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Integrating social vulnerability into high-
resolution global flood risk mapping

Sean Fox 1 , Felix Agyemang 2, Laurence Hawker 1 & Jeffrey Neal 1,3

High-resolution global flood riskmaps are increasingly used to informdisaster
risk planning and response, particularly in lower income countrieswith limited
data or capacity. However, current approaches do not adequately account for
spatial variation in social vulnerability, which is a key determinant of variation
in outcomes for exposed populations. Here we integrate annual average
exceedance probability estimates from a high-resolution fluvial flood model
with gridded population and poverty data to create a global vulnerability-
adjusted risk index for flooding (VARI Flood) at 90-meter resolution. The index
provides estimates of relative risk within or between countries and changes
how we understand the geography of risk by identifying ‘hotspots’ char-
acterised by high population density and high levels of social vulnerability.
This approach,which emphasises risks tohumanwell-being, could beused as a
complement to traditional population or asset-centred approaches.

Flooding is one of the most common natural hazards associated with
climate change globally, with nearly a quarter of the world’s popula-
tion exposed to a 1-in-100-year event1. Every year, flooding results in
thousands of deaths, the displacement of millions, and hundreds of
billions of dollars in damage2, and climate change is expected to
increase both the frequency and intensity of floods in coming
decades3–5. Exposure to flooding is greatest in low- andmiddle-income
countries (LMICs), and this is expected to increase as a consequence of
rapid demographic change1. This is of particular concerngiven that the
poorest households and communities have the least coping capacity
when confronted with a natural hazard event and suffer the greatest
well-being losses2,6–9. Failure to mitigate hazard risks for the most
vulnerable contributes to the perpetuation of poverty10 and can
exacerbate social inequalities within and between countries11–13.

Within this context, flood risk mapping is an increasingly essential
tool for policymakers seeking to mitigate future risk and respond
effectivelywhenhazardeventsoccur14,15. Inmanyhigh-incomecountries,
detailed flood risk maps with multiple indicators of vulnerability have
long been used to inform both public policy and private insurance and
mitigation16–19. By contrast, high-resolution flood risk mapping has been
particularly challenging in lower income countries due to basic data
deficits14. However, recent advances in global flood hazard modelling20

and population modelling21,22 have made it possible to produce high-

resolution global flood risk maps for all countries, including those with
limited data and modelling capacity. These maps are increasingly used
to support disaster risk management, prediction and response by
national governments and international organisations15.

Yet these global flood risk maps do not adequately account for
social vulnerability14, defined broadly as susceptibility to harm from
exposure to a hazard event stemming from social factors (e.g. poverty
or social status)23. Instead, data from hydrological models are com-
bined with gridded population or income and asset (e.g. buildings)
data to estimate the amount of people, income or assets likely to be
exposed to future flood events24. The outputs are more accurately
characterised as population or wealth exposure maps than risk maps,
as they do not incorporate information about the coping capacity of
affected populations. As a result, the places that appear to have the
highest risk are either themostdenselypopulated areas or thosewith a
high concentration of income or assets (or both). In short, global flood
risk mapping approaches generally ignore social vulnerability and
emphasise economic risk, rather than human well-being.

Some recent global studies have attempted to incorporate mea-
sures of social vulnerability, such as indicators of poverty1 or socio-
economic resilience2, but they do so at national scale or for large
subnational units (e.g. states, provinces or districts). For example, a
recent study estimating the number of low income people exposed to
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flood hazards globally assumes uniform income across large subna-
tional units1. Another, whichprovides a nuanced global analysis of how
social vulnerability and resilience intersect with natural hazards to
shape risk, only offers national-level estimates2. Yet decision makers
within local and national governments and international organisations
require much higher resolution risk maps to plan for, predict and
respond to local flood hazards. The current lack of high-resolution
global flood risk maps that account for social vulnerability is therefore
an important limitation in current approaches to flood risk analyses
that rely on global models.

