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Viability leads to the emergence of gait
transitions in learning agile quadrupedal
locomotion on challenging terrains

Milad Shafiee 1 , Guillaume Bellegarda 1 & Auke Ijspeert 1

Quadruped animals are capable of seamless transitions between different
gaits. While energy efficiency appears to be one of the reasons for changing
gaits, other determinant factors likely play a role too, including terrain prop-
erties. In this article, we propose that viability, i.e., the avoidance of falls,
represents an important criterion for gait transitions. We investigate the
emergence of gait transitions through the interaction between supraspinal
drive (brain), the central pattern generator in the spinal cord, the body, and
exteroceptive sensing by leveraging deep reinforcement learning and robotics
tools. Consistent with quadruped animal data, we show that the walk-trot gait
transition for quadruped robots on flat terrain improves both viability and
energy efficiency. Furthermore, we investigate the effects of discrete terrain
(i.e., crossing successive gaps) on imposing gait transitions, and find the
emergence of trot-pronk transitions to avoid non-viable states. Viability is the
only improved factor after gait transitions on both flat and discrete gap ter-
rains, suggesting that viability could be a primary and universal objective of
gait transitions, while other criteria are secondary objectives and/or a con-
sequence of viability. Moreover, our experiments demonstrate state-of-the-art
quadruped robot agility in challenging scenarios.

Quadruped animals learn impressive abilities to traverse challenging
terrain, reach remote parts of the planet, and perform agile loco-
motion in pursuit of prey. They learn to avoid falling in all of these
locomotion scenarios, which in robotics terms means staying viable.
Such fascinating locomotion skills emerge from inter-limb coordi-
nation governed by the interaction between the brain, the spinal
cord, and the musculoskeletal system1. The modulation of this inter-
limb coordination can produce different gait patterns, and the
transition between these patterns is a fundamental feature of loco-
motion. Quadruped animals smoothly transition between different
locomotion gaits such as walking, trotting, galloping, and bounding/
pronking depending on their speed. However, despite the growing
number of studies on gait transitions in both robotics and biology,
there is still no clear consensus regarding the underlying mechan-
isms as well as the criteria that determine why gait transitions take
place in different conditions.

Different quantities have been proposed as important in gait
transitions: energy expenditure, peak forces, and periodicity. A study
conducted by Hoyt and Taylor2 suggested that, when changing loco-
motion speed, horses switchgaits to reduceenergy expenditure.While
energy efficiency is now the most widely accepted objective for gait
transitions, other studies have found that this hypothesis may not
always be valid for humans3,4. As an alternative to the energy-efficiency
hypothesis, Farley and Taylor5 have suggested that the trot-gallop gait
transition in horses is triggered when peak musculoskeletal forces
reach a critical level. In particular, transitioning between gaits makes it
possible to reduce peakmusculoskeletal forces (and consequently the
risk of injury). However, at the transition speed, galloping requires
more energy than trotting, meaning that this gait transition increases
theCost of Transport (CoT). Therefore, the second suggested criterion
for gait transitions is reducing peak musculoskeletal forces. Grana-
tosky et al.6 observe that, across nine species, gait periodicity
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(computed by measuring inter-stride variability) predicts the occur-
rence of gait transitions better than energy efficiency. Their findings
suggest that gait transitions are performed to maximize periodicity
(i.e., minimize inter-stride variability) and avoid unstable gaits. They
link periodicity to stability, and hypothesize that periodicity (and
hence stability) is another important gait transition criteria on flat
terrain. High periodicity can furthermore be useful for anticipatory
behavior on flat terrain by simplifying the prediction of future states
(e.g., future foot placements). However, periodicity is not necessarily a
good feature per se, in particular when the terrain is irregular.

Animal experiments have played a crucial role in exploring the
criteria for gait transitions in the aforementioned research. In parti-
cular, experiments with spinal transections and decerebrations in cats
have been instrumental in establishing the functional roles of the
neural circuits in the spinal cord during locomotion7,8. For example,
physiological studies have found that electrical stimulation or
increasing the speed of a motorized treadmill can cause a decere-
brated cat to spontaneously change gaits9–11. However, such animal
experiments clearly raise ethical issues, making extensive data collec-
tion impossible. As an alternative, we can use robots as tools to
investigate scientific hypotheses about animal motor-control, itera-
tively taking inspiration from animals to improve the robots’
performance12–16. Robots allow us to test computational models of the
spinal cord in closed-loop to measure internal states during agile
locomotion on challenging terrains, which is not possiblewith animals.

In robotics, abstract models of the spinal cord composed of cen-
tral pattern generators (CPGs), i.e., systems of coupled oscillators, and
reflexes are commonly used for locomotion pattern generation17–20 as
well as for the investigation of biological hypotheses21,22. CPGs provide
an intuitive formulation for specifying different gaits23, and sponta-
neous gait transitions can arise by increasing descending drive signals
and incorporating contact force feedback24,25 or vestibular feedback26.
Within a dynamical systems context, it has been suggested that gait
transitions serve to avoid unstable states27–29. Gaits can be viewed as a
result of complex systems that self-organize around their natural
dynamics, and gait transitions occur when the stability of the system
dynamics decreases so much that switching to a new gait increases
stability.With this dynamical systemsanalysis, theCoT is described as a
surrogate for the stability of the underlying dynamics, but it is not
considered as a primary determinant per se, since gaits with lower
stability necessitate active control for stabilization, which conse-
quently results in higher energy consumption. Recent studies have
shown the possibility of acquiring different gaits through deep rein-
forcement learning (DRL)30–36. While gait transitions did not autono-
mously emerge within these learning frameworks, the walk-trot
transitions were found possible through a combination of model pre-
dictive control (MPC) and DRL by minimizing energy consumption37.

In summary, animal and robotics investigations suggest so far that
energy efficiency, stability, and avoiding peak forces (injury) to the
musculoskeletal system are plausible explanations for animals to
transition between different gaits. In this article, we explore the
potential role of another criterion: the concept of viability, which
formalizes the notion of avoiding a fall during legged locomotion.
Viable states are all of the states starting fromwhich a systemcanavoid
falling through proper action selection38. Viability is a useful general
objective for locomotion control, and it is influenced by multiple fac-
tors such as periodicity, gait stability (in a Lyapunov sense), and
negative events such as falls into a gap or collisions with obstacles.
While viability is related to periodicity and gait stability, it is a broader
concept. In this article, we use the general concept of viability to
describe gait stability and periodicity during locomotion on flat ter-
rain, as well as fall avoidance during gap-crossing scenarios.

We use a hierarchical biology-inspired framework leveraging
robotics and DRL tools39 to investigate the following research ques-
tions surrounding the emergence of quadruped gait transitions:

1. What are the plausible determinants for quadruped animal gait
transitions from the following options: minimization of Cost of
Transport (CoT), minimization of peak forces, and/or viability?

2. Given that animals such as horses use certain gaits at specified
velocity ranges, what is the explanation for the shallower CoT-
Velocity plot of “normal”walk/trot gaits, comparedwith extended
walk/trot gaits (i.e., when using a gait outside of nominally trained
operating regions)?

3. Does the environment (i.e., a terrain with gaps) impose certain
gaits, and how does anticipatory sensing of upcoming terrain
affect gait transitions? What is the relationship between gait
transitions imposed by the terrain, and the aforementioned cri-
teria of CoT, peak contact forces, and viability?

4. What kind of exteroceptive sensory information is most effective
(and sufficient) for triggering gait transitions when a legged sys-
tem must cross a terrain with gaps?

To answer these questions, we investigate the interaction
between supraspinal drive and a CPG to produce anticipatory loco-
motion for a quadruped robot39. Using DRL, we train a neural network
policy to replicate the supraspinal drive behavior. This policy can
either modulate the CPG dynamics, or directly change actuation sig-
nals to bypass the CPG dynamics (Fig. 1).

Results
In this section, we investigate and present locomotion results in two
environmental scenarios: one for flat terrain and another for discrete
gap terrain. In the discrete gap terrain, we investigate the objective for
gait transitions by considering three main elements in the reward
function: viability, CoT, and peak contact forces. When training the
locomotion policies, we consider the effects of four different values
(high, medium, low, and zero) for the reward weights. Our analysis of
these reward function term weights reveals that the combination of
high, low, and low weights for viability, CoT, and peak forces,
respectively, yields the best performance (highest gap crossing suc-
cess rate).

