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Thermally stable Ni foam-supported inverse
CeAlOx/Ni ensemble as an active structured
catalyst for CO2 hydrogenation to methane

Xin Tang1,2,4, Chuqiao Song1,2,4, Haibo Li1,2, Wenyu Liu1,2, Xinyu Hu1,
Qiaoli Chen 1, Hanfeng Lu1, Siyu Yao 3 , Xiao-nian Li1,2 & Lili Lin 1,2

Nickel is the most widely used inexpensive active metal center of the hetero-
geneous catalysts for CO2 hydrogenation to methane. However, Ni-based
catalysts suffer from severe deactivation in CO2 methanation reaction due to
the irreversible sintering and coke deposition caused by the inevitable loca-
lized hotspots generated during the vigorously exothermic reaction. Herein,
we demonstrate the inverse CeAlOx/Ni composite constructed on the Ni-foam
structure support realizes remarkable CO2 methanation catalytic activity and
stability in a wide operation temperature range from 240 to 600 °C. Sig-
nificantly, CeAlOx/Ni/Ni-foam catalyst maintains its initial activity after seven
drastic heating-cooling cycles from RT to 240 to 600 °C. Meanwhile, the
structure catalyst also shows water resistance and long-term stability under
reaction condition. The promising thermal stability and water-resistance of
CeAlOx/Ni/Ni-foam originate from the excellent heat and mass transport effi-
ciencywhich eliminates local hotspots and the formation of Ni-foam stabilized
CeAlOx/Ni inverse composites which effectively anchored the active species
and prevents carbon deposition from CH4 decomposition.

Ni-based catalysts are widely applied in the industrial COmethanation
reaction and have shown great potential for the conversion of CO2 to
CH4 (also known as the Sabatier reaction), due to the relatively high
activity, selectivity and affordability1–4. Considering the potential
applicationofCO2methanation in the integratedpower-to-gas process
containing CO2 capture, renewable energy-powered hydrogen pro-
duction (e.g., electrolysis of water) and CO2 utilization modules, the
development of active and durable Ni-based CO2methanation catalyst
is highly desirable and urgently demanded5–7.

Despite the promising perspective, it is challenging to apply
conventional Ni/oxide catalysts in CO2 methanation reactions. One of
the problems is the formation of localized hotspots in the catalyst bed
caused by the severe reaction heat and the relatively poor heat

conductivity of oxide hosting materials8–10. According to the literature
estimation, an adiabatic temperature rise around 59.2 °C will be pre-
sented for each 1mol% conversion of CO2 in the hydrogenation reac-
tion, and the adiabatic temperature can reach the maxima of 600 °C,
the temperature corresponding to the thermal balance between exo-
thermic CO2 methanation and endothermic reverse water gas shift
reactions11,12. Once the thermal disturbance exceeds the binding
energy between Ni nanoparticle and support, the well-dispersed Ni
species tend to migrate on the catalyst and further agglomerate into
large particles driven by the surface energy13,14. What’s more, the high
concentration of steam in the product of CO2 hydrogenation aggra-
vates the sintering of Ni species. Thus, the rational design of anti-
sintering and water-resistant Ni-based catalysts is demanding to
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overcome the stability challenges in the CO2 hydrogenation to
methane15.

Structured metal materials like Ni-foam and Cu-foam etc. with
high heat conductivity, rich channels and mechanical robustness
provide opportunities to eliminate the undesirable generation of local
hotspots16–20. However, the applications of metal-structured catalysts
are limited due to the unfavorable catalytic functionalization of active
sites (Ni/oxide) and poor adherence of metal oxides on the surface of
metal foam skeleton (Ni/oxide/Ni-foam)21–25. Regarding the existing
challenges and inspired by our previous studies on the inverse cata-
lystswith improvedCO2 hydrogenation performances, wepropose the
construction of nano-oxide/Ni inverse structure on Ni-foam as the
active site for CO2 methanation in order to exploit the advantages of
structured and inverse catalysts26–32. Particularly, by growing a closely
contact layer of nickel hydroxide on the Ni-foam substrate via an
etching process as the attaching sites of nano-oxides, a fine and uni-
form dispersion of oxide/NiO nano-composites over Ni foamwith high
density and strong structure robustness can be obtained as the pre-
cursor of oxide/Ni inverse structure33–35. The inverse oxide/Ni active
species functionalized Ni foam structured catalyst will simultaneously
enhance the CO2 hydrogenation activities and realized remarkable
stability.

In this work, we report a Ni-foam supported inverse CeAlOx/Ni
species (CeAlOx/Ni/Ni-foam) as an efficient structured catalyst for CO2

hydrogenation towards methane. The inverse CeAlOx/Ni/Ni-foam cat-
alyst presents significantly improved methane productivity at low
temperature and exhibits superior thermal stability, and its activity
remains virtually unchanged after seven cycles of heating-cooling
treatment (25–600 °C) and 200 h time-on-stream (at 240 °C) without
significant sintering or carbon deposition. The structured catalyst also
showsexcellentwater resistance, and theCO2methanation activity can
be reversibly recovered after the removal of excessive steam. Besides
the excellent stability, the structured catalyst also realizes a CO2 con-
version above 80% at 240 °Cwith a CH4 selectivity over 98.6% at GHSV
of 80,000h−1, 14 times higher than the conventional Ni/oxide refer-
ences. This design and fabrication of the structured catalyst with
inverse species as active sites provide a general strategy and a pro-
mising platform to construct high-performance and durable catalysts
for CO2 hydrogenation reaction to methane.