Here we propose a means of integrating social vulnerability into
global fluvial flood risk mapping at 90m resolution by combining a
measure of ‘expected population exposure’ (EPE) with gridded data
reflecting relative deprivation (i.e. poverty), which we use as a proxy
measure for social vulnerability in the absence of more detailed and
globally available social data. EPE was calculated using annual excee-
dance probability (AEP) data from Version 2 of the University of Bris-
tol/Fathom Global Flood Model and gridded population data from
WorldPop (constrained). We use two alternative sources of data as
proxies for social vulnerability: gridded gross domestic product (GDP)
per capita transformed into a measure of relative deprivation at cell
level, and an index of multidimensional relative deprivation (see
‘Methods’). The resulting vulnerability-adjusted risk index (VARI
Flood) reflects both the estimated extent of exposure to fluvial flood
hazards and the relative vulnerability of potentially affected popula-
tions. It can be used to evaluate relative risk at either the global scale
(e.g. between countries) or the local scale (e.g. between districts or
even neighbourhoods within a district) and can alter how we under-
stand the geography of risk by highlighting areas that are both densely
populated and highly vulnerable. Many places that would be con-
sidered highly vulnerable due to high population density or high
income are found to be relatively less risky when relative vulnerability
is considered. The method is particularly useful in national contexts
where decision makers faced with scare resources need to prioritise
areas for investment in adaptation measures or response in the after-
math of a hazard event. VARI Flood estimates based on country-
standardised measures of relative vulnerability help to reveal ‘hot-
spots’ of extreme risk for local policy targeting purposes. This
approach may therefore serve as a useful complement to traditional
population or asset-based measures of risk where decision makers are
concerned with mitigating potential well-being losses.

Results
Our sample is comprised of the 175 countries for which gridded GDP
and poverty data are available, collectively containing 98.6% of the
global population. In Fig. 1, we show results using both the income-
based proxy for social vulnerability (Fig. 1b) and the multidimensional
relative deprivation proxy (Fig. 1c). Thereafter we only report results
using the income-based proxy given its much greater geographic
coverage: globally, the poverty data contain only 11% of the cells
contained in the GDP data. In Supplementary Information Fig. S2, we
provide evidence that GDP per capita is a reasonable substitute for
multidimensional relative deprivation and preferable due to much
greater geographic coverage. Full technical details for themain results
presented here are provided in ‘Methods’.

Global and regional flood risk
In our sample, approximately 2 billion people are estimated to be
exposed to a fluvial flood hazard event using a 10 cm depth threshold.
However, to identify the most vulnerable areas, we calculate and
compare the populations in the top two quintiles of risk using an
exposure-only approach and our VARI Flood method. The income-
based relative deprivation measure used for the analyses presented in
Figs. 1b and 2 are globally standardised—i.e. reflect quintiles of the
global income distribution—to facilitate cross-national comparison.

Using this approach, we estimate that 1.23 billion people live in
areas in the top twoquintiles of EPE, whereas 866million people live in
areas classified in the top two quintiles of our VARI using the income-
based relative deprivation measure—our proxy for social vulnerability.
Using the alternative multidimensional relative deprivation index
yields lower numbers (867million and 373million, respectively) due to
limitations in geographic coverage. The differences in these estimates
are clear in Fig. 1a and b, which report population counts and shares at
admin 2 level for all countries in our sample. The admin 2 unit refers to
the second geographic tier of political subdivision within countries,
just below the admin 1 units of provinces or states. Admin 2 units are
generally counties (in the USA), districts, or other local authority areas
and are taken from Fieldmaps (Fieldmaps.io). Visual comparison
shows that both the magnitude and the geography of risk changes
when social vulnerability is factored into the risk assessment. At the
global level,many populous areas are classified as high riskwhen EPE is
the sole criterion but register as low risk when vulnerability is con-
sidered. Notable examples include large areas of Australia, Europe,
North America, and Russia. At this global scale, the highest risk admin
2-unit changes in 75 (43%) of the countries in our sample when we
consider the share of the population in VARI Flood categories 4 and 5
versus EPE categories 4 and 5.

