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Cell-type-specific mRNA transcription and
degradation kinetics in zebrafish
embryogenesis from metabolically labeled
single-cell RNA-seq

Lior Fishman 1, Avani Modak 2, Gal Nechooshtan 1, Talya Razin1,
Florian Erhard 3,4, Aviv Regev 5,6, JeffreyA. Farrell 2 &Michal Rabani 1

During embryonic development, pluripotent cells assume specialized iden-
tities by adopting particular gene expression profiles. However, systematically
dissecting the relative contributions of mRNA transcription and degradation
to shaping those profiles remains challenging, especially within embryos with
diverse cellular identities. Here, we combine single-cell RNA-Seq and meta-
bolic labeling to capture temporal cellular transcriptomes of zebrafish
embryos where newly-transcribed (zygotic) and pre-existing (maternal)mRNA
can be distinguished. We introduce kinetic models to quantify mRNA tran-
scription and degradation rates within individual cell types during their spe-
cification. Thesemodels reveal highly varied regulatory rates across thousands
of genes, coordinated transcription anddestruction rates formany transcripts,
and link differences in degradation to specific sequence elements. They also
identify cell-type-specific differences in degradation, namely selective reten-
tion of maternal transcripts within primordial germ cells and enveloping layer
cells, two of the earliest specified cell types. Our study provides a quantitative
approach to study mRNA regulation during a dynamic spatio-temporal
response.

During development, transcript levels are tightly regulated by the
combined action ofmRNA transcription and degradation. By changing
one or more of these processes, cells produce complex expression
patterns that allow undifferentiated embryonic cells to establish dis-
tinct cell identities within the embryo. While the role of mRNA tran-
scription in these events is very well established1,2, growing evidence
highlights the importance of its precise interplay with mRNA degra-
dation in shaping developmental gene expression patterns. For
example, destruction of Nodal agonist and antagonist mRNAs

triggered by the zebrafish microRNA miR-430 generates the precise
expression levels needed for correct patterning of embryos3. In addi-
tion, the localized stabilization of maternally inherited mRNAs within
zebrafish primordial germ cells initiates a unique gene expression
program4,5, that is only later supplemented by new zygotic
transcription6. However, despite its critical role in determining mRNA
levels, the coordinated regulation of mRNA transcription and degra-
dation remains less studied. It is still unclear to what extent mRNA
stability contributes to shaping developmental expression patterns,
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and how its coordination with mRNA transcription affects it. It is also
unknown if and how regulation changes between genes and cell types
of a developing embryo undergoing cell type specification.

Technical and computational challenges have limited the avail-
ability of genome-wide data on mRNA transcription and degradation
during development. Conventional RNA-Seq7–9, andmore recently also
single-cell RNA-Seq (scRNA-Seq)10–12 measure overall mRNA levels, but
provide only a partial view of mRNA dynamics. These approaches
cannot distinguish between simultaneous transcription and degrada-
tion of transcripts in embryos. To address this challenge, RNA-Seq was
combined with strategies for transcriptional arrest13, quantification of
intron-containing pre-mRNAs13,14, SNP detection15 or RNA metabolic
labeling16–18. These strategies have generally used bulk sequencing,
obscuring differences between individual cell types and diverse cel-
lular identities within embryos. Recently, metabolic labeling of RNA
was also combinedwith scRNA-Seqwithin cell culture contexts19–24 and
embryos25, revealing cellular states and transitions at unprecedented
resolution. However, such snapshot experiments are restricted in their
ability to dynamically monitor changes in expression level and infer
regulatory rates. Application of kinetic modeling tools has greatly
enhanced single-cell studies19,24 and allowed for also monitoring and
quantifying the underlyingmRNAproduction and degradation rates in
vitro. However, it is still unclear if such tools could be used to study
whole embryos with diverse cellular identities and quantitatively
separate the contribution of mRNA transcription and degradation in
shaping spatio-temporal embryonic gene expression patterns.

The maternal-to-zygotic transition provides a compelling model
to dissect the contributions ofmRNA transcription and degradation to
cell specification. At the onset of development, embryos are tran-
scriptionally silent and rely on maternally-provided mRNAs and pro-
teins that were deposited in the egg26. In zebrafish embryos, this
maternally controlled period lasts for ~3.3 h, and involvesmany rounds
of cell division. Genome activation starts as early as 2.3 h with a minor
wave of transcription. Once the maternal-to-zygotic transition begins
in earnest, embryos undergo a massive degradation of maternally
inheritedmRNAs and begin to produce new zygotic transcripts26–28. As
the maternal-to-zygotic transition unfolds, cell-type-specific changes
in mRNA levels program pluripotent embryonic cells to assume more
specialized identities2. While transcriptional regulation is critical for
these transitions2, it has remained unclear to what extent regulation of
mRNA degradation plays a role in these cell type specification events.
For instance, mRNAs for several lineage specific developmental reg-
ulators are also maternally deposited (e.g., tbx16, cdx1b, and others),
and thus are initially ubiquitous. To direct downstream patterning,
they must achieve a proper cell-type-specific expression, which
requires the destruction of non-specific maternal messages. However,
how the interplay of mRNA transcription and degradation directs cell-
type-specific gene expression patterns within an embryo is still not
resolved.

Here, we systematically quantify RNA transcription and degrada-
tion rates at cell-type resolution within a developing organism. We
combine scRNA-Seq with RNA metabolic labeling within zebrafish
embryos, and use them to follow the dynamics of the early zebrafish
embryonic transcriptome. We decompose gene expression within
single cells into its newly-transcribed (zygotic) and pre-existing
(maternal) mRNA components, and develop dynamic models that
allow us to resolve the relative contributions of mRNA transcription
and degradation in determining spatio-temporal embryonic gene
expression programs.

Results
Quantifying old and new mRNA in live, single embryonic cells
We combined scRNA-Seq with RNA metabolic labeling to monitor
newly-transcribed mRNA accumulation within single cells during zeb-
rafish development (Fig. 1A, Methods). We injected zebrafish embryos

at the one-cell stage with 4sU-triphosphate (4sUTP), which is selec-
tively incorporated into newly-transcribed RNA molecules and distin-
guishes them from pre-existing, maternally deposited, copies
(Methods). To benchmark our approach, we also injected into all
embryos in vitro transcribed GFP and mCherry mRNAs that do not
include any labeled residues (Methods). As was previously reported17,
injections did not interfere with normal zebrafish development phe-
notypically or transcriptionally. Injected embryos developed normally
and reached the expected developmental stages. Single-cell tran-
scriptomes obtained from these embryos are comparable to
published11 scRNA-Seq datasets of untreated zebrafish embryos (Sup-
plementary Fig. 1A).

To detect the incorporation of label within live cells, we adapted
the Drop-Seq11,29 method by adding a chemical conversion of 4sU
residues30 after mRNA capture on beads (Methods). This conversion
alters base pairing during reverse transcription and creates char-
acteristic T-to-C changes in downstream sequencing reads, allowing
quantification of newly-transcribed labeled RNAs. Post-treatment
transcriptomes were comparable to controls that were not subjected
to the additional conversion step for both native genes (Supplemen-
tary Fig. 1B-C) and injected controls (Supplementary Fig. 1D). These
indicate that conversion did not interfere with the integrity of single-
cell transcriptomes generated by Drop-Seq and did not increase bar-
code mixing between cells.

Using this approach, we collected 8226 single-cell transcriptomes
of live cells from embryos that were metabolically labeled starting at
the one-cell stage (Fig. 1A). We profiled embryos at three develop-
mental stages following the onset of zygotic transcription (at 3.3 hpf):
dome (4.3 hpf, 1855 cells), 30% epiboly (4.8 hpf, 3052 cells from 2
replicates) and 50% epiboly (5.3 hpf, 3319 cells from 2 replicates).
Indeed, the frequency of T-to-C conversion increased over develop-
mental stages (Fig. 1B), as expected when more newly-transcribed
mRNAs have accumulated in cells.

During these developmental stages, embryos activate a massive
degradation of maternally deposited mRNAs and simultaneously
initiate new zygotic transcription. As labeling is applied immediately
after fertilization, labeled nucleotides should only incorporate into
newly-transcribed zygotic mRNAs, while pre-existing maternal tran-
scripts thatwereproducedprior to label injection should not showany
significant labeling signal. To show the specificity ofmetabolic labeling
to zygotically transcribed mRNAs, we analyzed a subset of known
zygotic genes, and found high T-to-C conversion rates at all stages, as
expected.On theother hand, conversion rates of both knownmaternal
genes and injected controls remained low, at similar levels to
untreated samples (Supplementary Fig. 2A).

We applied GRAND-SLAM analysis21 to determine the fraction of
newly-transcribed zygotic mRNA from T-to-C conversions for each
gene in each cell. This approach deduces the fraction of labeledmRNA
per gene from characteristically low 4sU incorporation rates (esti-
mated 5.5% to 8.5% for zygotic genes in our samples, Supplementary
Fig. 2A). It uses statistical inference to integrate the underlying
position-specific incorporation rates, genetic polymorphismandother
confounding effects, and improves accuracy of the estimated labeled
fractions compared to the raw T-to-C conversion signals. Indeed,
GRAND-SLAM analysis correctly estimated (Supplementary Fig. 2B)
low labeling of pre-existing injected controls (labeled fraction <0.8%,
averaged across all cells) and knownmaternal genes (labeled fractions
<3.5%); as well as high labeling of newly-transcribed known zygotic
genes (labeled fractions >80%). The accuracy of estimated zygotic
mRNA fractions was further improved by applying GRAND-SLAM to
aggregated pseudo-bulk samples (Supplementary Fig. 2C), reaching
nearly 100% for known zygotic genes (Supplementary Fig. 2D).

As expected, estimated labeled fractions within cells increased
over developmental stages as more newly-transcribed zygotic mRNAs
have accumulated in cells (Fig. 1C). Labeled zygotic mRNAs accounted
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on average for only 13% of cellularmRNAs in early dome stage (4.3 hpf,
Fig. 1C), increasing to an average of 41% in late 50% epiboly stage
(5.3 hpf). These results were also comparable to estimates by bulk
RNA-Seq of metabolically labeled embryos. In bulk samples we
detected onlyminimal levels of zygoticmRNAs in 1 hpf samples (4-cell,
0.3% in polyA+, 3.4% in ribo-depleted, Fig. 1D). However, the fractionof
zygotic mRNAs increased substantially by 4.8 hpf (30% epiboly, 17.6%
in polyA+, 26% in Ribo-depleted), and was similar to estimates in our
single-cell analysis (31% on average at 4.8 hpf sample, Fig. 1C).

Taken together, these results validate our method’s ability to
accurately monitor newly-transcribed zygotic mRNAs and distinguish
them from pre-existing maternal copies of genes in single cells of
whole embryos. Our method provides a powerful and accurate
approach that combines droplet-based scRNA-Seq and metabolic
labeling to separately measure levels of maternally provided and
zygotically transcribed mRNA within individual cells of a developing
organism.

Pseudotime analysis of the maternal-to-zygotic transition
To interpret single-cell transcriptomes, we used URD11 to perform
dimensionality reduction, UMAP projection, and clustering without
considering whether mRNAs were maternal or zygotic. This analysis
partitioned cells into 15 clusters (Supplementary Fig. 3A) reflecting
both developmental stage and cell type. Clusters were annotated
based on their expression of known cell-type-specific genes and
visualized on a UMAP projection (Fig. 2A-C). The UMAP represented
well both the known specification events that have occurred at these
stages of development (Fig. 2A), and the temporal ordering of the
3 sampled timepoints (Fig. 2B).

The levels of maternally deposited or zygotically transcribed
mRNAs across different cells on the UMAP projection successfully
recapitulated knowndevelopmental expressionpatterns. For example,
zygotic transcription of cell-type-specific zygotic regulators (Fig. 2D)
was identified in the mesoderm (e.g., tbxta and gsc), the ectoderm
(e.g., sox3 and cxcr4a), and in the enveloping layer (e.g., krt8 and
spaca4l). On the other hand, we recovered only pre-existing copies of
maternally provided genes such as h1m and wee2 (Fig. 2E). Addition-
ally, known maternal mRNAs that encode regulators of primordial
germ cells (such as nanos3 and dnd1) are appropriately restricted to
this cell type (Fig. 2F).

