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Evolution of T cells in the cancer-resistant
naked mole-rat

Tzuhua D. Lin1,5, Nimrod D. Rubinstein 1,5 , Nicole L. Fong1, Megan Smith1,
Wendy Craft1, Baby Martin-McNulty1, Rebecca Perry2, Martha A. Delaney3,
Margaret A. Roy1 & Rochelle Buffenstein 1,4

Naked mole-rats (NMRs) are best known for their extreme longevity and
cancer resistance, suggesting that their immune systemmight have evolved to
facilitate these phenotypes. Natural killer (NK) and T cells have evolved to
detect and destroy cells infected with pathogens and to provide an early
response tomalignancies. While it is known that NMRs lack NK cells, likely lost
during evolution, little is known about their T-cell subsets in terms of the
evolution of the genes that regulate their function, their clonotypic diversity,
and the thymus where they mature. Here we find, using single-cell tran-
scriptomics, that NMRs have a large circulating population of γδT cells, which
inmice and humansmostly reside in peripheral tissues and induce anti-cancer
cytotoxicity. Using single-cell-T-cell-receptor sequencing, we find that a cyto-
toxic γδT-cell subset of NMRs harbors a dominant clonotype, and that their
conventional CD8 αβT cells exhibit modest clonotypic diversity. Consistently,
perinatal NMR thymuses are considerably smaller than those of mice yet fol-
low similar involution progression. Our findings suggest that NMRs have
evolved under a relaxed intracellular pathogenic selective pressure that may
have allowed cancer resistance and longevity to become stronger targets of
selection to which the immune system has responded by utilizing γδT cells.

Lymphocytes provide both innate and adaptive immunity through the
ability of their receptors to sense infections and other stressful con-
ditions. CD8 and CD4 T cells have largely evolved to eradicate intra-
cellular and extracellular infections, respectively, through αβT-cell
receptor (TCR) -recognition of peptides derived from these respective
pathogens, presented on major histocompatibility complex (MHC) I
and II, respectively1–7. Natural-killer (NK) cells have also evolved to
eradicate cells infected with intracellular pathogens through their NK-
cell-receptor recognition of deviation from normal expression of
MHC-I and elevated expression of stress ligands8–12. Whereas NK cells
fully develop in bone marrow and their receptors are germline enco-
ded, progenitor T cells leave bone marrow as progenitors and in the
thymus undergo somatic genome recombination whereby their

germline-encoded TCR loci are rearranged such that each cell
becomes a clonotype encoding a single combination of variable,
diversity, and joining TCR regions1. This process has evolved to pro-
duce the vast variety of αβT-cell clonotypes facilitating recognition of
a myriad of possible peptides presented on MHC-I and MHC-II, which
in turn, are encoded by highly polymorphic multigene families13.

During genomic rearrangement someof theT cells are committed
to the γδ lineage14,15, which is not restricted to MHC-I-presented pep-
tides, but rather the γδTCRs recognize both self and foreign stress-
ligands16–18. γδT cells are the first to emerge in human and mouse
embryonic thymuses and subsequently mainly populate peripheral
tissues, such as the skin and gut, rather than remain in the
circulation17,19. Studies in humans have highlighted the presence of
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γδT-cell subsets with semi-invariant and hence public (shared across
individuals) clonotypes, which serve innate-like functions, as well as
γδT-cell subsets with larger, and hence more private, clonotypes,
which servemore adaptive-like roles20–23. Thus,γδTcells are thought to
expand the temporal and spatial immune responsiveness of αβT cells,
bridging the gap between innate and adaptive immunity24–26. In recent
times, γδT cells have been shown to be involved in cancer, performing
both tumorotoxic functions as well as proinflammatory and immu-
nosuppressive roles that favor tumor growth27,28.

