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Flexible calorimetric flow sensor with
unprecedented sensitivity and directional
resolution for multiple flight parameter
detection

Zheng Gong 1, Weicheng Di2, Yonggang Jiang 1,3 , Zihao Dong1,
Zhen Yang 1,4, Hong Ye1, Hengrui Zhang1, Haoji Liu2, Zixing Wei2, Zhan Tu 5,
Daochun Li2, Jinwu Xiang2, Xilun Ding 1, Deyuan Zhang1 & Huawei Chen 1

The accurate perception of multiple flight parameters, such as the angle of
attack, angle of sideslip, and airflow velocity, is essential for the flight control
ofmicro air vehicles, which conventionally rely on arrays of pressure or airflow
velocity sensors. Here, we present the estimation ofmultiple flight parameters
using a single flexible calorimetric flow sensor featuring a sophisticated
structural design with a suspended array of highly sensitive vanadium oxide
thermistors. The proposed sensor achieves an unprecedented velocity reso-
lution of 0.11mm·s−1 and angular resolution of 0.1°. By attaching the sensor to a
wing model, the angles of attack and slip were estimated simultaneously. The
triaxial flight velocities and wing vibrations can also be estimated by sensing
the relative airflow velocity due to its high sensitivity and fast response.
Overall, the proposed sensor has many promising applications in weak airflow
sensing and flight control of micro air vehicles.

The development of micro air vehicles (MAVs) that can sense and
manipulate airflow in a manner similar to birds has long been a goal of
aeronautical researchers. In contrast to conventional high-speed air-
planes, MAVs significantly lower airspeeds are more susceptible to
environmental turbulence1. Although significant progress has been
made in thefields of vision-basedflight control and theminiaturisation
of inertialmeasurement units (IMUs), highly sensitive andminiaturised
flow sensors for airflow sensing are urgently desired to provide com-
prehensive aerodynamic information.Mimicking the functionof insect
mechanoreceptors (Johnston’s organ) for sensing airflow stimuli,
quadrotor drones with integrated pressure sensors have demon-
strated creature-like obstacle avoidance capabilities by virtue of flow
field perception2. Additionally, the estimation of multiple flight para-
meters using an array of pressure and flow sensors has been proposed
as a feasible solution for intelligent flight control3,4. However, the

pressure stimuli are very small at low airspeeds and realising high-
sensitivity flexible pressure sensors using flexible electronics is
challenging.

Inspired by the flow perception mechanisms of birds, insects,
and bats, distributed and highly sensitive airflow velocity sensors
have been used to cope with complex flow fields. Artificial hair flow
sensors have been studied extensively to mimic the fluid–structure
interaction principle of biological flow-sensing hairs3,5–9. However,
the sensitivity of a hair flow sensor is proportional to the square of
the flow velocity, leading to low sensitivity at low flow velocities3.
Flexible hot-film sensors have also been investigated and introduced
into MAV applications10,11. However, because such sensors are unable
tomeasure the flow direction, they are typically arranged in complex
arrays for flight parameter estimation, which impedes their practical
application. Additionally, to achieve multimodal sensing functions
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such as the relative airflow velocity, angle of attack (AOA), angle of
sideslip (AOS), and wing vibration, the integration of different phy-
sical sensors such as pressure, hot-film, and piezoelectric sensors is
required to develop smart MAV skin12–15. We previously reported a
sensing fusion methodology for AOA and airspeed using an array of
flowandpressure sensors4,5. However, thedetection ofmultiple flight
parameters using a single flow sensor, which can significantly sim-
plify air data sensing systems for lightweight MAVs, has never been
reported.

To satisfy the multi-parameter perception requirements of MAVs,
we propose a thin flexible calorimetric flow (FCF) sensor with high
sensitivity and directionality. The proposed sensor has a structurewith
a suspended array of highly sensitive vanadium oxide (VOx)-based
thermistors on a thin flexible substrate. Benefiting from the high-
temperature coefficient of resistance (TCR) of the sputtered VOx film,
the FCF sensor exhibits high flow velocity and directionality resolu-
tions (0.11mm·s−1 and 0.1°, respectively). By attaching a single FCF
sensor to the leading edge of the airfoil, the AOA and AOS can be
computed simultaneously. With two FCF sensors mounted on anMAV
wing, the MAV can precisely estimate the relative airflow velocity
(mean error <0.2m·s−1), achieving the highest accuracy among state-
of-the-art airflow velocity measurement methods (Supplementary
Table 1)10,12,15–17. Furthermore, with its high resolution and fast response
characteristics, the FCF sensor can measure weak high-frequency air-
flow, providing an valuable sensing function for the vibration of
MAV wings.