Since specification of cell types in the blastula happens asyn-
chronously,weusedURD to compute adevelopmentalpseudotime for
each cell, which reflects each cell’s transcriptional difference from an
early, unspecified cell population (Fig. 2C). This calculation considered
only total mRNA levels within cells. When considered separately, the
decline of maternal and increase of zygotic mRNAs within cells were
tightly associated with developmental pseudotime calculated on total
mRNA. Differences in zygotic mRNA fractions between cells explained
70% of pseudotime differences (Pearson r2 = 0.7, Supplementary
Fig. 3B). The early undifferentiated cells had few zygotically tran-
scribed messages, whereas cells with later pseudotime had higher
fractions of zygotically transcribed messages and corresponded to
specified cell types (Supplementary Fig. 3C). Cells in the enveloping
layer had the highest zygotic mRNA fractions and pseudotimes (Sup-
plementary Fig. 3D), possibly reflecting the very early specification of
this cell type. These results demonstrate that developmental pseudo-
time accurately captures the accumulation of zygotic transcripts dur-
ing development.
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Fig. 1 | Monitoring the embryonic maternal and zygotic transcriptomes at a
single cell resolution. A An approach to combine scRNA-Seq with RNAmetabolic
labeling in zebrafish embryos. We injected zebrafish embryos at the one-cell stage
with 4sU-triphosphate (4sUTP, green),which is selectively incorporated into newly-
transcribed zygotic mRNA molecules (blue), while preexisting maternally con-
tributed molecules (red) remain unlabeled. We collected embryos at three devel-
opmental stages following the onset of zygotic transcription: dome (4.3 hpf;
yellow), 30% epiboly (4.8 hpf; orange) and 50% epiboly (5.3 hpf; dark red). We
dissociated embryos into single cells, and measured their transcriptomes by an
adapted scRNA-Seq workflow that included a chemical conversion of labeled resi-
dues. Conversion induced T-to-C changes in downstream sequencing reads,
enabling the separate quantificationof newly-transcribed (zygotic) andpre-existing

(maternal) mRNAwithin single-cell transcriptomes. B Fraction of T bases that were
sequenced as C (y-axis) across all genes in the transcriptome, within each of three
temporal samples (x-axis), when applying chemical conversion (light gray) or
without such treatment (dark gray). C Distribution of GRAND-SLAM estimates of
the overall percent of labeled RNA within each cell (y-axis) at three developmental
stages (x-axis). The central dot is median; gray box bounds are 25th and 75th
percentiles, upper and lower limits of whiskers are 1.5x interquartile ranges. Values
outside of the upper and lower limits are defined as outliers, n = 1855, 3052, and
3319 cells per stage, respectively. D GRAND-SLAM estimates of percent of total
labeled RNA per sample (y-axis) in bulk samples collected at two developmental
stages (1 hpf, 4 cell, and 4.8 hpf, 30% epiboly) using either polyA selection (dark
gray) or ribosomal depletion (light gray).
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Most genes are maternally and zygotically contributed
Leveraging the ability of metabolic labeling to quantitatively distin-
guish the fraction of maternally contributed and zygotically tran-
scribed copies of each gene, we analyzed the average fraction of newly
transcribed zygotic mRNAs of each gene across single cells. We par-
titioned all 6,180 genes into 10 equally sized bins (quantiles) based on
their average fraction of newly-transcribed zygotic mRNA in
cells (Fig. 3A).

We considered genes within the lowest three quantiles of newly-
transcribed mRNA (<5%) as maternal-only transcripts that are not
zygotically transcribed during the first 5.3 h of development. These
included pluripotency and oocyte regulatory factors (e.g., h1m, wee2,
Fig. 2E), as well as known germ-cell regulators (e.g., nanos3, dnd,
Fig. 2F). This set is also specifically enriched for developmental pro-
cesses involved in reproduction (p < 4*10−7, hypergeometric Set
Counts and Sizes (SCS) correction <5%), for endomembrane system
(p < 1*10−28) and for small molecule metabolism (p < 2*10−12).

We considered genes in the top two quantiles of newly-
transcribed mRNA (>65%) as zygotic-only transcripts, with a minimal
maternally inherited contribution. These included many known zygo-
tic developmental regulators (e.g., gsc, cxcr4a, Fig. 2D) with docu-
mented functions within specific cell lineages. These zygotic-only

transcripts were also enriched for transcription factors (p < 2*10−19),
patterning (p < 9*10−21) and embryo development (p < 4*10−20)
annotations.

The estimated average fraction of newly-transcribed zygotic
copies for the remaining 3090genes ranged between 5% and 65% (e.g.,
47% in ccnb1; 8% in ddx39ab; Fig. 3B), suggesting they are both
maternally contributed and zygotically expressed during the first 5.3 h
post-fertilization. Genes in this group were enriched for functions
related to RNA metabolism, such as splicing (p < 1*10−40), ribosome
biogenesis (p < 5*10−31) and pol-II transcription (p < 2*10−31), as well as
other key cellular processes, such as translation (p < 9*10-48), cell-cycle
(p < 4*10−29) and DNA replication (p < 5*10−17). Components of these
basic functions are both maternally contributed and expressed zygo-
tically immediately following genome activation. Our data shows dif-
ferences in both rates of maternal mRNA destruction and zygotic
mRNA accumulation between transcripts in this group (Fig. 3B). This
suggests that both regulatory processes could serve to control
expression of these genes during cell type specification. However, in
the absence of properly distinguishing maternal and zygotic tran-
scripts aswedo in thiswork, these dynamicswould beobscuredwithin
total mRNA levels for most genes in zebrafish embryos, which have
both maternal and zygotic contributions (Fig. 3A).

nanos3 dnd1

zygotic RNA
30% 100%

maternal RNA
30% 100%

eve1sox32 cxcr4a

krt8gsc tbxta

sox3

spaca4l

wee2 h1m
FE

B

YSL

Notochord

Neural
ectoderm

Apoptotic like
Unspecified
(dome)Unspecified

Unspecified
(30%)

Enveloping-
layer

Ventral margin

Muscle & blood
progenitors

Non-neural
ectoderm

Primordial germ-cells

Prechordal
plate

Endoderm (A)
Endoderm (B)

−5

0

5

10

−10 −5 0 5 10
UMAP 1

U
M
AP

2

Unspecified
Unspecified (dome)
Unspecified (30%)
YSL (contamination)
Apoptotic-like

Primordial germ cells
Enveloping-layer
Neural ectoderm
Non-neural ectoderm
Muscle & blood
progenitors

Endoderm (A)
Endoderm (B)
Ventral margin
Notochord
Prechordal plate

−5

0

5

10

−10 −5 0 5 10
UMAP 1

U
M
AP

2

−5

0

5

10

−10 −5 0 5 10
UMAP 1

U
M
AP

2

4.3 hpf
(dome)

4.8 hpf
(30% epiboly)

5.3 hpf
(50% epiboly)

developmental stages

240 360

pseudotime

D

A C

Fig. 2 | Distinguishing maternal and zygotic expression across single cells of
zebrafish embryos. UMAP projection of 8226 single cells from five embryonic
samples (4.3 hpf, 1855 cells; 4.8 hpf, 3052 cells from 2 replicates; 5.3 hpf, 3319 cells
from 2 replicates). A Colored by 13 distinct cell-type clusters. Three groups of
unspecified cells do not express any specific cell-type markers, and represent cells
which have still not differentiated. Two of these groups mostly include cells from
one specific developmental stage, as indicated. Cells labeled as YSL are likely a
contamination that originated from the yolk syncytial layer. Unspecified cells are
either from30% epibolyordome stages.BColored by developmental stage: 4.3 hpf
(dome, 1855 cells, yellow); 4.8 hpf (30%epiboly, 3052 cells, 2 replicates, orange); 5.3
hpf, (50% epiboly, 3319 cells, 2 replicates, dark red). C Colored by pseudotime.
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transcriptomic differences from the early unspecified cell populations.D–F Single-
cell expression of developmental genes across all 8226 collected single cells. All
cells are plotted, and each cell is colored by the normalized expression of a gene’s
pre-existing maternal copies (red, left map) or newly-transcribed zygotic copies
(blue, right map). The characteristically low label incorporation rates in combina-
tion with low per-cell number of reads by scRNA-Seq, limited the accuracy of
estimated labeled mRNA fraction within single cells, which was often lower than
expected within single cells and resulted in an unlabeled mRNA background.
Therefore, we use a gene-specific color scale, scaled by its maximal total expres-
sion, and its minimal 30% quantile of maternal and zygotic mRNA expression.
Analyzed genes are indicated on plot. D Zygotically expressed genes, known to be
specifically expressed within a certain lineage. E Maternally inherited genes.
FMaternally inherited genes, known to be specifically expressed within germ cells.
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Selective RNA stabilization augments zygotic transcription
During thematernal-to-zygotic transition, cell-type-specific expression
patterns emerge for many genes. Cell-type-specific expression levels
could be achieved in two ways at the maternal-to-zygotic transition:

genes could be differentially transcribed in different cell types, or
ubiquitous maternally deposited mRNA could be differentially degra-
ded in different cell types. To investigate the prevalence of these dif-
ferent modes of regulation, we tested each gene for the enrichment of
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expression in enveloping layer cells.
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either its zygotic (newly transcribed) or maternal (pre-existing)
expression within different cell types (Methods). Overall, 436 of 6180
genes (7%, Supplementary Data 1) had either zygotically or maternally
restricted expression within one or a few cell types (Kolmogorov-
Smirnov Bonferroni <1%). Due to the high background in single-cell
decomposition of maternal and zygotic mRNA, we conservatively
limited further analysis to the 154 of those genes with the highest
significance for cell-type specificity (Kolmogorov-Smirnov
p < 10−20, Fig. 3C).

Though most genes that are expressed in the embryo were both
provided maternally and expressed zygotically, genes with cell-type-
restricted expression were overwhelmingly zygotic-only (129 genes,
84%, Supplementary Fig. 4A), including most well-known marker
genes, such as tbxta, noto and eve1 in the mesoderm, sox17 and her5 in
the endoderm, and krt5 and krt8 in the enveloping layer. A much
smaller number of maternal-only genes (5 genes, 3%, Fig. 3C) are
restricted to a specific cell type. All 5 of these maternal-only genes are
restricted to the primordial germ cells and are well-established germ-
cell markers31 (e.g., dnd1, nanos3, Fig. 2F). We did not identify any
additional zygotic markers within this cell type at those stages, con-
sistent with prior findings that these cells are transcriptionally quies-
cent until later in development. Of these 5 markers, dnd1, nanos3, and
ddx4 have been shown to be selectively stabilized within zebrafish
primordial germcells4,5, which is likely the case for the other 2 genes as
well (gra and ca15b). This suggests that selective stabilization of
maternal mRNAs is the main mechanism that shapes the primordial
germ cell transcriptome during blastula stages, including factors that
are crucial for germ cell development.

Finally, we also identified a group of maternal-zygotic genes (20
genes, 13%, Fig. 3C)with restricted expressionwithin cell types. Inmost
cases, only the zygotic copies of these genes were restricted to specific
cell types (e.g., cth1 and aif1l in muscle and blood, or cd9b in envel-
oping layer, Fig. 3D), while their maternal copies were not restricted.
This indicates that their cell-type-specific patterns are shaped largely
by zygotic transcription rather than by cell-type-specific stabilization
of maternal mRNA. In these cases, the cell-type-specific expression
pattern of the zygotic copies is initially obscured by ubiquitously dis-
tributed maternal copies. Some genes exhibit quick elimination of
maternal mRNA so that their cell-type-specific expression pattern
becomes clearly evident even during blastula stages (e.g., cth1, cd9b,
Fig. 3D, Supplementary Fig. 4B, C). Conversely, some genes exhibit
slowdegradation ofmaternalmRNA (e.g.,aif1l, Fig. 3D, Supplementary
Fig. 4D), such that their cell-type-specific transcription is obscured by
remaining maternal copies of the same gene until later in develop-
ment. Notably, two genes with both maternal and zygotic contribu-
tions exhibited cell-type-specific enrichment of their maternally
contributed copies—the enveloping layer-specific genes, gclm and
epcam (Fig. 3E). This suggests that thesegenesmayachieveenveloping
layer-specific expression during blastula stages through cell-type-
specific stabilization of maternal mRNAs.