The naked mole-rat (NMR; Heterocephalus glaber) is a mouse-
sized rodent that shows no age-associated exponential increase in the
risk of dying29 and is remarkably cancer-resistant30–32, which may
greatly contribute to its ability to live exceedingly longer than expec-
ted from its body size33. A cell-autonomous mechanism explaining the
NMR resistance to solid tumors34 has been challenged35, although
theremay be other, yet to be characterized ones, such as evolutionary
genomic expansion of tumor suppressor gene families36, similar to the
elephant’s TP5337,38. In keeping with the well-established roles of the
immune system in cancer immunosurveillance and maintenance of
tissue homeostasis, the NMR immune system has recently garnered
attention, with several intriguing findings: (1) NMRs lackNK cells, likely
lost due to relaxed intracellular pathogenic selective pressure39; (2)
NMR T cells mature into foreign-antigen-reactive cells in a unique
cervical lymph node40, unlike most species in which this process is
confined to the thymus41; (3) contrary to most vertebrates in which
thymic cellularity is dramatically reduced by puberty42, this is not
apparent in NMR thymuses43, even at ages twenty-fold greater than
their ageof sexualmaturity29; and, (4)NMRswith a higher colony social
rank have enlarged spleens, possibly strengthening their antimicrobial
immunity44. Despite these findings, a deeper characterization of the
NMR immune-cell repertoire, and especially of its various T-cell sub-
sets and how they may relate to its cancer resistance and tissue
homeostasis, is still lacking.

We focus our study on NMR T-cell subsets utilizing both con-
ventional single-cell RNA sequencing (scRNA-seq) and single-cell TCR
sequencing, as well as extensive comparative genomics. We find that
NMRs have a large splenic population of γδT cells and that their gen-
ome encodes a large number of γ and δ variable TCR regions. Among
the NMR splenic γδT cells, we find a subset with an inhibited cytotoxic
transcriptional profile that harbors a dominant and highly public clo-
notype. Similar to mouse spleens, the CD8 and CD4 αβT-cell subsets
make up the majority of the NMR splenic T cells, yet we observe that
NMR spleens maintain a considerably lower CD8∕CD4 cell ratio and
clonotypic diversity. This reinforces the notion that NMRs have
evolved under a relaxed intracellular relative to extracellular patho-
genic selective pressure. Consistent with that, we also observe that
early-life NMR thymuses are considerably smaller than those of mice
yet contrary to Emmrich et al.’s report43, similar to mice undergo
involution progression, which based on a comprehensive histological
assessment, is already apparent in young adults.

Results
NMRs have a large population of γδT cells in the spleen
Our previously generated scRNA-seq data of spleens from adult
NMRs (two years old; n = 2 females and n = 2 males) and mice (two
months old; n = 2 females and n = 2 males) revealed that NMR T cells
comprise two subsets, which based on their Cd8a expression pat-
terns (expression of Cd8b was not detected) were labeled as “naive
T cells” and “CD8 T cells”39. A subsequent deeper re-inspection of
those data showed that the “naive T cells” are also marked by high
expression levels of the α and β constant TCR regions, and that the
“CD8T cells”, in addition toCd8a, are alsomarked by high expression
levels of the γ and δ constant TCR regions, and of Gzma, Nkg7, and
Xcl1, indicative of cytotoxic T-cell function45,46 (Fig. 1A, C and S1A,

S1C; Data S1). Here, we re-labeled the “naive T cells” as αβT cells and
the “CD8 T cells” as γδT cells. In contrast, in the equivalent mouse
spleen dataset, expression of the γ and δ constant TCR regions is not
detected and Gzma and Nkg7 are mainly expressed in NK cells
(Fig. 1B, C and S1B, S1C; Data S1).

