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Distinct information conveyed to the
olfactorybulbby feedforward input fromthe
nose and feedback from the cortex

Joseph D. Zak 1,2 , Gautam Reddy 3,4,5, Vaibhav Konanur 1 &
Venkatesh N. Murthy 5,6,7

Sensory systems are organized hierarchically, but feedback projections fre-
quently disrupt this order. In the olfactory bulb (OB), cortical feedback pro-
jections numerically match sensory inputs. To unravel information carried by
these two streams, we imaged the activity of olfactory sensory neurons (OSNs)
and cortical axons in the mouse OB using calcium indicators, multiphoton
microscopy, and diverse olfactory stimuli. Here, we show that odorant mix-
tures of increasing complexity evoke progressively denser OSN activity, yet
cortical feedback activity is of similar sparsity for all stimuli. Also, repre-
sentations of complex mixtures are similar in OSNs but are decorrelated in
cortical axons. While OSN responses to increasing odorant concentrations
exhibit a sigmoidal relationship, cortical axonal responses are complex and
nonmonotonic, which can be explained by a model with activity-dependent
feedback inhibition in the cortex. Our study indicates that early-stage olfactory
circuits have access to local feedforward signals and global, efficiently for-
matted information about odor scenes through cortical feedback.

Volatile odorants are sensed by olfactory sensory neurons (OSNs) in
the main olfactory epithelium of mammals1. Each OSN expresses only
one odorant receptor (OR) type out of a large ensemble but can sense
many ligands with different sensitivities2,3. The large number of
receptor types with broad selectivity is thought to underlie the com-
binatorial capacity of the olfactory system to sense a substantial
number of odors in the natural world. Axons of OSNs expressing the
same OR converge on glomeruli in the olfactory bulb (OB)4–6. This
convergence is likely to help in signal averaging, and postsynaptic
projection neurons called mitral/tufted (M/T) cells receive focused
excitatory inputs from single glomeruli7,8. A complex network in the
OB, which includesmany types of inhibitory interneurons9, transforms
the incoming odorant information before it is sent to downstream
brain regions, including the piriform cortex (PC). An intriguing feature

of the early olfactory system is the dense axonal feedback projections
from olfactory cortical areas to the OB, which brings processed cor-
tical information back to the earlier stages10–13. It is not clear how the
feedforward information from the nose and feedback from the cortex
interact in the OB.

The elaborate and often hierarchical organization of sensory
systems is widely thought to help achieve efficient coding of
information14–16. One way in which brains are thought to achieve effi-
cient coding is by making responses of a neural population uncorre-
lated and of similar sparsity for a wide range of stimuli15–20. In the
olfactory system, the repertoire ofORs is fixed in the genome and their
responses to odorant stimuli may be inefficient - for example, certain
odorants may activate many receptors and others may activate very
few21–24. Tomake the representationmore efficient, circuits in different
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brain regions, including theOB and the PCmayperformcomputations
such as normalization or whitening25–28. While circuits in the OB are
likely to achieve some of the computational goals29, the PC is better
situated for more global associations.

Principal cells in the PC integrate information from multiple glo-
merular channels in the OB, conveyed by M/T cells30–32. This informa-
tion is then reformatted through recurrent excitatory and inhibitory
circuitry in the PC, presumably to aid odor perception. For example,
the fraction of neurons in the PC responding to different mono-
molecular odorants is relatively constant25,33–35, even though these
odorants could activate very different densities of OSNs. Similarly,
different concentrations of a given odorant activate a similar fraction
of PC neurons25,35–37. Correlations in the representation of mono-
molecular odorants are also restructured in the PC26.

While previous studies point to normalization of olfactory
responses in the PC38, several key features remain unknown. For
instance, even though theolfactory environment consists of a complex
mixture of chemicals, we currently lack an understanding of how
cortical neurons represent realistic odorant mixtures, which elicit
complex interactions even in the OSNs24,39–43. Importantly, in the con-
text of feedback, it is unclear which of the different computations
ascribed to the PC, related to odorant identity25,44, quality45,
attention46, and predictive coding47, are conveyed back to the OB.

In this study, we make use of a diverse set of olfactory stimuli to
ask how their neural representation is transformed from the OSNs to
feedback from thePC to theOB.We imaged the activity ofmouseOSNs
in the olfactory epithelium in response to pure odorants, as well as a
wide variety of mixtures of odorants containing up to 12 components.
We also imaged OSN responses to variations in odorant concentration
over 4 orders of magnitude. We measured how expanding sensory
input influences the activity of PC feedback by imaging its axonal
projections to the OB. Our results reveal that cortical feedback axons
bring back strongly normalized and decorrelated information about
diverse odorant mixtures and concentrations to the OB, which can be
combined with feedforward signals to influence M/T cell responses.

Results
Odorant tuning profiles of cortical projections to the OB
Principal neurons in the PC integrate inputs from multiple glomeruli
(Fig. 1A) and can respond to odorant stimulation with either an
increase or decrease in activity relative to their baseline activity12,25,37.
We began our study by systematically measuring the responses of
cortical feedback axons in the OB of awake mice to a panel of mono-
molecular odorants.

A cocktail of two viruses was injected into the anterior portion of
the PC (see Methods) to drive the expression of the calcium indicator
GCaMP6f (Fig. 1B) and the fluorescent marker tdTomato (see Supple-
mentary Fig. 1), which was used to identify regions containing infected
projections and for motion artifacts compensation. A post hoc analysis
revealed dense indicator expression in the somata of neurons in layer
2/3 of the PC (Fig. 1C), as well as their axonal projections in the granule
cell layer of the OB (Fig. 1D). Projections could also be observed to
reach the glomerular layer of the OB, although at lower densities.

In living mice imaged through cranial windows, we observed
dense indicator expression at the interface between the external
plexiform and granule cell layers (Fig. 1E). To measure functional
responses, we selected a standardized odorant panel that has pre-
viously been used in our laboratory for both behavioral and physio-
logical studies24,48 (Supplementary Table 1). Odorants were delivered
for two seconds each in a pseudorandomorder with intertrial intervals
of at least 20 seconds between odorant presentations. The odorant-
evoked responses were measured in individual axonal boutons by
generating ROI masks from spatiotemporal correlograms (refs. 49,50;
Fig. 1F). Within individual imaging fields, enhanced and suppressed
bouton responses were spatially distributed throughout the area

imaged and their response kinetics varied by odorant identity
(Fig. 1F–H).

In our characterization of odorant tuning profiles of cortical
feedback, we collected data from 832 boutons in nine imaging fields
from six mice. Exemplar odorant response characteristics are shown
in Fig. 1. For all bouton-odorant pairs that were significantly stimulus-
modulated, response polarities were typically conserved over the
odorant panel (Fig. 2A). Individual bouton responses were generally
either enhanced or suppressed across the odorant panel, and a
smaller fraction showed mixed responses (37.5% enhanced, 38.0%
suppressed, 24.5% mixed). These proportions are significantly dif-
ferent from chance, which would be 6.5 ± 0.6% enhanced, 11.7 ± 0.3%
suppressed and 81.3 ± 1.0% mixed, if odor-bouton responses are
independently drawn from the distribution shown in Fig. 2B (see
Methods; deviations are 99% confidence intervals). Our findings are
consistent with other studies that report that response polarity is
conserved between stimuli within the PC and descending axons
terminating within the OB12,25,37.

Most boutons did not respond to any particular stimulus
(72.2 ± 1.3% unresponsive, n = 16 odorants; Fig. 2B). However, of the
boutons that were odorant-modulated, suppressed responses were
more frequent than enhanced responses (15.4 ± 0.9% suppressed vs.
12.4 ± 0.9% enhanced, n = 16 odorants, P =0.038, sign-rank test;
Fig. 2B). We next considered the tuning widths of individual boutons
by estimating the number of effective odorants, that is, those that
generated a response significantly above or below baseline activity
(see Methods). Boutons that were suppressed by odorant stimulation
were more broadly tuned than those that were enhanced (3.9 ± 0.2
effective odorants for suppressed boutons and 3.2 ± 0.2 effective
odorants for enhanced boutons; n = 16 odorants; P = 0.009; rank-sum
test; Fig. 2C).