Overall, this analysis supports the expectation that zygotic tran-
scription is the main source of cell-type-restricted expression during
the specification of most cell types in zebrafish embryos. However, it
also highlights the unique role of maternally inherited mechanisms in
establishing the germ cell identity in zebrafish, and suggests that this
mode of regulation also occurs within the enveloping layer for some
genes. It is notable that the two cell types that exhibit a regulated
stabilization of maternal mRNAs are the two earliest specification
events during zebrafish embryogenesis11. This aligns with the intri-
guing possibility that zygotic regulation is too late to achieve pat-
terning of these cell types sufficiently early in development.

Kinetic models quantify gene expression regulatory rates
We aimed to obtain a more quantitative view of the contributions of
regulation of maternal and zygotic transcripts to overall mRNA levels

during cell type specification, by modeling the dynamics of maternal
and zygotic transcriptomes in our data (Fig. 4A). To do so, we built
kineticmodelswhich leverage the following characteristics of ourdata:
(1) it measures quantitative gene expression values at single-cell
resolution, (2) it clearly distinguishes maternal and zygotic transcripts
from the same gene, and (3) it contains multiple time points during
early development. These kinetic models effectively allow para-
meterization of the rates of destruction of maternal mRNA and accu-
mulation of zygotic mRNA and facilitate quantitative comparisons
between different genes and different cell types. These rates can be
used to reveal regulatory functions that govern gene expression
changes in embryos and generate a quantitative view of coordinated
transcriptional and posttranscriptional events.

First, we interpolated high resolution expression dynamics from
scRNA-Seq data. Since specification of cell types in the blastula hap-
pens asynchronously, we used pseudotime (Fig. 2C) to enable more
detailed investigation of dynamics than could be achieved with three
timepoints. We partitioned the cells into 11 pseudotime bins and esti-
mated the zygotic (newly transcribed) and maternal (preexisting)
expression level of 5101 genes within each temporal bin by pseudo-
bulk analysis of all cells within a bin (Methods). Gene expression levels
within bins were highly correlated to those calculated within three
developmental stages (Supplementary Fig. 5A). Moreover, the high-
resolution profiles recapitulated the expected expression dynamics of
key genes. For example, we recovered upregulation of newly-
transcribed mRNA of known zygotic regulators (Fig. 4B), and down-
regulation of preexisting mRNAs of knownmaternally provided genes
(Fig. 4C). This demonstrates the validity of our approach for inter-
polating the data between timepoints and calculating higher temporal
resolution profiles.

We next developed a kinetic modeling approach to infer separate
regulatory rates for maternal and zygotic copies of each gene. We
estimated degradation pseudo-rates of maternal copies and accumu-
lation pseudo-rates of zygotic copies per gene. Since our temporal
information is based on a pseudotime analysis, the resulting pseudo-
rates provide information on the relative production and degradation
rates between genes in our dataset, rather than absolute measure-
ments. We used a generative model (Methods, Fig. 4A), in which levels
of maternal mRNA are determined by an exponential decay of pre-
existing copies (first-order reaction), and those of zygotic transcripts
are determined by a linear accumulation of new copies (zero order
reaction), assuming minimal degradation. An alternative model which
also includes a term for degradation of zygotic mRNAs could sig-
nificantly improve the fit of only a small fraction of genes (261 genes,
9%, e.g., cct6a andpum1, Supplementary Fig. 5B), supporting aminimal
effect of degradation of zygotic copies on overall mRNA levels within
the timeframe of our experiment. We also assumed that, after onset,
transcription and degradation rates are constant within the experi-
mental timeframe (spanning less than 2 h of development), but
incorporated a gene-specific time of onset for each rate.

We appliedmaximum-likelihood estimation (Methods) to find the
parameters of mRNA production and degradation profiles that best fit
the dynamic observations and validated it using simulation studies
(Supplementary Fig. 6A, B). Using a “goodness of fit” test (Methods),
the fitted kineticmodels were retained for 97% of genes (4923 genes at
chi-square p >0.05, Supplementary Fig. 6C). As evidence that the
determined rates are meaningful, the estimated pseudo-rates corre-
lated to fold-changes measured in bulk SLAM-Seq samples (Pearson
correlation >0.43, Supplementary Fig. 6D). Additionally, the predic-
tions from this kinetic model explained >96% (R-squared) of the
variability in new RNA, old RNA and total RNA expression levels in our
data, suggesting that these models with minimal parameters are suf-
ficiently accurate to capture the dynamics of gene expression in the
early embryo. Altogether, these establish the ability of our kinetic
models to infer kinetic rates of mRNA transcription and degradation
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from single-cell metabolic labeling data and successfully predict
expression changes during a dynamic spatio-temporal response.

Regulatory rate variation shapes gene expression patterns
Our earlier analyses had revealed qualitatively that different maternal
transcripts are degraded at different rates (e.g., comparing cth1 and
aif1l turnover, Fig. 3D). However, using the parameters inferred by our
kinetic models, we can systematically study transcription and degra-
dation differences between all genes measured in this work.

Model fitting results refined and extended the classification of
genes. A subset of 2201 genes (43%, Fig. 4D) fitted only a maternal

degradation model, suggesting these are predominantly maternally
contributed with minimal evidence for their zygotic transcription.
Another 634 genes (12%, Fig. 4D) fitted only the zygotic accumulation
model, suggesting they are zygotically transcribed, with no evidence
for any significant maternal contribution. Finally, 2266 genes (45%,
Fig. 4D)fitted bothmodels, suggesting these genes are bothmaternally
provided and zygotically expressed during our measurement window.
Overall, ourmodels estimated degradation ofmaternal copies for 4467
genes (88%) and accumulation of zygotic copies for 2900 genes (57%).

Estimated zygotic accumulation pseudo-rates (2900 genes,
Fig. 4E) varied by more than an order of magnitude between genes
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Fig. 4 | Maternal and zygotic mRNA regulatory kinetic rates shape their tem-
poral expression patterns. A A kinetic modeling approach to infer per-gene
maternal and zygotic kinetic rates. Levels of maternal mRNA (M, red) are deter-
mined by an exponential decay of preexisting copies with a constant degradation
rate (β). Levels of zygotic transcripts (Z, blue) are determined by a linear accu-
mulation, with a constant accumulation rate (α). Total mRNA levels (gray) are the
sum of maternal and zygotic mRNA. Model fits (solid lines) to interpolated zygotic
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pseudotime bins (x-axis) for key developmental genes. Gene name and predicted
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tion). Time of earliest pseudotime bin in our data (240min) is indicated. Right:
initial expression level (log2, x-axis) per gene (y-axis, fraction). Distributions are
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(median of 4.8*10−4 transcripts/pseudo-min) and were highly corre-
lated to expression levels. As expected from an accumulation model,
faster productionwould result in accumulation to a higher level during
a set time period. For example, genes such as cdh2 and snx12 accu-
mulated more slowly (transcripts/pseudo-min <2*10−4, Fig. 4F) while
genes such as cdx4 and sox32 accumulated faster (transcripts/pseudo-
min >3*10−3, Fig. 4F). Our model also suggests that for a significant
number of genes (1608, 55%, Fig. 4E) accumulation of zygotic copies
started before our sampling window (onset <240 pseudo-min). We did
not observe any significant differences in accumulation rates between
zygotic-only andmaternal-zygotic genes. However, the 149 genes with
cell-type-restricted zygotic mRNA expression (Fig. 3C), had higher
than average accumulation rates (median of 1.7*10−3 transcripts/
pseudo-min).

Estimated maternal pseudo-half-lives of different genes (4467
genes, Fig. 4G) ranged within two orders of magnitude (median of 32
pseudo-min). For example, genes such as pnrc2 and cth1 decayed
quickly (half-life <15 pseudo-min, Fig. 4H)while genes suchas taf15 and
ywhaz decayed slowly (half-life > 250 pseudo-min, Fig. 4H). On aver-
age, pseudo-half-lives of transcripts of maternal-only genes were
slightly shorter than those of maternal transcripts of maternal-zygotic
genes (61 pseudo-min. and 75 pseudo-min. respectively). Initial levels
ofmaternal-only genes were also 2-fold lower on average than those of
maternal-zygotic genes, while onset time of their decay was similar
(263 pseudo-min on average).

These represent quantitative measurements of the degradation
rate of maternal transcripts when their destruction is simultaneously
obscured by zygotic replacement. Lack of notable global distinctions
between regulatory rates of maternal-only or zygotic-only genes and
genes that are both maternally and zygotically expressed, suggests
that similar pathways act to regulate transcription and degradation in
all groups. Transcription and degradation rates can be tenfold ormore
different between genes, highlighting their fine-tuned and precise
regulation.

Coordinated dynamics shape spatial gene expression patterns
For the 2266 genes (45%) that are both maternally provided and
zygotically expressed in our experiment, mRNA levels are affected
both by degradation of pre-existing copies and accumulation of new
ones. Interestingly, although mRNA levels of zygotic-only genes
increased over pseudotime (positive fold-change) and those of
maternal-only genes decreased (negative fold-change),mRNA levels of
genes with bothmaternal and zygotic expression hadmuch lower fold
change values (Fig. 5A). However, the distribution of their corre-
sponding separate maternal and zygotic mRNA fold changes mirrored
that of maternal-only and zygotic-only transcripts, respectively
(Fig. 5A). This suggests thatmany transcripts are undergoing regulated
replacement to maintain overall expression levels as new zygotic
transcripts replace degraded maternal ones. Moreover, it emphasizes
that total mRNA levels in this group obscure the dynamics of that
replacement. Labeling and downstream deconvolution of maternal
and zygotic transcripts are necessary to properly measure them.

To analyze in depth the temporal dynamics of maternal-zygotic
genes, we categorized genes into four groups (A–D, Fig. 5B) based on
the rate of destruction of their maternal copies and rate of accumu-
lation of their zygotic copies (Methods). The 519 genes (23%) in group
D combine slow destruction of maternal copies and fast accumulation
of zygotic copies (e.g., hmgn2, Fig. 5C), resulting in overall accumula-
tion. This combination supports high expression levels for genes in
this group, which are on average 4-fold higher than in other groups
(Fig. 5D). Genes in this group are enriched (Supplementary Data 2) for
RNA metabolic functions, such as RNA splicing (p < 7*10−35) and
translation (p < 2*10−52), suggesting that embryos increase their capa-
city to process newly transcribed mRNAs as part of the process of
initiating zygotic transcription. On the other hand, the 183 genes (8%)

in group B, combine a fast destruction of maternal copies and slow
accumulation of zygotic copies (e.g., chac1, Fig. 5C), resulting in a
decrease in total mRNA levels of genes in this group over time (1.7-fold
decrease, on average), and overall lower expression levels (Fig. 5D).
This group is the only group enriched for components of the histone
modification pathway (p < 3*10−7).

Unlike expression levels of genes in groups B and D, which
changed as a result of imbalanced destruction and replacement rates,
expression levels of genes in group A and C remained relatively con-
stant. The mean expression levels of genes in groups A and C are
similar (Fig. 5D), but their underlying replacement dynamics of
maternal with zygotic transcripts differed markedly. Transcripts in
group C (162, 7%) exhibited slow replacement, combining slow
destruction of maternal transcripts with slow accumulation of their
zygotic counterparts (e.g, faub, Fig. 5C). Conversely, genes in group A
(284, 13%) have fast replacement, combining fast degradation of
maternal copies with fast accumulation of zygotic copies (e.g,
cth1, Fig. 5C).

While the slow replacement ingroupC represents anenergetically
favorable strategy, it is not clear why genes in group A are quickly
replaced. We therefore tested for differences in the expression of
genes that might suggest why. Indeed, group A is the only group
enriched with genes with cell-type-restricted expression (16/34 genes
shown in Fig. 3C, p < 7*10−7, hypergeometric). The combination of fast
maternal degradation and fast zygotic accumulation in group A helps
rapidly eliminate ubiquitous maternal expression and establish cell-
type-specific expression. Additionally, Group A is enriched (Supple-
mentaryData 2) for genes with tightly controlled temporal expression,
such as cell-cycle genes (p < 8*10−5), whose expression is restricted to
specific phases of the cell-cycle (e.g., ccnb1 at G2/M phase, esco2 at S
phase, Fig. 5E). The fast replacement kinetics of these genes possibly
reflects that theirmRNAs are degraded and transcribed anew each cell
cycle. Since cells in our data are not analyzed with regard to cell cycle
progression, such genes will seem to be constantly expressed with
high degradation and transcription rates.