Figure 2 illustrates the differences in the global and regional dis-
tribution of risk according to each metric. As Fig. 2a shows for the
global sample, an exposure-based approach (i.e. not accounting for
social vulnerability) shows a monotonic distribution of risk with over
half of the population living in areas classified as high (quintile 4) or
very high (quintile 5) risk. By contrast, the VARI Flood estimates show a
more normal distribution with most people in areas in the lower three
risk quintiles. Figure 2b presents the same comparison broken down
my major world region. This shift is a result of the weight placed on
socially vulnerable areas (as proxied by low areal GDP). It is important
to stress that these estimates useglobally standardised population and
vulnerability quintiles to reflect relative risk between admin 2 units
globally. This information is useful for organisations seeking to com-
pare need across major world regions or countries.

Country-level flood risk maps
Yet the primary use case for the VARI Flood method is within-country
comparison to support national or local decision makers. For this
application, exposure and vulnerability quintiles are standardised
against country specific population and income distributions. As with
the globally standardised approach, incorporating country standar-
dised relative deprivation measures alters our understanding of the
geography of risk: the highest risk admin 2-unit changes in 73 (42%) of
countries in our sample. A global map of country standardised EPE at
admin 2 scale is available for replication in other country contexts (see
‘Data availability’).

To illustrate, Fig. 3 shows national and subnational results for
Nigeria, Pakistan, and Vietnam. These country-level results confirm the
global trend: the number and share of people in the highest risk
category (5) falls and the geography of risk changes. Comparing the
geographic distribution of risk between these approaches, the
exposure-only estimates in Nigeria show high and geographically
extensive concentrations along the Niger river basin and delta, and in
the northern regions—the most densely populated areas of the coun-
try. Once social vulnerability is accounted for the broad geographic
pattern remains, but there is a reduction of relative risk in the south
and increased concentration in the far northeast of the country. In
Pakistan the exposure-only andVARI Flood estimates are similar, with a
slight increase in the number and share of populations at high risk in
southern regions. In Vietnam,both estimates suggest high levels of risk
across the country, but the vulnerability-adjusted estimates throw into
relief hotspots of particularly high risk (both in absolute and relative
terms) in parts of the Mekong River Delta and Central Coast regions.
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Fig. 1 | Global estimates of populations at high risk from flood hazards: a
comparisonofexposure-onlyandglobally standardised vulnerability-adjusted
approaches. Globally standardised estimates of the size and share of populations
living in areas classified in the top two risk quintiles. Ina, flood risk ismeasuredwith

reference expected population exposure (AEP × Population) alone; b shows
vulnerability-adjusted estimates based on quintiles of gridded GDP per capita
standardised against the global incomedistribution; c shows vulnerability-adjusted
estimates with gridded multidimensional relative deprivation estimates.
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Figure 4 drills down further to examine differences at the level of
individual human settlements: Amukpe on a tributary of the Benin
River in Nigeria, Hyderabad along the Indus River in Pakistan, and Kon
Tum on the Dak Bla river in Vietnam. As with both the global and
national maps, we observe a noticeable shift in the geography of risk
once social vulnerability is factored into our estimates.

These settlement-level risk maps also highlight key limitations of
the vulnerability data: it is much lower resolution than the gridded
flood model output and population data. While inundation and
population can bemapped at high spatial resolution globally (∼90m),
GDP data are only available at 1 km2. This is evident in the clear ‘tiling’
effects, with large squares assigned identical vulnerability values.
Although we still capture some variation in risk at the 90m scale, it
may not fully reflect the true variation in risk at this scale given the
coarseness of the income data.

Discussion
Our study presents global gridded fluvial flood risk estimates that
explicitly adjust for variations in social vulnerability at 90mresolution.
Incorporating social vulnerability in this way can alter how we under-
stand the geography of riskwithin countries by emphasising areaswith
relatively large populations and low coping capacity. This contrasts
with traditional approaches that emphasise either population density
or income/asset density25,26.