Suppressed boutons responded more strongly to odorant sti-
mulation than enhanced boutons (0.67 ± 0.01 z-score for enhanced
boutons, n = 1652 bouton-odorant pairs; 0.71 ± 0.01 z-score for sup-
pressed boutons, n = 2046 bouton-odorant pairs; P < 0.001;
Kolmogorov–Smirnov test; Fig. 2D); however, when considering each
odorant, the average population responses of enhanced boutons were
similar to suppressed boutons (P = 0.39; Kruskal–Wallace test; Fig. 2E).
In both suppressed and enhanced boutons, there was a significant
positive relationship between the fraction of activated elements and
their mean activity (r =0.81 for suppressed boutons, P <0.001; r =0.57
for enhanced boutons, P = 0.021; Fig. 2F). Overall, in response to a
monomolecular odorant, cortical feedback axons exhibited a balanced
profile of activation and suppression thatwas statistically similar for all
stimuli.

Cortical feedback boutons are more broadly tuned than
individual feedforward input to the OB
To estimate the relative sparsity of bouton responses, we compared
their properties to those of OSNs using the same odorant panel. In
OMP-GCaMP3mice,weused abone-thinningprocedure to gain optical
access to individual OSNs within the olfactory epithelium (Fig. 3A;
refs. 24,40,51). A schematic of the relative window locations can be
found in Supplemental Fig. 2. We then delivered the same 16 odorants
as we did for experiments imaging feedback projections to the OB.

Cortical neurons are expected to be more broadly tuned than
sensory cells given the convergent circuit architecture of bulbar inputs
to the PC30,52,53. Our data, which makes use of the same odorants to
stimulate both OSNs and cortical projections to the OB, indeed sup-
ports this expectation. We found that OSNs responded to 3.15 ± 0.15
odorants in our panel, while feedback projections responded to
4.45 ± 0.13 odorants (n = 377 OSNs, 832 boutons; P <0.001; rank-sum
test)). However, somewhat unexpectedly, cortical projections are, on
average, sensitive to only ~1.5more odorants out of 16, far less than the
estimated convergence of ~200 glomeruli per cortical neuron53,54.
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Fig. 1 | Viral expression of fluorescence indicators in the anterior PC. A Circuit
schematic of cortico-bulbar connectivity. B AAV9.GCaMP6f was injected bilaterally
at two sites in the anterior region of the PC. C Representative image of a coronal
section of a mouse used in subsequent experiments GCaMP6f expression is tar-
geted to the PC, scale bar = 1000μm. D Representative image of GCaMP6f
expression in cortical projections to the OB. The red bar denotes the typical ima-
ging depth for in vivo experiments, scale bar = 100μm. Right, the normalized
fluorescence intensity in each layer of the OB. Olfactory nerve layer (ONL), glo-
merular layer (GL), external plexiform layer (EPL), mitral cell layer (MCL), and
granule cell layer (GCL). E Left, Representative image of image of GCaMP6f resting
fluorescence of a typical imaging field, scale bar = 20μm. F Responses to four

selected odorants mapped onto ROI segments. G Temporal modulation of
GCaMP6f responses in four selected ROIs from each of the four odorants in part F.
Response polarity is conserved across different stimuli. The red vertical shaded
area denotes odorant delivery time. The dashed box indicates the response aver-
aging window for subsequent analyses. H Responses of each of the 341 boutons in
the imaging field above to the same four odorants. Left, boutons are sorted by
spatial location in the imaging field, right, traces are sorted by their mean response
amplitude. The vertical dashed line denotes the odorant onset and the horizontal
red bars above are the odorant duration. The exemplar images are available in the
data repository noted in the Data Availability Statement.
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To visualize the selectivity of individualOSNs andboutons to each
of the stimuli, we first rank-ordered the absolute value of responses to
all 16 odorants and normalized them to the largest response (mean
responses across all odorants, OSNs = 0.26 ±0.06, boutons = 0.38 ±
0.07; Comparison of ranked distributions, P < 0.001; sign-rank test;
Fig. 3B). Measurements of lifetime sparseness (see Methods) also
indicated an increased turning breadth in cortical projections com-
pared to OSNs (mean lifetime sparseness, 0.46 ±0.004 in OSNs and
0.65 ± 0.002 in boutons; P <0.001; Kolmogorov–Smirnov test;
Fig. 3D). However, uniformly weak responses across a population
could conflate relative population activities when normalized. To
address this, we also measured population sparseness. Using this
metric, we found that bouton responses were indeed denser than in
OSNs (0.49 ± 0.01 boutons, 0.37 ± 0.04 OSNs; P = 0.013; sign-rank test;
n = 16 odorants Fig. 3C, E), and these measurements were consistent
across trials using the same odorants (Fig. 3G).

The responses of boutons to odorants were measured in awake
mice, but OSN responses were acquired in anesthetized mice. To
compare these two populations under similar conditions, we anes-
thetized animals with a cocktail of ketamine and xylazine and mea-
sured cortical feedback responses to the same panel of odorants
(Supplementary Fig. 3). Under anesthetized conditions, feedback
boutons were similarly tuned compared to awake animals, but the
density of responses per odorant was reduced (Supplementary
Fig. 3D–F). Despite the decreased density of response in anesthetized
animals, wedid notobserve a systematic relationship betweenodorant
tuning in anesthetized boutons and OSNs (Supplementary Fig. 3F, J).

We next estimated the representational similarity (see Methods)
between pairs of odorants in our panel for OSNs and cortical boutons
in the OB. In OSNs, a subset of the odorants showed similarity with
other odorants in the panel, and relationships could be determined
using hierarchical clustering of odorant-odorant correlations (Fig. 3H,

left). The odorant representations were well-preserved between trials
of the same odorant (0.78 ±0.03 mean correlation in OSNs; n = 16
odorants; Fig. 3I). However, in cortical projections, odorant responses
in awake mice were more variable between trials (0.53 ± 0.02 mean
correlation P <0.001, sign-rank test; Fig. 3I), and the pairwise odorant
relationships determined from OSNs did not map onto bouton pair-
wise odorant similarities (boutons to OSNs r = −0.03; P = 0.59; Fig. 3J).
Interestingly, in anesthetized animals, we found a restructuring of
odorant-odorant relationships and decreased trial variability (Supple-
mental Fig. 3H, J), yet there was no apparent relationship to repre-
sentations in OSNs. The increased representational similarity between
odorants in anesthetized animals could be due to reduced effective
inhibition in the recurrent circuitry in the OB or the PC55–57. These data
indicate cortical feedback axons are more broadly tuned to mono-
molecular odorants than OSNs, but have significantly decorrelated
patterns of responses to different odorants than OSNs.

Responses to complex odorant mixtures are normalized
in the PC
The density of OSN activation can be systematically varied by deli-
vering mixtures of monomolecular odorants with an increasing num-
ber of components24. We devised a panel of 84 mixtures derived from
the 16 monomolecular odorants that were used earlier in our study
(see Supplementary Table 3). The mixtures varied in complexity,
contained 2, 4, 8, or 12 unique components, andweredelivered tomice
in pseudorandom order.