Overall, this analysis reveals how coordination between tran-
scription and degradation affects gene expression. For many genes,
kinetics of replacement betweenmaternal and zygoticmRNAs result in
overall increases or decreases is total mRNA over time. But even when
these processes are matched and genes maintain steady expression
levels, the underlying fast or slow rates have functional consequences
for gene regulation. Slow rates conserve resources, but a rapid repla-
cement helps to restrict expression of genes to a specific cell type
or time.

Lineage-specific decay rates from developmental trajectories
Transcription rates oftendiffer between cell types, contributing to cell-
type-specific gene expression patterns; a key question is whether
maternal mRNAs exhibit different degradation rates between cell
types thatmay also play such a role.We usedURD to assign cells in our
data to cell-type-specific developmental trajectories. Then, we applied
our kinetic modeling approach to infer maternal and zygotic reg-
ulatory rates along five separate cell-type-specific developmental tra-
jectories, for which pseudotimes assigned to cells span a sufficiently
large temporal interval (Methods, Fig. 6A, Supplementary Fig. 7A, B).
We used a “trajectory specific”model that assumes that regulation can
differ for a specific trajectory, and thus fits two separate sets of para-
meters for each gene: one to fit the “trajectory-specific” profile, and
another to fit all other cells not assigned to that trajectory. We com-
pared this “trajectory specific”model to a “uniform” null model, which
assumes similar rates across all cells. Genes that confidently (p < 0.05)
reject the “uniform” model in favor of the alternative “trajectory spe-
cific” model represent cases where the dynamics of that mRNA are
significantly differentwithin one trajectory. In all other cases, we retain
the “uniform” model. Given the lower numbers of cells within
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individual trajectories, we conservatively analyzed only a subset of
genes with a significantly high expression within and outside each
trajectory (Methods, Supplementary Fig. 7C).

Most genes (2196/2345, 94%) retained the “uniform” regulation
hypothesis, suggesting that differences between cell lineages con-
tribute minimally to shaping their mRNA dynamics. However, 149
genes had evidence for lineage-specific mRNA dynamics (Fig. 6B,
Supplementary Data 3), indicating that lineage-specific regulation
significantly contributes to shaping their expression levels, either
through changes to maternal degradation or zygotic transcription.

When considering regulation of maternal mRNAs, we identify
lineage-specific stabilization of 15 maternal genes. These were exclu-
sively in the enveloping layer (e.g., gclm, epcam, Fig. 6C), supporting
our previous observation for utilization ofmaternal stabilization in this
cell type, and identifying additional mRNAs that are differentially
degraded in this cell type. Unfortunately, as the germ-cell lineage did
not span a large enough temporal interval to be included in this ana-
lysis, we could not test our previous observations of maternal stabili-
zation in germ cells in this analysis. Lineage-specific destabilization of
maternal mRNAs was not investigated by our previous cell-type
enrichment analysis (Fig. 3C), and could represent an additional

regulatory layer. We find evidence for maternal destabilization of ten
genes, including four in the enveloping layer (e.g., pfn1, dhrs13a.2,
Fig. 6D) and five in the ectoderm (e.g., hnrnpa0b, Fig. 6D).

When considering regulation of zygotic mRNAs, we find evidence
for faster lineage specific accumulation of zygotic copies of 93 genes,
including 59 out of 123 genes that we previously identified with cell-
type-specific expression in one of these lineages (Fig. 3C). Faster
accumulation is mostly evident in the enveloping layer (68 genes, e.g.,
cldnb, krt92, Fig. 6E), and prechordal plate (22 genes, e.g., nog1, fzd8b,
Fig. 6E). Another 43 genes showed evidence for slower accumulation
of zygotic copies in specific lineages. These weremostly genes that are
enriched in other lineages. Finally, four enveloping layer genes show
lineage-specific regulation of both their zygotic and maternal copies,
including three genes with faster zygotic accumulation and faster
maternal degradation in enveloping layer (e.g., pfn1, dhrs13a.2,
Fig. 6D). These are examples of lineage-specific fast replacement
between maternal and zygotic copies, which could help establish
precise expression levels within specific cell types.

To experimentally test differential stabilization ofmaternalmRNA
within the enveloping layer, we generated and injected reporter
mRNAs with UTRs that were “neutral” or from the epcam gene, which
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of the cell cycle.
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exhibited slower degradation in the enveloping layer in our kinetic
models. mRNA encoding Dendra2 with “neutral” 3′ and 5′ UTRs was
injected into 1-cell embryos alongside mRNA encoding mOxBFP with
either “neutral” or epcam 3′ and 5′ UTRs. Remaining reporter mRNA
was visualized at 50% epiboly (∽5.3 hpf) via hybridization chain reac-
tion alongside a marker of the enveloping layer (krt8). mOxBFP with
“neutral” UTRs (Fig. 6F) was inherently slightly more stable in the
enveloping layer compared to dendra with similar “neutral” UTRs
(Fig. 6G). However, mOxBFP with epcam UTRs (Fig. 6H) was sig-
nificantly more stable in the enveloping layer than the rest of the
embryo (Fig. 6I). This suggests that sequence elements within the

epcam UTRs indeed confer differential rates of destruction within
enveloping layer cells than the rest of the embryo.

Our results reveal that most lineage-specific regulation of mRNA
levels happens by zygotic transcription, as expected. However, in
addition to the primordial germ cells (as previously discussed), they
highlight differential regulation of maternal mRNAs in the enveloping
layer, by lineage-specific changes to their stability. This phenomenon
has not been previously documented in enveloping layer cells, and
suggests that lineage-specific alteration ofmaternalmRNAdestruction
may be shared by the earliest cell types specified in the zebrafish
embryo11.
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Fig. 6 | Trajectory specific regulatory kinetic rates of embryonic genes. A A
UMAP projection of 8226 single cells with five cell lineages (colors as indicated).
Each cell is colored by its lineage assignments. B Histograms (y-axis; number of
genes) of trajectory-specific maternal (red, top) and zygotic (blue, bottom) sig-
nificantly differentially regulated genes, per trajectory (x-axis, color-coded as in
(A)). Each set of trajectory-specific genes is divided into up-regulated (right) and
down-regulated (left) genes. Some genes are differentially regulated in more than
one trajectory. C–E Trajectory-specific model fits (solid lines) to interpolated
zygotic (right) trajectory (light blue dots) or non-trajectory (dark blue dots) and
maternal (left) trajectory (light red dots) or non-trajectory (dark red dots)
expression levels (y-axis, log2 scale) across 11 pseudotime bins (x-axis) for genes
with trajectory specific regulation. Expression levels were interpolated separately
for cells that are assigned to a trajectory or those not assigned to it across 11

pseudotime bins. Gene name and trajectory are indicated on top. Gray lines
represent fits that match both trajectory and non-trajectory data, and therefore
retain the null hypothesis of similar regulation within and outside a trajectory.
F Left: hybridization chain reaction (HCR) in situs against dendra mRNA with
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layer (EVL) cells. Right: diagrams of injected reporter mRNAs. G Quantification of
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and 1.5 inter-quartile ranges (whiskers). Significance was calculated using a two-
sided Student’s t test. Each samplewasmeasured twice in the two different regions.
H, I Similar to (F, G), except using mOxBFP mRNA with epcam UTRs in n = 12
independent embryos.
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Linking mRNA sequence elements to differences in decay
Taking advantage of the broad and quantitative mRNA degradation
rates obtained by our models, we analyzed sequences of maternal
transcripts, and associated elements within them with differences in
degradation. We systematically tested all 3- to 8-nt-long sequences
(k-mers) within annotated UTRs for their association with differences
in pseudo-half-lives and onset times estimated by our kinetic models
(Methods). We restricted our analysis both by significance (Kolmo-
gorov-Smirnov FDR < 1%) and effect size (normalized fold-difference).

Several expected32 regulatory elements were enriched within 3′
UTRs. For example, in transcripts with short half-life, we identified the
miR-430 seed (GCACUU, p < 6*10−18, Fig. 7A), Pumilio binding sites
(UGUAUAU, p < 8*10−3, Fig. 7A) and the AU-rich consensus (UAUUUA,
p < 2*10−3, Fig. 7A). Within transcripts with delayed onset of degrada-
tion, indicative of early stabilization, we identified stabilizing poly-U
signals (UUUUUUUU, p < 2*10−8, Fig. 7B).

We also detected previously unrecognized regulatory sequences
within 3′UTRs. In particular, a delayed onset of degradation is asso-
ciated with several A-rich sequences such as AGAAA (p < 1.5*10−4,
Fig. 7B) andAAAAC (p < 2*10−4, Fig. 7B), aswell as other sequences such
as UUCAA (p < 1.5*10−4, Fig. 7B) and UCUGAU (p < 2*10−4, Fig. 7B).
Interestingly, A-rich sequences are also associated in our analysis with
a shorter half-life (AAAAG p < 1.3*10−3, AGAAAAAA p < 7.6*10−3, Fig. 7A).

In addition to 3′UTR sequences, other sequence features within
mRNAs can affect mRNA degradation. First, analysis of polyA tail
lengths (as measured by ref. 33) showed that longer half-lives are
associated with longer tails as measured at 4 hpf (Kolmogorov-Smir-
nov 1% FDR p < 6*10−29 , Supplementary Fig. 8A). Second, efficient
translation is also associated with mRNA stability. Longer half-lives
were associated with higher predicted codon optimality index34 (Wil-
coxon p < 2*10−25, Supplementary Fig. 8B) and translation efficiency
estimated by ribosomal footprinting35 (p < 8*10−18 at 4 hpf, Supple-
mentary Fig. 8C). Enrichment of AUG triplet in 5′UTR sequences of
genes with lower mRNA stability (p < 1.7*10−14, Fig. 7C) could further
represent the effect of reduced translation efficiency by upstream
reading frames. Finally, mRNA base modifications were also linked to
stability. Both m6A modifications36 and m5C modifications37 were
associated with shorter half-life at early time-points (0–4 hpf, Supple-
mentary Fig. 8D, E), and with longer half-life at later timepoints
(6–8hpf). Thus, an early modification is associated with faster decay,
but a late modification is associated with a slower decay of the
maternal transcripts.

We also analyzed 3′UTR sequences of maternal mRNAs that were
stabilized within germ cells. First, we reanalyzed our complete set of
436 cell-type-specific genes, and identified 8 germ-cell-enriched
maternal transcripts (Supplementary Fig. 9A, B). Only one of these
genes (surf2) showed any evidence of zygotic RNA transcription in our
data. Interestingly, maternal copies of some of these genes (e.g., dnd1,
nanos3, Supplementary Fig. 9A) are undetectable in single cell profiles
of somatic cells, while other genes (e.g., gra, ddx4, Supplementary
Fig. 9B) also show residual expression in somatic cells, as was also
previously noted4,38. Analysis of published RNA-Seq data6 of sorted
germ-cell populations at dome stage (4.5 hpf) further confirmed that
nanos3 and dnd1 are highly enriched in germ-cells (160 and 100-fold,
respectively), while ddx4 and gra, had a lower enrichment (45 and 29-
fold, respectively). Therefore, we next searched for common sequen-
ces within the 3′UTRs of genes in each of these two groups. The miR-
430 seed sequence (GCACUU)39 occurred both in germ-cell specific
(3/5 genes) as well as in those with residual somatic expression
(1/3 genes). However, the Dnd1 binding sequence (UUUGAUUU)40

occurred in 3′UTRs of all germ-cell specific genes (5/5 genes) but none
of the genes with residual somatic expression. This suggests that
protection by Dnd140 is associated with maternal germ-cell markers
that are completely depleted from somatic cells. However, other

mechanisms to stabilize maternal transcripts in the germline, may
work in a way that allows residual expression in somatic cells.

Finally, we looked for sequences that were over-represented in 3′
UTRs of stabilized transcripts within the enveloping layer. Interest-
ingly, our analysis identified AU-rich elements (UAUUUAUU) as the
most over-represented k-mers in this group (9/15 genes, Kolmogorov-
Smirnov p < 1.5*10−4; due to the small number of genes, an FDR cor-
rection was not applied).