On flat terrain, we train distinct policies for our robot to learn
locomotion at various velocities, focusingon specific gaits suchaswalk
and trot. To achieve different velocities, we incorporate a velocity
tracking term into the reward function. On flat terrain, each gait is
achieved by utilizing explicit oscillator phase coupling matrices in the
abstract CPG equations, specifically defined for walk and trot (see
Methods and Supplementary Material). In this scenario, along with the
velocity tracking term, our reward function gives a high weight to
viability and a low weight to energy consumption, similar to the best
gap crossing scenario result. We do not include the peak force com-
ponent in the reward function for blind locomotion, as our investiga-
tion on flat terrain is centered around walk-trot gaits. The reduction of
musculoskeletal forces has been studied in the context of the trot-
gallop gait transition in horses, particularly at high velocities5. How-
ever, for the walk and trot gaits at normal velocities, critical peak
contact forces are limited and hence are not included in the reward
function for flat terrain.

Comparisonof robot and animal data forflat terrain locomotion
We examine the consistency of our hierarchical biology-inspired
learning architecture with animal locomotion experiments performed
by Granatosky et al. which characterized how gaits, energy efficiency,
and periodicity depend on speed6. Granatosky et al. estimated the CoT
based on oxygen consumption: the lower the CoT, the higher the
energy efficiency. They computed periodicity from the Coefficient of
Variation (CV) of the stride duration: the lower the CV, the higher the
periodicity. Figure 2A presents results for the first experimental cate-
gory: walking and trotting for the robotwith data from four quadruped
animals: domestic dog (Canis lupus familiaris), Australian water rat
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(Hydromys chrysogaster), Virginia opossum (Didelphis virginiana), and
tufted capuchin (Sapajus apella). We use second-order polynomial
fitting for the CoT as used in ref. 6. The speed at which the CoT curve
for a walking gait intersects with the CoT curve for a trotting gait
represents the energetically optimal transition speed (EOTS). The
EOTS can be found by extrapolating the walking and trotting curves,
however there are some cases for which the intersection does not
exist, such as for the domestic dog (Fig. 2b).Moreover, there is limited
data available for the Australian water rat, so the extrapolation/inter-
polation of the fitted curvemay not provide definitive information. For
both the robot and the animals, switching gaits at the EOTS leads to a
reduction in energy expenditure. However, it is important to note that
the preferred transition speed does not align exactlywith the EOTS for
most animals. The domestic dog (b) and Virginia opossum (d) have the
most similar CoT curves to the robot. For the robot and all animal
species besides the Australian water rat, the CV of the stride cycle
duration is reduced by a change in gait. Moreover, in the Virginia
opossum (d) and tufted capuchin (e), the CV of the stride cycle dura-
tion has a peak near the gait-transition speed. It is noteworthy that
training two separate neural network policies for walk and trot gaits
allows us to extend the gaits to velocities beyond the EOTS. This is
exemplified in the reduction of CV in the walk gait after the transition
speed, a phenomenon not observed in animal data where, after the
transition speed, there are no longer any walk gaits possible or avail-
able for the animals. Furthermore, we acknowledge that detailed
behaviors may differ between animals and robots due to distinct body
elements andmechanics. However, the substantial reduction in the CV
of stride duration by changing the gait around the energetically tran-
sition speed for the robot demonstrates consistency with animal data.

Since the concept of viability is difficult to quantify, we investi-
gated three additional quantities which we believe allow one to

estimate whether one gait is more “viable” than another (Fig. 2B). The
first quantity is the lateral Divergent Component of Motion (DCM)
offset. Increasing the DCM generally corresponds to a more dynamic
gait, which in turn increases the risk of falling.We observe that, as with
the CV of the stride duration, switching gaits reduces the lateral DCM
offset (panel (f)). The desired lateralDCMoffset is zero, since the robot
iswalking forward in a straight line. The secondquantity is themaximal
lateral force that the robot can withstand before falling (panel (g)).
Here again we see that the switch fromwalk to trot allows the robot to
withstandhigher forces. The thirdquantity is the average body angular
velocity (panel (h)). Here we see that switching gaits decreases the
average body angular velocity (panel (h)), improving stability. For all
figures except (g), we report average values testing the policies for
35,000 samples (7 tests of 5 s of locomotion) since the standard
deviations are small (i.e., less than 10% of the mean), and the standard
deviations are reported in the supplementary data. For panel (g), the
policies were tested for 350,000 samples, equivalent to an average of
50 tests of 7 s of locomotion each. In summary, our results show that
on flat terrain, the transition fromwalking to trotting at a certain speed
is not only useful to reduce theCoT, but also to increase the viability of
the gait, making it more robust against lateral pushes, more periodic,
with less angular velocity, and lower lateral DCM offset. Despite the
enhanced viability achieved through the walk-trot transition, a com-
parison of panels (f) and (g) reveals that, for the trot gait, when the
speed exceeds 1.2m s−1 (4.32 kmh−1), the maximum allowable push
before falling increaseswith an increasingDCMoffset. This contradicts
our viability analysis (please see the Supplementary Methods 3 and 4)
based on the DCM offset. However, this outcome is somewhat antici-
pated, as the DCM offset is based on the linear inverted pendulum
model (LIPM), which relies on assumptions such as zero centroidal
angular momentum, constant body height, and sufficient friction.

Fig. 1 | Our proposed learning architecture. a To model locomotion control, we
consider three main interacting layers: the brain (higher centers), the spinal cord,
and the body and sensory feedback modules. Higher neural centers (such as the
brainstem, basal ganglia, cerebellum, and motor cortex) send descending drive
signals tomodulate the spinal circuits, and/or directly interact with lower modules
(body and sensory feedback). b We represent these higher neural centers with a
multilayer perceptron (MLP) with three hidden layers of [512, 256, 128] neurons

with elu activation. To represent the Central Pattern Generator in the spinal cord,
we use nonlinear amplitude-controlled phase oscillators for modeling the Rhythm
Generator (RG) layer, whose outputs are mapped to foot positions and thenmotor
commandswith inverse kinematics (IK) through a Pattern Formation (PF) layer. FR,
FL, HR, andHL stand for front right, front left, hind right, and hind left, respectively.
The brain figure in (a) has been re-drawn with inspiration from Grillner et al.1

(CC BY 4.0).
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These assumptions do not hold for high-speed velocities, where limb
rotation occurs rapidly.

In the second scenario of locomotion on flat terrain, we investi-
gate thedata of extendedgaits fromHoyt andTaylor2. Horses continue
to train their motor control through a lifelong learning process to
locomote at certain limited speed ranges for each of their gaits2. To
investigate locomotion principles, horses were briefly trained to
extend their gaits to speed ranges in which they would not normally
use that gait. During this process, horses learn to increase their velocity
by lengthening their stride while maintaining a relatively constant
frequency. While horses learn to optimize their motor control policies
over a longperiodof time, theywere taught to extent their gaits during
a short period, experiencing new locomotion parameters which they
had not previously encountered in their lifetime. In the context of
robot locomotion, extending a gait can be understood as a scenario in
which the robot is forced to locomote at speeds outside of the range
optimized for during the training process. Figure 2C illustrates the
results from the second experimental category: extended walking and
trotting gaits for both the robot and horse. Interestingly, the resulting
CoT curve shape for the robot is very similar to the data from the
horses. Comparing panels (a) and (j) reveals that an extended trot
produces a CoT-velocity curve with higher curvature. In other words,
the CoT increases rapidly for speeds that are farther from those for
which the robot was optimized for (and similarly for the horse, speeds
that are farther from those it would choose naturally before the rapid
training of extended gaits). Moreover, because we changed the stride
length manually in panel (j), the policy experiences states for which it

had not been optimized for during locomotion. Thus, the viable range
of speeds for panel (j) is smaller than for panel (a). Please refer to the
Supplementary Method 5 for further investigation of the role of RL in
flat terrain locomotion.