To obtain higher resolution of NMRT-cell subsets and to examine
their changeswith age, we generated new spleen T-cell-specific scRNA-
seq datasets, from adult NMRs (two years old; n = 3 males) and mice
(two months old; n = 4 males), and old NMRs (26−28 years old; n = 4
males) andmice (two years old; n = 4males), using themore advanced
10×V3chemistry (Fig. S1D, S1E;Data S2 andS3;Methods). These higher
resolution datasets revealed thatNMRT cells comprisefive subsets: (1)
a subsetmarkedbyhigh expression levels of theβ constant TCR region
and Cd8a (yet absent in expression ofCd8b), labeled as CD8 T cells; (2)
a subsetmarkedbyhigh expression levels of theβ constant TCR region
andCd4, labeled as CD4T cells; (3) a subsetmarked byhigh expression
levels of the γ and δ constant TCR regions, the Gzma, Nkg7, and Xcl1
cytotoxicity-related genes, the Il2rb IL-2 induced proliferation gene,
the Klra1 and Klrd1 cytotoxicity inhibitory genes, and of Cd8a (yet
absent in expression of Cd8b), labeled as cytotoxic γδT cells; (4) a
subset marked by high expression levels of the γ and δ constant TCR
regions and absence of expression of Cd8a, Cd8b, Gzma, Nkg7, Xcl1,
Il2rb, Klra1, and Klrd1, labeled as non-cytotoxic γδT cells; and (5) a
subset largely lacking expression of the genes encoding the CD3 uni-
versal T-cell marker (Cd3d, Cd3e, Cd3g, and Cd247), highly expressing
the Rorc transcription factor, which acts as a master regulator for dif-
ferentiation and function of group 3 innate lymphoid cells (ILCs)47, and
markers of groups 1 and 2 ILCs, hence labeled as ILCs
(Fig. 1D, F and S1D, S1F; Data S1 and S2).

In mice, during thymic development a large proportion of
γδT cells commit to lineages, which upon stimulation, produce either
IFN-γ or IL-17, where the former provides cytotoxic, anti-cancer, and
anti-infection functions and the latter anti-infection functions but also
tumor-favoring functions, such as angiogenesis and immune
suppression48.WhileNkg7,Gzma, and Il2rb, whichmarkNMRcytotoxic
γδT cells, are known to mark mouse IFN-γ producing γδT cells48,49,
other mouse IFN-γ producing γδT-cell markers, such as Cd27 andNk1.1
(Klrb1c)48, are either not expressed in the NMR data; not uniquely
highly expressed by NMR cytotoxic γδT cells; or have no NMR ortho-
logs. This situation is similar for genes typically marking mouse IL-17
producing γδT cells, such as Il17a, Cd44, Scart1, and Scart248 and
applies to non-TCR receptors of stress-ligands inmouse γδT cells, such
as Nkg2d (Klrk1) and Toll-like receptors (TLRs)50. Hence, these data do
not allow determining with high certainty whether the NMR splenic
cytotoxic and non-cytotoxic γδT cells are homologous to the mouse
tissue-resident IFN-γ and IL-17 producing γδT cells.

In the equivalent mouse dataset, splenic T cells were found to
comprise eight subsets: (1) naive CD8 T cells; (2) naive CD4 T cells; (3)
memory CD8 T cells; (4) memory CD4 T cells; (5) memory CD8 T cells
with high expression levels of the Gzmk cytotoxic granule gene, pre-
viously reported as a hallmark of aged tissues51; (6) NKT cells; (7)
regulatory T cells (Tregs); and (8) γδT cells (Fig. 1E, F and S1E, S1A;
Data S1 and S3).

Themajor age-related changes observed in theNMRdataset are in
ILCs, detected in only two of four old-age samples and in none of the
adult-age samples. In addition, cytotoxic γδT cells are overrepresented
among the old-age samples whereas CD8 T cells are underrepresented
among the old-age samples (both multiple-hypotheses-adjusted
p << 0.05, Methods; Fig. S1D). In the mouse dataset, all three mem-
ory T-cell subsets (CD8, CD4, and the Gzmk-high CD8) are pre-
dominantly found in the old-age samples, whereas the two naive T-cell
subsets (CD8 and CD4) are, as expected41, overrepresented among the
adult-age samples (multiple-hypotheses-adjusted p <<0.05, Methods;
Fig. S1E).
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NMR γδT cells are observed in bone marrow
Toobtain a viewofT cells at their tissueof birth,we additionally scRNA-
seq profiled bone marrows of adult NMRs and mice (n = 2 females and
n = 2males, in each species; Fig. S1G, S1H, respectively; Data S4 and S5,
respectively). Two-dimensional uniform manifold approximation and
projection (UMAP) embeddings revealed that both species show a
similar composition of hematopoietic cell types and differentiation