Results
Flow sensor design
To realise the high-precision measurement of two-dimensional flow
velocity, we designed the FCF sensor as a multilayered structure with
arrayed highly sensitive thermistors on a thin polyimide (PI) substrate
(Fig. 1a). The sensor consists of a spiral heater, an array of VOx ther-
mistors, flexible PI supporting and protection layers, and a copper-on-
PI (COP) flexible substrate. We isolated the heater and thermal sensor
from a flexible substrate using a channel to mitigate thermal conduc-
tion via the PI substrate. Additionally, the TCR of thermistors is a sig-
nificant factor affecting the sensitivity of the FCF sensor. Many
semiconductor oxide materials have TCRs several times higher than
those of metals (Supplementary Table 2)18–24. However, they typically
have large resistivity, which results in high 1/f noise and impedance
mismatch18,25. VOx combines a high TCR (–2% K−1) with low 1/f
noise, providing significant advantages for temperature sensing
applications26,27, and was therefore employed as the material for inte-
grated thermistors on a flexible substrate. Because six pairs of VOx

thermistors are symmetrically cross-arranged around the heater, the
temperature difference ΔT between the upstream and downstream
thermistors can accurately reflect heat convectionwhile cancelling out
ambient thermal influence. The directionality of flow can be inferred
from the difference in ΔT between cross-arranged thermistor pairs
(Fig. 1b). The centre-to-edge distances D from the VOx thermistors to
the central heater are 120, 320, and 520μm (Fig. 1c). As one of the key
design parameters, the centre-to-edge distance D significantly affects
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the sensitivity and directionality characteristics of calorimetric flow
sensors (see Supplementary Fig. 1 and Note. 1 for details regarding the
heat transfer model)28–31. This design enables the sensor to obtain
nonlinearly correlated multi-channel data, which can enhance the
estimation accuracy of flight parameters.

We propose a facile fabrication process on a flexible COP sub-
strate facilitated by the low-temperature (<300 °C) preparation of VOx

thin-film thermistors and a well-defined suspended structure (see
Supplementary Fig. 2 for details regarding VOx thin-film preparation
and characterisation). The copper in COP is used as a sacrificial layer,
which ensures that the total thickness of the supporting and protec-
tion PI layers is within 10 µmin addition to thewell-defined thickness of
the thermal isolation channel (see Supplementary Fig. 3 for the fabri-
cation details). Because the total thickness of the FCF sensor is less
than 90 µm, it is sufficiently flexible to be attached to curved surfaces
(Fig. 1d). As shown in Fig. 1e, the FCF sensor is conformally attached to
the leading edge of an MAV wing. Multiple flight parameters such as
AOA, AOS, and relative airflow can be estimated using a pre-trained
machine-learning-based neural network model.

Sensing characteristics of the FCF sensor
For characterisation in abenchtopwind tunnel (Fig. 2a), the FCF sensor
was attached to the leading edge of a sharp plate to reduce the
effects of the aerodynamic boundary layer (Supplementary Fig. 4C).
A feedback circuit was used to enable the FCF sensor to operate in
the constant-temperature-difference (CTD) mode (Supplementary
Fig. 5A)32,33. The three pairs of thermistors in order from near to far
from the heater were defined as P1, P2, and P3 and were connected to
differential amplifier circuits (Supplementary Fig. 5B). Figure 2b indi-
cates that the output voltages of the three thermistor pairs for airflow
velocities range from 0 to 30m·s−1, indicating that the highest