Emergence of gait transitions in gap crossing scenarios
We trained the robot to cross 8 challenging gaps in a row with 14 cm
platforms between each gap in the PyBullet simulator (Fig. 3a). The
gaps were randomized in width in the range of [14,20] cm. As exter-
oceptive sensory information, we include the distances between each
foot and the front and back of the next upcoming gap in the obser-
vation space. The base and feet trajectories are shown in Fig. 3b. We
observe that the agent has learned to increase the stride length,
maximum feet height, and average body height in order to cross the
gaps. Interestingly, Fig. 3b shows that the robot places its hind limbs
where the front limbs were located in the previous stride, similarly to
how cats place their rear paws in the pawprints made by their front
paws (also known as direct registering)40. In order to ensure a reliable
contact surface near the gaps, the robotplaces its front andhind feet in
the samepositions once it reaches the gaps. This strategy improves the
predictability of the gait, which facilitates the anticipation of the non-
viable states and thus increases gap traversing abilities. As shown in
Fig. 3b, theHind Left (HL) foot trajectory is higher than thatof theHind
Right (HR) foot in the XZ plane. Such an observation can be attributed
to the fact that we do not constrain the locomotion policy to have
symmetry in the system, and this is due to increased body roll move-
ment after starting to cross the gaps (Supplementary Fig. 7). Figure 3c

Fig. 2 | Qualitative comparison data for robot and animal locomotion. The CoT
and CV of stride duration of the animals and the robot are plotted against the
locomotion speed of walk-trot gaits in: (a) the quadruped robot, (b) the domestic
dog, (c) the Australian water rat, (d) the Virginia opossum and (e) the tufted
capuchin. This data relates to the first category of animal experiments with normal
gaits from ref. 6. The shadow vertical bars in (b–e) represent the range of preferred
gait transition speeds for animals. In (a) and (f–h), the blue bar indicates the
expected transition speed. The speed at which the CoT curve for a walking gait
intersectswith theCoT curve for a trotting gait represents the energetically optimal
transition speed (EOTS). f The lateral DCM offset, (g) maximum allowable external
push, (h) average body angular velocity from the robot simulation in (a). i The CoT

is plotted against locomotion speed for the second category of animal data, i.e.,
horses with extended gaits2. The shadow bar in (i) represents the speed at which
horses prefer to locomote for that particular gait. In a lifelong learning process, this
is the velocity for which the horse’s motor control has been optimized for each
gait2. j Robot data for extended gait. In (j), the gray shadow bar represents the
speed at which the policy is trained. The shaded area around the interpolated
curves indicates the 95% confidence interval of interpolation. For the CV of stride
duration for the animal data, ref. 6 has calculated the mean of the stride duration
for the specific speed interval. For external pushes in (g), we report the maximum
lateral external force values for which the robot has a 100% success rate. The
vertical axis of (g) is reversed for easier comparison with (f).
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illustrates the duration that each foot is in contact with the ground.We
observe a trotting gait prior to reaching the gaps, where diagonally
opposite feet (e.g., front right and hind left) are in phase. However
when crossing the gaps, the supraspinal drive has learned to transition
gaits from trot to pronk, so that all feet are in the same phase (please
see SupplementaryMovie 2 for visual reference of these experiments).
As shown in Fig. 3d, as the robot starts to cross the gaps, the
supraspinal drive increases the robot’s velocity. While we limit the
reward the agent can receive by setting the desired forward velocity to
1m s−1, the agent has learned to increase the velocity of the robot to up
to 1.5m s−1 to cross the gaps. It is noteworthy that in this scenario,
changes in speed do not induce the transition; rather, the gait transi-
tion results in a change of speed. Table 1 shows the CV of the stride
duration and length, as well as the CoT before and after reaching the
gaps and the gait transition. There is a reduction in the CV of the stride
duration and stride length after the gait transition, indicating a
reduction of the kinematic and dynamic variability. However, the CoT
increases after the gait transition, indicating an increase in energy
expenditure for the pronk gait. Figure 3e shows the normal contact

forces for each limb, and in particular the increase of the peak contact
forces after the trot-pronk gait transition. These results suggest that, in
our experiments, energy efficiency and peak forces do not explain the
gait transition, and that it is rather the avoidance of non-viable states
that triggers the gait transition, as could be expected from this parti-
cular environment. Please refer to the Supplementary Method 7 for
details regarding the supraspinal signals.

To analyze the impact of each component of the reward
function, we trained 64 policies in Isaac Gym, considering four
different values (high, medium, low, and zero) for the reward
weights associated with viability, CoT, and peak contact forces

Table 1 | The CV of the stride duration, stride length, and CoT
before and after a gait transition (Fig. 3)

CV Stride Duration CV Stride Length CoT

Before gait transition 0.38 0.44 0.84

After gait transition 0.31 0.35 0.93

Fig. 3 | Emergence of gait transition in the gap crossing scenario. Crossing 8
gaps with randomized lengths between [14,20] cm, with only 14 cm contact sur-
faces. a Simulation snapshots. b Body position and foot positions in the XZ plane.
c Foot contact duration, where blue represents contacts while crossing the gaps.
d Body velocity in the longitudinal direction. The shadow bars indicate when the

base is over a gap. eNormal contact (ground reaction) forces for each limb. FR, FL,
HR, and HL stand for front right, front left, hind right, and hind left, respectively.
The shadow bars in (d) indicate the duration during which the body center is
crossing a gap (Supplementary Movie 2).
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(please see Supplementary Movie 3 for visual reference of these
experiments). Figure 4 shows the success rate, CoT, and deviation
of the contact force from its maximum value threshold across
various cases. As exteroceptive sensory information, we include a
height-map of the terrain in front of the robot, beginning below
its front hips (see Supplementary Fig. 1). Figure 4a shows the
weights of each case. The highest success rate is obtained with
case 54, in which viability, CoT, and peak forces are assigned
high, low, and low weights, respectively, as in the PyBullet results.
It is noteworthy that this case exhibits the highest success rate of
99.25% across 2400 gap attempts, and CoT and peak forces
increase after the gait transition from trotting on flat terrain to
pronking over the discrete gap terrain.

Case 33, with a medium weight for viability and zero weights for
CoT and peak forces, achieves the second highest success rate of
98.67%. However, the CoT and peak contact forces exhibit a dete-
rioration after the transition. Among cases 34, 37, 51, which all have a

success rate above 98%, it is observed that in two cases the CoT
decreases after the gait transition, while in case 37 it remains constant.
The peak forces increase after the gait transition in all three of these
cases. This suggests that the improvement of CoT and peak forces is
not necessarily guaranteed after the gait transition. In cases 34 and 51,
where the CoT decreases after the transition, it is noteworthy that the
weight assigned to theCoTminimization in the reward function is zero.

For cases 1–16 which have zero viability weight, the robot remains
stationary for the whole episode and does not exhibit any movement.
Likewise, in cases 17 to 32 with a low weight for viability, all instances,
except for 17 and 18, result in the robot remaining stationary. In cases
17 and 18, the robot learns to walk with a low reward weight for via-
bility, zero weight for energy efficiency, and either low or zero weight
for the contact force term.However, it comes to a halt before reaching
the brink of the gaps, and does not cross them.

We observe an increase in peak forces after the transition in all
cases which have a success rate higher than 50%. In case 36, with high

Fig. 4 | Reward function analysis. Quantitative results from testing 64 policies
with varyingweights in the reward function for crossing two series of 6 consecutive
gaps (Supplementary Movie 3). We consider four values of zero, low, medium, and
high for the weights of the reward function terms for viability, Cost of Transport
(CoT), and peak contact forces in (a). The zero, low, and medium weights are
selected to be approximately zero, 10%, and 50% of the high values. We report
average (b) success rate, (c) CoT, and (d) peak contact forces for testing the polices
for 4400 samples each (200 attempts of crossing 12 gaps). We show mean values

and the standard deviations for success rate and CoT. Cases demonstrating similar
behavior, like cases 1 to 16, have been grouped in the same column. To evaluate the
peak forces, we first separately trained locomotion controllers on flat terrain to
reach a velocity of 1.2m s−1, which is the average gap crossing velocity, and
observed peak contact forces of 180N. For the gap crossing scenario, our reward
function penalizes peak contact forces above this threshold at each control cycle,
and the plots show the mean contact force in excess of 180N across all tests. The
error bars indicate the standard deviation.
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weights for viability andpeakcontact forces, weobserve that the robot
learns to walk on flat terrain; however, it achieves a success rate of less
than 50%. From case 56 onwards, where either high weights are
assigned to contact forces or medium to high weights are assigned to
CoT, a significant decrease in success rate is observed compared to
case 55, which has low and medium weights for CoT and peak contact
forces respectively.