Result
Structural characterization of catalysts
The Ni(OH)2 overlayer-covered Ni-foam is prepared using a urea
hydrothermal etching method. The following modification of the
Ni(OH)2 layer with Ce and Al oxides is realized by hydrothermal
method followed by calcination at 400 °C (Fig. 1a). The prepared cat-
alyst is labeled as CeAlOx/NiO/Ni-foam, and the loadings of Al and Ce
are 2.5 wt.% and 2.4 wt.% (about 10.4 wt.% and 11.2 wt.% respective to
NiO overlayer, determined by inductively coupled plasma-optical
emission spectrometer (ICP-OES)). Other reference catalysts including
the Al2O3/NiO/Ni-foam and NiO/Ni-foam are prepared with the same
procedure. Before performance evaluation, all catalysts are pre-
reduced in 20% H2 at 450 °C for 3 h to convert the NiO substrate into
metallic Ni to generate the inverse oxide/Ni composites on Ni foam
skeleton (labeled as CeAlOx/Ni/Ni-foam, Al2O3/Ni/Ni-foam and Ni/Ni-
foam). Ni supported on the Al2O3 and CeAlOx oxide supports are
prepared by the precipitationmethod (Ni loading is controlled at 13wt
%) to compare with the inverse oxide/Ni composite catalysts, which
helps to understand the importance of Ce doping.

X-ray diffraction (XRD) (Supplementary Fig. 1) patterns of the
CeAlOx/NiO/Ni-foam, Al2O3/NiO/Ni-foam and NiO/Ni-foam show
intense diffraction peaks corresponding to NiO andNi-foam substrate.
After modification with Ce and Al oxides, broad peaks at 20°~25°
appear in the CeAlOx/NiO/Ni-foam and Al2O3/NiO/Ni-foam, which
suggests fine dispersion of Ce and Al oxide species on the substrate

due to the anchoring of the Ni(OH)2 overlayer
36,37. All catalysts exhibit

type-IV isotherms with type-H3 hysteresis loops, indicating the pre-
sence of mesopores (Supplementary Fig. 2) and the Barrett-Joyner-
Halenda apertures in the structured catalysts38. The average pore sizes
of CeAlOx/NiO/Ni-foam, Al2O3/NiO/Ni-foam, andNiO/Ni-foamcatalysts
are ~6 nm, 5.5 nm, and 4.3 nm (Supplementary Table 1).

The morphology and microstructure of CeAlOx/NiO/Ni-foam are
further observed using electron microscopic methods. The scanning
electron microscopy (SEM) images of CeAlOx/NiO/Ni-foam preserves
monolith geometry and rich 3-dimensional cross-connected pore
structure after the modification and thermal treatments (Supplemen-
tary Fig. 3). Th CeAlOx/NiO composite displays a honeycomb-like
nanoflake appearance on the skeleton of Ni foam with an average
thickness of 4 µm (Fig. 1b and Supplementary Fig. 3). The adherence of
CeAlOx/NiO on Ni foam is sufficiently strong to bare the vigorous
ultrasonic treatment (Supplementary Fig. 5), which highlights the
effectiveness of the NiO overlayer in anchoring the fine oxide species.
Transmission electron microscopy (TEM) images of CeAlOx/NiO sam-
ple scraped from the structured catalysts suggest that NiO nano-
particles (distribution centered at ~5.4 nm) are deposited on the
exterior surface of Ni-foam (Fig. 1c and Supplementary Fig. 4). High
angle dark field scanning transmission electron microscopy (HAADF-
STEM) and energy-dispersive X-ray (EDS) element mapping images
further confirm the uniform dispersion of Ce and Al over NiO particles
in the nano-composite (Fig. 1d, e). Atomic-level image of region 1#
from Fig. 1d shows the lattice fringes of 0.265 nm (correspond to
CeAlO3(110), Supplementary Fig. 6), demonstrating the formation of
CeAlOx mixed oxide and loaded on the NiO support (Fig. 1f). After
reduction, an inverse interface composed with CeAlOx oxide particles
on Ni support will be formed. Raman spectroscopy is performed to
investigate the metal-O vibration of different Ni-foam structured cat-
alyst (Fig. 1g). The peak at 540 ~ 650cm−1 is confirmed to the con-
tribution of Ni-O based on the comparison of passivated MOx/NiO/Ni-
foam and reducedMOx/Ni/Ni-foam catalyst, as the Ni-O vibration peak
disappears completely (Supplementary Fig. 7) due to the fully reduc-
tion of NiO to metallic Ni39. The redshift of Ni-O vibration peaks in the
Al2O3/NiO/Ni-foam (580 cm−1) compares to that of NiO/Ni-foam
(540 cm−1), which is probably the effect of the formation of Al-O-Ni
coordination. Then, a larger red shift of Ni-O vibration appears when
Ce is introduced to the Al2O3/NiO/Ni-foam inverse catalyst, and no Ce-
O vibration is emerged, suggesting the formation of CeAlOx mixed
oxide which affects the Ni-O vibration40.

