwith caution, alsowhendealing
with dual α T cells of unknown specificity.

The enrichment and expansion of TCRs predicted to target an
immunodominant SARS-Cov-2 epitope in TCR repertoires from
COVID-19-positive patients, even without the possibility of stratifying
patients based on their HLA alleles, suggests that many of these clo-
notypes are specific forTFEYVSQPFLMDLESARS-CoV-2epitope. This is
consistent with the fact that this epitope is immunodominant73 and
restricted to a frequent HLA-DP allele (i.e., HLA-DPB1*04:01, found in
>40% in diverse populations75). Moreover, the HLA-DPB1*04:01 motif
has high similarity with many other HLA-DP alleles (Supplementary
Fig. 12). TCRs predicted to target TFEYVSQPFLMDLE in COVID-19-
negative donors or in COVD-19-positive donors with incompatible
alleles may represent cross-reactive TCRs with other epitopes, as
expected from previous observations of SARS-CoV-2 reactive TCRs in
patient before COVID-19 infection76,77.

In summary, our study provides a high-quality dataset of
TCR–pMHC interactions for several common viral and cancer epitopes
(reported in the SourceData file) as well as a robust command-line tool
(https://github.com/GfellerLab/MixTCRpred) to predict new TCRs
binding to these epitopes. Beyond computational annotation of TCR
repertoires, our work shows that MixTCRpred can be used as a quality
control tool for single-cell TCR-sequencing data of T cells labeled with
DNA barcoded multimers, as well as to annotate α chains mediating
epitope recognition in epitope-specific dual α T cells. Considering the
rapid developments of technologies to isolate and sequence epitope-
specific T cells, we anticipate that the epitope coverage of TCR–pMHC
interaction predictors will keep increasing, making such tools relevant
for in silico identification of TCRs recognizing known viral or cancer
epitopes directly from TCR repertoire. This could pave the way for
diagnosis applications, as illustrated by the SARS-CoV-2 epitope ana-
lyzed in this work.

Methods
TCR–epitope sequence data
TCR–pMHC pairs were collected from publicly available datasets,
includingVDJdb29, (data download27/10/2022), IEDB39 (data download
02/11/2022), and the McPAS database60 (data download 27/10/2022).
TCR–pMHCs pairs from the 10x Genomics dataset38 were processed
separately. Additional data forMus musculus were retrieved from two
recent studies61,62. Only paired TCR sequences (with both theα and the
beta β sequences) were considered, and sequences containing non-
standard amino acids were removed. Duplicated TCR–pMHC were
merged based on V/J gene usage and CDR3 sequence for both the α-
and β-chain. The data analysis was donewith Python (v.3.9.7) using the
BioPython (v.1.79) and pandas (v.1.5.2) libraries.

Pre-processing single-cell dataset
Multiple datasets used in this study were generated using the Chro-
mium platform of 10x Genomics38,61,62,78 and processed with the Cell
Ranger Single Cell Software Suite by 10x Genomics. To ensure high-

quality data standard quality control on transcriptomic data was per-
formed, by
a. Filtering out cellswith low/highUMIs (<1500or >15,000UMIs and

remove top/bottom 1%)
b. Filtering out cells with a low number of genes (<700 UMIs and

removing top/bottom 1%)
c. Filtering out cells with high mitochondrial/ribosomal data (<10%

mitochondrial gene, <50% ribosomal genes)

The analysiswasdonewith the scanpy library79 The scirpy library80

(v.0.10.0) was used to integrate TCR sequence with transcriptomics
data and to identify T cells with multiple chains. Doublets were iden-
tified and removed with the scrublet package81.

10x Genomics dataset
For the 10x Genomics dataset38, after standard single-cell dataset
preprocessing, one additional step is required tomatch each TCRwith
the cognate DNA-barcoded multimer. Following the guidelines out-
lined in the 10x Genomics documentation, cells with less than 10
multimer UMI counts were filtered out. Additionally, cells were also
removed if their UMI counts for a specific multimer were not sig-
nificantly higher than the UMI counts for negative control multimers
(at least 5 times greater than the negative controls). Finally, cells were
excluded if they had UMI counts for more than 5 different multimers.
Each remaining cell was thenmatched to themultimerwith the highest
UMI counts, which was attributed to the specificity of the T cell (a total
of 67,084 epitope-specific T cells and 14,887 αβTCR clonotypes).
50,625 of them were αβ T cells (10,376 clonotypes), but only 26,753
T cells (1704 clonotypes) had a median fraction of UMI counts for one
specific multimer >0.75 and were thus included in the MixTCRpred
training dataset.

Negative data
For each epitope, negative cases (i.e., TCRs not binding to the target
epitope) were computationally generated by

• sampling TCRs specific to other pMHCs (negative/positive ratioof
1:1). In order to avoid themodel from learning biased patterns due
to the imbalanced distribution of TCR–pMHCs sequence data
(Fig. 1C, D), a weight was assigned to each sequence before sam-
pling. This weight was calculated as the reciprocal of the total
number of TCRs that bind to the corresponding epitope. Homo
sapiens and Mus musculus epitopes were treated separately.