VARI Flood is designed for decision makers concerned with
reducing the impacts of fluvial flood hazards for the most vulnerable
by revealing flood risk ‘hotspots’ where there are likely to be the
greatest well-being losses (rather than economic losses). As such, VARI

Flood raises important normative and ethical questions for decision-
makers. For example, should flood defences prioritise areas with the
greatest number of people, areas with key economic assets and valu-
able property, or places with the greatest potential well-being losses?
How are these imperatives best balanced? By foregrounding potential
well-being losses, the VARI Flood approach encourages explicit con-
sideration of these trade-offs.

The results presented here are primarily intended to illustrate an
alternative approach to risk estimation with global models rather than
reflect definitive estimates of populations at risk within and between
countries. These estimates are sensitive to several key assumptions,
definitions, uncertainties, anddata quality.We assume thatpoverty is a
reasonable proxy for social vulnerability in the absence of more
nuanced data (i.e. all else equal, people on lower incomes are generally
more vulnerable to stressors than people on higher incomes every-
where). Yet there are many other factors that can affect the vulner-
ability of individuals, households, and communities. Locally informed
vulnerability assessments are preferable where the requisite data are
available. Our definition of a ‘flood’ (i.e. events that exceed 10 cm in
depth) may not be suitable in all contexts, particularly where such
events are frequent and communities have adapted27. Sensitivity ana-
lysis presented in Supplementary Information Figs. S3–S6 shows that
our estimates are sensitive to the threshold chosen, but also confirms
that the VARI Flood approach has a consistent effect with regards to
changing our understanding of the distribution of risk.

There are also known uncertainties in the hazard models, which
can be large at local scales28 and likely affect the accuracy of cell-level
risk predictions, such as those presented in Fig. 4. However, the

Risk Score

(a)

(b)

Fig. 2 | Comparisonofglobal and regional estimatesofflood riskestimateswith
globally standardised measures of relative deprivation. a shows global esti-
mates of the number of people by flood Risk Score. Relative deprivation quintiles
are standardised against the global income distribution to enable cross-regional

comparison. Grey bars represent exposure-only estimates based on expected
population exposure; black bars represent vulnerability adjusted estimates using
GDP per capita as a proxy measure. b provides a regional breakdown of estimates
using each approach.
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Fig. 3 | Comparison of EPE and VARI Flood in Nigeria, Pakistan & Vietnamwith
country standardised measures of relative deprivation. a shows population
counts and shares in the highest risk categories (4 and 5) in Nigeria, Pakistan and
Vietnam using expected population exposure; b shows population counts and

shares in the highest risk VARI Flood categories with relative deprivation standar-
dised against each country’s income distribution; c compares the country level
population counts by quintile using each method.
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errors arising from these uncertainties are largely ameliorated when
data are aggregated at 1 km2 or higher20, such as the admin 2 unit
scale reported in Fig. 3. Nevertheless, investigating how these
uncertainties interact with those in the economic data to shape our
understanding of the geography of risk is an important direction for
future research. Further, we have only estimated fluvial hazards.
Incorporating pluvial, small river (<50 km2) and coastal flood expo-
sure, as well as compounding effects between these hazards, would
change our risk estimates. However, this would also introduce con-
siderable uncertainty, particularly with regards to pluvial flood
models, which are highly sensitive to depth thresholds changes1 and
local topographic features.

Finally, the spatial resolution of our social vulnerability proxies is
coarse compared to the available hazard and population data. There is
a clear need to substantially improve the resolution of gridded social
vulnerability indicators and ensure internal consistency across scales

and geographic contexts. Previous research highlights the often very
localised nature of social vulnerability dynamics, which can render a
useful indicator at one geographic scale (e.g. district or state) mis-
leading at another (e.g. household or neighbourhood)29. An advantage
of the VARI approach using relative deprivation is theoretical and
empirical consistency, and the ability to calibrate it to any scale of
decision-making. But the accuracy of risk estimates will ultimately
depend on the quality of the deprivation data and the scale at which it
is considered reliable.