In OSNs, the activity and density of responses scaled, on average,
with the number of odorant componentswithin amixture (Fig. 4Ai, Bi).
However, despite a general increase in OSN activity with mixture
complexity, the relationship is sublinear such that progressive
increases in mixture complexity lead to increases in OSN activity at a
diminishing rate24,43,58. We also identified a subpopulation of OSNs that

Fig. 2 | Odorant tuning properties of cortical projections to the OB. A Odorant
tuning profile of 50 randomly selected boutons selected from all imaging fields.
Boutons are sorted by their mean response amplitude across all odorants.
B Fraction of responding boutons for each odorant. C Distributions of effective
odorants for boutons that showed net enhanced (3.2 ± 0.1 odorants) or suppressed
(3.9 ± 0.2 odorants) responses (n = 16 odorants; P =0.009; rank-sum test).
D Cumulative distributions of all stimulus-modulated responses at all odorants for
enhanced and suppressed boutons (P <0.001; Kolmogorov–Smirnov test). EMean

response of all significantlymodulated boutons separated by response polarity for
each odorant (P =0.39; Kruskal–Wallace test), error bars represent standard error
of the mean (s.e.m). F Scatter plot of the relationship between response density
(bouton fraction) and themean response amplitude for each odorant separated by
response polarity (r =0.81 for suppressed boutons P <0.001, chi-squared test;
r =0.57 for enhanced boutons, P =0.021, chi-squared test). The underlying data for
each plot are available in the source data file.
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responded to odorant mixtures with decreases in activity40 (Fig. 4Ai,
right) and included these responses in our subsequent analyses when
deviations from baseline activity met the inclusion criteria (see
Methods).

We delivered the same panel of odorant mixtures to awake mice
(three animals, five imaging fields), in the same order while imaging
cortical projections to the OB. The mixture response distributions
measured in the cortical feedback boutons had no relationship to the
number of components in an odorantmixture and themean activity of
all activated boutons was similar at eachmixture size (Fig. 4Aii-Bii).We
next visualized the selectivity of individual OSNs and boutons to the
range of mixture stimuli (Fig. 4C). For each element, we rank-ordered
the absolute value of responses to all 100 stimuli and normalized them
to the largest response. The rank-ordered bouton responses were

sparser than thoseofOSNs (Fig. 4C; comparison ofmeandistributions,
P <0.001; sign-rank test). The width of these “tuning curves” can also
be characterized by measuring the lifetime sparseness (Fig. 4D). The
lifetime sparseness of OSNs was strongly related to the mixture size –

OSNs responded to more mixtures of a particular size as the size
increased (P <0.001, one-way ANOVA). While bouton lifetime sparse-
ness did not scale with the number of components in a given mixture
and was constant regardless of mixture size (Fig. 4D, right).

We next considered the population responses for each odorant
mixture by rank-ordering them for each of the 100 mixture stimuli.
While there was no difference between feedback boutons and OSNs in
the rankedmean activity of all of the mixtures (Fig. 4E; Comparison of
mean distributions, P = 0.22 Kolmogorov–Smirnov test), the distribu-
tions of individual odorant mixtures differed, with OSNs being more

Fig. 3 | Odorant representations in feedforward and feedback pathways to
theOB. ATop, Representative images of GCaMP3 expressingOSNs in the olfactory
epithelium, scale bar = 20μm. Bottom, GCaMP6f expressing cortical projections to
the OB, scale bar = 20μm. B Normalized and ranked responses to 16 odorants in
OSNs (black; n = 377) and cortical projections to the OB (blue, n = 832). Each tuning
curve is independently sorted and ranked. Gray lines represent individual ROIs and
thick-colored lines represent the mean of all ROIs. C Normalized and ranked
responses of each OSN and cortical bouton for each of the 16 odorants. Gray lines
represent individual odorants, and thick-colored lines represent the mean of all
odorants. D Left, Distributions of lifetime sparseness measured in OSNs (black,
n = 377) and cortical projections (blue, n = 832). Right, mean lifetime sparseness
was measured in OSNs and cortical projections. Kolmogorov–Smirnov test, error
bars represent s.e.m. E Left, population sparseness for each of 16 odorants in OSNs

(black) and boutons (blue) sorted to OSN values. Right, mean population sparse-
ness for all odorants (n = 16). Sign-rank test, error bars represent s.e.m. F Scatter
plot of the relationship between OSN population sparseness and bouton popula-
tion sparseness. G Mean population sparseness for each of three trials (n = 16
odorants). Error bars represent s.e.m.HOdorant-odorant correlations in OSNs and
boutons. Individual odorants are bounded by white lines, and each odorant con-
tains three trials. Hierarchical clustering was used to group similar odorants in
OSNs, and the clusters were then used to group datasets in boutons; see Supple-
mental Fig. 3 for odorant labels. I Variability within trials of the same odorants in
OSNs and boutons. The horizontal red bar denotes the mean, and the vertical red
bars represent s.e.m. (n = 16 odorants). J Scatter plot of the relationship between
odorant-odorant correlations in OSNs and boutons. Chi-squared test. *** denotes
P <0.001. The underlying data for each plot are available in the source data file.
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variable than boutons. To estimate the spread of the mixture activity
distributions,wemeasured its difference from themeancurve for each
odorant mixture, averaging over the entire curve. Using this distance
metric, we found that the population tuning for the 100 stimuli was
significantly variable for OSNs, but was highly similar for boutons
(Fig. 4E; OSN distance = 0.11 ± 0.01, bouton distance =0.03 ±0.002 in
boutons;P <0.001; Kolmogorov–Smirnov test). The stimulus tuningof
each OSN or bouton can also be calculated by measuring population
sparseness. For each of the mixture sizes, the mean population spar-
seness ofOSNs andboutonswas similar (Fig. 4F), yetwhen considering
all mixtures OSNs hadmore variance in the sparsity of their responses
(P < 0.001; F-test). Together, these data indicate that diverse stimuli
that elicit highly divergent response sparsity in the OSNs are strongly
equalized in cortical feedback axons.

Representational similarity for mixture stimuli
We next compared the representational similarity of odorantmixtures
in feedforward and feedback inputs to the OB. In OSNs, the responses
to mixtures became more similar as the number of odorants in a
mixture increased (Fig. 5A), while in feedback projections, the repre-
sentational similarity did not vary systematically with the mixture size
(Fig. 5B). For each mixture, we then compared the relationship of
pairwise mixture-mixture correlations between boutons and OSNs.
Although there was a significant relationship between correlations
found between OSNs and boutons, the slope of the regression was
shallow and reflected the relatively narrower range ofmixture-mixture
correlations found in boutons (r = 0.12; P < 0.001; Fig. 5C).

To be certain that we did not introduce a sampling bias to our
analysis by selecting an uneven number of boutons from different

axons, we also analyzed non-contiguous ROIs from each imaging field
(See Methods). Our results did not change when we considered axon
segments rather than boutons, and the representational similarity did
not vary with the mixture size (Supplementary Fig. 4). Furthermore,
boutons are small structures and comprise fewer pixels than OSNs. To
address the possibility that the small number of pixels sampled from
each bouton obscured relationships between odorant mixtures, we
subsampled OSN ROIs to match boutons (Supplementary Fig. 5). Even
when a single pixel was drawn from eachOSN ROI, the structure in the
mixture-mixture relationships remained, indicating the differences
between OSNs and boutons are not due to the size of the analyzed
regions.

For the two largest mixture sizes, we then compared the
representational similarity in OSNs and feedback projections
between highly overlapping mixtures, those that shared >=75% of
their components, and other mixtures that had <75% overlap. In
OSNs, mixtures that shared >=75% of their components had on
average, more similar representations than mixtures that shared
fewer components (0.77 ± 0.01 mean correlation when mixture
overlap >=75%, n = 152 mixture pairs 0.63 ± 0.01 mean correlation
when mixture overlap <75, n = 228 mixture pairs; P < 0.001,
Kolmogorov–Smirnov test; Fig. 5Di). In contrast, there was no dif-
ference in themean correlation in cortical projectionswhenmixtures
contained greater or less than 75% overlap (0.48 ± 0.01 mean corre-
lation when mixture overlap >=75%, 0.46 ± 0.01 mean correlation
when mixture overlap <75; P = 0.06, Kolmogorov–Smirnov test;
Fig. 5Dii). These results indicate the representations of different
mixtures become equally distinct from each other in cortical feed-
back, independent of mixture complexity.