• sampling TCRs from TCR repertoires (negative/positive ratio of
4:1). Homo sapiens αβTCR repertoires were downloaded from
iReceptor9, and from one recent study for Mus musculus78. When
studying specifically the 10x Genomics dataset (leave-one-sample
out, MixTCRpred for quality control of the 10x Genomics dataset,
MixTCRpred to investigate dual α T cells), TCRs not assigned to
any epitopes (UMIS counts = 0) were used as negatives35,36.

As a result, the final dataset had a negative-to-positive ratio of 5:1.

MixTCRpred model
MixTCRpred is a transformer-based model64 written in Python, relying
on the PyTorch82 and PyTorchLighting83 libraries. For each pMHC in
our dataset a specific MixTCRpred model was trained with experi-
mentally validatedTCRs and computationally generated negatives. For
each TCR used as input, CDR1, CDR2 (from the V gene), and
CDR3 sequences for the α- and the β-chain were retrieved separately.
The sequences were padded, concatenated, and numerically embed-
ded using the nn.Embedding function of PyTorch (learned embed-
ding) and a positional encoding. A transformer encoder was then
used64, followed by a dense classification layer to output the
MixTCRpredbinding score (with higher score sequencesmore likely to
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bind). To achieve comparability across models, for each input TCRs
the corresponding % rank was also calculated. To this end, Homo
sapiens αTCRs and βTCRs from iReceptor9 were collected. For Mus
musculus αTCRs were downloaded iReceptor9 while βTCRs from three
different studies84–86 from the immuneACCESS website. Next, treating
Homo sapiens and Mus musculus separately, α and β TCR sequences
were randomly paired to generate 106 different TCRs that were scored
using each one of the 146pMHCMixTCRpredmodels. The %rank of an
input TCR with a given MixTCRpred score is the fraction of TCR
sequences with higher scores multiplied by 100. Low %rank score
sequences are more likely to bind. Most true binders have been
observed to have a % rank of less than 0.5–0.1 (Supplementary Fig. 1).

Benchmarking with other existing tools
To benchmark MixTCRpred with other pre-trained tools accessible
through command-line or web interfaces, the entire dataset was used
for training except for the McPAS dataset60, which was kept aside as
the test set. Sequences appearing in both the training and test sets
were removed from the test set. A distinct MixTCRpred model was
trained for each epitope having more than 50 binding TCRs in the
training set and more than 10 TCR in the test set. The following pre-
trained TCR–epitope interaction predictors were used in this
validation:

• ERGO2.037,54 from the webserver (https://tcr2.cs.biu.ac.il/home)
selecting the versions that did not include the McPAS dataset60 in
the training set. Both the Long Short-Term Memory (LSTM) and
the AutoEncoders (AE) based were considered.

• NetTCR2.135 from the webserver (https://services.healthtech.dtu.
dk/services/NetTCR-2.1/) which enabled predictions for six
human epitopes. NetTCR2.1 included the McPAS dataset60 in the
training set.

• tcrdist50 from the Python toolkit available at https://github.com/
kmayerb/tcrdist3 and the corresponding tutorial for TCR–pMHC
interactionprediction,whichdidnot include theMcPASdataset in
the training set.

The IMMREP22 dataset43 released during the IMMREP22
TCR–epitope specificity workshop, was used to benchmark
MixTCRpred with other predictors. The IMMREP22 dataset consisted
of curated TCR sequence data for 17 pMHCs, each having a minimum
of 50 unique αβTCR sequences. It was downloaded from https://
github.com/viragbioinfo/IMMREP_2022_TCRSpecificity where the
AUCs of prediction tools that participated in the workshop were also
provided. The prediction scores for individual TCRs were not pro-
vided. ERGO2.037,54 was not part of this validation and was separately
re-trained and tested.

Sequence similarity
To compute the sequence similarity between a test epitope and an
epitope in the training set, the two sequences were aligned with
the pairwise2 align function from the BioPython package87 using
the BLOSUM62 scoring matrix88. The resulting pairwise alignment
scorewas then divided by the score obtained, aligning the test epitope
sequence with itself so that the maximal similarity score was 1.
The similarity score can assumenegative values due tonegative entries
in the BLOSUM62 matrix. Scores closer to 1 indicate greater similarity
between peptide pairs.

Peptides and pMHC multimers production
Peptides and HLA-A*02:01,GILGFVFTL and HLA-A*02:01,ELAGIGILTV
multimers were produced by the Peptides and Tetramers Core Facility
(PTCF) of the Department of Oncology, University of Lausanne and
University Hospital of Lausanne. HPLC purified peptides (≥90% pure),
were verified by UHPLC-MS and kept lyophilized at −80 °C.

Peptide–MHC multimers were prepared fresh and used within a week
or kept aliquoted at −80 °C89.