The role of sensory features in gait transitions
As shown in Fig. 5, we investigate the effects of observing different
combinations of exteroceptive, proprioceptive and vestibular sensory
features for gap crossing scenarios on criteria such as success rate,
average angular body velocity, the CV of the stride duration, the CV of
the stride length, the CoT, and the Average Lateral DCM offset (please
see SupplementaryMovie 4 for visual reference of these experiments).
In particular, we study which sensory feature combinations are
necessary and sufficient to learn to successfully cross variable gaps,
andwe analyze the effects through ablation experiments in cases 1–10.
We also investigate the effects of adding explicit oscillator coupling
between oscillators such that the agent must walk, trot, or bound in
cases 11–13. For the purposes of evaluation, we perform 14 policy
rollouts, and present average results across all tests.

Figure 5a shows the success rate as the bar height, while the color
indicates the average body angular velocity. Our results show the
highest success rates for policies 1, 2, and 3, which observe (1) the
distances of all feet to the gap, (2) the distances only of the front feet to
the gap, and (3) LiDAR depth measurements in front of the robot,
respectively, in the observation space. The average body angular
velocities of these three policies show that they also generate the
smoothest gaits. Cases 4 and 5 show that removing contact force
booleans and proprioceptive information from the observation space
reduces the success rate by approximately 20%. The removal of front-
feet distances to the gap in case 6 leads to a 50% reduction in the
success rate. Case 7 shows that removing vestibular information (IMU
data) from the “blind” sensory information leads to only a 16% success
rate. Case 8 shows that sensing the base distance to the gap, rather
than the explicit feet distances to the gap, results in only a 23% success
rate. The lowest success rates are for cases 9 and 10, where only
instantaneous contact/penetration into a gap, orno gap information at

all are included in the observation space. Finally, in cases 11–13, we
observe that phase couplings of walking, trotting, and bounding gaits
lead to success rates of 48%, 13%, and 25%, respectively, indicating that
such couplings (which impose a particular gait) have a detrimental
effect on the success rate. This suggests that supraspinal drive might
play an important role in modulating coupling strengths for antici-
patory locomotion.

Figure 5b shows the CV of the stride duration (bar height) and the
CV of the stride length (color). Of the cases with a high success rate,
case 1,which includes foot distance to the gap in theobservation space,
has the lowest CV of stride duration. TheCVof the stride duration does
not vary significantly between the other cases with high success rates.
Cases 1 and 2, with explicit visually-extracted information of feet dis-
tances to the gaps, have the lowest CV for the stride length.

Figure 5c shows the CoT (bar height) and average lateral Y DCM
offset (color). Of the cases with high success rates (cases 1–3), cases 1
and 2 show that having all/front feet distances to the gap as explicit
exteroceptive sensing leads to a lower CoT. The CoTs of the other
cases are not as informative, as they have low success rates where the
robot frequently falls into a gap. The lowest average lateral DCM off-
sets are for cases 1 and 2, which include all-feet distances, or only front-
feet distances, to the gap in the observation space. These results
suggest that front-feet distances to the gap are necessary and sufficient
explicit sensory features to avoid non-viable states (i.e., falling
into a gap).

Hardware experimental results
Figure 6a shows snapshots of a sim-to-real transfer to the A1 hardware
of a policy trained with our proposed method for a task of crossing
four consecutive gaps with widths of 30 cm, 21 cm, 18 cm, 14 cm. We
simplify the sim-to-real transfer by using knowledge of the relative gap
distances to the robot from an equivalent scenario completed in
simulation, instead of using on-board vision or LiDAR. The robot
crosses this challenging gap scenario with a velocity of 1.3m/s, and we
observe a trot-pronk gait transition when reaching the gaps, and a
pronk-trot gait transition after crossing the last gap (please see the
Supplementary Movie 1).

Table 2 compares the performance of the proposed bio-inspired
controller with other quadruped robot controllers for gap-crossing

Fig. 5 | Observation space andphase coupling analysis.Quantitative results from
testing 13 policies with varying observation spaces and phase coupling for crossing
a series of four consecutive gaps (Supplementary Movie 4). We report: (a) average
success rate, body angular velocity, (b) coefficient of variation (CV) of stride
duration/length, (c) Cost of Transport (CoT), and lateral divergent component of
motion (DCM) offset for testing the polices for 50,000 samples each (14 attempts
of crossing four gaps). Policies 1–10 are trained using a variety of combinations of
“blind” (non-visual) and exteroceptive visual sensing. We only show mean values

since the standard deviations are small (i.e., less than 20% of the means). The
standard deviations are reported in the supplementary data. Policies 11–13 are
trained with oscillator couplings to force walking, trotting, and bounding gaits,
respectively. Exteroceptive sensory feedback features include LiDAR measure-
ments, as well as geometrically-extracted quantities such as feet distances to the
gap, base distance to the gap, and foot contact/penetration into a gap (visualized
in Fig. 7a).
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scenarios. The proposed controller outperforms the previous state-of-
the-art controllers by showing the ability to cross themost challenging
consecutive gaps of up to 30 cm (0.83 gap/body length ratio), with
only 14 cm beam contact widths between gaps. Furthermore, our
hierarchical biology-inspired policy generates the most agile gap
crossing with a velocity of 1.3m/s. These results suggest that a better
understanding of animal behavior through testing biological hypoth-
eses with robots can help improve robot locomotion performance.

Discussion
We began this study by evaluating the consistency of the locomotion
policies learned with our framework with available animal data for
walking and trotting on flat terrain. The CoT and CV of the stride
duration were found to be qualitatively consistent across both con-
sidered categories of animal experiments and robot simulations,
namely walking and trotting with and without extended gaits. Fur-
thermore, we investigated why the CoT-velocity curve for trotting has
a higher curvature for the second category of animal experiments,
concluding that the difference is mainly attributable to the extension
of gaits in these experiments. We simulated extended gaits by varying
the stride length, taking inspiration from previous horse

experiments41. More specifically, once we had trained walking and
trotting gaits at particular velocities, we manually altered the stride
lengthmappingparameter in order to achieve locomotion at velocities
outside of those trained for with the same gait. We observed that the
CoT of the extended gaits increased rapidly as the robot velocity
moved away from its optimal point for both robots and horses. For this
reason, the curvature is greater in this case than in the first category of
data, which did not include extended gaits. We hypothesize that the
large increase in CoT in relation to the changing velocity can be
explained by the fact that the locomotion policies of both the animals
and robots have not been optimized for these parameters. Overall, our
study of flat terrain locomotion tends to show that for both animals
and for our quadruped robot, it is worth switching from walk to trot
when increasing speed. The switch is beneficial both for increasing the
energy efficiency of the gait (lowering the CoT) and for increasing the
viability of the gait (e.g., increasing the robustness against lateral
pushes). Our findings suggest that a quadruped robot can be a useful
tool for testing biological hypotheses about quadruped animals.

In the second part of this study, we testedwhether viability can be
adeterminant of gait transitions inquadruped locomotion, concluding
that gait transitions can be triggered by environment perception to

Fig. 6 | Experiment for gap crossing scenario.Crossing four gapswith widths of 30 cm, 21 cm, 18 cm, and 14 cmwith a velocity of 1.3m/s.Weobserve the emergence of a
trot-pronk gait transition when approaching the gaps, followed by a pronk-trot gait transition after successfully crossing the last gap (Supplementary Movie 1).