These results confirm the association of distinct regulatory ele-
mentswith differences in regulatory pseudo-rates of embryonic genes,
including both expected and previously unrecognized signals. They
distinguish two distinct residual expression patterns in somatic cells
for maternal transcripts that are stabilized within the germline; but
only one of which aligns with previously known sequence determi-
nants ofmRNA stability in those cells. These demonstrate our ability to
utilize refined quantification by our kinetic modeling in order to gen-
eralize regulatory effects and identify sequence signals that
encode them.

Discussion
In this work, we globally analyze mRNA transcription and degradation
dynamics during cell type specification in zebrafish embryos. We
demonstrate the technological integration of metabolic labeling with
scRNA-Seq in cells of a developing organism, sampled along a devel-
opmental timecourse. We develop kinetic models that integrate the
analysis of timecourse data and generate a quantitative view of the
relative contributions of mRNA transcription and degradation to
gene regulation in the early zebrafish embryo. Thesemodels reveal the
regulatory functions and cell-type-specific variations that govern gene
expression programs during a spatio-temporal dynamic response. Our
portal (https://liorf.shinyapps.io/zebrafish_single_cell_regulation) pro-
vides the scientific community with ready access to our data and
analysis results. We highlight three main regulatory principles.

Our models uncover fine-tuned and precise differences in reg-
ulation of mRNA transcription and degradation between genes that
shape their spatio-temporal expression patterns. We generate precise
and quantitative measurements of mRNA transcription and degrada-
tion rates of embryonic genes both globally and within individual cell
types. This has been difficult to measure when their destruction is
simultaneously obscured by zygotic transcription. As expected, most
cell-type-specific expression relies on the restricted zygotic tran-
scription of genes. However, we find evidence for regulated stabiliza-
tion ofmaternalmRNAs in two cell lineages: germcells and enveloping
layer cells. Both these lineages are specified early during zebrafish
development11, when transcription is not yet available as a tool to
establish cell-type specificity. The yolk syncytial layer is another layer
that forms similarly early in development and might have similar reg-
ulation ofmaternal RNAs. This tissue was not profiled in our study, but
future single-nucleus RNA-Seq could allow study of this syncytial tis-
sue, which is not divided into cells. Globally, regulation of maternal-
only or zygotic-only genes is comparable to that of maternal-zygotic
genes, suggesting that similar mechanisms regulate all different
classes.

We show that coordination between transcription and degrada-
tionofmaternal-zygotic genesmaintains their overallmRNA levels, but
that these parameters are tuned differently for each transcript. For
example, slow exchange of maternal and zygotic copies of many
housekeeping genes allows embryos to conserve and utilize pre-
existingmaternalmRNAs that are still needed later in development.On
the other hand, fast exchange of maternal and zygotic copies helps to
restrict zygotic expression to a specific cell type (e.g., cth1 in muscle
and blood, cldn7b in the enveloping layer) or time (e.g., ccnb1 in G2/M
phase of the cell cycle). Preexisting maternal copies are targeted for
fast removal, and allow quick establishment of cell-type-restricted or
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temporally restricted zygotic expression and eliminate background. A
similarmodeof regulationwasalsoobservedduringflydevelopment41.
It is unclear why a few cell-type-specific genes implement slow
exchange of maternal and zygotic copies, which obscures their cell-
type-specific expression until later in development (e.g.,aif1l inmuscle
and blood). It was recently shown that mRNA destabilization in
embryos can trigger compensatory changes in the transcription of

genes with sequence similarity42. It is intriguing to speculate that
similar mechanisms could couple between transcription and degra-
dation of maternally inherited mRNAs.

Finally, we associate known and previously unrecognized ele-
ments within 3′UTRs of maternal mRNAs with differences in their
degradation rate or timing as quantified by our models. For instance,
miR-430 seeds, Pumilio binding sites, AU-rich elements, and A-rich
sequences are all associated with shorter pseudo-half-lives; while poly-
U signals, A-rich sequences, and some others (UUCAA, UCUGAU) are
associated with delayed onset of degradation. These suggest a com-
bined regulation of maternal mRNA stability by several pathways. We
also analyze the role of 3′UTR elements relative to cell-type-specific
changes in mRNA stability. We show that maternal germ cell markers
with a Dnd1 binding site40 are completely depleted from somatic cells
(e.g.,dnd1,nanos3). However, othermarkers have residual non-specific
expression outside the germline (e.g., gra, ddx4). In those cases, other
germ-cell RNA binding proteins such as Dazl-induced cytoplasmic
polyadenylation43,44 could be involved. Interestingly, AU-rich elements
were over-represented in 3′UTRs of stabilized transcripts within the
enveloping layer. Typically, AU-rich elements destabilize mRNAs,
raising the possibility that this process is somehow attenuated within
the enveloping layer. Several RNA binding proteins exhibit enveloping
layer-specific expression during blastula stages in our dataset; among
them, ptbp1a has been linked tomRNA stabilization by binding to ARE
sequence elements in 3′UTR45,46, suggesting it may play a role in the
enveloping layer.

The technical framework of this work is reproducible and reliable
by several tests but could be further improved and expanded in certain
directions. In particular, concentrations of 4sU that are tolerated by
cells only replace a relatively low number of uridines by 4sU (at most
one in ten uridines in our samples, Supplementary Fig. 2A). Thus,
statistical inference has more limited accuracy within single cells with
fewer reads, and can underestimate labeled mRNA fractions in some
cases. This problem is partially mitigated by performing pseudo-bulk
analysis of scRNA-seq data. Improved statistical modeling that aggre-
gates similar cells within a sample could further reduce such biases.
Interpolation of temporal information by pseudotime is also limiting,
and allows inference of pseudo-rates rather than absolute values.
Pseudotime units, which are estimated from transcriptomic changes,
might also correspond to non-uniform time units. However, as all
genes will be similarly influenced by such biases, differences between
genes will not be significantly affected. Optimizing the joint likelihood
of rate parameters across all genes could further improve estimation
accuracy. A linear correlation between pseudo-rates of maternal-only
genes and absolute rates measured in bulk RNA-Seq (Supplementary
Fig. 10), suggests an approach to correct pseudo-estimates and indir-
ectly infer absolute time. Finally, modeling within separate develop-
mental trajectories is limited by temporal intervals. Measuring later
developmental stages, when cell lineages have further differentiated,
will allow more accurate quantification of differences in mRNA
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Fig. 7 | Sequence enrichments associated with regulatory rates of mRNA
degradation. Volcano plots for the enrichments of short sequences of length 3–8
bases (k-mers) based on difference between estimated parameters for genes that
include this short sequence in their sequence and those that do not. Plots show the
significance (y-axis, −log10(p value), one-sided Kolmogorov-Smirnov FDR< 1%) and
the effect size (x-axis, difference in the standard mean of each of the two dis-
tributions). Horizontal dashed line is 1% FDR, vertical dashed line is an absolute
effect size of 0.13. A Enrichments in longest annotated 3′UTR for the maternal
pseudo-half-lifeparameter (log2).BEnrichments in longest annotated 3′UTR for the
maternal degradation onset time parameter.C Enrichments in longest annotated 5′
UTR for the maternal pseudo-half-life parameter (log2). Colors represent density
(yellow= high density; blue = low density). Dashed lines represent thresholds for
significance. Top short sequences are noted on plots.
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regulation. In addition, tools to control the timing of metabolic label-
ing within embryoswill uncover the effect ofmRNA stability of zygotic
genes that drive later developmental events.

Our work systematically dissects quantitativemRNA transcription
and degradation rates in vivo within developing embryos with an
unprecedented cell type and temporal resolution, and learns their
regulatory principles that define and maintain gene expression pro-
grams during a dynamic spatio-temporal response.

Methods
Zebrafish
All protocols andprocedures involving zebrafishwere approvedby the
Harvard University/Faculty of Arts and Sciences Standing Committee
on the Use of Animals in Research and Teaching (IACUC; Protocol #25-
08), the Hebrew University Ethics Committee (IACUC; Protocol #NS-
15859), and the National Institutes of Health (ACUC, Protocols 20-001
and 23-001). Embryos were grown and staged according to standard
procedures27. Zebrafish embryos from wild-type AB/TL strains were
used for all experiments. Sex was not considered in study design, as it
is not determined at the early developmental stages studied in
this work.

mRNA spike-ins cloning and transcription
Constructs encoding either a GFP or an RFP protein were PCR
amplified using the following primers: F 5′–
gaaatacgactcactataggggccacccaagctcatcgattcgaattcatg–3′ and R
5′– gcggccgcagacatgataag–3′, and in vitro transcribed from a T7
promoter with the HiScribe T7 Kit (NEB), using a mixture of ATP,
CTP, GTP and UTP in transcription of GFP, or replacing UTP with
4sUTP (TriLink Biotechnologies) in transcription of RFP, to pro-
duce RFP mRNAs that were in vitro transcribed with 100% 4sU
residues. Resulting mRNA levels were quantified by Qubit
fluorometric quantification (Thermo Fisher) and mRNA length
was validated by gel electrophoresis. For barcode mixing con-
trols, mRNAs encoding mCherry with C-terminal fusions of either
SV40 or nucleoplasmin nuclear localization signals were tran-
scribed from pCS2-SV40nls-mCherry-SV40nls or pCS2-SV40nls-
mCherry-NPLnls plasmids, using the mMessage Machine SP6 kit
(Ambion/ThermoFisher).

Fish microinjection and single-cell sample collection
Fertilized eggs were collected at 28 °C, and kept in culture medium
(5.03mM NaCl, 0.17mM KCl, 0.33mM CaCl2, 0.33mM MgSO4, 0.1%
Methylene blue). One-cell staged wild-type zebrafish embryos were
removed from their chorion and injected with 1 nL of a solution con-
taining 20mM 4sUTP (TriLink Biotechnologies), 30 ng/µL GFP mRNA,
30 ng/µL fully-labeled RFP mRNA and 5 ng/µL of either mCherry-
SV40nlsormCherry-NPLnlsmRNA. For thefirst replicate, a total of 100
injected embryos were randomly collected at the Dome stage after
visually ensuring that all embryos were at the same expected devel-
opmental stage. Embryos were placed in 2mL ice-cold deyolking
buffer (55mM NaCl, 1.8mM KCl, 1.25mM NaHCO3), shaken in a ther-
mal shaker (1100 rpm) for 30 s at 4 °C and spun down (500 g) for 1min
at 4 °C. Cells were washed three times with 1mL ice-cold deyolking
wash buffer (10mM Tris pH 8, 110mM NaCl, 3.5mM KCl, 2.7mM
CaCl2)), shaken in a thermal shaker (1100 rpm) for 30 s at 4 °Cand spun
down (500 rpm) for 1min at 4 °C. Final pellet was resuspended in
500uL PBS. Cells were then passed through a 70 µm cell sieve. Addi-
tionally, a total of 15–25 injected embryoswere randomly collected per
sample at the 30% and the 50% epiboly stages, andmanually deyolked
and dissociated. Single embryos were visually confirmed to be at the
correct stage andwere transferred to Petri dishes that hadbeen coated
with 2% agarose, filled with DMEM/F12 media (Gibco/Life Technolo-
gies), and allowed to soak for 3 h. Two pairs of watchmaker forceps
wereused todissect theblastula capof the embryo away from the yolk.

First, one pair of forceps was used to hold the cap, while the other was
used to cut and pinch away yolk that extended below the blastula cap.
Then, the blastula cap was cut slightly up the side, and the yolk inside
was gently peeled away. Several blastula caps were transferred by
pipette into a microfuge tube that contained 200 µl of DMEM/F12
media. The cells were dissociated by vigorously flicking the tube ten
times, and then pipetting the entire volume twice while visually con-
firming that dissociation hadoccurred. For the second replicate, a total
of 70–75 injected embryos were randomly collected per sample at the
30% and the 50% epiboly stages, after visually ensuring that all
embryos were at the same expected developmental stage. Embryos
were then deyolked and dissociated similarly to dome-stage embryos
in the first replicate.