TCR validation
To validate antigen specificity and interrogate T cell reactivity vs
HLA-A*02:01,GILGFVFT and HLA-A*02:01,ELAGIGILTV epitopes,
TCRα/β pairs were cloned into Jurkat T cells (TCR/CD3 stably trans-
duced with human CD8α/β and TCRα/β CRISPR-KO), as previously
described77,90. In brief, codon-optimized DNA sequences coding for
paired α and β chains, including the mouse constant region instead
of the human one, were synthesized at GeneArt (Thermo Fisher Sci-
entific) or Telesis Bio DNA. The DNA fragments served as templates
for in vitro transcription (IVT) and polyadenylation of RNAmolecules
as per the manufacturer’s instructions (Thermo Fisher Scientific),
followed by co-transfection into recipient T cells. Jurkat cells were
electroporated using the Neon electroporation system (Thermo
Fisher Scientific) with the following parameters: 1325 V, 10ms, and
three pulses. After overnight incubation, electroporated Jurkat cells
were interrogated by pMHC-multimer staining with the following
surface panel: anti-hCD3 APC Fire 750 (SK7, Biolegend Cat# 641415,
0.4 µL in 50 µL); anti-hCD8 FITC (SK-1 Biolegend, Cat# 344704, 0.15 µL
in 50 µL); anti-hCD4 PE-CF594 (RPA-T4, BD Bioscience Cat# 562281,
0.4 µL in 50 µL); anti-mouse TCRβ-constant APC (H57-597, Thermo
Fisher Scientific, Cat# 17-5961-81, 0.6uL in 50 µL); pMHC-multimer-PE
(HLA-A*02:01,GILGFVFT and HLA-A*02:01,ELAGIGILTV in-house syn-
thesized, 1 µL in 50 µL); viability dye Aqua (L34966, Thermo Fisher
Scientific, 0.15 µL in 50 µL stainingmix in PBS). In total, 200,000TCR-
transfected Jurkat cells were washed once in PBS, resuspended in
50 µL of FACS buffer (5mM EDTA, 0.2% azide, 0.2% BSA in PBS)
containing 1uL of multimer and incubated for 30min at RT. Cells
were washed once in PBS and resuspended in 50uL of PBS containing
LIVE/DEAD dye and the antibody cocktail for cell surface staining.
Cells were incubated at 4 °C for 30min and washed twice before
acquisition. FACS data were analyzed with FlowJo 10.8.1 (TreeStar).
The gating strategy is illustrated in Supplementary Fig. 13.

SARS-CoV-2 TCR repertoires
αβTCR repertoireswere collected from three different studies70–72, and
each donor was annotated as COVID-19-positive or negative.
1. Ex-vivo-isolated memory CD4+ T cells from PBMCs of unexposed

donors (n = 6) and COVID-19-positive patients (n = 14) stimulated
with pooled SARS-CoV-2 spike, membrane, and nucleocapsid
proteins70.

2. Ex-vivo CD4+ T cells isolated from PBMCs of 40 Covid-19 patients
and 13 healthy donors. CD4+ T cells were stimulated with a SARS-
CoV-2 derived peptide pool, which did not include the region of
the spike protein comprising the TFEYVSQPFLMDLE peptide71.

3. Ex-vivo unstimulated T cells from PBMCs. Cell annotations based
on the RNA expression of known marker genes were provided. A
total of 103CD4+ TCR repertoires fromCOVID-19 positive patients
and 38 from healthy donors72 were collected.

To avoid small sample bias, samples for which less than 200 TCRs
were available were removed. In total, 180,341 TCRs for 136 TCR
repertoires from COVID-19-positive patients and 44 from COVID-19-
negative donors were collected.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TCR–pMHC sequence data were collected from the publicly available
datasets VDJdb29 (https://vdjdb.cdr3.net/), IEDB39 (https://www.iedb.
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org/), and the McPAS database60 (http://friedmanlab.weizmann.ac.il/
McPAS-TCR/), and the 10x Genomics dataset38 (https://pages.
10xgenomics.com/rs/446-PBO-704/images/10x_AN047_IP_A_New_
Way_of_Exploring_Immunity_Digital.pdf). Additional data for Mus
musculuswere retrieved fromtworecent studies61,62 (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE182320 and https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE201730). A total of 17,715 dif-
ferent TCRs for 146 pMHCs were collected in this study and used to
train theMixTCRpredmodels. The TCR–epitope sequencedataset and
a list of the pre-trainedMixTCRpredmodels areprovided in the Source
Data file and at https://github.com/GfellerLab/MixTCRpred. The pre-
trained MixTCRpred models for the 146 pMHCs reported in the
manuscript are available at https://zenodo.org/record/7930623. All
other data are available in the article and its Supplementary files or
from the corresponding author upon request. Source data are pro-
vided in this paper.

Code availability
The MixTCRpred code (v.1.0)91 is available at https://github.com/
GfellerLab/MixTCRpred. The repository includes a Google Colab
notebook that enables running MixTCRpred directly from a web
browser.
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