sensitivity is generally obtained from the thermistor pair nearest to the
heater. Detailedmeasurements in a small range of airflowvelocities are
presented in Fig. 2c, demonstrating that the differential output of P1
can be monitored as a linear function in the flow velocity range of
0–1.25m·s−1 with a sensitivity of 1.817 V·m−1 s. Theminimum detectable
velocitywas calculated to be0.11mm·s−1 based on the noise level of the
P1 (9.8 × 10−5 V) (Supplementary Fig. 6A) and 2σ criterion34. However,
the differential output of P2 (D = 320μm) is higher than that of P1
(D = 120 μm) when the flow velocity is less than 0.2m·s−1 (see the inset
in Fig. 2d), which is supported by our design model (Supplementary
Fig. 1). Both the calculation and simulation results demonstrate that
the optimal distance D between the heater and thermistor pair with
the maximum temperature difference decreases as the flow velocity
increases (Fig. 2d).

The FCF sensor exhibited a highly repeatable response when sub-
jected to cyclic flow velocities of 1, 5, and 10m·s−1 (Fig. 2e). The
repeatability standard deviations were approximately 0.5% of the
measured flow velocity values. In addition to the merits of sensitivity
and repeatability, the response time is another important parameter for
FCF sensors. The response time of a calorimetric flow sensor can be
defined as the time constant T (or Tʹ) required for the output voltage to
increase to 63.2% (or decrease to 36.8%) of its initial amplitude35. We
measured the response time in the pulse-operated CTDmode with the
heating system on and off at a constant incoming flow velocity (Fig. 2f).
The VOx thermistor pair P1 closest to the heater exhibited short-time
constants with T1 and T1ʹ values of 16 and 22ms, respectively. Although
the time constants increase with increasing distance D, the maximum
time constant is still less than 37ms for thermistor pair P3. Supple-
mentary Fig. 6B shows the heating power of the FCF sensor in the range
of 3–4.4mW from 0 to 30m·s−1. This low power consumption is also
essential for energy conservation and flight endurance of the MAV.

0.01 0.1 1 10
0

60
120
180
240
300
360
420
480
540

O
pt

im
al

 D
 w

ith
 Δ
T m

ax
  (

um
)

Velocity (m·s−1)

 Calculated
 Simulated

P1

P2

P3

Flow

P1
P2
P3

a b c

d e f

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4
0

2

4
0

2
0

2

V o
ut

 (V
)

Time (s)

V0

P1 T1=18ms

T2=20ms

T3=32ms

T'1=22ms

T'2=25ms

T'3=37ms

P2

P3

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.5

1.0

1.5

2.0

2.5
V o

ut
 (V

)

Velocity (m·s−1)

 P1 with linear fitting
 P2
 P3

Sensitivity: 1.817 V·m−1
·s

0.1 0.2 0.3

0.2

0.4

0.6

V o
ut
 (V

)

Velocity (m·s−1)

 P1
 P2
 P3

0 10 20 30

0.0

1.0

2.0

3.0

4.0

5.0

V o
ut

 (V
)

Velocity (m·s−1)

 P1
 P2
 P3

0.0

2.0

4.0

1.0

3.0

0 50 100 150 200
0.0

1.0

2.0

V o
ut

 (V
)

Time (s)

Mean:1.838V  Std:8.79mV @ 1 m·s−1

Mean:3.268V  Std:14.32mV @ 5 m·s−1

Mean:4.187V  Std:22.26mV @ 10 m·s−1
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Supplementary Table 3 presents comprehensive comparisons of
the sensing modalities, structures, materials, maximum sensitivities,
minimum detectable velocities, repeatability errors, heating power,
maximum angle errors, and detection ranges of reported calori-
metric flow sensors34,36–41. Our FCF sensor provides unprecedented
sensitivity and repeatability as a result of its suspended structure and
VOx thermistor material, which are essential for high-precision air-
flow perception.