Table 2 | Comparison of the DeepTransition gap-crossing controller with state-of-the-art methods (hardware results)

Research Robot Gap Max Gap width
Body length

Beam width Speed Froude Controller

Kalakrishnan et al.61 Little Dog Single gap 0.772 N/A 0.385 0.007b Optimization

Magana et al.62 HYQ Consecutivea 0.135 20 cm 1.8 0.046 Optimization

Yu et al.63 Laikago Single gap 0.4 N/A 1.35 0.032 MPC-RL

Lee et al.64 Laikago Single gap 0.4 N/A 1.35 0.032 MPC-RL

Agarwal et al.65 Unitree A1 Consecutivea 0.72 30 cmb 1.26 0.041 RL-Supervised

Xie et al.66 Unitree A1 Single gap 0.41b N/A 1.08 0.03b RL-Optimization

Agrawal et al.67 Unitree A1 Consecutivea 0.5 20cm 0.9 0.021 Optimization

Margolis et al.68 MIT-Cheetah Single gap 0.4 N/A 4.5a 0.549a MPC-RL

Rudin et al.69 ANYmal C Single gap 0.9a,b N/A 3.6b 0.203b RL-Curriculum

Yang et al.70 Unitree A1 Single gap 0.83a N/A 1.44 0.054 RL-Supervised

DeepTransitiona (Ours) Unitree A1 Consecutivea 0.83a 14 cma 4.68a 0.574a CPG-RL

Speeds areexpressed in kmh−1. Consecutivegapscorresponds to scenarioswhere the robotcrossesmultiple gaps ina rowwith smalldistancesbetweengaps (thedistancebetweengaps is less than
thebody length). Thebeamwidth indicates the distance between thegaps.Wedonot report beamwidth for the single gap scenario since there is considerable distance (more than thebody length)
between gaps. The Froude number (v2/(g ⋅ h)) is a dimensionless number that is useful for size-independent comparisons of animal and robot agility. (g), (v) and (h) are gravity acceleration, forward
velocity, and nominal base height respectively.
arepresent the best outcomes for each respective parameter.
bdenotes an estimation from the corresponding publication video.
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avoid unviable states in challenging terrain.We canmake the following
observations:

• In situations where the robot was constrained to locomote by
walking, trotting, or bounding gaits, it was unable to learn to solve
challenging gap crossing scenarios with a high success rate. This
observation suggests that the trot-pronk transition emerges to
prevent the robot from falling into gaps (i.e., to prevent non-viable
states). Note that the pronk gait was here particularly well-suited
for the specific gaps thatwe used, and that other gaits could likely
have emerged for other types of gap distributions (in particular if
left and right legs would have faced different gap widths and
placements).

• Our systematic analysis of the reward function term weights for
viability, CoT, and peak forces demonstrates that viability is the
most critical term to accomplish successful gapcrossing, andhigh
weights for penalizing the CoT and/or peak forces results in an
inability to learn gap crossing abilities. This unsurprising finding
highlights the significance of viability in the locomotion task.

• Energy efficiency and peak forces have not necessarily been
improved after the trot-pronk gait transition, which shows that,
in our case, a gait transition is not triggered in order to reduce
energy expenditure, and while the pronk gait can serve as a way
to cross gaps, it may also increase the risk of injury to the body
(musculoskeletal system). The CV of the stride length is
reduced by the transition from trot to pronk, which shows
that following the gait transition, the predictability of the gait
increases.

• From all tested exteroceptive sensory features, the highest gap
crossing success rate was found for policies which included feet
distances to the gap in the observation space. This information
can be directly used by the policy to forecast and anticipate
planning future footstep locations. In particular, we observe that
front-feet distances to a gapare themost important exteroceptive
sensory features, which are both necessary and sufficient explicit
features for learning to cross gaps.

• If the only exteroceptive sensing the agent has access to are the
front feet distances to a gap, this forces the agent to learn an
internal kinematic model by combining front foot position,
internal CPG states, and proprioceptive sensing to modulate the
“blind” hind legmotions to successfully cross the gaps. This result
corroborates the hypothesis that cats and horses control their
front legs for obstacle avoidance, and the observation that their
hind legs follow the previous support location of the front legs
based on internal kinematic memory40,42. This is also known as
direct registering. Similarly, our robot places its hind limbs
approximately where the front limbs were located in the previous
stride, which enhances gait predictability by lowering the CV of
the stride length. However, it is worth noting that the CV of the
stride length must increase when crossing irregular gaps.

• Our results suggest that vestibular feedback has a high impact on
viability in the emergence of trot-pronk gait transitions in our
designed gap crossing scenarios. A previous study suggests that
vestibular feedback has the greatest impact on the landing
behavior of cane toads43. In our study, the landing phase is the
most challenging phase of the emerged pronk gait as the agent
must control and plan footholds and body orientation to avoid
falling into a gap, and our results support that vestibular sensing
has a high impact on successful landing. For example, Case 7 of
Fig. 5 shows a drastically reduced success rate when removing
vestibular information from the observation space.

• Finally, we demonstrate that our hierarchical biology-
inspired control architecture (Fig. 7) enables the Unitree A1
quadruped robot to cross challenging gap terrains of up to
30 cm in width (83.3% of the body-length) in sim-to-real
hardware experiments. To the best of our knowledge, this
represents the most dynamic crossing of such large con-
secutive gaps for a quadrupedal robot, where A1 exhibits a
trot-pronk gait transition to locomote at over 4.68 km h−1

(1.3 m s−1). Moreover, this is the first learning-based locomo-
tion framework in which gait transitions emerge

Fig. 7 | Training scheme. a Training scheme and schematic visualization of feet
trajectory and visual exteroceptive feedback features. The oscillatory trajectory is
built around a central point O. The offsets xoff are used to change the central point
of oscillation. xoff is a horizontal offset between the set point of oscillation and the
center of the hip coordinate, controlled directly by the supraspinal drive, bypassing
the CPG dynamics. Lstepr is the step lengthmultiplied by the oscillator amplitude, h

is the nominal leg length, Lclrnc is themax ground clearanceduring leg swing phase,
and Lpntr is the max ground penetration during stance. The desired foot positions
are mapped to motor commands and tracked with joint PD control, and sensing
includes LiDAR for visual perception, an Inertial Measurement Unit (IMU) to filter
base velocities and orientation, and foot contact sensors for measuring contact
forces. b Simulation snapshots of cases of Fig. 5a.
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spontaneously during the learning process without having a
dynamical model, MPC, curriculum, or mentor in the loop.
Moreover, Fig. 8a–d illustrates the potential of the controller
for training locomotion on various discrete terrains (please
see Supplementary Movies 5–8 for visual reference of these
experiments).

Several previous biological studies have suggested that gait sta-
bility can be considered as a primary determining factor for gait
transitions of quadruped animals on flat terrain6,28,44. These studies
suggested that CoTmay be used as a surrogate for gait stability or as a
secondary objective. In this paper, we propose viability as a compre-
hensive criterion for gait transitions, generalizing the concept of gait
stability. In particular, our simulation results in the anticipatory sce-
nario propose that viability is the primary objective for the emergence
of gait transitions on variable discrete terrains. These observations
suggest viability could be the universal and primary objective of gait
transitions, while other criteria are secondary objectives and/or a
surrogate of viability.

We believe that this paper represents a useful starting point for
using robots and deep learning to investigate the determinants and
triggers of gait transitions. There is, however, much room for further
investigation. For example, the nonlinear oscillators we used are only
first-order approximations of CPG circuits and are useful for investi-
gating neuroscience research questions at a high level. However, a
more detailed understanding of the underlying circuits (for example
for identifying the descending pathways that contribute to gait tran-
sitions) would requiremore detailed and genetically-identifiedmodels
for CPG neural circuits45.

The dynamics of the musculoskeletal system also play a key
role in the robustness and energy efficiency of animal locomo-
tion. We therefore plan to incorporate a simulation of the animal
musculoskeletal system (for example with pairs of antagonist
muscles, as well as biarticular muscle models) and investigate its
role for gait transitions. As mentioned earlier, there is evidence
that gait transitions may occur to reduce the mechanical load on
the musculoskeletal system and joints5. We believe that our fra-
mework will provide a useful tool for investigating this problem,
by directly penalizing the muscle peak forces and joint jerk in our
reward function, and using these values as feedback to the CPG or
as a part of the observation space. Additionally, it has been sug-
gested that contact loading feedback to the CPG can trigger the
gait transition by increasing locomotion frequency and speed on
flat terrain24,25. By incorporating contact loading feedback to the
CPG, the proposed architecture can be extended to investigate
the interaction between supraspinal drive and loading feedback

for triggering gait transitions on flat terrain. In summary, the
combination of robotics, simulation, and DRL will likely lead to a
better understanding of key aspects of animal locomotion, as well
as to more agile locomotion controllers for legged robots.