The chemical state of the catalyst surface is further explored by in
situ X-ray photoelectron spectroscopy (XPS, peak fitting results in
Supplementary Fig. 8 and Supplementary Table 2). From Ni 2p XPS
spectra (Fig. 1h), it is confirmed that the surface of calcined CeAlOx/
NiO/Ni-foam mainly corresponds to Ni2+ species (>76%), which con-
verts into metallic Ni0 after reduction41,42. The Ce 3d (Fig. 1h) spectra
show that over 60% surface Ce atoms become to Ce3+ species after
reduction, which could introduce abundant oxygen vacancies in the
inverse composite. Meanwhile, the 0.8 eV negative shift of the Al 2p
XPS peak of the CeAlOx/Ni/Ni-foam sample compared with Al2O3/Ni/
Ni-foam sample demonstrates the formation of CeAlOx mixed metal
oxides in the catalyst (Fig. 1i)39,43. The Osurface/(Osurface+Olattice) ratio of
CeAlOx/Ni/Ni-foam catalyst reaches ~30% (based on the O 1 s region
XPS spectra in Supplementary Fig. 6), which is in good agreement with
the CeAlOx mixed metal oxides contains higher density of oxygen
vacancies based on O2-pulse chemisorption results (Supplemen-
tary Fig. 9).

Catalytic performance of the structured catalysts
The catalytic performances of the structured catalysts for CH4 synth-
esis fromCO2 hydrogenation are evaluated between 160–300 °C using
a gas feed of CO2/H2/N2 = 18/72/10 under atmospheric pressure
and a gas hourly space velocity (GHSV) of 10,000 h−1. The activities of
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MOx/Ni/Ni-foam (M=Y, Zr, Al, Ce, and Mg) catalysts and the Ni/Ni-
foam catalyst in CO2methanation reaction are showed in Fig. 2a, b and
Supplementary Fig. 10. Almost no CO2 conversion is observed over the
Ni/Ni-foam and Ni-foam substrates (below 250 °C). In comparison,
40–80%CO2 conversion are obtained at 250 °Con theMOx/Ni/Ni-foam
catalysts, suggesting the importance of oxide modification in pro-
moting the CO2 methanation activity. Furthermore, it is found the
formation of Ce-Al mixed oxide phase (CeAlOx/Ni/Ni-foam catalyst)
doubles the CO2 conversion at 200 °C compared with Al2O3/Ni/Ni-
foam (Fig. 2a, b and Supplementary Fig. 11) and Ce/Al/Ni=1/5/30 is
determined as the optimal composition. In the performance evalua-
tion, CeAlOx/Ni/Ni-foam catalyst achieves ~90% CO2 conversion and
CH4 selectivity of >99.9% at 240 °C,which far exceeds the conventional
oxide-supported Ni catalysts. The space-time yields (STY) of CH4 of
CeAlOx/Ni/Ni-Foam and corresponding Ni/CeAlOx catalyst in kinetic

region (CO2 conversion<15%44, Supplementary Fig. 12 and Supple-
mentaryTable 4) show that the CH4-STY ofCeAlOx/Ni/Ni-foamcatalyst
is 65.3mmolCH4/mLfoam/h, which is 15 times higher than that of Ni/
CeAlOx catalyst.

For the comparison of CO2 and H2 reaction order, diluting
CO2 reaction gas was applied to ensure that CO2 is converted in the
kinetic region and the effect of hotspots is eliminated. Kinetic analysis
of the CO2 methanation catalysts shows the apparent H2 and
CO2 reaction orders of CeAlOx/Ni/Ni-foam are 0.34 and 0.21, and
those of Al2O3/Ni/Ni-foam are 0.36 and 0.24. In comparison, the
reaction orders of conventional Ni/CeAlOx and Ni/Al2O3 are 0.81/0.02
and 0.82/0.04 (Fig. 2c and Supplementary Table 5). The change of
the apparent kinetic orders of H2 and CO2 suggests that the CO2

coverage decreases and H2 surface coverage is intensified over the
MOx ensembles of CeAlOx/Ni/Ni-foamandAl2O3/Ni/Ni-foamaccording
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Fig. 1 | Catalyst preparation strategy and structure characterization.
a Schematic diagramof the synthesis of CeAlOx/NiO/Ni-foam catalyst;b SEM image
of CeAlOx/Ni(OH)2/Ni-foam catalyst; c TEM image of CeAlOx/NiO catalyst scraped
from the Ni-foam substrate (inset is the particle size distribution histogram);
d Aberration-corrected HAADF-STEM image of scraped CeAlOx/NiO catalyst; e EDS
elemental maps of scraped CeAlOx/NiO catalyst, showing the distribution of Ni, Ce

andAl; fHigh-resolutionHAADF-STEM imageof the 1# area ind;gRamanspectraof
the NiO/Ni-foam, Al2O3/NiO/Ni-foam, CeAlOx/NiO/Ni-foam, CeO2 and Al2O3 cata-
lysts; h In situ XPS of Ce 3d and Ni 2p of CeAlOx/NiO/Ni-foam and CeAlOx/Ni/Ni-
foam catalysts; i In situ XPS of Al 2p of CeAlOx/NiO/Ni-foam, CeAlOx/Ni/Ni-foam,
Al2O3/NiO/Ni-foam and Al2O3/Ni/Ni-foam catalysts.