Fish microinjection and bulk sample collection
AB/TL embryos were injected at the 1-cell stage with 1 nl of a solution
containing 0.025% phenol red, 0.1M KCl and 50mM 4sU (Sigma).
Embryos were grown in the dark and collected at the 4-cell and 30%
epiboly stages (25 embryos each). Upon collection, embryos were
disrupted in TRI Reagent (Sigma). RNA was isolated according to the
manufacturer’s protocol, followed by ethanol precipitation. RNA was
then treated with a TURBO DNA-free kit (Invitrogen) according to the
manufacturer’s protocol, followed by ethanol precipitation. For RNA
alkylation, RNA (2.9 µg)wasfirst preincubatedwith 1mMdithiothreitol
(DTT) for 10min at 55 °C and transferred to ice. Alkylation was con-
ducted in sodium phosphate buffer (46.6mM Na2HPO4, 3.4mM
NaH2PO4, pH 8), 50 % dimethyl sulfoxide (Sigma) and 10mM iodoa-
cetamide (Sigma; freshly prepared 100mM stock dissolved in etha-
nol). The reaction was incubated 15min at 50 °C and quenched by
adding DTT to 20mM. RNA was cleaned up on an RNA Clean &
Concentrator-25 column (Zymo) according to the manufacturer’s
protocol. For poly(A) + RNA sequencing, libraries were prepared using
a KAPA Stranded mRNA-Seq Kit (Kapa Biosystems) according to the
manufacturer’s protocol and sequenced on an Illumina NextSeq 500
platformwith 75 nt single-end reads. Sequencing of ribo-depleted RNA
was performed byMacrogen. Libraries were prepared with an Illumina
TruSeq Stranded Total RNAwith Ribo-ZeroHuman/Mouse/Rat kit, and
sequenced on an Illumina NovaSeq 6000 platform with 100 nt paired-
end reads. Data was deposited in GEO under accession GSE224113.

Collection of Drop-seq transcriptomes
Drop-seq droplet encapsulation was performed essentially as descri-
bed in the Drop-seq protocol version 3.1 (12/28/2015, available http://
www.dropseq.org/). To prevent sticking, cell suspension syringes and
tubingwere pre-blockedwith PBS+0.1% BSA for 1 h prior to collection.
To reduce sedimentation, cells were resuspended in PBS+0.1%
BSA + 20%Optiprep, and an additionalmixermagnet was added to the
cell suspension, which was gently agitated by hand every 30–60 s
using a barmagnet. Encapsulation was performedwith standardDrop-
seq microfluidic devices flushed with Aquapel (Flowjem) and standard
Drop-seq beads (Chemgenes, MACOSKO-2011-10). Droplets were held
on ice for up to 1 h before starting the RNA recovery process.

We added an RNA alkylation step30 after mRNA capture on beads.
Such chemically induced alkylation of 4sU residues alters base pairing
during reverse transcription and creates characteristic T-to-C conver-
sions in downstream sequencing reads, allowing quantification of
labeled RNAs. Droplets were held on ice for up to 2 h (to enable mul-
tiple sequential collections) before starting the RNA recovery, chemi-
cal treatment and reverse transcription. Iodoacetamide (IAA, Sigma-
Aldrich) was freshly dissolved in ethanol to make a 100mM stock
solution. Following breakage of droplets, beads were washed once
with 300 µL of 5× IAA buffer (250mM NaPO4 pH8), and incubated in
IAA solution (50mMNaPO4 pH8, 10mM IAA, 20%DMSO, 6% Ficoll PM-
400) for 15min at 32 °C with rotation. DTT was added to a final con-
centration of 20mM to stop the reaction, and beads were washed

Article https://doi.org/10.1038/s41467-024-47290-9

Nature Communications |         (2024) 15:3104 13

http://www.dropseq.org/
http://www.dropseq.org/


twice with 6x SSC solution before continuing with reverse transcrip-
tion according to standard protocol.

Librarieswerebuilt according to theDrop-seqprotocol version 3.1
(12/28/2015, available http://www.dropseq.org/) with the following
modifications. An estimated 50–100 STAMPs were included in each
50 µL PCR reaction, and 12–13 cycles of PCR amplification were per-
formed. Libraries were sequenced using Illumina Nextseq v2.2 Mid or
High Output 150 bp chemistry. Data was deposited in GEO under
accession GSE224918.

Alignment and quality control of Drop-seq data
Processing of sequencing data. Alignment of sequencing reads and
generation of digital expression matrices was performed using Drop-
seq tools v1.12. Ensembl Zv10 Release 82 was used as the reference
genome with the spike-in transcripts used (GFP/RFP/mCherry with
different C-terminal nuclear localization signals) added as an addi-
tional chromosome. Gene and transcript annotations from the
Ensembl Zv10 Release 82 reference were used, but transcripts were
assigned gene names by giving priority to names from ZFIN (Zebrafish
Information Network) and using Ensembl names as backup. More
specifically: if ZFIN and Ensembl agreed (81% of gene names fell into
this category) that gene name was used; if only ZFIN or Ensembl
assigned a name to the gene, that name was used; if neither ZFIN nor
Ensembl had a name for the gene, the Ensembl gene ID was used. If
both ZFIN and Ensembl named a gene, but the names did not agree,
then the name with fewer punctuation marks was used (this, for
instance, prioritizes names like RNH1 over cDNA clone identifiers like
SI:CH211-66C13.1 when the two sources disagree). When Ensembl
annotated several unresolved copies of a gene, e.g., RNH1 (18 of 55),
the multiple copy identifier was stripped. All reads for a given gene
name were combined. Since the T-to-C conversions induced by alky-
lation of 4sU could affect mapping rates, we made modifications to
ensure that T-to-C conversions did not reduce mapping rates by con-
verting all bases in the genome and sequencing reads. Two modified
versions of the genome were produced: one where all T residues were
replaced with C and one where all A residues were replaced with G.
Prior to alignment, original sequencing reads were preserved and then
all A residues were replaced with G. These converted reads were
aligned to both modified genomes using Bowtie2 with the following
parameters: --phred33 --reorder, then filtered based on which strand
the read was aligned to. These two outputs were combined and then
processed through the remainder of the Drop-seq tools pipeline to
produce processed BAM files and digital gene expression matrices.
Converted reads were then replacedwith the original reads andCIGAR
strings were recalculated using Samtools in the final output BAM files.
While a significant number of reads was mapped to three non-labeled
controls (GFP and mCherry spike-ins sequences), we detected only
very few reads that mapped to the 100% 4sU-labeled RFP injected
control, which did not allow to infer conversion rates for this control.
We indeed validated that the IAA treatment of this 100% labeledmRNA
led to a significant degradation of this mRNA.

Identification of highly variable genes and batch correction. First,
the digital gene expression matrix output by Drop-seq tools was
imported into URD11, filtered to retain only cells with expression of at
least 500 genes, and the data was log-normalized. This resulted in
8226 single cells, with 1,386 genes per cell on average (with 1 or more
UMIs). 924 highly variable genes were identified using findVaria-
bleGenes (diffCV.cutoff = 0.2). There was a noticeable batch separation
between samples that received IAA treatment and control samples, as
well as between samples processed using the two different dissocia-
tion methods described above. To correct for this, gene expression
modules were calculated using non-negative matrix factorization as
described (Farrell et al. 2018 Science) with parameters (k = 35, rand_-
state = None, alpha = 2, l1 =0.5, max_iter = 10,000, rep = 5, init =

random). Six modules were identified that differed primarily between
dissociationmethods or treatment conditions (NMF 2, NMF 7, NMF 11,
NMF 14, NMF 17, and NMF 22). Genes highly loaded into those six
batch-associated modules (as determined by an elbow plot of gene
loadings), as well as mitochondrial genes and spike-ins were removed
from the highly variable genes, leaving 854 remaining highly
variable genes.

Determination of cell clusters. Principal component analysis was
computed using the highly variable genes (calcPCA). Cell type clusters
were calculated with Jaccard/Louvain graph clustering (graphCluster-
ing, dim.use = “pca”, which.dims = c(1:7, 9:10, 12:16), method = “Louvain”,
do.jaccard = T). Principal components to include in the clustering were
determined based on an elbow plot and by inspection of top loaded
genes to identify PCs that represented known developmental pro-
cesses in zebrafish blastula. PC8 was excluded because it was primarily
associated with technical quality of libraries, and PC11 was excluded
because it was primarily associated with cell cycle stage. Clusters were
annotated based on expression of knownmarker genes (nanos3, dnd1,
krt8, gsc, noto, tbxta, eve1, chrd, sox3, isg15, sesn3, osr1) and develop-
mental stage. Endodermal progenitors were manually separated into
their own cluster based on their expression of sox32.

UMAP projection. First, a diffusion map was computed using destiny,
as incorporated intoURD (calcDM, knn = 50, sigma.use = “local”). Then,
the first 25 diffusion components were used as the basis to compute a
UMAP projection using the umap function from the R package umap.

Pseudotime calculation. Pseudotime was calculated using URD (¯ood-
Pseudotime, root.cells= (see below), n= 100, minimum.cells.flooded=2).
URD requires user specification of the youngest cells or “the root.” 100
cells were chosen to use as the ‘root’ (i.e. the starting point for the
pseudotime calculation) based on 3 criteria: (1) they were from the ear-
liest stage in the data (dome), (2) theywere in the dome stage cluster that
did not exhibit signs of specification (cluster 10, “Unspecified Dome
Stage”), and (3) they had the highest expression of an NMF module
(NMF33) defined primarily by exclusively maternally loaded genes (e.g.,
cldng, cldnd, ccna1, and cth1).

Identification of developmental trajectories. For a subset of cell
types, developmental trajectories were calculated using URD. URD
requires that the terminal cells or “tips” are defined by the user. Tips
were identified from each terminal cell cluster by identifying the 12.5%
of the 50% epiboly cells (minimum 25 cells) that were oldest in pseu-
dotime. The transition matrix was biased (pseudotimeDetermineLogis-
tic, optimal.cells.forward = 25, max.cells.back= 50) and random walks
were simulated from each tip (simulateRandomWalksFromTips,
n.per.tip = 10,000, root.visits = 1, max.steps = 1000). For each cell, its
maximum number of visitations by walks from a single tip were
determined. Then, cells that were visited at least 50 times (i.e. by at
least 0.5% of random walks) were associated with a trajectory if they
were visited duringwalks from that cell type tip at least 50% as often as
they were visited by walks from whichever cell type visited them the
most strongly.

Analysis of nucleotide conversion signals
GRAND-SLAM (GRAND3_3.0.0)21 was used to calculate the fraction of
labeled RNA (NTR) of eachgene. For analysis of bulk RNA-Seqdatasets,
GRAND-SLAM was used with default parameters and a gedi (GRAND-
SLAM_2.0.5 f) genome reference was created using GRCz11 genome
(GenBank:GCA_000002035.4) and Ensembl annotations release 10247.
For single-cell analysis of scRNA-Seq datasets, GRAND-SLAMwas used
with default parameters, and gedi genome reference was created by
manual additions of RFP, GFP and mCherry spike-in sequences to the
GRCz11 genome. For pseudo-bulk analysis of scRNA-Seq datasets,

Article https://doi.org/10.1038/s41467-024-47290-9

Nature Communications |         (2024) 15:3104 14

http://www.dropseq.org/


GRAND-SLAM was used with the following non-default parameters:
-pseudobulkName clusters, -pseudobulkPurity 0, -pseudobulkFile
<pb_file>, using a different file for each of the different pseudo-bulk
runs (cell types, developmental stages or pseudo-time bins).

Analysis ofmaternal and zygotic expression levels in single cells
and UMAP visualization
Total normalized RNA expression per cell was calculated from the
number of unique molecular identifiers (UMIs) using the Normal-
izeData function from Seurat version 4.1.048 with default parameters.
Briefly, normalization divides the total number of UMIs of each gene in
the cell by the total UMI counts in the cell, multiplied by 10,000 and
natural-log transformed using log1p. For a gene g at cell c this is given
by:

RNAtotal g,cð Þ= log
UMI g,cð ÞP

g 02genesUMI g 0,cð Þ � 10,000 ð1Þ

Fraction of labeled RNA (NTR) estimated by GRAND-SLAM per
gene g in cell c was used to calculate maternal and zygotic RNA
expression by:

RNAmaternal g,cð Þ= log
UMI g,cð Þ � 1� NTR g,cð Þð ÞP

g 02genesUMI g 0,cð Þ � 10,000 ð2Þ

RNAzygotic g,cð Þ= log
UMI g,cð Þ � NTR g,cð ÞP

g 02genesUMI g 0,cð Þ � 10,000 ð3Þ

We only analyzed genes which had 3 or more UMIs per cell, and a
total of 50 or more UMIs across all cells, resulting in analysis of 195
genes per cell on average.