Methods
Central pattern generators
The locomotor system of vertebrates is organized such that the
spinal CPGs are responsible for producing basic rhythmic pat-
terns, while higher-level centers (i.e., the motor cortex, cere-
bellum, and basal ganglia) are responsible for modulating the
resulting patterns according to environmental conditions1. Rybak
et al.46 have proposed that biological CPGs typically have a two-
level functional organization, with a half-center rhythm generator
(RG) that determines movement frequency, and pattern forma-
tion (PF) circuits that determine the exact shapes of muscle
activation signals. Similar organizations have also been used in
robotics, for example in refs. 47,48. Here we reuse the controller
presented in refs. 39,47.

Rhythm Generator (RG) Layer. We employ amplitude-controlled
phase oscillators to model the RG layer of CPG circuits in the spinal
cord, as they are able tomodulate the output signal by changing a few
decision variables21:

_θi =ωi +
X
j

rjwij sinðθj � θi � ϕijÞ ð1Þ

€ri =α
α
4

μi � ri
� �� _ri

� �
ð2Þ

where ri is the amplitude of the oscillator, θi is the phase of the oscil-
lator, μi andωi are the intrinsic amplitude and frequency, α is a positive
constant representing the convergence factor. Couplings between
oscillators are defined by the weights wij and phase biases ϕij. We use
one oscillator for each limb.

Pattern Formation (PF) Layer. To map from the RG states to joint
commands, we first compute corresponding desired foot positions,
and then calculate the desired joint positions with inverse kinematics.
This represents the Pattern Formation (PF) layer, and the desired foot
position coordinates are formed as follows:

xi,foot = xoff,i � LstepðriÞ cosðθiÞ ð3Þ

Fig. 8 | Training policy for different discrete terrain. Training gap-crossing locomotion policies with different robots (Unitree A1, (a) andGo1, (b–d)) on various discrete
terrains in Isaac Gym (Supplementary Movies 5–8).
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zi,foot =
�h+ Lclrnc sinðθiÞ if sinðθiÞ>0
�h+ Lpntr sinðθiÞ otherwise

(
ð4Þ

where Lstep is the step length, h is the nominal base height, Lclrnc is the
max ground clearance during swing, Lpntr is the max ground penetra-
tion during stance, and xoff is a set-point that changes the equilibrium
point of oscillation in the x direction. Modulating the foot horizontal
offset xoff represents direct supraspinal control of the general position
of the limb, bypassing the rhythm generation layer. A visualization of
the foot trajectory is shown in Fig. 7a.

Locomotion metrics
Viability. In control theory, Lyapunov stability of an equilibrium point
means that solutions starting within some distance from the point will
remain “close enough” forever. Any perturbations will lead only to
minor and transient changes for the state variables of a stable system.
Mathematical tools for dynamical systems can be used to analyze gait
transition stability28, however they are limited to the internal dynamics
of the system without considering environmental constraints. For
example, a robot may have a stable gait (in the sense of Lyapunov
stability), but still fall when it steps into an unanticipated gap. Legged
locomotion, when trying to maintain balance and avoid such falls or
collisionswith obstacles, canbe considered tobe a problemof viability
rather than Lyapunov stability49. If F is the set of states in which the
system is considered to have fallen, then the viable states are the set of
states from which the robot can avoid entering F (see Supplementary
Fig. 2)38. In this article, we use viable states, rather than stable states, to
fully capture the concept of fall prevention in legged locomotion. It is
noteworthy that the basin of attraction and viabilty share similarities in
concept; however, they also have their differences. In the topic of
bipedal locomotion, the basin of attraction represents the set of initial
conditions or states from which the system, when perturbed slightly,
will converge to a stable walking gait or pattern50. Therefore, viability
has a close relationship with the available control inputs (action), but
the basin of attraction focuses on the initial conditions of the system.
Moreover, viability takes into consideration environmental
constraints51.

On variable terrains with discrete footholds, a robot can fall by
stepping into a gap, therebyentering a non-viable state. Unfortunately,
in general the computation of the viability kernel can be intractable
(except for the simplified pendulum model52,53), and due to the com-
plexity of the multi-body dynamics of walking systems, it may be
numerically extremely expensive or even impossible to check whether
a given state is viable or not54. However, when learning gap crossing
skills, it is possible to define the reward function such that it promotes
not entering into non-viable states (stepping into a gap), and thus
promotes viability. Viability can also be indirectly evaluated by con-
sidering the success rate of traversing variable environmental condi-
tions, for example the number of gaps that the robot is able to
successfully cross out of the total number of gaps encountered.

Griffin et al.44 hypothesized that horses transition gaits from
walking to trotting on flat terrain based on the stability of the inverted
pendulum dynamics. On flat terrain, the viability of locomotion based
on the LIPM approximation can be evaluated based on the DCM
offset55. The DCM (also called Capture Point or Extrapolated CoM)
dynamics is the unstable component of the LIPM, and the DCM offset
(distancebetween theDCMand theCenter of Pressure (CoP)) specifies
the rate of divergence for the unstable component (see the Supple-
mentary Method 3). The DCM offset becoming greater than a certain
thresholdwill lead to entering non-viable states, and this threshold can
be calculated for bipedal locomotion assuming a single support
phase56. Although this does not apply to quadrupedal locomotion, we

can still use the DCM offset as an indicator of approaching the
boundary of the viability kernel. In our experiments, the desired lateral
motion is zero, and therefore an increase in the lateral DCM offset
corresponds to a reduction in viability. Please refer to the Supple-
mentary Methods 3 and 4 for a detailed analysis of viability using the
LIPM, as well as the interconnection between viability, DCMoffset, and
robustness during locomotion on flat terrain. To explore the viability
condition of the full robot and validate the DCM offset analysis, we
conducted external push experiments to assess the maximum push
that the robot canwithstand before falling. For each locomotion speed
corresponding to Fig. 2f, we conducted multiple experiments, varying
the force from 190N to 400N. Each force setting was tested for
350,000 samples across approximately 50 episodes, each lasting 7 s.
The success rate corresponds to the percentage of episodes where the
robot completes the trial without falling. We then determined the
largest force at which the robot achieved a 100% success rate.

Stride duration variability (periodicity). We propose that viability on
flat terrain can also indirectly be evaluated by inter-stride variability.
Indeed, locomotion gaits with high inter-stride variability increase the
risk of inter-limb interference, making tripping and/or falling more
likely on flat terrain. Therefore, variability in inter-stride parameters
has important biomechanical consequences for gait stability6,57. This
variability can be computed by the Coefficient of Variation (CV), which
is defined as the ratioof the standarddeviation to themeanof thedata,
and indicates the variability. We compute the CV of the stride duration
for whole strides in one episode, and use this quantity to evaluate
viability on flat terrain (but not on irregular terrain).

Stride length variability (predictability). The CVof the stride length is
used to evaluate the predictability of a locomotion gait. A low stride
length CV means that the stride length is relatively constant, and that
the next step position can be predicted based on previous steps.
Predictability of a gait therefore simplifies the anticipation of future
feet placements. Similar to periodicity, predictability is advantageous
in the case of regular and structured terrain. TheCV is calculated for all
whole strides by all limbs during a training episode, and the mean is
then calculated over all episodes.

Energyefficiency.We compute energy efficiency for a systemwith the
dimensionless Cost of Transport (CoT). The CoT formula is defined as
CoT = P

m:g:v, where P is the averagepower, v is the average velocity,m is
the mass of the system, and g is the gravitational acceleration.

Gait smoothness. To evaluate gait smoothness, we analyze the robot
body oscillations during locomotion, and in particular the average
angular velocity of the robot body �ωBody = ð

PN
t = 1 jωx,t j+ jωy,t j+

jωz,t jÞ=ð3NÞ. High (absolute) angular velocities tend to correspond to
shaky gait patterns.

Peak force. We evaluate peak force by measuring the peak ground
reaction force.We use this as a proxy for representing peak forces that
an animal would experience in its joints and muscles.

Quantification of viability on flat and gap terrain
In this paper, viability is promoted in the reward function during the
training of the locomotion policy, and then quantified and evaluated
during test time using specific metrics. Here, we summarize and recap
specificmetrics used for viability quantification during test time, along
with the reward function components for both flat terrain locomotion
and gap crossing scenarios.

Gap crossing. In the reward function, we promote forward progress in
a gap crossing scenario, which indicates that the robot is able to tra-
verse the gaps without falling. The weights assigned to the reward

Article https://doi.org/10.1038/s41467-024-47443-w

Nature Communications |         (2024) 15:3073 11



function are detailed in the Supplementary Method 2. We incorporate
four different weight values: zero, low (10%), medium (50%), and high
(100%). The assessment of viability in the gap-crossing scenario during
test time involves quantifying the success rate of traversing variable
environmental conditions. This can for instance be evaluated by
determining the number of gaps the robot successfully crosses out of
the total number of encountered gaps.