Directionality of the FCF sensor
Changes in the flow direction affect the temperature distribution on
the surface of the FCF sensor, and the velocity components of ortho-
gonal decomposition can be measured by thermistor pairs perpendi-
cular to each other. The directionality performance of the FCF sensor
was characterised bymounting it in the middle of a slightly raised disk
surface (Fig. 3a). Changes in the airflow angle θ were achieved by
rotating the FCF sensor (Fig. 3b and Supplementary Fig. 4). As shown in
Fig. 3c, the output voltage of the thermistor pair P1–3 (or V1–3) has a
simple cosine (or sine) dependence on the airflow angle θ at a low flow
velocity of 0.2m·s−1. The experimental results agree well with com-
putational fluid dynamics (CFD) simulation results in terms of the
temperature difference (Fig. 3d). Under a low flow velocity, thermistor
pairs P3 and V3, which are the farthest from the heater, have the
highest angular sensitivities, where themaximumangular sensitivity of
V3 is 3.4mV·deg−1. Based on themeasured noise levels (Supplementary
Fig. 6C), the directional resolution at 0.2m·s−1 was calculated to be
0.79°. The output voltages of the thermistor pairs increasing the
incoming flow velocity to 10m·s−1 are presented in Fig. 3e. One can see

that P1 and V1, which are closest to the heater, are the most sensitive,
where the maximum angular sensitivity of V1 is 36.7mV·deg−1. The
directional resolution at 10m·s−1 was calculated to be 0.1° based on the
noise level presented in Supplementary Fig. 6B. Furthermore, we
evaluated the angular measurement accuracy of the FCF sensor, and
themaximumangular errorwas less than 1.6° (Supplementary Fig. 6C).
When the flow velocity increased to 10m·s−1, the thermistor pairs at
different distance D have different direction response functions. The
output voltages of P1 (or V1) still exhibit cosine (or sine) dependence
on the airflow angle θ, whereas the output voltages of the thermistor
pairs far from the heater exhibit cubed-cosine (or cubed-sine) depen-
dence on the airflow angle θ (Fig. 3d, e). The simulated thermistor
temperature profiles clearly explain this phenomenon (Fig. 3f). High-
velocity airflow restricts heat diffusion to a narrow region downstream
of the heater. When the airflow angle is in the range of 50°–130° (or
230°–310°), the thermistor pairs far from the heater (V2 and V3) are
inside this narrow thermal diffusion zone and the temperature differ-
ence varies significantlywith the angle.When the airflow angle is in the
range of 130°–230°, these thermistors are outside the thermal diffu-
sion zone and the temperature difference changes very little with the
angle. However, because V1 is the closest to the heater and can contact
the thermal diffusion zone over almost the entire angular range, the
temperature difference curve maintains a sinusoidal profile, which is
consistent with the experimental results.

Estimation of AOA and AOS
The high sensitivity and directional resolution of the FCF sensor make
it particularly suitable for detecting multiple flight parameters. As
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shown in Fig. 4a, the FCF sensor was conformally attached to the
leading edge of a wingmodel (Supplementary Fig. 4E). The FCF sensor
for two-dimensional flow sensing has three pairs of thermistors in each
direction, among which thermistor pairs P1–3 are sensitive to AOA
variations, whereas V1–3 are sensitive to the AOS variations. Because a
multilayer perception (MLP) neural network can achieve highly non-
linear mapping from inputs to outputs and has strong generalisation
capabilities42, we employed an MLP to estimate the AOA and AOS
simultaneously at different airflow velocities. The AOA and AOS were
varied in the range of ±20° with a step of 2°, and a total of 441 datasets
(21 × 21 grey points) were obtained as a training set (Fig. 4b). We then
adjusted the AOA and AOS to obtain data for 184 testing points (blue
points). The signals of the six thermistor pairs (P1–3 and V1–3) were
normalised and then input into the MLP model to estimate the AOA
and AOS simultaneously. The estimates of the testing points at a flow
velocity of 10m·s−1 are presented in Fig. 4c and agree well with the
actual values. To verify the effect of the number of thermistor pairs on
the prediction accuracy, we compared the estimation results when
using the signals of thermistor pairs P1 andV1 (PV1), P2 andV2 (PV2), P3
and V3 (PV3), and all thermistor pairs (PV1–3) as inputs. The mean
absolute errors (MAEs) of the AOA and AOS are 0.54° and 0.56°,
respectively, when using PV1–3 as inputs, which aremuch smaller than
those when using PV1, PV2, or PV3 as inputs (Fig. 4d), suggesting that
the array design of the thermistor pairs in a single FCF sensor provides
promising guidance for improving the accuracy of AOA and AOS
recognition. When the airflow velocity is increased to 30m·s−1, the
estimated and actual values of the AOA and AOS remain well matched

(Fig. 4e). As shown in Fig. 4f, the estimation when using the signals of
all thermistor pairs exhibits the best accuracy, where the MAEs of the
AOA and AOS are 0.58° and 0.53°, respectively. These results
demonstrate that the FCF sensor has good stability and can maintain
high estimation accuracy for the AOA and AOS at different flow velo-
cities. Furthermore, theflight parameterswere resolvedusing onlyone
FCF sensor, which is superior to existing techniques that require arrays
of flow sensors (Supplementary Table 1).