The need for higher resolution and higher quality social vulner-
ability data is particularly acute in rapidly urbanising regions in LMICs.
Urban flood risk is growing globally due to demographic and land use
changes30. According to United Nations projections, nearly all popu-
lation growth in coming decades will be absorbed by urban areas in
Africa and Asia31. Low resolution is particularly problematic in large
human settlements, suchas cities ormetropolitan regions,where there

(a) Amukpe, Nigeria

(b) Hyderabad, Pakistan

(c) Kon Tum, Vietnam

Exposure Vulnerability VARI Flood Risk

Fig. 4 | Cell-level comparison of risk estimates within settlements in Nigeria,
Pakistan & Vietnam with country standardised measures of relative depriva-
tion. This figure shows exposure (first column), vulnerability (second column) and

VARI Flood (third column) risk scores at the cell level in Amukpe, Nigeria (a),
Hyderabad, Pakistan (b), and Kon Tum, Vietnam (c) GDP per capita data are used as
a proxy for social vulnerability (see ‘Methods’).
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is often considerable local variation in living standards and hence
social vulnerability. High-resolution vulnerability-adjusted flood risk
maps could help to optimise flood adaptation, mitigation and disaster
preparedness investment and intervention in urban areas in these
regions.

Methods
Measuring social vulnerability with GDP and multidimensional
poverty data
Social vulnerability is a multifaceted phenomenon, but can be broadly
defined as susceptibility to harm from a combination of exposure to
stressors and limited capacity to adapt23. There are many factors that
affect the vulnerability of individuals, households and communities to
natural hazards and these can vary substantially across contexts23,32.
For example, poverty, age, gender, race and ethnicity, government
capacity, and access to emergency services can all influence the extent
to which exposure to a hazard event translates into harm, and the
extent of harm. Currently, there is no global geospatial dataset that
captures the complexity and local nuances of social vulnerability14, nor
variation in the importance of these factors within national and sub-
national contexts. However, measures of income and poverty are the
most consistent predictors of coping capacity over time and space29,33.
Simply put, people with lower incomes tend to bemore susceptible to
harm from stressors than people on higher incomes everywhere in the
world. Given the absence of any alternative globally standardised
vulnerability data, measures of poverty are the best proxy.

Poverty—or ‘deprivation’ to use the formal terminology—can be
measured in both absolute and relative terms34. Absolute deprivation
refers to lack of basic needs, such as food, safe drinking water, shelter,
etc. This is oftenmeasured by using individual or household income as
a proxy for the ability to satisfy these basic needs35. For example, a
common metric for global comparisons is the World Bank’s ‘$1-a-day’
measure1. However, in recognition of the complex causes of depriva-
tion, multidimensional indices are also common, incorporating mea-
sure of health, education, assets, housing conditions, personal security
and other ‘goods’35.

These approaches are also applied to measure relative depriva-
tion. Relative deprivation incorporates social context by calibrating
measures across populations rather than applying fixed thresholds.
For example, one of the keymeasures of poverty used in the European
Union defines a person as relatively deprived if their income is below
60% of national median disposable equivalised income35. Multi-
dimensional approaches can include relative health, education, hous-
ing, or asset indicators. Relative deprivation indices are particularly
useful for policymakers seeking tomake decisions about the allocation
of scarce resources by identifying people, households, or areas of least
and greatest need.

Here we adopt a relative deprivation approach to mapping pov-
erty. The use of relative deprivation rather than absolute deprivation is
motivated by the primary use-case for flood risk maps, which is to
inform local, national, and international agencies’ interventions to help
communities adapt and mitigate the consequences of flood hazard
events. These actors always operate within a context of scarce
resources and must therefore prioritise. At the global level, compar-
isons can be made across countries by using a globally standardised
poverty index that ranks areas based uponwhere they fall in the global
distribution of income, as presented in Figs. 1 and 2 above.