Article https://doi.org/10.1038/s41467-024-47403-4

Nature Communications |         (2024) 15:3115 3



to the Langmuir-Hinshelwood mechanism, which could significantly
promote the surface reaction. By varying the GHSV for different
catalysts, it is ensured that all the CO2 conversion used to calculate
Ea are below6% (Supplementary Fig. 13). TheCH4baseEaofCeAlOx/Ni/

Ni-foam is determined as 61.3 kJ/mol, lower than Al2O3/Ni/Ni-foam
(76.5 kJ/mol) and much lower than that of conventional Ni/CeAlOx

(82.1 kJ/mol) and Ni/Al2O3 (93.5 kJ/mol), confirming the immense
contribution of CeAlOx/Ni inverse structure on promotion of reaction

Fig. 2 | The catalytic performance of CeAlOx/Ni/Ni-foam catalyst. Temperature-
dependent aCO2 conversion andbCH4 selectivity of theCeAlOx/Ni/Ni-foam,Al2O3/
Ni/Ni-foam, CeO2/Ni/Ni-foam, Ni/Al2O3, and Ni/Ni-foam catalysts (reaction condi-
tions: GHSV= 10,000h−1, 160–300 °C CO2:H2:N2 = 18:72:10, P =0.1MPa); c Reaction

orders with respect to H2 and CO2 for methane formation; d CH4 based apparent
activation energy (Ea) of CeAlOx/Ni/Ni-foam, Al2O3/Ni/Ni-foam, Ni/Al2O3 and Ni/
CeAlOx catalysts; e GHSV-dependent activities of CeAlOx/Ni/Ni-foam catalyst
at 240 °C.
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kinetics in methane synthesis from CO2 hydrogenation reac-
tion (Fig. 2d).

The STY of CH4 as a function of GHSV at 240 °C is further eval-
uated (Fig. 2e), and it is found that theCO2 conversionofCeAlOx/Ni/Ni-
foam remains above 80% when the GHSV increases to 80,000 h−1. The
corresponding STY of methane reaches 1109 mmolCH4/mLfoam/h
(4450mmol/gcat/h with respect to the mass of CeAlOx/Ni ensemble),
which is more competitive than the state-of-the-art supported Ru and
Ni catalysts for the low-temperatureCO2methanation (Supplementary
Table 6).

To understand the excellent catalytic performance of the CeAlOx/
Ni/Ni-foam structured catalyst, a number of characterizations are per-
formed to identify the active sites. CO2 temperature program deso-
rption profiles (Fig. 3a) show the amount of CO2 adsorbed at weak and
medium alkaline sites are 150 and 102μmol/gcat (Supplementary
Table 3). It can be seen that the capacity of weak- and medium-
adsorbed CO2 display a near linear correlation with the density of
oxygen vacancies (R2 = 0.98) (Fig. 3b). As the weak- and medium-
adsorbed CO2 are determined to show a linear relationship with the
intrinsic productivity of CH4 at 160, 180, 200, and 220 °C (Fig. 3c), it
can be confirmed that the oxygen vacancies at the inverse oxide-metal
interface are probably the sites for CO2 activation at low temperature,
which accounts for the activity of CO2 methanation.

In situ diffuse reflectance Fourier transform infrared spectro-
scopy (DRIFTs) studies further elucidate that the structure of theMOx/
Ni/Ni-foam composites affect the types and conversion rate of surface
intermediates (Fig. 3d, e and Supplementary Fig. 14). Under the reac-
tion atmosphere (CO2 + 4H2), bridged CO* (1833 and 1930 cm−1), for-
mate (2970, 1563, 1380 cm−1) and methoxy (2845, 2926 cm−1) species
are observed on CeAlOx/Ni/Ni-foam catalyst45. In contrast, only

formate and methoxy species are observed on Al2O3/Ni/Ni-foam cat-
alyst (Fig. 3d). In addition, when CO2 is removed from the feed after
steady state is reached, CO* and formate species on the CeAlOx/Ni/Ni-
foam catalyst are rapidly consumed together with the formation of
methane, and the consumption of formate species and formation of
methane is also observed on the Al2O3/Ni/Ni-foam (Fig. 3d and Sup-
plementary Fig. 14), which indicates that both formate and CO* are
important intermediates on the CeAlOx/Ni/Ni-foam catalyst, while
methanation on the Al2O3/Ni catalyst mainly follows the formate
pathway. Therefore, these two possible reaction pathways synergisti-
cally promote the lower temperature methanation on the CeAlOx/Ni/
Ni-foam catalyst.