Relative airflow velocity estimation and wing vibration
monitoring
Relative airflow velocity is an essential parameter for the agile flight
control of MAVs. In this section, we describe the accurate detection of
tri-axis relative airflow velocity using the highly sensitive FCF sensor.
As shown in Fig. 5a, two FCF sensors were mounted on a fly-wing MAV
with dual vector rotors. Sensor#1measured the velocity component in
the x-y direction, and sensor #2 measured the velocity component in
the y-z direction. To avoid interference from the propeller airflow
during flight, both FCF sensors were arranged at the edge of the wing
and an external IMUmodule was installed next to sensor #2 to collect
the vibration information of the wing simultaneously. Heating control,
signal collection, and data storage were achieved using an onboard
electronic system (Supplementary Fig. 7). The two FCF sensors were
calibrated by fixing the airframe and moving it in fixed directions on a
servo slide rail (Supplementary Fig. 8). The reciprocating movement
velocities of the airframe along the three axes of the body coordinate
systemand corresponding FCF sensor outputs arepresented in Fig. 5b.
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The two sensor components exhibit different nonlinear responses to
the relative airflow velocities in three directions. However, no sig-
nificant phase lag exists between the motion velocity and output vol-
tage based on the fast response of the FCF sensor (Fig. 2f).

To demonstrate the airflow velocity estimation capabilities of
the FCF sensor, we controlled the MAV with a joystick to perform
takeoff, reciprocating flight and circled flight operations sequentially

(Supplementary Movie 1). Because this experiment was conducted
indoors, the relative airflow velocity was assumed to be opposite to
the motion velocity. Therefore, we compared the flight velocity of
the MAV obtained from a motion capture system to the relative air-
flow velocities estimated using an MLP neural-network-based strat-
egy. Figure 5c presents the velocity components of the MAV along
the three axes in the body coordinate system. The estimated values
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exhibit excellent consistency with the relative flight velocities for
different flight motions. This finding indicates that the FCF sensor
can accurately identify the relative airflow experienced by the MAV
during flight.

To demonstrate the ability of our sensor to estimate relative air-
flow velocities further, we conducted outdoor experiments using the
same MAV model and sensor configuration at higher flight velocities
under windless conditions (Supplementary Movie 2). We manually
guided the MAV to perform a fast-reciprocating flight manoeuvre
along the z-axis of the body coordinate system, as well as a short hover
and a forwardflight. Figure 5dpresents the results of the outdoorflight
experiments. The black lines represent the flight velocity components
of the body coordinate system obtained using an extended Kalman
filter (EKF) algorithm that fuses measurements from the onboard
Global navigation satellite system (GNSS), IMU, and manometer. The
red lines represent the relative airflow velocities estimated by theMLP
neural network, which agree well with the flight velocities calculated
using the EKF. The z-axis velocity exhibits a peak value of 3.71m·s−1 at
5.4 s with only a 0.5% difference between the estimated and calculated
values. We calculated the MAEs of the estimated velocities based on
the indoor flight velocities captured by themotion capture system and
outdoor flight velocities computed using the EKF (Fig. 5e). The statis-
tical results reveal that the MAEs of the velocity components of each
axis and resultant velocity for indoor flight are lower than 0.15m·s−1

and that theMAEs for outdoor flight are lower than 0.2m·s−1, which are
superior to the results of previous studies (Supplementary Table 1).
The outdoor experiment results further demonstrate the excellent
reliability and stability of our FCF sensor for airflow sensing and flight
parameter estimation.