Fig. 4 | Odorant mixtures are normalized by the PC. Ai-ii. Left, distributions of
OSN or bouton responses to odorant mixtures of increasing size. Grayscale shade
corresponds to themixture size. Right, for example, GCaMP responses ofOSNs and
boutons show enhanced or suppressed responses to odorant mixtures. Traces are
averages of all significant responses of a given mixture size. Grayscale shade cor-
responds to the distributions on the left. The horizontal red bar indicates odorant
delivery. Bi-ii. Mean activity at each mixture complexity in OSNs or boutons. Ci-ii.
Normalized and ranked responses of 100odorantmixtures in OSNs (black;n = 475)
and cortical projections in awake mice (blue, n = 784). Each tuning curve is inde-
pendently sorted and ranked. Gray lines represent individual ROIs, and thick-

colored lines represent the mean of all ROIs. D Left, Distributions of lifetime
sparseness for each group of mixtures of a given size (n = 475 OSNs, n = 784 bou-
tons). Right, summary data of mean lifetime sparseness at each mixture size. Error
bars represent s.e.m. E Normalized and ranked responses of each OSN and bouton
for each of the 100mixtures. Gray lines represent individual odorant mixtures and
thick-colored lines represent the mean of all mixtures. F Population sparseness for
each mixture of a given size (n = 16 individual odorants, 24 2-part mixtures, 20
4-part mixtures, 20 8-part mixtures, 20 12-part mixtures). The horizontal red bar
denotes themean and the vertical red bars represent s.e.m. The underlying data for
each plot are available in the source data file.
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Nonmonotonic representations of odorant concentration in PC
neurons
The activity of sensory cells at the periphery typically scales with sti-
mulus intensity59–61. To corroborate this expectation, we imaged OSNs
both at their somata in the OE and their axon terminals in the glo-
merular layer of the OB (Fig. 6Ai) in response to increasing odorant
concentrations (see Supplementary Table 1, index 4 for odorant
properties; Supplementary Fig. 6 for additional odorant). In OSNs,

population activity scaled with odorant concentration (Fig. 6Bi). Fur-
thermore, as the odorant concentration increased, representations of
the odorants became more similar at adjacent concentrations,
approaching the similarity of responses between trials at the same
concentration (Fig. 6Ci, D).

How do cortical projections to the OB respond to the same
odorants at increasing concentrations? There is clear evidence of
concentration invariance in neurons in the PC36,37, but whether this

Fig. 5 | Representations of odorant mixtures in OSNs and the PC. A Correlation
matrices of mixture-mixture relationships in OSNs (Ai) and boutons (Aii). Hier-
archical clusteringwasused to groupmixtures at eachmixture sizeusingOSNs. The
clusters were then used to sort the bouton dataset. Bottom, Correlation matrices
were obtained from three independent trials, showing similarity to the mean of all
trials above. B Plot of the mean correlation of all mixtures of a given complexity
(n = 16 individual odorants, 24 2-part mixtures, 20 4-part mixtures, 20 8-part mix-
tures, 20 12-part mixtures). Data from individual trials are plotted as shaded lines.

Error bars represent s.e.m. C Scatter plot of the relationship between mixture-
mixture correlations in OSNs and boutons for each mixture size, chi-squared test.
D Mixtures were divided into two groups based on mixture overlap using a
threshold of 75%. Di. The OSN population activity was more correlated when mix-
tures shared >= 75% (P <0.001, Kolmogorov–Smirnov test) Dii. In boutons, no
difference was observed (P =0.06, Kolmogorov–Smirnov test). The underlying
data for each plot are available in the source data file.
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invariance is reflected in back projections to the OB has not been
investigated using a sufficiently large concentration range that is
adequately sampled with intermediate points (some earlier studies
used less than 2-fold changes in concentrations). We repeated the
experiment, using the same odorant concentration range while ima-
ging cortical feedback activity in the OB (Fig. 6Aii–Cii).

Bouton responses to increasing odorant concentrations could not
be fitted with a sigmoidal function and lacked characteristic mono-
tonic responses that were observed in OSNs (Fig. 6Ai vs. 6Aii). At the
population level, these response properties are consistent with
concentration-invariant odorant coding in the PC. However, many
individual boutons displayed a clear preference for select and non-
overlapping ranges of concentrations (Fig. 6Aii, right). Therefore, the
information inherited from the PC in the OB may, on average, reflect
concentration invariance, yet, at a more granular level, the PC may
provide information on select concentrations. This observation sub-
stantiates other studies of odorant-concentration coding in feedback
projections to the OB, which found that nonmonotonic concentration
dependence was prevalent12.

Like in the OSNs, the representational similarity of odorants
measured in boutons increased as a function of concentration

(Fig. 6Cii). However, trial-to-trial variability within a concentration
block was greater in boutons than in OSNs (Fig. 6D, left). In both OSNs
and feedback boutons, we observed an increase in representational
similarity, which scaled with odorant concentration and could reflect
an increasing number of active cells (Fig. 6D, right). In the OSNs, the
proportion of active cells, measured through population sparseness,
had a strong relationship to odorant concentration and plateaued at
the highest concentrations (Fig. 6E). However, the proportion of acti-
vated boutons did not scale with odorant concentration and was
similar regardless of odorant concentration (0.50 ±0.03 mean popu-
lation sparseness in boutons, 0.18 ± 0.05 mean population sparseness
in OSNs; n = 8 concentrations; P = 0.008; sign-rank test). We then
considered the tuning of each bouton or OSN to evenly distributed
points throughout the concentration range to gauge their relative
selectivity. On average, boutons weremore widely tuned, asmeasured
by lifetime sparseness, than were OSNs. While some OSNs displayed
broad tuning, within the range of tuning seen for cortical boutons,
another population wasmore selective and responded to only a single
or few concentration points at the highest end of the concentration
range (Fig. 6F; 0.69 ±0.01 mean lifetime sparseness in boutons,
n = 1125; 0.51 ± 0.01 mean lifetime sparseness in OSNs; n = 1185;

Fig. 6 | Odorant responses in cortical projections to the OB are nonmonotonic.
Ai Left, odorant concentration responses were measured in OSN somata in the OE
and their axon terminals within the glomerular layer. Error expressed as s.e.m on
individual data points. The solid line denotes a sigmoidal fit to the individual data
points, and the shaded area denotes the 95% confidence interval for the sigmoidal
fit. Right, four example OSN responses with the sigmoidal fit (solid) and 95% con-
fidence interval (shaded) Aii. Left, odorant concentration responsesweremeasured
in cortical boutons in the OB. Four traces show subsamples selected from 200
boutons each. Data were fitted with an Akima piecewise cubic Hermite interpola-
tion (solid line). The shaded area represents the 95%confidence interval. Right, four
examples of individual bouton responses. B Distributions of OSN (Bi) and bouton
(Bii) responses to increasing odorant concentration. Color shade corresponds to
theodorant concentration.CCorrelationmatrix of odorant responses (eachpixel is

the pairwise correlation of the corresponding row and column elements) to
increasing odorant concentration inOSNs (Ci) andboutons (Cii).White linesbound
concentrations, and each concentration block contains four trials.D Left, OSN, and
bouton correlations between trials at the same odorant concentration trials. Right,
OSN and bouton correlations across concentrations (n = 4 trials). E Left, population
sparseness at each odorant concentration for boutons (blue, n = 8 concentrations)
and OSNs (black, n = 8 concentrations). Right, mean population sparseness for all
concentrations. Sign-rank test, error bars represent s.e.m. F Left, Distributions of
lifetime sparseness measured for all concentrations boutons (blue, n = 1125) and
OSNs (black, n = 1185). Right, summary data of mean lifetime sparseness.
Kolmogorov–Smirnov test, error bars represent s.e.m. ** denotes P <0.01, ***
denotes P <0.001. The underlying data for each plot are available in the source
data file.
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P <0.001; Kolmogorov–Smirnov test). Our data indicate that cortical
feedback axons bring complex, nonmonotonic information to the OB
with increasing concentrations of individual odorants.