Mechanism studies
The reaction stability is probably one of themost important indicators
for a practical catalyst, especially for the CO2 methanation catalyst,
which faces significant challenges of sintering and carbondeposition46.
To investigate the thermal shock resistance of CeAlOx/Ni/Ni-foam
structure catalyst, a seven-cycle reciprocating heating-cooling test
between 25 and 600 °C was performed (Fig. 4a). After each cycle, the
CO2 conversion and CH4 selectivity of CeAlOx/Ni/Ni-foam at 240 °C
can be restored (Fig. 4a). In contrast, the conventional Ni/CeAlOx

shows a rapid deactivation after only one heating-cooling cycle
(Fig. 4b), which is probably due to the agglomeration of Ni NPs
(see XRD patterns of the fresh and spent catalysts in Fig. 4c). This
phenomenon implies that the interaction between the oxide and
Ni substrate effectively inhibit the migration of Ni species and
thereby prevent the undesirable sintering47,48. Additionally, the tem-
perature programoxidation (TPO) experiment of the spent CeAlOx/Ni/
Ni-foam and Ni/CeAlOx catalysts also confirms coke formed on
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CeAlOx/Ni/Ni-foam after seven cycles is mainly amorphous carbon
which can be oxidized around 215 °C. While large amount of partial
crystalized carbon is generatedonNi/CeAlOx after three cycles (mainly
oxidized at400~550 °C), demonstratingCeAlOx/Ni/Ni-foamstructured
catalyst is able to inhibit the formation of coke in CO2 methanation
reaction (Fig. 4d). The coking resistancemechanism of the CeAlOx/Ni/
Ni-foam can be illustrated by the CH4 temperature program surface
reaction experiment (Fig. 4e), which indicates the decomposition of
CH4 to H2 and carbon on the CeAlOx/Ni/Ni-foam is about 50 °C higher
than the conventional Ni/CeAlOx catalyst. Moreover, the size of the

scraped CeAlOx/Ni inverse species before and after cycling experi-
ments maintains a fine dispersion without agglomeration (4.5 nm to
4.9 nm) (Fig. 4f). On the contrary, the Ni NPs over Ni/CeAlOx sinters
from3.2 nm to 10.3 nmafter four heating-cooling cycle, whichexplains
the reason for the deactivation of conventional Ni/oxide catalysts.

The excellent thermal stability of structural catalysts compared
with the conventional supported catalyst is also probably due to
the improved heat and mass transport efficiency. The temperature
rise of the catalyst bed is limited below 3 °C in a wide range of
reaction temperature and CO2 conversion on the CeAlOx/Ni/Ni-foam,
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in contrast, without the Ni foam support, the temperature rise of
CeAlOx/Ni powder catalyst bed is above 20 °C (Fig. 5a), indicating the
diminish of the localized hotspots can be highly due to the construc-
tion of structured catalysts. The pressure drops comparison of the
CeAlOx/Ni /Ni-foam structure catalyst and CeAlOx/Ni powder catalyst
suggest that the pressure drop of the structured catalyst is only 1/9 of
the powder catalysts (0.2 × 105Pa at the superficial velocity of 300mL/
min, Fig. 5b). This enhancaced mass transfer efficiency probably also
contributes to the hotspot elimination of the nickel foam-based cata-
lyst. Additionally, since steam is one of the main products during
methanation reaction, an additional amount of steam is introduced
(60 vol% H2O) at 240 °C to investigate the water resistent property
(Fig. 5c). Ni-structured catalyst loses ~1/3 of its under the reaction
condition of 60 vol% H2O, but the catalytic activity can be totally
recovered after the removal of steam49,50. In contrast, the activity of
powder catalyst is lost more than 2/3, and only 70% catalytic activity

can be recovered after removing steam. The much better water resis-
tence of CeAlOx/Ni/Ni-foam structure catalyst can also be attributed to
the porous structure that accelerates the diffusion of steam in the
reaction.

Based on the performance and cylic stability tests for CO2

hydrogenation to methane, the structured catalyst with Ni foam ske-
leton and well-designed inverse CeAlOx/Ni species as active sites
is demonstrated to display superior activity, stability and strong
adaptability to unsteady operation condition and condensation com-
pared with conventional oxide supported Ni-based catalysts (Fig. 5d).
The high thermal conductivity of metal framework and the rich dif-
fusion channels in the structured support successfully eliminate
the local hotspots and prevent the accumulation of water surrounding
the active sites, which benefits the thermal stability, coke elimination
and water resistance. The inverse species which reduces the
CO2 coverage and accelerates the reduction of CO2 and intermediates,
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not only enhances the activity but also reduces the coke formation
due to the successful suppress of CH4 decomposition side
reactions. Meanwhile, the finely dispersed metal oxide species on
inverse MOx/Ni composites also enhances the anti-sintering ability of
CeAlOx/Ni/Ni-foam catalyst and enhances the structure robustness of
active species.

As CO2 methanation is a potential reaction to integrate with
unstable and discontinuous hydrogen production from renewable
energy, the catalyst developed for the process need to be adaptive to
unsteady operation condition and potential steam condensation51.
Therefore, an unsteady operation condition with waving temperature
and space velocity is set to simulate application scenarios and evaluate
the stability of CeAlOx/Ni/Ni-foam structured catalyst (Fig. 6). No sign
of deactivation of catalyst is observed after 200h time on stream,
suggesting the application perspective of CeAlOx/Ni/Ni-foam struc-
tured catalyst in hydrogen to gas processes.