We further evaluated flight path drift by integrating the estimated
velocities (Supplementary Fig. 9). Since these estimates are given in
body coordinate frame, they were first transformed in inertial frame
using the rotation matrix, and then numerically integrated. In the
indoor flight phase, the mean drifts of the path obtained by flight
velocity with respect to the ground truth were less than 0.07m·s−1.
During outdoor flight, the mean drifts of the path based on velocity
integration to the path given by EKF and GNSS were calculated to be
0.1161 and 0.4872m·s−1, respectively. The MLP network for flight
velocity estimation is pre-trained with the velocity given by the EKF,
therefore the path estimation based on flight velocity is closer to the
path given by the EKF. However, it is difficult for us to assess the drift
between the estimated path and the ground truth for outdoor flight
due to the unavoidable drift of consumer-grade GNSS, IMUs, etc.43.
Moreover, the indoor path estimation results reflect the feasibility of
using the obtained flight velocity estimates for odometry.

In addition to estimating relative airflow velocity during flight, the
fast response and high sensitivity of the proposed FCF sensor facilitate
the analysis of wing vibration information by sensing relative airflow
movement. When the MAV was hovering, the velocity signal of sensor
#2 along the z-axis of the body coordinate system was collected and
processed using 2Hz high-pass filtering, as shown in Fig. 5f. The short-
time Fourier transform of the filtered sensor signal was calculated
to obtain the spectrogram shown in Fig. 5g. Obvious intensity peaks
exist at 10 and 20Hz, indicating that the wing was vibrating at the

corresponding frequencies. For comparison, we plotted the spectrum
of the acceleration signal acquired simultaneously by the commercial
IMU module and found that the peak frequencies of the acceleration
signal were consistent with those of the FCF sensor signal. These
results indicate that the FCF sensor has such a fast response and
unprecedented resolution that it can detect both relative flight velo-
city and wing vibration.

Discussion
We developed a thin FCF sensor with a well-designed VOx thermistor
array for flight parameter estimation. The proposed FCF sensor
achieved a high-velocity resolution (0.11mm·s−1), small repeatability
standard deviation (0.5%), fast response time (20ms), and high
directional resolution (0.1°). These excellent characteristics facilitate
the practical application of FCF sensors for the estimation of MAV
flight parameters. The FCF sensor was attached to a curved airfoil to
perform typical flight parameter perception functions, including AOA,
AOS, and relative airflow velocity sensing, based on machine-learning
algorithms. Interestingly, the proposed FCF sensor can also identify
the vibration information of an airfoil.

This excellent sensing performance was attributed to the VOx

thermistors with a high TCR and suspended structure with effective
thermal isolation. The processing of VOx thin films has traditionally
involved high temperatures of over 400 °C, which are incompatible
with the processing of sensors on flexible PI substrates. Therefore, we
developed low-temperature sputtering and annealing processes to
solve this problem and achieved a high TCR of 1.9% K−1. Additionally,
we conducted structural optimisation to enhance the temperature
differences between thermistor pairs to improve the sensitivity of the
FCF sensor. The sensitivity of calorimetric flow sensors is typically
increased by introducing trenches or insulating cavities to reduce heat
dissipation from the substrate30,36. Our proposed suspended structure
not only mitigates thermal conduction from the PI substrate but also
enhances convective heat transfer through both the upper and lower
sides of the thermistor, thereby further increasing the temperature
differenceof the thermistor pairs. Toverify this effect,we established a
general 1D heat transfer model of an FCF sensor with a suspended
structure, which was highly consistent with the CFD simulation model
in terms of the key design parameters. We determined that the PI-
compatible processing of the VOx thermistor and suspended structure
design significantly enhanced the sensing performance of the FCF
sensor.

In addition to high-sensitivity characteristics, an array design of
sensing units on a thin flexible PI substrate provides a novel strategy
for high-precision MAV flight parameter estimation using a single FCF
sensor. We arranged six pairs of thermistors on one FCF sensor with
different sensitivities and directional flow-sensing characteristics. This
array design not only facilitates the regulation of sensing performance
by directly adjusting the distance between thermistor pairs and the
heater but also provides rich information and high-accuracy predic-
tion of flight parameters based on neural network algorithms.