The relative deprivation approach adds greater value at the local
scale because globally standardised measures of poverty are not well-
suited to local prioritisation. For example, decisionmakers with scarce
resources in Nigeria seeking to mitigate the harm from future flood
hazard events will be concerned with identifying themost at-risk areas
within their jurisdiction. According to the World Bank, Nigeria is a
LMIC. Applying the global LMIC Poverty Line of $3.56 (2017 PPP)
per day per capita, over 63% of Nigeria’s population lives in poverty36—

a figure much too large to facilitate meaningful policy targeting.
Conversely, US policymakers at county, state, and federal levels still
need measures to identify the most vulnerable places within their
jurisdictions, even though less than 1%of theUSpopulation lives below
the international poverty line. The need for measures that facilitate
prioritisation and policy targeting underpins the widespread use by
national policy makers of country-specific indicators of relative
deprivation2,35. Within the context of flood risk assessment, measures
of relative deprivation can be useful in highlighting areas of relative
social vulnerability and hence elevated risk at various spatial scales.

However, there are currently few global gridded datasets that can
be used to measure relative deprivation at high spatial resolution. Chi
et al. provide global gridded estimates of relative poverty andwealth at
2.4 km resolution, which ismuch coarser than existing populationdata
and flood model outputs37. To achieve the highest possible resolution
and greatest coverage we therefore use two alternative sources. Our
preferred data are fromChen et al.38 who provide griddedGDP at 1 km2

resolution globally for 175 countries for the years 1992-2019. These
areal estimates of income were converted to per capita estimates by
dividing cell GDP by cell population from WorldPop (see below).

For the global results presented in Figs. 1 and 2, we divided cell-
level GDP per capita estimates into quintiles using the global income
distribution and classified those in the bottom two quintiles as rela-
tively poor and hence relatively vulnerable. For the country-specific
results presented in Figs. 3 and 4, we divided cell-level GDP per capita
into quintiles using country specific income distributions.

Given the multidimensional nature of poverty and vulnerability,
which cannot be fully captured by income data, we also conducted
analysis with the Global Gridded Relative Deprivation Index from the
Center for International Earth Science Observation at Columbia
University39. These data are also available globally at 1 km2 resolution
but offer less comprehensive geographic coverage, containing just 11%
of the number of cells available in the GDP data. As demonstrated in
Supplementary Information Fig. S2, there is a close cell-level corre-
spondence between our gridded GDP per capita measure and this
multidimensional measure. We therefore report results from the GDP-
based measure of relative deprivation in the main body of the paper.

Annual exceedance probability (AEP)
Fluvial flood hazard maps from Version 2 of the University of Bristol/
Fathom Global Flood Model (GFM)20 are used in this study. This ver-
sion uses the same modelling framework as described in Sampson
et al., but with improved elevation data from MERIT DEM40, a more
accurate river network fromMERIT-Hydro41 and anupdatedmethod to
estimate river conveyance capacity42. Model boundary conditions (i.e.
howmuchwater is in the river) is estimated using a global regionalised
flood frequency analysis as described by43. All catchments with an
upstream area greater than 50 km2 are simulated. Flood depth at 3 arc
second spacing (~90m at the equator) is provided for 10 return peri-
ods (5, 10, 20, 50, 75, 100, 200, 250, 500 and 1000). Flood return
periods are converted into AEP by first creating a binary flood map
where a flood depth >10 cm is considered flooded, then assigning the
flooded pixels the AEP value (i.e. inverse of the flood return period in
question). For each pixel, the maximum AEP value (i.e. most frequent
floodhazardprobability) from the stack offloodhazardprobabilities is
taken, thus creating a single map of flood hazard probabilities.