Discussion
In summary, a highly active, selective and thermally stable structured
catalyst with inverse CeAlOx/Ni ensemble active sites loaded on Ni-
foam is successfully prepared and applied for the CO2 hydrogenation
to methane reaction. We demonstrate that the formation of CeAlOx

mixed oxide on Ni enhances the oxygen vacancies for CO2 activation
and simultaneously modulates the surface coverage of CO2 and
hydrogen, which not only promotes the methanation activity by 14
times but also suppresses the decomposition of CH4. Poweredwith the
remarkable heat and mass transport efficiency of 3D Ni-foam and the
excellent anchoring effect of Ni(OH)2 overlayer prepared by the urea-
etchingmethod, the local hotspots are eliminated, and the structure of
inverse ensemble is demonstrated to be intact after long-term
unsteady operation or treated with steam-rich atmosphere, which
overcomes the inherent stability challenges existed in the conven-
tional supported-based catalysts. The development of the CeAlOx/Ni/
Ni-foam structured catalyst provides rational strategy to construct
highly stable and affordable practical catalysts for CO2 methanation
reaction.

Methods
Materials
Analytical grade chemicals including the sodium carbonate (Na2CO3,
99wt% purity), sodium hydroxide (NaOH, 99wt% purity), nickelous
nitrate hexahydrate (Ni(NO3)2·6H2O, 98wt% purity), cerium nitrate
hexahydrate (Ce(NO3)2·6H2O, 99wt% purity) and aluminum nitrate
nonahydrate (Al(NO3)3·9H2O, 99wt% purity) was purchased from
SinopharmChemical Reagent Co., Ltd. TheNi-foam felt was purchased
from Suzhou Taili Material Co. All chemicals were used as received
without any further purification.

Catalyst synthesis
Preparation of CeAlOx/Ni/Ni-foam catalyst. The Ni(OH)2/Ni foam
substrate is prepared first. In a typical synthesis procedure, circular Ni
foam thin slices (1 g, diameter 6mm, thickness 1.0mm, porosity 110
PPI) are cut fromNi foamplates and sonicated in acetone for 20min to
remove surface residual organic impurities. These circular slices are
then immersed in a 0.1M HCl solution at room temperature for an
additional 20min of sonication to remove the surface nickel oxide
from the Ni foam, followed by thorough rinsing with deionized water.
The cleaned Ni foam thin slices (0.4 g) are transferred to a stainless-
steel autoclave lined with a 50mL polytetrafluoroethylene (PTFE)
container, which contains a 35mL solution of urea (6.3mmol). After
hydrothermal treatment at 160 °C for 8 h, the Ni foam coated with
deep green Ni(OH)2 crystals is rinsed with deionized water and dried
under vacuum at 80 °C for 12 h. A solution containing Al(NO3)3·9H2O
(0.875mmol), Ce(NO3)2·6H2O(0.218mmol), and urea (6.5mmol) is
prepared (35mL), and then the obtained solution is stirred for about
60min. Subsequently, the resulting solution and Ni(OH)2/Ni foam thin
slices (0.4 g) are transferred to a Teflon-lined autoclave reactor
(100mL), subjected to hydrothermal treatment at 180 °C for 12 h. After
cooling to room temperature, the sample is washed with ethanol and
deionized water, dried under vacuum at 60 °C for 12 h, and finally
calcined at 400 °C for 3 h to obtain the CeAlOx/NiO/Ni foam catalyst.

Preparation of Ni/CeAlOx catalyst. The Ni/CeAlOx catalyst is pre-
pared by a coprecipitation method. Briefly, a solution containing
Al(NO3)3·9H2O (5mmol), Ce(NO3)2·6H2O (1.25mmol), and
Ni(NO3)2·6H2O (2.68mmol) is prepared (100mL), and then the aqu-
eous metal precursor solutions are added dropwise to a precipitating
solution of Na2CO3 and NaOH at vigorous stirring conditions. The
resulting solution is stirred for 1 h, then maintain the pH to 10 by
adding 3MNaOH solution. After that, the precipitatedmixture is aged
at 65 °C in the reactor for 18 h to promote the crystallization of metals.
Finally, the solid precipitate is filtered out be washed with ultrapure
water many times to reduce the pH of the mixture to neutral. The
obtained solid is dried at 110 °C overnight, and further calcinated at
400 °C in air52.