For MAV flight parameter detections, the system can collect and
store multi-channel data by integrating onboard sampling circuits and
a microcontroller. In future work, we will port the artificial neural

Fig. 5 | Relative airflow velocity estimation and wing vibration perception.
aMAV equipped with two FCF sensors and an external IMUmodule. b Comparison
of the movement velocity with the output voltages of the FCF sensors when the
MAV is fixed on the mount for tri-axis movement. c Comparison of the flight
velocity calculated by themotion capture systemand relative velocity estimated by
the FCF sensors when the MAV performs takeoff, reciprocating motion along the z
(blue), x (red), and y (green) axes, and circled fight indoors. d Comparison of the
flight velocity calculated by the EKFmethod with the relative velocity estimated by
the FCF sensor when the MAV performs forward flight, backward flight, and
hovering outdoors. e Absolute errors of the indoor and outdoor flight velocities

between the calculated and estimated values. Box plots indicate median (middle
line), 25th, 75th percentile (box) and 5th and 95th percentile (whiskers) as well as
mean (points). Number of samples n = 1803 for indoor flight and n = 1851 for out-
door flight. f Output voltage of P1 (sensitive to z-axis velocity component) of FCF
sensor #2, the 2Hz high-pass filtered signal, and the acceleration signal acquired by
the IMU synchronously during MAV flight. g Comparison of the spectra of signals
from IMU and P1 of FCF sensor #2, illustrating the wing vibrationwith 10 and 20Hz
as the characteristic frequencies. IMU inertial measurement unit, EKF extended
Kalman filter.
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network model to the microcontroller to achieve online flight velocity
and attitude estimation, taking a step towards practicality.

In summary, this paper reported a thin, flexible, and calorimetric
flow sensor with high sensitivity and directionality. An FCF sensor can
perform multi-parameter sensing tasks for MAVs with high accuracy,
including attitude angle estimation, relative airflow velocity estima-
tion, and wing vibration monitoring. This study provides a promising
strategy for flow sensor design in the field of airflow sensing for MAVs,
thereby broadening the applications of FCF sensors to attitude
detection, airspeed estimation, and safety monitoring.

Methods
Preparation of VOx films
VOx films were deposited on PI film substrates via reactive ion beam
sputtering using a V target (99.9%) in an O2/Ar gas mixture. The
sputtering pressurewas set to 0.035 Pa. The partial pressure of oxygen
(PaO2) was regulated using a mass flow meter. After deposition, the
films were annealed in an Ar atmosphere at a set temperature for 2 h.

Fabrication of FCF sensors
High-temperature-resistant epoxy (540, KAISIMI) was spin-coated
onto a glass substrate at 3000 rpm for 30 s. Next, the COP layer was
uniformly laminated on the glass substrate via roll pressing and cured
at 90 °C for 4 h. ThePI precursor solutionwas spin-coated at 3000 rpm
for 30 s on theCOP layer and thenprebaked at 150 °Con a hot plate for
10min to remove the organic solvent, after which the PI film was fully
cured at 280 °C on a hot plate under ambient conditions for 30min to
form the supporting layer. A lift-off process was employed to form
electrodes and resistive heater metal layers (Cr/Au; 20 nm/300nm),
and VOx thin-film (400nm) thermistors were also patterned using a
lift-off process. A second layer of PI, which was used as the encapsu-
lated layer, was then formed via spin-coating. Both the supporting and
encapsulated PI layers were patterned using reactive ion etching in O2/
SF6 gas at ambient temperature for 50min. The exposedCu in theCOP
layer waswet-etched using an etchant (H3PO4 (85%):HNO3 (70%):acetic
acid:H2O= 16:1:1:2) to form a Cu channel. An annealing process was
then performed under an Ar atmosphere at 300 °C for 2 h. Finally, the
laminated film was peeled from the glass substrate to obtain a com-
plete FCF sensor.

CFD simulation analysis
To analyse the temperature distribution of the proposed sensor and
compare it to that of our 1D heat transfer model, we performed a 2D
thermofluid coupling CFD simulation. A computational domain with
a width of 100mm and height of 75mmwas used, and a temperature
constraint of 300K was applied to the four walls. The inlet was
defined on the left wall of the computational domain to apply the
incoming flow. The temperature difference curve was obtained by
extracting the temperature at the points on the horizontal centreline
of the heater and thermistors. For the simulation of three different
configurations (suspended, cavity, and solid structures), the section
heights and widths and applied boundary conditions were kept
consistent.