For plotting maternal and zygotic RNA expression on a UMAP
projection, we first calculated a distance matrix based on the pairwise
similarities between the cells’ embeddings. The similarities were cal-
culated using a gaussian kernel function with a beta parameter, which
adjusts the spread of the kernel. Each of the total-RNA, maternal-RNA
or zygotic-RNA normalized single cell expression matrices were mul-
tiplied by the distance matrix and divided by the sum of expression in
each row. A single UMAP color-scale was defined for each gene, and
used for both maternal-RNA and zygotic-RNA plots. Color-scale max-
imumwas defined by themaximal total-RNA density value. Color-scale
minimum was defined by the 30th percentile of maternal-RNA and
zygotic-RNA density values across all cells with a UMIs count of 3 or
more for the gene.

Analysis of maternal and zygotic expression levels in pseudo-
bulk samples
Expression values (RNA) calculated by GRAND-SLAMwere normalized
as follows, for gene g at pseudo-sample s:

RNA g,sð Þ= RNA g,sð ÞP
g 02GenesRNA g 0,sð Þ � 10,000 ð4Þ

Fraction of labeled RNA (NTR) estimated by GRAND-SLAM per
gene g in pseudo-bulk sample s was used to calculate maternal and
zygotic RNA expression by:

RNAmaternal g,sð Þ=RNAtotal g,sð Þ � 1� NTR g,sð Þð Þ ð5Þ

RNAzygotic g,sð Þ=RNAtotal g,sð Þ � NTR g,sð Þ ð6Þ

Final expression levels were log-transformed and floored to −4.

Analysis of total expression levels in scRNA-Seq samples
For pairwise comparisons of single-cell samples, in each of the two
samples compared, we calculated a pseudo-bulk expression level for
each gene g by:

RNA gð Þ= log2
P

c2cellsUMI g,cð ÞP
g 02genes

P
c2cellsUMI g 0,cð Þ � 1,000,000 ð7Þ

Selecting genes with cell-type-restricted maternal or zygotic
mRNA expression
For each gene in our data, we tested the enrichment of either its
zygotic (newly transcribed) or maternal (pre-existing) transcripts, by
comparing the distribution of its maternal or zygotic UMI counts
within cells assigned to a specific cell type and cells not assigned to that
type with a one-sided Kolmogorov-Smirnoff test, requiring higher
counts within a cell type. Thematernal and zygotic UMI counts per cell
were calculated by multiplying the total single-cell UMI count by
the fraction of labeled RNA (NTR) as calculated by GRAND-SLAM for
single cells. We restricted our analysis by pseudotime, and tested the
enrichment of cells within a specific cell type compared to other cells
in our data of a similar pseudotime (difference of less than 20 pseu-
dotime units). P-values were corrected for multiple hypothesis testing
by a 1% Bonferroni correction. For each gene, we considered only the
most significantly enriched cell type for further analysis (after Bon-
ferroni correction).

Dividing cells into pseudotime bins
URD-assigned pseudotime values (per-cell) were converted from
arbitrary units (au) to pseudo-minutes post fertilization (pseudo-mpf)
using a simple linear transformation, so that the first sample is
assigned the value 240 pseudo-mpf and the last sample 360 pseudo-
mpf. Cells with a pseudotime (au) smaller than 0.1 were treated as 0.1.
Cells were divided into 10 pseudo-minute bins with 3 pseudo-minute
overlap between adjacent bins. The last bin, which was significantly
smaller than the rest, was joined with the preceding bin, creating 11
bins in total.

Kinetic models of maternal and zygotic mRNA expression
dynamics
We modeled maternal mRNA (M) and zygotic mRNA ðZ Þ expression
levels by two independent kinetic models.

Maternal mRNA
We compare three alternative models for temporal maternal mRNA
kinetics.

The simplest (null) model assumes no maternal expression of a
gene, and has no parameters:

FNULL : log2M tð Þ=0 ð8Þ

The simpler alternative model assumes very low degradation of
maternal mRNA, and has only one parameter: initial expression level
(x0),

F1 : log2M tð Þ= log2x0 ð9Þ

The second alternative model, describes dynamic changes in
maternal mRNA levels using an exponential decaywith 3 parameters: a
constant decay rate (β), initial expression level (x0), and degradation
onset time (d):

F2 :
dM
dt

= � βM,M 0ð Þ=M dð Þ= x0 ð10Þ
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Solving this function analytically we get:

M tð Þ= x0 � e�β t�dð Þ ð11Þ

And we solve it looking for the log expression rate:

log2M tð Þ= log2x0 � β t � dð Þ � log2e ð12Þ

Zygotic mRNA
We compare three alternative models for temporal zygotic mRNA
kinetics.

The simplest (null) model assumes no zygotic expression of a
gene, and has no parameters:

FNULL : log2Z tð Þ=0 ð13Þ

The simpler alternativemodel is a linear accumulationmodel with
2 parameters: constant transcription (α), and transcription onset time
(d). This model assumes very low degradation of zygotic RNA during
our sampling time.

F1 :
dZ
dt

=α,Z 0ð Þ=Z dð Þ=0 ð14Þ

Solving this function analytically, we get the linear accumulation
model:

Z tð Þ=α t � dð Þ ð15Þ

And in log-scale:

log2Z tð Þ= log2α + log2 t � dð Þ ð16Þ

The second alternative model adds a third parameter, using a
constant degradation rate (β) to describe decay of zygotic mRNAs:

F2 :
dZ
dt

=α � βZ , Z 0ð Þ=Z dð Þ=0 ð17Þ

Solving this function analytically, we get:

XN tð Þ= α
β

1� e�β t�dð Þ
� �

ð18Þ

And in log-scale:

log2XN tð Þ= log2α � log2β + log2 1� e�β t�dð Þ
� �

ð19Þ

We fit each model separately to time-course data of either
maternal or zygotic mRNA expression per gene. Fitting to FNULL

models was defined by MðtÞ= � 4 and Z ðtÞ= � 4, and any gene that
had more than 4 pseudo-bins with expression lower than -3 was also
fitted to this model. Fitting to non-linear models was done using non-
linear least squares regression with multiple start values with R’s
nls.multstart package (version 1.0.0.), using 500 different start com-
binations (iter = 500), and parameter bounds as listed (Supplementary
Table 1).

Finally, we compared the fits to each of the three nested models
(FNULL is nested in F1 which is nested in F2) by a likelihood ratio test for
each gene, and identified genes that fit F1 and F2.

The σ for the likelihood ratio test was defined by:

dσML = σ

ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
n

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� p

Xn
i = 1

yi � byi� �2vuut �
ffiffiffiffiffiffiffiffiffiffiffiffi
n� p
n

r
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i= 1

yi � byi� �2vuut
ð20Þ

Analysis of model accuracy by goodness-of-fit test
We estimated the fit of each gene to the kinetic model using a
goodness-of-fit test, by calculating:

Ŝ=
X
t2T

mg,t � bmg,t

σg

 !2

ð21Þ

where Mg = mg,t jt 2 T
n o

are the observed temporal samples,

M̂g = m̂g,t jt 2 T
n o

are the predictions by the model,

and pseudotime tð Þ=
260 t =dome
310 t = epb30
340 t = epb50

8<: .

We calculated a standard deviation (σg) for each group of genes
with a similar mean expression (G) by comparing their expression in
two replicate samples:

σ Gð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
g2G
P

c2C RNA g,c,Að Þ � RNA g,c,Bð Þð Þ2
N

s
ð22Þ

where C = epb30,epb50
� �

and RNA g,c,Að Þ is the RNA for gene g, at
stage c, in each of two replicates (A or B). Genes were divided based on
the quantiles of themeanexpression ofmaternal or zygotic RNA into 6
or 10 groups, respectively. Each group of zygotic RNA contained ~483
genes, and each group of maternal RNA contained ~446 genes.

We performed a chi square test Ŝ∼ χ2 dofð Þ, where degrees of
freedom (dof) is the number of pseudotime bins with a reliable esti-
mated expression for the gene.

Analysis of model fitting by simulation studies
Simulated gene expression data was generated by selecting five
values for each parameter in the model, resulting in 125 sets of
parameters, and applying the model to generate expression data for
each set, which we term “simulated genes”. For each simulated gene,
we added random normal noise with mean θ=0 and variance
σ = sd � sd

2 ,σ = sd,σ = sd + sd
2 , where sd is as described above by mean

expression, and repeated the procedure 100 times for each simu-
lated gene. The data was then fitted to the kinetic models as
described above. We used a goodness-of-fit test as described above
to compare the fit to the original simulated data points (with-
out noise).

Models of maternal and zygotic mRNA expression dynamics in
developmental trajectories
For model fitting, we modified the original trajectories that were cal-
culated during single-cell analysis. First, we combined trajectories with
a more than 50% overlap in cells into a single trajectory. This way the
endoderm A, B and lateral plate mesoderm were combined to a single
trajectory, and the neural and nonneural ectoderm to another trajec-
tory. Second, we excluded from the analysis trajectories that did not
have estimated bulk expression for at least six pseudotime bins. This
resulted in a final set of five trajectories for further analysis: enveloping
layer, notochord, prechordal plate, ectoderm and mesendoderm. For
each of the five trajectories, we calculated pseudo-bulk dynamic
expression separately for cells within the trajectory and cells not
assigned to this trajectory. For each of the two groups of cells,

Article https://doi.org/10.1038/s41467-024-47290-9

Nature Communications |         (2024) 15:3104 16



we divided the cells into pseudotime bins as described above, and
applied pseudo-bulk calculation for each bin to estimate expression.

To this data, we applied two separate model fitting approaches.
First, a “cell-type-specific” model that assumes regulation is different
within the trajectory, and thus fits two separate sets of kinetic para-
meters for each gene: one to fit the “trajectory-specific” profile, and
another to fit the “non-trajectory” profile of all other cells not assigned
to that trajectory. Second, a “uniform” null model, which assumes a
similar rate across all cells and thus fits a single kinetic model for both
the “trajectory-specific” and the “non-trajectory” profiles. We used a
likelihood ratio test to compare the twomodels based on the different
number of parameters used for either model, and standard variation
(σ) thatwas calculated as described above.We calculated aneffect-size
for the difference between the trajectory and non-trajectorymaternal-
RNA and zygotic-RNA expression of each gene, by the average fold-
change between the trajectory and not-trajectory expression at the
three pseudo-bulk samples with maximal difference. Genes were
defined as “trajectory-specific”, if the corrected p-value was smaller
than 0.01, the fit to the trajectory specific model had an R-squared
value above 0.8, and the effect-size was larger than 2 or smaller
than 0.5.

Grouping genes by combinations of maternal and zygotic
kinetic parameters
For genes that are bothmaternally provided and zygotically expressed
during the maternal-to-zygotic transition, we defined four groups of
genes with distinct combinations of maternal and zygotic kinetic
parameters by setting a lower-bound and upper-bound on each of the
two parameters: degradation of maternal RNA (half-life bounds: <20
pseudo-min or >45 pseudo-min) and accumulation of zygotic RNA
(log2 accumulation bounds: <−12 or >−11).

Gene set enrichment analysis
Functional enrichment analysis was performed using g:Profiler R client
(version e106_eg53_p16_65fcd97) with a 5% g:SCS multiple testing
correction method49.

Enrichment of polyA lengths33 was analyzed by performing a one-
sided Kolmogorov-Smirnov test (ks.test) between the polyA lengths of
genes within a gene-set and all other genes in the dataset, using a 1%
false discovery rate correction (FDR).

Sequence k-mer enrichment analysis
UTR sequences were downloaded from ensembl biomart, version
10350. For each gene, annotated UTRs were filtered to keep a single
longest annotated UTR sequence. Genes with an annotated UTR
sequence below 10 nucleotides were removed from the analysis.
Sequences were represented by a set of all short sequences between
3–8 nucleotides long (k-mers) using ape and k-mer R packages. We
associated a k-mer with a regulatory effect when genes with this k-mer
in their UTR had a significantly different distribution (one-sided
Kolmogorov-Smirnov test, 1% FDR) of a specific parameter than genes
without this sequence. We assigned an effect size to each k-mer by
calculating the standardized mean difference defined as θ= μ1�μ2

σ ,
where μ1 is the mean of the first population, μ2 is the mean of the
second population and σ is the standard deviation (based on both
populations).