Catalytic evaluation
The performance evaluation of CO2 hydrogenation to methane is
performed in an atmospheric fixed-bed reactor. The prepared catalyst
sheets (0.15 g, diameter 6mm) are loaded into a quartz tube (inner
diameter = 6mm and length = 60 cm) and put into the reactor. The
catalyst is preprocessed in 20% H2 at 450 °C for 3 h, cooled to the
reaction temperature (160–300 °C), then the reaction gas
(CO2:H2:N2 = 18:72:10) is fed into the reactor. The actual temperature
of the catalyst bed is measured using a thermocouple located at the
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middle of the catalyst bed. Gas-phase products are analyzed using a
gas chromatograph (GC-8860, Agilent) equipped with a thermal con-
ductivity detector, Porapak Q and 5A molecular sieve columns. The
definitions of CO2 conversion, CH4 selectivity, carbon balance, and
CH4 STY are given by the following equations:

X CO2

� �
%=

F � Cin CO2

� �� F � Cout CO2

� � � Ain N2ð Þ
Aout N2ð Þ

F � CinðCO2Þ
ð1Þ

SðCH4Þ%=
nðCH4ÞP
nðproductsÞ ð2Þ

SðCOÞ%=
nðCOÞ

P
nðproductsÞ ð3Þ

STY ðCH4ÞðmmolCH4
�ml�1

cat � h�1Þ = nin CO2

� � � X ðCO2Þ � S CH4

� � � 16 � 60
22:4 � Vcat

ð4Þ

where F denotes the gas flow into the reactor, C denotes the con-
centration,A denotes the gas chromatographic peak area, Vcat denotes
the volume of catalyst and n denotes the amount of substance.

The Arrhenius plots were created at a high GHSV of
15,000–40,000 h−1 to ensure that the concentration of carbon dioxide
produced remained below 15%. This was achieved due to the insignif-
icant influence of heat and mass transfer in this region. Additionally,
differential mass-normalized reaction rates were calculated in the
kinetic regime.

Catalyst characterization
Inductively coupled plasma-optical emission spectrometer. The
ICP-OES results are performed on Varian ICP-OES 720. Sample pre-
paration: A certain number of samples are weighed into a PTFE con-
tainer, addedwith 5mLconcentratednitric acid, 3mLHCl, 1mLHF and
2mL H2O2, sealed in a microwave digestion furnace, heated at 1200W
for 20min to 130 °C, kept for 5min, heated for 20min to 180 °C, kept
for 40min, and cooled to roomtemperature. Test: The cooled solution
is transferred to a 25mL plastic volumetric bottle, and filled with
deionized water. The dissolved solution is tested sequentially, and the
diluted solution beyond the curve is tested again. Standard test solu-
tion: the standard solution is a national standard material, and the
curve concentration points are 0, 0.5, 1.0, 2.0, 5.0mg/L, respectively.

X-ray diffraction. XRD is used to determine the phase composition
and estimate the particle size of the catalyst. The testing is conducted
using aCu-Kα excitation sourcewith a scanning range of 2θ = 10° ~ 80°,
a scanning speed of 20°/min, and a step size of 0.0167. The phase
analysis is conducted by referring to the standard powder diffraction
cards. The particle size of Ni is calculated using the Scherrer equation.

Surface area measurement. N2 physical adsorption testing is con-
ducted on the BSD-PS2 instrument. Prior to the testing, the sample is
subjected to a vacuum degassing at 200 °C for 4 h, followed by N2

adsorption-desorption testing under liquid nitrogen cooling (−196 °C)
conditions. The determination of the specific surface area and dis-
tribution of pore sizes is accomplished through utilization of the
Brunauer-Emmett-Teller (BET) method for calculation, in conjunction
with analysis of the desorption curve using the Barrett-Joyner-Halenda
(BJH) technique.

H2 temperature-programmed reduction (H2-TPR). H2-TPR is con-
ductedon theBELCAT-B instrument. A sample of 50mg isweighed and
pretreated in a flowing pure He gas (30mL/min) for 1 h at 130 °C. After
the sample is cooled to room temperature., a flow of H2/Ar (10/90) gas
(30mL/min) is introduced. The temperature is then ramped from

50 °C to 700 °C with a heating rate of 10 °C/min for the temperature-
programmed reduction process. The consumption of hydrogen is
recorded by a thermal conductivity detector.

CO2 temperature-programmed desorption (CO2-TPD). CO2-TPD is
conducted on the Microtrac BEL Cat II instrument. The catalyst
(50mg) is pretreated at 450 °C for 180min in 20% H2 (heating rate of
5 °C/min), followed by cooling to 50 °C and purge with He for 30min.
Then, the catalyst is treated in CO2/He (10/90) for 60min, followed by
a 40-min purge with He to remove unabsorbed and physically adsor-
bed CO2. After the baseline has been stabilized, the temperature is
gradually increased from roomtemperature to 800 °Cat a heating rate
of 10 °C/min in order to facilitate the desorption of CO2.

Temperature-programmed oxidation (TPO) of spent catalysts. The
catalysts, after stability test are exposed to 20% O2/Ar (50mL/min) at
ambient temperature purge for 30min, the fixed-bed reactor is heated
to 700 °Cwith a rate of 10 °C/min and thenheld for 10min. TheCOand
CO2 are quantified bymass spectrum analyzer (DECRA), but CO2 is the
major product53.

Scanning electronic microscopy. The samples were analyzed using a
high-resolution field emission scanning electron microscope (FE-SEM,
HITACHI Regulus 8100) operating at an acceleration voltage of 20 kV.
Following that, the distribution of elements was determined utilizing
EDX (Oxford Ultim Max 65).