Integrated activity-dependent inhibition explains non-
monotonic concentration dependence in the PC
What accounts for the nonmonotonic concentration dependence
observed in the cortical projections to the OB? To answer this ques-
tion, we developed aminimalmodel of bulb-to-cortex circuit elements
that incorporated global, activity-dependent inhibition within the PC62

that can account for our experimental observations (Fig. 7A).
Specifically, we consider a sigmoidal dose-responsemodel for the

OSNs where an odorant binds to different OSN types with a broad
range of affinities and, upon binding, activates a sparse subset of these
OSNs (Fig. 7B). The response from olfactory sensory neurons is
transformed linearly to the PC via the mitral cell population. This
assumption about mitral cells is reasonable since published data
indicate thatmitral cell responses are gain-modulated by circuits in the
OB but still exhibit monotonic responses to increasing concentrations
of odor stimuli27. Our PC model consists of two populations of cells:
onepopulation that receives excitatory input from theOBandprojects
back to theOBand a secondpopulation of inhibitory interneurons that
mediate global, non-specific inhibition. Inhibitory activity of the latter
population is triggered when the summed activity of the former
population exceeds a threshold. Below this threshold, the activity of
the principal cells (and by extension, the feedback axons) increases
monotonically with concentration until global inhibition kicks in, at
which point their activity decreases (Fig. 7C). At sufficiently high
concentrations, the excitatory input overcomes the inhibition, which
leads to a second monotonic phase. Note that even though the dose-
response curves of individual cells arenonmonotonic, the delaybefore
inhibition acts implies that response latency decreases monotonically
with concentration (Fig. 7D), as observed empirically25.

Discussion
The OB receives dense axonal input not only from the sensory per-
iphery but also from cortical and associational areas of the brain. The

stimulus tuning and response properties of peripheral input to the OB
have been extensively described; however, less progress has been
made on descending inputs to the OB and how they reflect the inte-
grative and convergent architecture of the OB to PC circuitry. In our
study, we systematically probed the tuning properties of cortical
projections to theOB to understandhowexpanding sensory inputs are
processed by the PC and represented in its descending inputs to the
OB. We changed the density of OSN activity in two different ways—
cumulative recruitment with increasing concentration and a more
randomized increase with increased mixture complexity. We find that
cortical axonsbringback information to theOB that ishighly equalized
over a wide variety of stimuli, complementing the highly unbalanced
input activity conveyed from the nose.

The PC is thought to create associative representations of the
olfactory world and combine it with non-sensory information45,63–66.
Circuits in the PC are likely to help normalize activity, creating equal-
ized representations of diverse olfactory stimuli. Such normalization
might also lead to concentration-invariant representations, at least
when firing rate metrics are used36. It has not been clear what infor-
mation computed in the PC is passed on to the OB via feedback axons.
Previous studies using monomolecular odorants that have imaged
cortical axons have noted that the signals are broad and spatially non-
local10,12. Differences in activity in different brain states have also been
reported, with larger odor-evoked responses in awake animals com-
pared to anesthetized ones10. Intriguingly, task learning also appears to
alter the activity patterns in cortical feedback67–69. Reducing the
activity in cortical axons results in increased similarity of representa-
tions in mitral cells to different odors, suggesting that cortical axons
ordinarily serve to decorrelate representations12,70. In this current
study, we used adiverse set of odorants and created complexmixtures
tomimic natural stimuli. By recording the responses of bothOSNs and
cortical feedback axons to the same set of diverse stimuli, wewere able
to directly compare their representations.

Selectivity and variability of cortical feedback activity
We first characterized the odorant tuning of sensory neurons at the
periphery and feedback projections to the OB, using a panel of

Fig. 7 | A model of bulbo-cortial connectivity produces nonmonotonic con-
centration dependence in cortical neurons. AModel schematic including sparse
expansion from the OB to the PC and global, non-specific inhibition within the PC.
B The response of olfactory sensory neurons is monotonic with odorant con-
centration, as empirically observed in Fig. 6. Each black line represents the activity
of an individual OSN. C The activity of the feedback axons increases monotonically
with concentration until global inhibition is activated, at which point axon activity
decreases and then recovers. See Fig. 6Aii. Solid and dashed blue lines show dose-

response curves for five representative cortical neurons in models with identical
and heterogeneous inhibitory interneurons, respectively (see Methods for details
on interneuron activity). Solid and dashed black lines show the average dose-
response curves across all cortical neurons for these two models. D The response
latency (in units of the membrane time constant) of cortical neurons decreases
monotonically with concentration despite the nonmonotonic dependence on
odorant concentration.
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monomolecular odorants. Consistent with the circuit architecture
expansion from the OB to the PC we found that cortical feedback
projections were more broadly tuned to monomolecular odorants
than sensory inputs to the OB. Interestingly, however, for complex
mixture stimuli, cortical boutons were on average more selective than
OSNs (see below). This arises because complex mixtures with many
components activate OSNs densely (despite widespread antagonistic
interactions), but the responses of cortical boutons have similar
sparsity for a wide range of stimuli. This feature means that the choice
of stimuli could be important for comparing the responses of OSNs
and PC neurons or axons - monomolecular odorants, which are widely
used in experiments, may not be representative of the wide range of
response densities that natural mixtures may evoke.

A key feature of cortical responses we observed is the significant
trial-to-trial variability. Our imaging procedures necessitated a smaller
number of repeats than those used in electrophysiological studies, but
our estimates of variability match those reported previously for cell
bodies of PC neurons25,37,71,72. This higher variability was not just due to
waking conditions, since cortical bouton responses in anesthetized
mice were also more variable than OSN responses (Supplementary
Fig. 3I). It remains unclear whether variability in stimulus encoding is a
feature of cortical responsiveness to odorant stimuli, especially since
this will be communicated back to the OB through descending pro-
jections. The zebrafish homolog of the olfactory cortex exhibits
variability that results in changes to neuronal representations follow-
ing each stimulus73. This variability is abolished by NMDA receptor
antagonists, suggesting ongoing experience-dependent plasticity and
drift in sensory cortical areas. A recent study, which compared data
from mammalian and insect third-order neurons, has also proposed
that stochasticity in responses may increase discriminability across
odorant stimuli72.

Representational similarity of odors in cortical feedback axons
A widely proposed computational principle for many neural circuits
and brain regions is that of pattern separation or pattern
decorrelation74–79. In theolfactory system, this concept is applied in the
context of decreasing the similarity of representations of distinct sti-
muli to allow for easier and more efficient decoding75,79–81. Odors
activate overlapping sets of OSNs, and the similarity of their sensory
representation is governed by the ligand-receptor binding properties,
which depend partly on the physicochemical features of the ligands23.
The dispersed, unstructured projections from the OB to the PC will
decrease the similarity of stimulus representations, but theoretical
analysis predicts that some similarity can be preserved even when
projections are random82,83. That is, pairs of odors that are highly
similar will have more similar representations in the PC than pairs of
dissimilar odors. There is experimental evidence for this prediction,
with a recent study reporting a relation between pairwise similarity in
OB outputs and PC neurons26. However, it remains unclear how much
pattern separation can still occur in the cortex, perhaps through
experience and learning84.