Analysis of additional sequence features within mRNAs that
affect mRNA degradation
To calculate codon optimality, zebrafish CDS sequences were down-
loaded from Ensembl Biomart and filtered to include only sequences
starting with a start codon, ending with a stop codon, and sequence
lengths being multiples of three. Codon optimality was calculated
using icodon R package34, keeping only the highest value per gene to
keep only a single value per gene. Transcript translation efficiencies at

different zebrafish developmental stages were taken from ref. 35. A
gene was considered m6A modified if evidence for m6A modification
was measured by ref. 36 in either m6A-seq or m6A-CLIP-seq data. A
gene was considered m5C modified if it contained a location with an
m5C level >= 0.25, as measured by ref. 37. Genes’ polyA lengths were
taken as the mean length measured by ref. 33. Independent maternal
genes’ degradation rates (for maternal-only genes) were calculated
from RNA sequencing measured by refs. 8,14,36,51–53. Only mea-
surements until 6 hpf were used for the calculation.

Colorimetric RNA in situ hybridization
Fragments of the genes aif1l, cd9b, and cth1were amplified and cloned
into pSC-A using the Strataclone PCR Cloning Kit (Agilent) according
to manufacturer instructions, but half-size reactions using the follow-
ing primers:

aif1l (plasmid JFP705): F 5′–gctggaggaaatcaataaggagt–3′ and R
5′–agttcgcttggattaaaacatga–3′

cd9b (plasmid JFP706): F 5′–tgaaaagctgggaaaggtacaat–3′ and R
5′–gttacaaaagaatgccagaaagc–3′

cth1 (plasmid JFP707): F 5′– gtgaagaaatctttccgggtagt–3′ and R
5′–aaaaagcaagcatttgagaattg–3′

They were then linearized using EcoRV (JFP705/aif1l and JFP706/
cd9b, NEB) or NotI (JFP707/cth1, NEB) and transcribed using T7 poly-
merase (JFP705/aif1l and JFP706/cd9b, Roche) or T3 polymerase
(JFP707/cth1, Roche) with 10X RNA labeling mix (DIG, Roche) for 3 h.
Probes were purified using RNA cleanup columns (Omega E.Z.N.A.
Total RNA Kit I), quantified using a Nanodrop, assessed on an agarose
gel for successful transcription of a product of the expected size and
normalized to 20 ng/µl in HM+ buffer (50% formamide, 5× saline-
sodium citrate buffer (SSC), 0.1% Tween-20, citric acid to pH 6.0,
50 µg/ml heparin, 500 µg/ml tRNA), then stored at −20 °C.

Embryos were collected from TL/AB in-crosses, dechorionated,
cultured to the appropriate stage in agarose-covered dishes at 28 °C.
They were fixed in 4% methanol-free formaldehyde (VWR) at 4 °C
overnight. They were rinsed twice for 10min with PBST (1× PBS+0.1%
Tween-20), 10min with 50% PBST:50% methanol, rinsed in methanol
twice for 10min, and then permeabilized at −20 °C at least overnight.
Embryos were rehydrated (10min each, 67% methanol:33% PBST, 33%
methanol:67% PBST, 3 × 10 min PBST). Embryos were then pre-
hybridized in HM+buffer (50% formamide, 5× SSC buffer, 0.1% Tween-
20, citric acid topH6.0, 50 µg/ml heparin, 500 µg/ml tRNA) at 70 °C for
at least 2 h. Probeswerediluted to 1 ng/µl in HM+buffer and denatured
at 70 °C for 10min. The prehybridization HM+ buffer was replaced by
the probe and embryos were incubated with 1 ng/µl probe overnight.

The nextmorning, the probewas removed and returned to −20 °C
for future re-use. Excess probe was removed with first a series of
washes that had been prewarmed to 70 °C: 1× 10min HM buffer (HM+
without heparin and tRNA), 1× 10min 75% HM:25% 2× SSC, 1× 10min
50% HM:50% 2× SSC, 1× 10min 25% HM, 75% 2× SSC, 1× 10min 0.2×
SSC, 2× 30min 0.2× SSC; then a series of room temperature washes: 1×
5min 75% 0.2× SSC:25% PBST, 1× 5min 50% 0.2× SSC:50% PBST, 1×
5min 25% 0.2× SSC:75% PBST, 1× 5min PBST. They were blocked for at
least 3 h in blocking buffer (2mg/ml bovine serum albumin, 2% normal
donkey serum, Jackson Labs). Finally, they were incubated overnight
with anti-digoxigenin antibody coupled to alkaline phosphatase (Anti-
Digoxigenin-AP Fab Fragments, Roche 11 093 274 910), diluted 1:5000
in blocking buffer at 4 °C with gentle agitation.

The following morning, the antiserum was removed and dis-
carded, and excess antibody was removed by rinsing embryos 6×
15min in PBST. They were transferred into staining buffer (100mM
Tris-HCl pH 9.5, 50mM magnesium chloride, 100mM sodium chlor-
ide, 0.1% Tween-20) by rinsing 3× 5min. Staining reagent was intro-
duced (225 µg/ml Nitro Blue Tetrazolium and 175 µg/ml BCIP, Roche 11
383 213 001 and 11 383 221 001) and embryos were incubated in the
dark, periodically checking their color development under a dissecting
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scope until the desired staining had been achieved (15min–24 h).
When the desired staining was achieved, the reaction was stopped by
rinsing 3× 5min. Embryos were dehydrated by passing through a
methanol dehydration series, then stored overnight at −20 °C. They
were cleared by replacing the methanol with BB/BA (2 parts benzyl
benzoate: 1 part benzyl alcohol, Sigma-Aldrich) and imaged on a Zeiss
Axioimager Z.1 with a 10× objective (100× total magnification).

Assaying differential degradation with reporter constructs
Cloning and transcription of mOxBFP and dendra reporter con-
structs. To test whether the untranslated regions of epcammRNA can
confer stability in the enveloping layer, we created synthetic mRNA
(dendra and mOxBFP) with either ‘neutral’ UTRs (standard pCS2 plas-
mid UTRs—5′ UTR from mouse B-globin gene, very short 3′ UTR from
the plasmid backbone) or with the epcam UTRs. pCS2-epcam5UTR-
mOxBFP-epcam3UTR (JFP709), pCS2-mouseBglobin5UTR-Dendra
(JFP682), and pCS2-NLS-mOxBFP (JFP584) were constructed with a
mixture of gene synthesis by Twist Bioscience and Gibson cloning.
Sequenced verified constructs were linearized prior to the SV40
polyadenylation signal with SnaBI (JFP709), XbaI (JFP682), or XhoI
(JFP584), and purified using PCR clean up columns (Omega Cycle Pure
Kit). Reporter mRNAwas then transcribed using themMessage SP6 kit
(Invitrogen) according to manufacturer’s instructions. After DNase
treatment, prior to purification, a poly(A) tail was added to the mRNA
in vitro using E. coli poly(A) polymerase (ThermoFisher, Poly(A) Tailing
Kit) according to manufacturer’s instructions, except the amount of
poly(A) polymerase was reduced from 4 µL to 1.5 µL per reaction, as
suggested by the manufacturer’s protocol to produce a poly(A) tail
more similar to in vivo length. ThemRNA was then purified using RNA
cleanup columns (Omega EZNATotal RNAKit I), and quantified using a
Nanodrop. mRNA was run on an agarose gel, and product size was
assessed to check for successful transcription before being stored
at −80 °C.

mRNA injection. Fertilized eggs were collected from TL/AB in-crosses
and injected at 1-cell stage with 40pg each of dendra and mOxBFP
reporter mRNA (with epcam UTRs or “neutral” UTRs), in a volume of
1 nL. Injected embryos were cultured at 28 °C until they reached 50%
epiboly. Damaged or abnormal embryoswere removed. Embryos were
fixed in 4% formaldehyde at 4 °C overnight. After fixation, embryos
were dehydrated in a gradient from PBST to 1:1 methanol:PBST, and
then into methanol for 4 h at −20 °C.

Hybridization chain reaction (HCR). krt8 (whichmarks the enveloping
layer), mOxBFP reporter mRNA, and dendra mRNA were identified
using HCR. HCR probes were designed using the Özpolat lab probe
generator, found at https://github.com/rwnull/insitu_probe_generator.
The probes were designed with amplifiers B2 and B3. 10 base pairs
were skipped from the beginning of the cDNA, and themaximum poly
A/T and poly G/C homopolymer length was 5. Probe pairs were
ordered in plate format and OPools format (Integrated DNA Tech-
nologies), and resuspended in molecular biology grade water to a
working concentration of 1 µM. Embryos were rehydrated in a gradient
of 1:1 methanol:PBST and then to PBST. Embryos were then pre-
hybridized in HCR probe hybridization buffer (Molecular Instruments)
for 2 h at 37 °C with shaking at 300 rpm in a ThermoMixer C. To pre-
pare probe working solution, 1 µL of each 1 µMHCR probe was diluted
in 500 µL of probe hybridization buffer at 37 °C. Probe hybridization
buffer was replaced with probe working solution and hybridized at
37 °C with shaking at 300 rpm overnight (12–16 h). Unbound probe
was washed off using HCR probe wash buffer (Molecular Instruments)
and pre-amplification was performed with hairpin amplification buffer
(Molecular Instruments) for 2 h at room temperature. To prepare the
hairpin mixtures, hairpins (3 µM, Molecular Instruments) were pre-

annealed at 98 °C for 90 s and 25 °C for 30min (ramp rate: −0.1 °C/s).
Hairpin mixtures were then diluted to 1:100 in hairpin amplification
buffer (Molecular Instruments), and embryos were incubated in the
mixtures overnight (12–16 h at 24 °Cwith 300 rpm shaking). Following
amplification, embryos were rinsed at 24 °C in 5× SSCT, followed by
washes in PBST.

Imaging and quantification. Stained embryos were mounted in a
lateral orientation in 1% low-melt agarose gel. Z-stack images of
mounted embryos were acquired on a Nikon Eclipse Ti2 inverted
resonant scanning confocal microscope with a Nikon DS-Ri2 camera
using a 20×/0.75 NA air objective. Fluorescence of HCR-stained injec-
ted embryos was quantified in Fiji (ImageJ). Images were selected for
lateral orientation, and yolk was cropped out to minimize the inter-
ference of auto-fluorescence on the measurements. The threshold of
krt8 HCR fluorescence was adjusted as necessary to create a mask
defined by the enveloping layer. This mask was used to create selec-
tions in the dendra andmOxBFP fluorescence channels. Areas outside
the enveloping layerwere defined by creating an inverse of the defined
mask and de-selecting regions outside of the embryo. Fluorescence of
selected regions was quantified using Fiji’s “Measure” function. Cor-
rected total fluorescence (CTCF) of a selected regionwas calculated by
subtracting the area of the selected region multiplied by the average
background fluorescence from Integrated Density (ID) of the selected
region. CTCF values of the dendra control signal andmOxBFP reporter
signal were directly compared.

Statistics and reproducibility
For all statistical analyses performed in this study, the methods used
are addressed in the relevant sections. For single-cell data, only cells
with expression of at least 500 genes were retained. For images,
embryos were excluded if they were mounted in an inappropriate
orientation to visualize the mRNAs of interest. Embryos were ran-
domly collected from natural mating of zebrafish. No statistical
method was used to predetermine sample size. The investigators
were not blinded to allocation during experiments and outcome
assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Sequencing data generated in this study have been deposited in the
NCBI Gene Expression Omnibus, under accessions GSE224113 (bulk
RNA-Seq) and GSE224918 (single-cell RNA-Seq) and is freely avail-
able. Raw microscopy data for figures presented in this study is
available from Zenodo (doi:10.5281/zenodo.10080888). In addition,
our portal (https://liorf.shinyapps.io/zebrafish_single_cell_regulation)
provides the scientific community with ready access to our data and
analysis results. Published datasets used in this study are available in
the NCBI Gene Expression Omnibus, under accessions GSE106587
(for expression comparison after 4sUTP injections), GSE52809 (for
poly(A) tail lengths), GSE46512 (for ribosome profiling), GSE79213
(for m6A analysis), GSE127780 (for m5C analysis) and GSE79213,
GSE84601, GSE148391, GSE120643, GSE32898, GSE56977 (for
maternal genes’ degradation rates comparisons). Source data are
provided with this paper. Published RNA-Seq dataset of sorted germ-
cell populations at dome stage used in this study is available
in ArrayExpress under accession E-MTAB-8707.

Code availability
The code used to generate figures and analyses is available from
authors upon request.
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