Transmission electron microscope. TEM is conducted using a FEG-
TEM instrument (Tecnai G2 F30 S-Twin) operating at 300 kV. The
samples are sparsely dispersed in ethanol and subsequently deposited
onto copper grids coated with amorphous carbon films, followed by
desiccation for TEM observations54.

Scanning transmission electron microscope. The Thermo Scientific
Spectra 300 Double-Corrected Transmission Electron Microscope,
equipped with a Gatan Imaging Filter, was utilized to conduct the
STEM and EDX experiments. The point of scanning for elemental
mapping within STEM-EDX was determined at 150×150. The pre-
determined operating parameters necessitated the application of an
acceleration voltage of 300 kV. To facilitate analysis and evaluation of
the findings, the surface active phase CeAlOx/Ni from the reduced
passivated nickel foam catalyst was extracted prior to TEM sample
preparation for characterization.

X-ray photoelectron spectroscopy. X-ray Photoelectron Spectro-
scopy analysis is performed on a ThermoFischer ESCALAB
250Xi equipped with an in situ reactor. The specific parameters are as
follows: excitation source using Al Kalpha radiation (hv = 1486.6 eV);
analysis chamber vacuum level of 8 × 10−10mbar; working voltage of
12.5 kV; filament current of 16mA; and signal accumulation for ~10
cycles. The Passing Energy is set to 30 eV with a step size of 0.1 eV. The
specific operational procedure is as follows: the catalyst sample, in
the formof a disc, is placed inside the reactor chamber. It is pretreated
for 1 h at a set temperature in an H2/N2 atmosphere (20 vol% H2) with
a flow rate of 20mL/min. After cooling to room temperature, the
sample is transferred to the measurement chamber without exposure
to air. The measurement chamber is evacuated to a vacuum level
below 8 × 10−10mbar before conducting the analysis. Charging cor-
rection of the binding energy is performed using C1s (284.6 eV) as a
reference.

Raman spectroscopy analysis. Raman spectra are obtained using the
Renishaw In Via Reflex spectrometer with a 532nm laser excitation
source. The scanning range is set from 200 to 1800 cm−1 with an
accuracy of 2 cm−1. The scan test is considered complete when
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consistent results are obtained from at least three positions on each
sample.

Oxygen pulse titration (O2-PT). For the O2 pulse experiments of NiO/
Ni-foam, Al2O3/NiO/Ni-foam and CeAlOx/NiO/Ni-foam catalysts are
pretreated at 450 °C for 3 h under H2 flow (20 vol% H2/N2, 40mL/min),
purged 10min with He and heated to 500 °C. Then the 1% O2 pulse
experiments are repeated until the TCD peak intensity is equal.

Ovacancy =
V O2

� � � SF=22400
ωoxide �mcat

ð6Þ

where SF represents the stoichiometry factor, V(O2) is the consump-
tion of O2 (deduct the Ni/Ni-foam consumption), ωoxide is the oxide
mass fraction (%), and mcat is the mass of the catalyst (g).

Temperature-programmed surface reaction-mass spectrum. The
test procedure for CH4 dissociation: 100mg of sample, pretreat it at
450 °C for 3 h under 40mL∙min−1 20% H2/Ar purge. Then cool down to
room temperature (approximately 25 °C), and switch the 20% H2/Ar to
25mL∙min−1 10% CH4/Ar to record mass baseline. After the baseline is
stable, the temperature is increased to 750 °C with a heating rate of
10 °C∙min−1, while the mass spectrum is recorded at the same time55.

In situ diffuse reflectance infraredflourier transformspectroscopy.
In situ DRIFTs measurements are performed by using an FTIR spec-
trometer (Bruker Vertex 80) equipped with a Harrick cell and a liquid
nitrogen-cooled MCT detector, along with an RGA detector for the
outlet gas analysis. The CeAlOx/Ni/Ni-foam and Al2O3/Ni/Ni-foam cat-
alysts are reduced in 10mLmin−1 (H2/Ar = 20/80) gas flow at 450 °C for
3 h, and then cooled down to 180 °C and purged with Ar for 30min.
The temperature of in situ DRIFTs is chosen to be 180 °C instead of
220 °C, in order to better observe the intermediate species at low
activity. 1min is averaged for each spectrum, which is recorded at a
resolution of 4 cm−1. Prior to each experiment, background is collected
at Ar and 180 °C. Subsequently, the gas flow is changed to 80%H2/20%
CO2 (10mLmin−1, 0.1MPa) at the same temperature, and the spectra
are collected simultaneously. The transmittance is obtained by divid-
ing the collected sample reflectance spectrum by the background
spectrum, then spectrum is converted to Kubelka–Monk. After 90min
reaction in an 80% H2/20% CO2 atmosphere, the inlet is switched to
80% H2/20% Ar (10mLmin−1) at the same temperature. At the same
time, DRIFTs spectra are recorded to monitor the change of intensity
of different surface species for another 90min.

Data availability
The data that support the plots within this paper and another finding
of this study are available from the corresponding author upon rea-
sonable request. Source data are provided as a Source Data file. Source
data are provided in this paper.
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