The relatively large number of unique stimuli generated in our
study using mixtures afforded a wide range of representational simi-
larities in the OSNs. Remarkably, the pairwise similarities observed in
cortical boutons were only slightly related to the similarities in the
inputs to the brain (in fact, there was no relation at all for mono-
molecular odorants). This finding suggests that representations in
feedback axons are altered much more than what might be predicted
by feedforward random projections from OB to PC82. For example,
non-random associative connectivity within the PC85 could decorrelate
signals further, removing any remaining correlations predicted theo-
retically. In addition, cortical connectivity, either through experience
or developmental biases, could build additional correlations absent in
the OB representation or selectively attenuate certain correlations26.
Our findings are also corroborated by recent work in insect brains, in

which the similarity of representation in the output from the antennal
lobe is not preserved in the mushroom body; instead, the repre-
sentational similarity in the mushroom body seems to reflect covar-
iances of odorant presence in natural odorant sources86. While our
data point to overall decorrelation, they do not address whether spe-
cific correlations are selectively enriched or constructed in cortical
feedback axons.

Our data also offer insights into the computations underlying the
decorrelation of responses in the OB. Inhibiting feedback from the
olfactory cortex has been shown to increase correlations in the
representation of different monomolecular odors, suggesting that
ordinarily, the activity of cortical feedback will serve to decorrelate
representations12,70. Similarly, the activation of axons projecting from
the raphe nucleus to the OB also decreases representational
similarity87. The general inference from these studies, even if implicit,
is that feedback information is global anddistributed, and the selective
recruitment of inhibition in the OB results in sparsening and decorr-
elation of M/T cell responses. In this circuit configuration, cortical
inputs can shape granule cell activity such that a given M/T cell can be
influenced by many more glomerular channels than its parent glo-
merulus alone. This, in turn, provides M/T cells access to global
information about complex odorant environments.

Our data indicate that the feedback information is already sig-
nificantly reformatted and decorrelated, which may reduce the
demand for more specific circuitry in the OB. Related experimental
work in zebrafish, and some theoretical ideas developed from it, sug-
gest that decorrelation cannot be accomplished by global rescaling
and instead requires more structured connectivity80,88. Cortical feed-
back axons carrying sparser decorrelated information, alongwith their
plastic synapses89,90, may facilitate pattern decorrelation in the OB.

Olfactory cortical feedback axons carry normalized activity
Our understanding of sensory encoding in the visual system has
benefited greatly from the use of natural stimuli. The advances include
explanations of the shape of receptive fields in early visual areas as
arising from the statistics of natural images18 and sparse, decorrelated
responses in the visual cortex elicited by natural images20. Similar
experiments in the olfactory system have been rare, in part because of
the difficulty in presenting natural stimuli in a controlled and reliable
manner. In one step towardsmore naturalistic stimuli, we used diverse
mixtures of commonly used odorants. Since these stimuli will span a
range of covariances, it allowed us to test whether cortical repre-
sentation has signatures of transformations expected from efficient
coding.

Several features we observed support the idea of a more efficient
representation of a mixture of stimuli in cortical feedback. First,
population responses of cortical boutons were equalized for different
stimuli. While the fraction of OSNs responding increased with mixture
complexity, this fraction remained nearly constant in cortical boutons
(Fig. 5D), significantly extending earlier work using monomolecular
odorants or binary odorant mixtures and recording in the PC25,35,37.
Recordings from anesthetized mice have indicated that responses of
individual PC neurons to odorant mixtures can be described by a
normalization model, where increasing input density gets progres-
sively more attenuated38. In our studies, the activity generated by
complex mixtures of odorants was massively normalized in cortical
feedback axons arriving in the OB of awake animals. This is in stark
contrast to OSNs, where the density of activity increases with the
progressive complexity of stimulus mixtures encountered, even
though this increase is highly nonlinear due to antagonistic
interactions24,43,91. It is likely that the circuit architecture in the PC, with
its feedforward and recurrent inhibition, serves to normalize and
equalize responses.

A second signature of efficient coding is that the responses of
individual cortical boutonswere sparser than the responses ofOSNs to
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the panel of 84 mixtures. Interestingly, when responses to single
odorants are compared, cortical boutons appear to be denser. This
feature might be simply due to the particular choice of odorants and
our ability to image only a small fraction of the entire OSN repertoire.
Natural environments with mixtures of many odors are likely better
approximated by our complex mixture stimuli, and those conditions
will lead to the sparsening of representations in cortical
feedback axons.

Nonmonotonic representations of odorant concentration in the
feedback axons
In contrast to the use of odorant mixtures, where antagonism con-
tributes to the nonlinear scaling of activity in sensory inputs, increas-
ing odorant concentrations provides amechanism to scale the activity
of OSNs independent of antagonistic interactions. As concentration
increases, the same population of OSNs is increasingly activated and
new OSNs are recruited92 This contrasts with mixture stimulation,
where more components can activate more OSNs, but without
necessarily creating a gradual monotonic increase in the activity
of OSNs.

A steady monotonic increase in the number and activity of OSNs
as concentration increases might be predicted to result in increased
activity of some cells in the PC. Previous studies have used the fraction
of activated cells in the PC to argue for concentration-invariant nor-
malization, with a slight dependence on concentration36,37,93. In our
study, we see that individual cortical boutons show strong non-
monotonic dependence on odorant concentration (which cannot be
construed as concentration invariant), even if the overall population
response may be flatter. We also find that bouton representations of
odorants increase in similarity with concentration. While this was
hinted at in earlier studies12,36, a systematic analysis hasbeen lacking, as
is a circuit-based explanation for such an observation.

We propose a simple cortical circuit model with activity-
dependent global feedback inhibition that can explain the non-
monotonic dependence of cortical activity on concentration. This
model is meant to be a plausible explanation, and including more
biological realism in the future can allow more features of the data to
be explained - for example, different concentrations at which distinct
cortical neurons can exhibit maximal responses, as well as a more
gradual decline in response amplitudes at mid-range of concentra-
tions. We present our model to argue that known features of the
olfactory circuitry can give rise to the seemingly paradoxical rela-
tionship between stimulus concentration and cortical feedback activ-
ity. A caveat in our interpretation is that earlier work has noted that M/
T cells in the OB can also exhibit nonmonotonic concentration
dependence70. However, this phenomenon is likely to be due to the
influence of cortical feedback since inactivating it linearized M/T cell
responses70 (Fig. S8F). The effect is much stronger and more wide-
spread in cortical boutons than in M/T cells, suggesting that this fea-
ture is not just simply inherited by PC neurons from the OB.

Limitations of our study
Our study has some limitations. First, all the functional measurements
reported are from calcium indicators, which can mainly track slow
variations in activity and cannot easily reveal timing or latency mea-
sures faster than ~100ms.However, amitigating factor is that previous
workhas shown that average spike counts (orfiring rate) carrymuchof
the information in the PC25,34. For these reasons, we have reported our
results by measuring changes in the calcium signal magnitudes rather
than fine-scale differences in their temporal dynamics. A second lim-
itation, resulting from the design of the study, is that we imaged a
subpopulation of PC neurons, only those with feedback projections to
the OB. Other principal neurons in the PC may have different proper-
ties. Previous work has shown that only deeper layer neurons send
projections to the OB, and the superficial semilunar cells lack feedback

projections94,95. A recent study71 indicated that semilunar and principal
cells have many common properties, with only subtle differences in
response tuning - therefore, we anticipate that the properties of PC
neurons, extrapolated from bouton responses, may generalize to
multiple types of principal cells. A third caveat is that the axonal and
bouton activity could be influenced by local bulbar circuitry and may
not faithfully represent somatic activity in PC neurons. For example,
GABAb receptor-mediated presynaptic inhibition may suppress cal-
cium responses locally96. Nevertheless, the net activity of cortical
boutons, even if influenced by the bulbar environment, reflects the
consequences for the postsynaptic targets within the OB and, there-
fore, functionally relevant. Similarly, nonlinear transformations
between OSNs and M/T cells in the OB could result in some degree of
equalization of sensory inputs prior to reaching the PC. Finally, in this
study, we examined responses in anesthetized as well as awake mice,
but with no behavioral outcomes required. It is possible that task
learning and engagement change response properties since mice are
likely to be in a more attentive state68,69,97. It is unlikely, however, that
OSN responses are very different, except for being modified by sniff
dynamics.