Flat terrain. In the reward function for learning locomotion on flat
terrain, we have three terms that promote viability. Forward progress
promotes viability of the system, as continuous high forward progress
indicates that the robot has not fallen. Velocity tracking reward also
promotes viability of the system, as tracking the steady state velocity
indicates that the robot has not fallen. This term is already incorpo-
rated in the forward progress term; however, on flat terrain we would
like to track different specific desired velocities to determine the
relationship between the CoT and body velocity, as shown in Fig. 2.
Large roll and pitch angles increase the likelihood of falling, thus
penalizing body orientation helps to prevent the system from getting
closer to the boundary of the viability kernel. For quantifying the via-
bility on flat terrain during test time, we use the following metrics:
(1) DCM offset, (2) Average Body Angular Velocity, (3) CV of the stride
duration, and (4)maximumexternal lateral force (as shown in Fig. 2). It
has been shown that by increasing the DCM offset, the system state
approaches the boundary of the viability kernel, and therefore
increases the risk of falling56. Granatosky et al.6 propose that gait sta-
bility on flat terrain can also indirectly be evaluated by inter-stride
variability. Indeed, locomotion gaits with high inter-stride variability
increase the risk of inter-limb interference, making tripping and/or
falling more likely on flat terrain. We also investigate the maximum
external push that the robot can tolerate without falling at each spe-
cific speed. The Supplementary Fig. 3 shows the maximum external
pushes for each specific speed of locomotion on flat terrain. The DCM
offset andmaximum external push exhibit reasonable correlations for
locomotion speeds lower than 1.2m s−1 (4.32 kmh−1).

Data from previously performed animal experiments
We assess the consistency of our learning architecture via a qualitative
comparison with animal data on flat terrain, which involves plotting
the CoT and the coefficient of variation (CV) of the stride duration
against locomotion speed. We use two categories of animal data col-
lected in previous studies.

Normal gaits on flat terrain. The first data category includes loco-
motion data from a study by ref. 6 from which we use data from
quadrupeds of various species such as Virginia opossums (Didelphis
virginiana), tufted capuchins (Sapajus apella), domestic dogs (Canis
lupus familiaris), and the Australianwater rat (Hydromys chrysogaster).
Animals in this category locomote in a wide range of speeds, which
correspond to different specific gaits. The animals were trained to
sustain six to ten minutes of steady-state locomotion at any given
speed, as required for metabolic measurements. A transition between
walking and trotting gaits was observed by placing the animal onto an
enclosed treadmill and incrementally increasing the speed of the
moving belt every 15 s. The data has been extracted from the Supple-
mentary Material of ref. 6.

Extended gaits on flat terrain. The second category comprises data
from a study by Hoyt and Taylor2 for walking and trotting gaits for
horses, which we extracted from Fig. 2 2 using the WebPlotDigitizer
online tool. For given speed ranges, horses tend to locomote with a
specific gait (i.e., walking at low speeds, trotting at medium speeds,
and galloping at high speeds). However, in these experiments2, horses
were taught to extend their gaits for a wider range of speeds. For
example, an extended trot is defined as a situation where a horse

continues to trot at speeds above or below its normal trotting speed41.
This is in contrast with the first category of data, where there is no gait
extension and the animals locomote with their nominal gaits at all
speeds.

Interactions between the supraspinal drive and the central
pattern generator
We use our hierarchical biology-inspired learning framework39,47 for
learning locomotion, as shown in Figs. 1 and. 7a. We have used the
proposed scheme on flat terrain47, as well as on a simple gap crossing
scenario39. In this paper, we address the challenge of traversing con-
secutive gaps with small distances between them. Additionally, we
explore the use of a height map around the robot in the observation
space as an alternative to relying solely on explicit exteroceptive sen-
sory features. The action space remains consistentwith the simple gap-
crossing scenario39. We extend and analyze the reward function, and in
particular perform a systematic analysis on the importance of incor-
porating terms for viability (and velocity tracking terms), CoT, and
peak contact forces. We formulate the supraspinal controller as an
artificial neural network (ANN) which is trained with Deep Reinforce-
ment Learning (DRL) to modulate the CPG intrinsic frequencies,
amplitudes, and offsets of oscillation for each limb to coordinate and
produce anticipatory behavior. The problem is represented as a Mar-
kov Decision Process (MDP), and we describe each of its components
below. To train the policies, we use Proximal Policy Optimization
(PPO)58, a state-of-the-art on-policy algorithm for solving the MDP.
Additional details can be found in the Supplementary Method 1.

Action space.We consider oneRG layer for each limbbasedonEqs. (1)
and (2), where the RG output will be used in a PF layer to generate the
spatio-temporal foot trajectories in Cartesian space (Eqs. (3) and (4)).
Couplings betweenoscillators areknown to exist in biologicalCPGs for
coordinating gaits, but recent work has shown that they might be
weaker than previously thought22,24, and that sensory feedback and
descendingmodulationmight play an important role in inter-oscillator
synchronization. We therefore investigate explicit coupling within the
CPG dynamics, as well as implicit coupling through descending mod-
ulation from the supraspinal drive.

Flat Terrain: On flat terrain, our action space modulates the
intrinsic amplitudes and frequencies of each oscillator which together
forms the CPG, by continuously tuning μi and ωi for each leg. We
implement oscillator couplings representing bothwalking and trotting
gaits through phase bias matrices (Φ) and coupling strengths (wij = 1).
This coupling imposes a specific phase lag between oscillators and
therefore constrains the policy to modulate parameters in order to
locomote with these specific gaits.

Gap Crossing: For gap crossing scenarios, we do not consider
explicit oscillator couplings (wij =0), with the intuition that the terrain
may prohibit certain gaits, and inter-limb coordination should thus be
managed through the supraspinal drive. For gap crossing, in addition
to modulating μi and ωi, we also consider modulating the oscillation
set-points by learning xoff,i. Thus, our action space for gap-crossing can
be summarized as a= ½μ,ω,xoff � 2 R12.

We divide the descending drive modulation into two categories:
oscillatory components of the CPG dynamics aosc = ½μ,ω� 2 R8 and
offset components aoff = ½xoff � 2 R4 which bypass the CPG dynamics,
as in Eqs. (1)–(4).

Observation space. We consider two different observation space
types basedon (1) “blind” sensory information (enough for locomotion
on flat terrain) and (2) also including exteroceptive anticipatory sen-
sing for gap-crossing scenarios. We investigate visual exteroceptive
information coming from several categories: (1) directly using visual
depth information (i.e., LiDAR), (2) visually-extracted geometrical
information (i.e., foot distance to a gap), and (3) instantaneous
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feedback features (i.e., foot “penetration” into a gap). We investigate
various combinations of these exteroceptive anticipatory features to
understand the roles and importance of different sensory quantities to
successfully cross variable gaps.

Blind (Flat Terrain) Observation: For locomotion on flat terrain,
we consider sensory information that a “blind” agent could use to
coordinate locomotion, in parallel with recent robotics works using
DRL to learn legged locomotion32,47. This information includes vestib-
ular sensory information (body orientation, body linear and angular
velocity), proprioceptive sensory information (joint positions and
velocities), foot contact booleans, the action chosen at the previous
control cycle by the policy network, the internal CPG states, and the
desired velocity command.

Exteroceptive-Visual Information: We consider two different
methods for directly visually querying the surrounding environment.
For the firstmethod,wemount a LiDAR sensor at the front of the robot
to return depthmeasurements along three channels (i.e., in PyBullet59,
Fig. 7a). We also consider querying the terrain heights within an area
around the robot base, which can be constructed by geometrically
transforming depth camerameasurements from a camera mounted at
the front of the robot (i.e., in Isaac Gym60).

Exteroceptive-Explicit Feedback Features: We assume that the
visual system andbrain can extract important geometrical information
such as foot distance to a gap, and we call such information exter-
oceptive explicit feedback features. We are interested in investigating
which explicit exteroceptive feedback features are most useful for the
emergence of anticipatory locomotion skills. To reverse engineer this
process, we divide the explicit sensory features into two categories:
predictive and instantaneous feedback features. Predictive features
consist of foot distance and/or base distance to the beginning and end
of a gap. Instantaneous feedback features consist of boolean indicators
of stepping into a gap (foot contact/penetration into the gap).