To analyse the directionality characteristics of the FCF sensor,
a 3D thermofluid coupling CFD simulation was performed.
The dimensions of the computational domain were 0.5 × 0.5 × 0.2m
(L ×W×H). The sensor and fixture dimensions were kept consistent
with those in our experiments, and a temperature constraint of 300K
was applied to the fixture. The temperature differences of V1–3
were calculated by extracting the average temperatures on the cen-
treline of the thermistors at different flow velocities and angles. The
physical parameters of the fluid and material required for simulation
are listed in Supplementary Table 4. The software we used was
ANSYS2020-R2.

Measurement of the FCF sensor
The performance of the FCF sensor was characterised using a desktop
wind tunnel (WT4401-D, OMEGA, USA). The output signal of the FCF
sensor was input into a DAQ card (USB-6366, NI) through a differential
amplifier circuit, acquired by the host computer, and then subjected to
5Hz low-pass digital filtering.

The FCF sensor was attached to the leading edge of a wing for
AOA and AOS estimation. The cross section of the leading edge of the
NACA 0016-MOD airfoil was approximated as a circle with a radius of
14mm. Airfoil angles relative to the airflow were controlled using two
rotation stages.

TwoFCF sensors anda commercial IMU(MPU-6050)modulewere
mounted on the MAV to measure the flight parameters. The output
signals from the FCF sensorswere differentially amplified and digitised
(ADS1256). The microcontroller (ESP32-2S) simultaneously acquired
the signals from the FCF sensor and digital signals from the IMU
module at a sampling frequency of 50Hz and stored them in an SD
card. Ten reflective markers were attached to the fuselage to obtain
the 3D coordinates of the MAV. The flight velocity and attitude were
calculated using the 3D reconstructed points of the markers obtained
from a multi-camera motion capture system (Optitrack, Corval-
lis, OR, USA).

MLP neural network algorithm
The MLP used is a fully connected artificial neural network model
consisting of an input layer, several hidden layers, and an output
layer. Each hidden layer consists of several neuron nodes, and each
neuron weights the nodes of the previous layer and performs a
nonlinearmappingwith an activation function to achieve amultilayer
nonlinear regression task from input data to output objects44,45.
The MLP neural network used was constructed through the Pytorch
framework.

For AOA and AOS estimation, a series of MLP neural networks
were trained to estimate the AOA and AOS values of the airfoil using
data collected from the FCF sensor during wind tunnel testing to
evaluate the estimation accuracy for each input pattern (PV1, PV2, PV3,
and PV1–3). The inputs of each network were the normalised values of
the corresponding signal channels, and the outputs were the AOA
and AOS values. To avoid estimation errors caused by different net-
work structures, the same learning rate, activation function, hidden
layer, and number of nodes were set for each network12,46 (see Sup-
plementary Table 5 for details of network structures and training
parameters). Relatively small networkswere selected to reduce the risk
of overfitting.

In theflight velocity estimationexperiment, eight channels of data
from the P1–2 andV1–2outputs of twoFCF sensorswereused as inputs
to train the MLP neural network to estimate the flight velocity of the
MAV, and the outputs were the three velocity components in the body
coordinate system.After training andoptimisation, the networkmodel
was setup with three hidden layers, and the number of nodes in each
layer was 100. The network structures and training parameters are
shown in Supplementary Table 5. Training was performed by com-
bining both indoor and outdoor test flight data. All data from the slide
reciprocating motion, indoor flight, and outdoor flight tests were
combined in the training set to improve the estimationperformance of
the MLP because the velocity ranges and testing conditions (e.g.,
propeller spinning and atmospheric conditions) between datasets
were different. The estimation performance was validated using
indoor and outdoor flight datasets collected independently of those
used for training.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The training and testing datasets of MLP networkmodels generated in
this study have been deposited in the figshare database under acces-
sion code: https://doi.org/10.6084/m9.figshare.24925971.v147. Source
data are provided with this paper.

Code availability
The codes for training and testing MLP network models have been
deposited in Zenodo repository: https://doi.org/10.5281/zenodo.
1068182248.
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