The interaction between bottom-up and top-down information
streams in the olfactory system is likely to aid in interpreting complex
sensory scenes. Naturalistic odor environments contain dozens or
more unique odorants that must all be simultaneously parsed. Our
studies demonstrate that cortical feedback maintains sparse odorant
representations despite progressively dense sensory inputs, as likely to
be encountered in natural environments. Whether sparse encoding, a
hallmark of efficient neural processes, is maintained in cortical feed-
back as stimuli are assigned categorical relevance remains to be
explored. Future studies using similar odorant delivery paradigms
could explore how and if odorant representations in cortical projec-
tions are reformatted by learning and association.

Methods
Experimental model and subject details
Adult (>8 weeks) C57Bl/6 J or OMP-GCaMP3 (C57Bl/6 J background)
mice of both sexes were used in this study. Sex was not considered in
the study design. Mice were acquired from the Jackson Laboratory
(C57Bl/6 J) or breeding stocks at Harvard University (OMP-GCaMP3)
and maintained within Harvard University’s Biological Research Infra-
structure for the duration of the study. All animals were between 20
and 30 g before surgery and singly housed following any surgical
procedure. Animals werebetween three and sixmonths old at the time
of the experiments. All mice used in this study were housed in an
inverted 12-hour light cycle at 22 ± 1 °C at 30–70% humidity and fed ad
libitum.

Ethics oversight
All the experiments were performed in accordancewith the guidelines
set by the National Institutes of Health and approved by the Institu-
tional Animal Care andUseCommittee at HarvardUniversity (protocol
29-20) or the University of Illinois Chicago (protocol 22-011).

Viral injections
All viruses used in this study were acquired from Addgene. AAV9.-
CAG.GCaMP6f.WPRE.SV40 (Addgene ID: 100836-AAV9) and AAV1-
CAG-tdTomato (Addgene ID: 59462-AAV1). The two viruses were
mixed in equal proportions prior to injection. Mice were anesthetized
with an intraperitoneal injection of ketamine and xylazine (100 and
10mg/kg, respectively) and the eyeswere coveredwith petroleum jelly
to keep themhydrated. Body temperaturewasmaintained at 37 °Cby a
heating pad. The scalp was shaved and then opened with a scalpel
blade. Two burr holes were then drilled above the anterior piriform
cortex in each hemisphere. The coordinates for each of the injection
sites are +1.2 or 1.6mm AP relative to the intersection of the inferior
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cerebral vein and superior sagittal sinus, +2.8mmML relative to the
intersection of the inferior cerebral vein and superior sagittal sinus,
and −3.6 or −3.2mmDV from the brain surface. Viruses were infused at
a rate of 40 nL/min for a total volume of 200 nL at each site from a 33-
gauge beveled-tip needle (Hamilton). The scalp was then closed with
dissolvable sutures. Buprenorphine SR-Lab (1.0mg/kg) was adminis-
tered subcutaneously, and the mice were allowed to recover for at
least two weeks before any additional procedures.

Confocal imaging
Mice were deeply anesthetized with a ketamine/xylazine mixture and
transcardially perfused with 20mL of PBS (pH 7.4) first, followed by
30-50mL of 4% paraformaldehyde in 0.1M phosphate-buffered saline
(pH 7.4). Brains were removed and cut into 70μm-thick sagittal sec-
tions using a vibratome (Leica). Slices were then washed andmounted
for confocal imaging with DAPI mounting media and imaged with a
confocal microscope (LSM 710 or 880, Zeiss).

OB craniotomy
A craniotomy was performed to provide optical access to both OB.
Mice were first anesthetized with an intraperitoneal injection of keta-
mine and xylazine (100 and 10mg/kg, respectively), and the eyes were
covered with petroleum jelly to keep them hydrated. Body tempera-
ture was maintained at 37 °C by a heating pad. The scalp was shaved
and then opened with a scalpel blade. After thorough cleaning and
drying, the cranial bones over the OBs were then removed using a
3mmdiameter biopsy punch (IntegraMiltex). The surface of the brain
was cleared of debris. The surface of the brain was kept moist with
artificial cerebrospinal fluid containing in mM (125 NaCl, 5 KCl, 10
Glucose, 10 HEPES, 2 CaCl2, and 2 MgSO4 [pH 7.4]) and Gelfoam
(Patterson Veterinary). Two 3mmNo. 1 glass coverslips (Warner) were
glued together with optical adhesive (Norland Optical Adhesive 61)
and adhered to the edges of the vacated cavity in the skull with Vet-
bond (3M). The posterior portion of the exposed skull was gently
scratched with a blade, and a titanium custom-made head plate was
glued (Loctite 404 Quick Set Adhesive) on the scratches. C&B-Meta-
bonddental cement (Parkell, Inc.)was used to cover theheadplate and
form a well around the cranial window. After surgery, mice were
treated with carprofen (6mg/kg) and buprenorphine SR-Lab (1.0mg/
kg). Animals were allowed to recover for at least three days prior to
acclimatization in the imaging room.

Bone thinning over the olfactory epithelium
OMP-GCaMP3 mice were anesthetized using the same procedure and
all pre-surgical methods through head plate implantation are the same
as the craniotomy. The cranial bones over the olfactory epithelium,
anterior to the frontonasal suture, and between the internasal and
nasal-maxillary sutures were thinned with a dental drill and scalpel
blade until transparent24,51. The thinned area of the skull was then
covered with cyanoacrylate adhesive (Loctite 404 Quick Set Adhesive)
and a glass coverslipwas implanted in the adhesive. Dental cementwas
then used to form a well over the thinned section of the skull. All
animals were allowed to recover for at least three days before imaging
experiments were initiated.

Multiphoton imaging
A custom-built two-photon microscope was used for in vivo imaging.
Fluorophores were excited and imaged with a water immersion
objective (20X, 0.95 NA, Olympus) at 920nm using a Ti:Sapphire laser
with dispersion compensation (Mai Tai HP, Spectra-Physics). Images
were acquired at 16-bit resolution and 4–8 frames/s. The pixel size was
0.6μm for OSN somata and axon imaging. Fields of view ranged from
180 × 180μm in the epithelium to 720 × 720μm in the OB. The point-
spread function of the microscope was measured to be
0.51 × 0.48 × 2.12μm. Image acquisition and scanning were controlled

by custom-written software in LabView (National Instruments). Emit-
ted light was routed through two dichroic mirrors (680dcxr, Chroma,
and FF555- Di02, Semrock) and collected by a photomultiplier tube
(R3896, Hamamatsu) using filters in the 500–550 nm range (FF01–525/
50, Semrock).

Odorant stimulation
Monomolecular odorants (Sigma or Penta Manufacturing) were used
as stimuli and delivered by custom-built 16-channel olfactometers
controlled by custom-written software in LabView98,99. For most
experiments, the initial odorant concentrationwas 16% (v/v) inmineral
oil, and further diluted 16 times with air. When using a concentration
series, the initial odorant concentration was between 0.08%–80% (v/v)
in mineral oil and further diluted 16 times with air and the relative
concentration was measured by a photoionization detector (PID;
Aurora Scientific), then normalized to the largest detected signal for
each odorant (Supplementary Fig. 7). To create mixtures, air-phase
dilution was used, and the total concentration of each odorant was
held constant. For all experiments, the airflow to the animal was held
constant at 100mL/min, and odorants were injected into a carrier
stream. Odorants were delivered 2–6 times each using a trial-based
structure. In each trial, a five-second baseline period was followed by a
two-second odorant delivery period. The intertrial interval between
odorant deliveries ranged between 20–30 s.