The choice of a 10 cm threshold for floodingwas chosen based on
prior literature25,26. However, this threshold may not be relevant in
contexts where people have adapted to regular events of this
magnitude27. This low threshold increases uncertainty in our risk
estimates as the negative impacts of inundation events becomes
increasingly certain as depth increases44. In Supplementary Informa-
tion Figs. S3–S6, we present sensitivity analysis in our three case study
countries using alternative depths of 50 and 100 cm. The higher the
threshold, the lower the number of people affected. However, the key
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conclusion that the distribution of risk changes when vulnerability is
accounted for is confirmed. In short, varying our assumptions about
the nature of flood hazards does not change our understanding of the
nature and geography of risk as much as incorporating a measure of
social vulnerability into flood risk assessments.

Gridded population data
Population information is provided by the building constrained ver-
sion of WorldPop. This version of WorldPop distributes census infor-
mation to building locations derived from satellite data using a
random forest method and various spatial covariates45,46. This data
provides population counts at 3-arc secondgrid spacing for 2020,with
estimates adjusted to match United Nations (UN) population
estimates.

It is important to note that we chose a ‘constrained’ population
dataset, rather than an ‘unconstrained’ version (such as WorldPop
Unconstrained, LandScan or GPWv4). Unconstrained population
datasets differ in that they do not consider building footprints and
thus distribute population to all habitable pixels rather than where
people reside. This has important implications when considering flood
risk as unconstrained population datasets tend to distribute people
across uninhabited land (e.g. frequently flooded floodplains)45,47,
whereas in reality people (often) live on themargins offloodplains, out
of reach of all but the most extreme floods27. A result of this is that
unconstrained population datasets overestimate flood exposure26,48.

Spatial matching of GDP, AEP and population data
The AEP and population data have similar spatial resolutions, 3 arc-
seconds at the equator, which is approximately 90m using WGS 1984
Pseudo-Mercator projection system. The spatial resolution of the GDP
data, however, is 30 arc-seconds at the equator, approximately 1 km. It
is important that the spatial resolutions of the three datasets are
consistent prior to combining them to construct VARI Flood. We
therefore up-sampled theGDPdata for each country to spatiallymatch
the resolution of the AEP and population datasets using a ‘nearest
neighbour’ technique.

Constructing a VARI Flood
We combine gridded AEP, population data and GDP per capita data
to produce a gridded vulnerability-adjusted risk score for all cells
with an AEP > 0. This is done in three stages. First, the AEP for every
cell is multiplied by the population of the cell to generate a measure
of expected population exposure (EPE) across the full range of
return periods. Compared to the traditional approach of using a
fixed and arbitrary return period threshold such as a 1-in-100-year
flood event1,3,49, our approach accounts for the fact that hazard
events exist on a spectrum of probabilities that cannot be captured
by modelling a single probability of flood event (e.g. 1-in-100-year
flood event). Small, relatively frequent flooding (<1-in-50-year flood)
can result in severe damage and fatalities, such as 2011 Thailand
Floods50. Recent studies at the sub-national level have found that
flood risk inequality is especially prevalent at frequent flood
probabilities30. On the other end of the spectrum, the likelihood of
extreme flood events (>1 in 100) is rising5,51. For example, flood risk
from notable recent events such as the July 2021 German floods52,53

and 2017 Hurricane Harvey in the USA54 would be missed from the
typical flood risk assessment using the 1-in-100-year flood. To
represent a full range of probabilities, we simulate 10 different flood
return periods (5,10,20,50,75,100,200,250,500,1000) of fluvial
flooding at 90-metre resolution on rivers with catchment areas
above 50 km2 and integrate these into ameasure of AEP, which is the
inverse of return period. This is combined with gridded population
data to produce our measure of EPE. The VARI Flood scoring system
can be used to evaluate relative risk at multiple scales. For global
applications, population and poverty quintiles are drawn from the

global distribution of these variables; at the country level the input
quintiles are drawn from the country-specific distributions.

In the second step, the EPE and normalised GDP per capita esti-
mates for all cells are divided into quintiles using the global distribu-
tion of thesevalues (for Figs. 1 and2) and country-specificdistributions
(for Figs. 3 and 4). We use the inverse of GDP per capita quintiles to
reflect social vulnerability, such that the first quintile reflects the
richest 20%, and the fifth quintile reflects the poorest 20%. Third, we
multiply EPE and vulnerability quintiles, take the square root and
round up or down to the nearest integer to get a final risk score (Eq. 1).