Reward function. We consider two locomotion scenarios: (1) steady-
state locomotion on flat terrain with oscillator phase coupling for
walking and trotting gaits, and (2) gap-crossing scenarios without oscil-
lator coupling. To study the potential determinants of gait transitions,
we propose a reward function that encompasses the following compo-
nents in its general form (see Supplementary Method 2 for details):

• Viability: We promote viability by rewarding forward progress
without falling. Locomotion speed during forward progress can
be controlled by limiting (or penalizing) the reward for speeds
above a maximum velocity threshold, or including a velocity
tracking component. For the gap crossing scenario, we utilize the
first approach, whereas for flat terrain locomotion, we employ the
latter. Velocity tracking is implemented for flat terrain, as it
necessitates running the policy at various velocities to measure
the CoT. Accurately tracking a desired velocity promotes viability,
as it ensures that the robot has not fallen while maintaining the
desired task velocity. It is worth noting that the velocity tracking
term is added to the forward progress term for flat terrain. For
detailed information, please refer to the Supplementary
Method 2.

• Cost of Transport: We penalize power in order to find energy
efficient gaits. It is worth noting that, since the average velocity
achieved by the robot remains consistent across all simulations,
the CoT and power are roughly proportionally equivalent in
these cases.

• Peak force: We penalize peak contact reaction forces in order to
minimize body peak forces during locomotion.

• Base orientation penalty:We penalize body orientation deviations
from a nominal horizontal position.

The importance of each component can be regularized by chan-
ging the weights. We systematically analyze the effects of the reward

function by considering four values of zero, low,medium, and high for
the reward term weights for viability, CoT, and peak forces in gap-
crossing scenarios. The low and medium weights are selected to be
approximately 10% and 50% of the high value. Among all 64 possible
combinations of zero-low-medium-high for viability, COT, and peak
forces, the highest success rate is observed for the case with the
highest viability and lowest CoT and peak contact force weights. We
use high and low weight for the viability and energy efficiency terms
for flat terrain locomotion. We do not incorporate the peak force
component in the reward function for blind locomotion as our inves-
tigation on flat terrain focuses on walk-trot gaits. The reduction of
musculoskeletal forces has been studied in the context of the trot-
gallop gait transition in horses, particularly at high velocities5. How-
ever, for the walk and trot gaits at normal velocities, there is no sig-
nificant presence of peak contact forces. The detailed weights of the
reward function for each simulation result can be found in the Sup-
plementary Table 4. Additionally, please refer to the Supplementary
Method 1 and Supplementary Tables 1, 2 and 3 for details regarding the
training method and settings.

Training locomotion policies on flat terrain
On flat terrain, we train separate policies to learn specific gaits (walk
and trot) by changing the oscillator phase coupling matrices (Φ) and
setting the coupling strength (wij= 1) in Eq. (1). Please refer to the
Supplementary Method 6 for details regarding the phase coupling
matrices. We assume that the supraspinal drive does not bypass the
CPG dynamics to directly actuate joints in steady-state locomotion, so
we do notmodulate the offset components (xoff,i = 0) in Eq. (3).We use
the blind (flat terrain) observation space for these experiments. We
also define two separate training conditions regarding the two cate-
gories of animal data:

Normal gait on flat terrain. We train policies to test a wide range of
speeds (i.e., ½vdes,min,vdes,max �= ½0:3,1:0�ms for walking and
½vdes,min,vdes,max �= ½0:9,2:1�ms for trotting) by resampling the desired
velocity at the beginning of each environment reset. In order to ensure
that the locomotion velocity varies in line with the stride frequency6,
the upper bound of the CPG frequency in the action space is expressed
as a function of the desired velocity. Therefore, our action space limits
are μ∈ [0.5, 4], ω∈ [0, f(vdes)] (rads ), where f(vdes) is a linear function of
the desired velocity:

f ðvdesÞ=
ωmax,2 � ωmax,1

vdes,max � vdes,min
� ðvdes � vdes,minÞ+ωmax ,1 ð5Þ

We use ωmax,1 = 23,ωmax,2 = 60 (rads ) to train the walking policy, and
ωmax,1 = 30,ωmax,2 = 70 (rads ) to train the trotting policy. Therefore,
during each episode, the upper bound of allowable frequencies is
determined based on the desired velocity.

Extended gait on flat terrain. Biological studies have shown that
horses continue to train and optimize their motor control through a
lifelong learning process to locomote at certain limited speed ranges
for each of their gaits2. To investigate locomotion principles, Hoyt and
Taylor briefly trained horses to extend their gaits to speed ranges in
which theywouldnot normallyuse that gait2 (i.e., trotting above/below
their usual speed ranges). In order to increase their locomotion speed
in an extended gait, the horses learned to increase their stride length.
However, their stride frequencies remained approximately constant41.
While horses learn to optimize theirmotor control policies over a long
period of time, they were taught to extent their gaits during a short
period, experiencing new locomotion parameters which they had not
previously encountered in their lifetime.

In the context of robot locomotion, extending a gait can be
understood as a scenario in which the robot is forced to locomote at a
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speed forwhich it was not optimized for during the training process. To
simulate experiments in this category, we trained two locomotion
policies for certain limited speed ranges (i.e., ½0:4,0:5�ms , for walking,
and ½0:85,0:95�ms for trotting). To match the horse extended gait sce-
narios, we replicated the experiments with the robot by manually
altering the stride length parameter (Lstep in Equation (3)) after training
was complete, in order to increase or decrease the velocity. As a result,
the policy observed parameter combinations in experiments with this
newmappingwhich it hadnot encounteredduring the training process.

Training locomotion policies for gap crossing scenarios
We investigate the robot’s ability to learn to cross challenging terrains
with multiple consecutive gaps. To allow the agent to coordinate
behavior among different limbs through supraspinal drive, we do not
consider explicit oscillator couplings (wij = 0 in Eq. (1)). We use the
exteroceptive-visual information in addition to the blind terrain
observation space. The action space has the following limits:
μ∈ [0.5, 4], ω∈ [0, 40] (rads ), xoff∈ [ − 7, 7] cm. The agent selects these
parameters at 100Hz, and they will therefore vary during each step
according to sensory data.

In order to evaluate the different locomotion metrics (Fig. 5), we
perform 14 policy rollouts (50,000 samples) on a test environment of
locomoting at a desired velocity of 1m/s over 4 randomized gaps. Each
gap length is randomized between [14,20] cmduring both training and
test time, with 14 cm contact surface widths between gaps. An episode
terminates early because of a fall, i.e., if the body height is less than
15 cm. We define the success rate as the number of gaps successfully
crossed out of the total number of gaps. Additional training details can
be found in Supplementary Method 1.

We train and test locomotion policies in both the PyBullet59 and
IsaacGym60 physics engine simulators. PyBullet59 limits data collection
to one robot per CPU core in our setup, while Isaac Gym60 enables data
collection from thousands of robots in parallel on a singleGPU. Instead
of LiDAR, Isaac Gym provides an interface to explicitly query the ter-
rain heights in an area surrounding the robot body, which can be used
to provide information about different types of discrete terrains.
Fig.8a–d illustrates various snapshots of the Unitree A1 andGo1 robots
locomoting on a variety of discrete terrains, including stepping stones,
gap terrains with very small available contact surfaces, grid terrains,
and mixtures of each these terrains, respectively. Despite these
advantages, the precision of the gap position measurements in Isaac
Gym is limited by the constraints of the mesh precision, which are
imposedby the available GPUmemory. In contrast, PyBullet enables us
to easily obtain precisemeasurements of both the starting and ending
positions of a gap. This capability is utilized to investigate the role of
explicit exteroceptive sensory features, specifically the measurement
of feet/base distance to a gap.

Data availability
Data supporting the findings of this study are available within the
paper and have been deposited in the Figshare database under
accession code https://doi.org/10.6084/m9.figshare.23337158 (ref. 71).
All other relevant data are available from authors upon reasonable
request.

Code availability
The CPG-RL framework implementation in Isaac Gym is available at
https://github.com/MiladShafiee/DeepTransition (ref. 72).
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