For experiments characterizing the odor tuning, the odor panel
consisted of (1) Ethyl tiglate (2) Allyl tiglate (3) Hexyl tiglate (4) Methyl
tiglate (5) Isopropyl tiglate (6) Citronellyl tiglate (7) Benzyl tiglate (8)
Phenylethyl tiglate (9) Ethyl propionate (10) 2-Ethyl hexanal (11) Propyl
acetate (12) 4-Allyl anisole (13) Ethyl valerate (14) Citronellal (15) Iso-
butyl propionate (16) Allyl butyrate. See Supplementary Fig. 8 for PID
measurements. For experiments measuring complex mixture respon-
ses in cortical projections and the olfactory epithelium, odorants 1–16
were used from the panel above. Additional odorant information is
available in Supplementary Table 1, and the composition of odorant
mixtures is found in Supplementary Table 3.

Data analysis
Images were processed using both custom and available MATLAB
(Mathworks) scripts. Motion artifact compensation and denoising
were doneusingNoRMcorre100. TheCaImAnCNMFpipeline Field49was
used for bouton, epithelium, and axon imaging to select and demix
ROIs. ROIs were further filtered by size and shape to remove merged
cells. For signals obtained from glomeruli in the OB, custom scripts
were written to manually select ROI boundaries99. The mean ΔF/F
signal in the 5 s following odorant onset was used formeasurements of
neural activity in all experiments. To account for changes in respiration
and anesthesia depth, correlated variability was corrected58. Thresh-
olds for classifying responding ROIs were determined from a noise
distribution of blank (no odorant) trials from which three standard
deviations were used for responses. In each dataset, only ROIs with at
least one significant odorant response were included for further ana-
lysis. Representational similarity between stimuli was estimated by
calculating the Pearson correlation coefficient between population
vectors that consisted of all ROIs that satisfied the thresholding
criterion.

The expected fractions of boutons with only enhanced, sup-
pressed, and mixed responses to all 16 odors were estimated from the
overall response statistics obtained in Fig. 2B. For each simulated
bouton, 16 responses were randomly and independently drawn from
the observed probability distribution (72.2% non-responsive, 12.4%
enhanced, and 15.4% suppressed) and were classified as purely
enhanced, purely suppressed, or mixed. Expected values and variance
from 10,000 such simulations were obtained.

Sparseness measures were calculated as reported by ref. 101.
Population sparsenessmeasures the fraction of elements (or cells) that
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are activated by a given odorant, with values near one indicating uni-
form activity across all elements and values near zero indicating a lack
of activity in most elements:

PSj =
ðPn

i = 1
ri,j
n Þ

2

Pn
i = 1

r2i,j
n

ð1Þ

Where: n = the number of elements, ri,j = the response of a given OSN
or bouton to odorant j.

Lifetime sparsenessmeasures the extent towhich a given element
responds to different odorant stimuli. Values near one indicate all
odorants uniformly activate a given element, and values near zero
indicate a high degree of odorant selectivity:

LSi =
ðPm

j = 1
ri,j
mÞ

2

Pm
j = 1

r2i,j
m

ð2Þ

Where: m = the number of odorants, ri,j = the response of a given OSN
or bouton i to odorant j.

All statistical comparisons for imaging experiments weremade as
described in the text for each figure and values are given as mean + /−
standard error of the mean.

Statistics and reproducibility
No statistical method was used to predetermine sample size, which
was selected based on similar studies in the field (two-photon ima-
ging). Identified regions of interest were excluded from the dataset if
they were not significantly modulated (three standard deviations
above a noise distribution) by any stimulus. The Investigators were not
blinded to allocation during experiments and outcome assessment.
For statistical analysis, normality tests were carried out before any
statistical comparison. Appropriate parametric (or nonparametric)
tests were chosen. If necessary, family-wise errors were corrected by
dividing the initially chosen alpha (0.05) by the total number of com-
parisons. All statistical tests were performed as two-sided
comparisons.

All imaging experiments consist of at least three trials per imaging
field and each dataset consists of at least three independent imaging
fields from three animals. All example images are froma single imaging
field that provides an approximate representation of an entire dataset.

OB-to-PC model
We consider a simplified model of connectivity between the OB and
PC, which recapitulates the nonmonotonic dose-response curves
shown by the cortical neurons. We model the activity of two neuronal
populations: Ng glomeruli in the OB and Np cortical neurons that
project back to the OB.

The activity of the bulbar neurons reflects the binding and acti-
vationofOSN receptors. The output of the ith glomerulus to anodor at
concentration c is:

xi cð Þ=ηi
κic

1 + κic
, ð3Þ

where κi is the binding affinity of the odor to the receptors of theOSNs
that project to the ith glomerulus and ηi is proportional to its corre-
sponding activation efficacy. The logarithms of the binding affinities,
log κi’s, were drawn independently and identically distributed (i.i.d)
from a normal distributionwithmean zero and standarddeviation 3 so
that the affinities spanned approximately three orders of magnitude.
The activation efficacies, ηi’s, are binary and drawn i.i.d from a Ber-
noulli distribution with probability 0.2; that is, an odor activates
approximately 20% of the glomeruli at saturating concentrations.

The dynamics of cortical activity are determined by bulbar input
and global, non-specific inhibition through a population of local
interneurons. Inhibition from the interneuron turns on when the
summed activity of the cortical neurons exceeds a certain threshold.
The voltage dynamics of the jth cortical neuron (uj) after odor onset is
given by:

τ
duj

dt
= � uj �winhσðβðv� vthrÞÞ+

XNg

i= 1

Wjixi, ð4Þ

where v is the voltage of the inhibitory interneuron whose output
activity is sigmoidal: σðβðv� vthr ÞÞ. This neuron (or, equivalently, a
population of identical neurons) non-specifically inhibits all the
cortical neurons with synaptic weight winh. The bulbar input to
the cortex is determined by the Np xNg sparse random matrix W
whose entries are non-zero with probability 0.1 and the non-zero
entries are drawn from a positive half-normal distribution with scale
0.5. This latter number is set so that the input into the cortical
neurons at saturating concentrations has unit magnitude on average.
Note that changing this value does not affect the results if winh is
concomitantly scaled. A sparse W ensures that the bulbar input
across the cortical population has a broad distribution and thereby
produces a distinct cortical representation for each odor. The output
activity yj of the cortical neurons is rectified: yj =uj

+ . τ is an
integration timescale, which we expect to be on the order of a
hundred milliseconds.

The inhibitory interneuron receives and sums input from all cor-
tical neurons. The voltage dynamics of the inhibitory interneuron is:

τ
dv
dt

= � v+
XNp

j = 1

yj ð5Þ

We set winh = 1,β=2, vthr =2000,Ng =400,Np = 5000.
To simulate heterogeneous inhibition (Fig. 7C), we consider a

population of 500 inhibitory interneurons in the PC. For each neuron,
the three parameters, winh, β, and vthr, were set to the values in the
single neuron case above and were each scaled by a random factor of,
1 + εwhere ε is a normal random variable withmean zero and standard
deviation 0.2.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data supporting this study’s findings have been deposited in a
Github database (https://github.com/JDZak-Lab/Zak-et-al.−2024-Nat.-
Comm.) under the https://doi.org/10.5281/zenodo.10697363102. Source
data are provided in this paper.

Code availability
supporting this study’s findings have been deposited in a Github
database (https://github.com/JDZak-Lab/Zak-et-al.−2024-Nat.-Comm.)
under the https://doi.org/10.5281/zenodo.10697363.
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