VARI Flood Score =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EPE quintile*Vulnerability quintile
p

j k

ð1Þ

Values range from 1 to 5, with 1 representing the lowest level of
risk (low population and low vulnerability) and 5 representing the
highest level of risk (high population and high vulnerability). Figure 5
illustrates how the index is constructed.

This approach differs from past studies by integrating poverty
andexposure information to generate a simple risk scoring system. For
example, if population exposure at a single return periodwere the only
factor in evaluating the risk of a location (standard practice), the risk
index would be highly correlated with population density in places
predicted to flood (i.e. more people =more risk). If GDP were used
instead, risk would be highly correlated with income (i.e. more
income=more risk). The VARI Flood scoring system offers con-
siderablymorenuanceby factoring in (a) the full spectrumofflood risk
(up to 1-in-1000-year probability), (b) population exposure, and (c)
relative vulnerability proxied by measures of poverty.

As Fig. 1 makes clear, factoring relative deprivation into risk cal-
culations in this way can substantially affect our understanding of the
distribution of flood risk within a population. For example, a tradi-
tional approach to risk mapping would assign the highest score (5) to
locations in the highest exposure quintile, yet it is possible for such a
location to be assigned a VARI Flood score of just 2 if it falls within the

Fig. 5 | Constructing a vulnerability-adjusted risk index for flooding (VARI
Flood). The index comprises two primary components: (1) expected population
exposure (EPE) at cell level, calculated from gridded population data and annual
exceedanceprobability estimates from the floodmodel; and (2) cell-levelmeasures
of poverty as a proxy for social vulnerability. For each cell, we assign a quintile value
for EPE (1 = lowest quintile of exposure; 5 = highest quintile of exposure) and vul-
nerability (1 = least vulnerable quintile; 5 =most vulnerable quintile). The final risk
score assigned to a cell is the square root of theproductof the EPE and vulnerability
quintile values, rounded to the nearest integer. For example, a cell with an EPE
quintile value of 4 (i.e. relatively high risk) and a vulnerability value of 5 (i.e. most
vulnerable) would receive a VARI Flood score of 4.
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lowest vulnerability quintile. Conversely, it is possible for a location in
the lowest exposure quintile to be assigned a VARI Flood score of 2 if it
falls within the highest vulnerability quintile. A VARI Flood score of 5
(the highest level of risk) is only assigned to places that fall within the
top quintile of both exposure and vulnerability.

At the global level, the index can be calibrated to assess relative
risk across countries and regions by taking EPE and GDP per capita
quintiles from the global distribution (Figs. 2 and 3). However, the
same approach can by applied to assess relative risk within countries
by using country-specific population and vulnerability quintiles
(Figs. 4 and 5). When constructed in this way, the index can be used to
support decision makers working within their national context.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw Fathomglobal floodmodel data are restricted for commercial
reasons but are available for academic purposes (https://www.fathom.
global/contact-us/). The WorldPop constrained high-resolution popu-
lation counts are available to download (https://hub.worldpop.org/
project/categories?id=3). Global gridded GDP are available for down-
load (https://doi.org/10.6084/m9.figshare.17004523.v1). Multi-
dimensional relative deprivation data are available for download
(https://sedac.ciesin.columbia.edu/data/set/povmap-grdi-v1). Admin-
istrative boundary data are from Fieldmaps (https://fieldmaps.io/).
Data of subnational flood hazard exposure and risk estimates for 175
countries, which are the output of our analysis, are available for
download on Figshare (https://doi.org/10.6084/m9.figshare.
25273429.v3).

Code availability
R was used to prepare annual exceedance probability rasters. Python
3.0 was used for all other analysis. QGIS was used to were used to
prepare maps. Replication code for the main analysis is available here:
https://doi.org/10.6084/m9.figshare.25285540.v1.
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