trajectories (Fig. 1G, H, respectively). Focusing specifically on T cells,
three subsets were identified in NMRs: (1) pre-T cells; (2) immature
T cells; and (3) cells marked by high expression levels of the γ and δ
constant TCR regions, Cd8a (yet absence of Cd8b expression), and the
Gzma and Nkg7 cytotoxicity-related genes, labeled as γδT cells
(Fig. 1G, I and S1I; Data S1). Since mature γδT cells might circulate
through and/or home to bone marrow52, we cannot reliably determine
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whether the cytotoxic and non-cytotoxic γδT-cell subsets observed in
the NMR spleen already emerge in bone marrow. In mice we also
observed a subset of pre and immature -T cells, aswell as a subset ofNK
cells (Fig. 1G, I and S1I; Data S1). The absence of NK cells in NMR bone
marrow, in contrast to their notable proportion in mouse bone mar-
row, further supports our premise of their evolutionary loss39. Inter-
estingly, both species have strikingly similar proportions of the three
T-cell subsets from their respective total bone-marrow cell popula-
tions. In NMRs, 2.7% ±0.2 are pre-T cells, 0.5% ±0.05 are immature
T cells, and 0.35% ±0.01 are γδT cells whereas in mice, 2.2% ±0.05 are
pre-T cells, 0.3% ±0.005 are immature T cells, and 0.65% ±0.01 are NK
cells (sample means ± standard error) (Fig. 1G, H). Moreover, in our
previous splenocyte scRNA-seq data39, the proportions of the NMR
γδT- and mouse NK -cell subsets are also similar (NMR: 2.3% ±0.1;
mouse: 2.6% ±0.1) as are the proportions of the αβT-cell subsets in
both species (NMR: 26% ± 1.3; mouse: 25% ± 1.5) (Fig. 1A, B, respec-
tively). Hence, NMRs maintain a circulating γδT-cell population
equivalent in proportion to the mouse circulating NK-cell population.

NMR γδT cells are observed in the thymus
Since T cells mature in the thymus, to further track the NMR T-cell
development, we generated thymic scRNA-seq data. Ref. 40. first
reported that NMRs have a unique cervical lymph node where their
T cells mature into foreign-antigen-reactive cells, that in their sub-
sequent publication was referred to as an ectopic cervical thymus,
present in addition to their thoracic thymus43. We located and scRNA-
seq profiled both thymic tissues from adult NMRs (n = 4 females and
n = 3 males) and found that each of the thymocyte subsets is roughly
uniformly represented in all thoracic and cervical thymic samples
(Figs. 1J and S1J; Data S6), suggesting that both thymic tissues are
transcriptionally (and hence likely functionally) identical, although the
cervical tissue is significantly larger (p <0.05) in size, weight, and
number of cells (Fig. S1M–S1O). We additionally scRNA-seq profiled
adultmouse thymuses (n = 2 females and n = 2males; Fig. S1K; Data S7)
and observed similar thymocyte subsets (Fig. 1J, K, respectively).
UMAPs revealed that thymocytes of both species exhibit an equivalent
maturation trajectory, each with a cell subset comprising less than 1%,
located at the end of the maturation trajectory, with high expression
levels of the γ and δ constant TCR regions, hence labeled as γδT cells
(Fig. 1J–L and S1L; Data S1).Whereas themouse γδT cells showhigh and
ubiquitous expression levels of Itgae, one of the two genes encoding
the CD103 integrin that homes mouse and human γδT cells to their
epithelial target tissues upon their egress of the thymus53, this is not
the case in the NMR γδT cells (Fig. 1L, M and S1L; Data S1), supporting
our findings of a large proportion of NMR splenic γδT cells.

The NMR Cd8b gene has been evolving under relaxed purifying
selection
Among all Cd8a-expressing NMR T-cell subsets from all examined
immune tissues, only the thymic immature double positive subset
shows noticeable expression levels of Cd8b, similar to that of Cd8a in

these cells (Figs. 1L and S1L). This is in stark contrast to all mouse CD8
T-cell subsets, where expression levels and breadth of Cd8b matches
that ofCd8a in all examined tissues (Figs. 1C, F, I, L and S1C, S1F, S1I, S1L).
Based on this interspecies difference, we hypothesized that the mole-
cular functions of the NMR Cd8b diverged from that of mice and
humans, during evolution. We therefore contrasted the intensity of
purifying selection operating on theCd8b coding region in the genomes
of NMR and a closely related hystricomorph, the Damaraland mole-rat
(DMR; Fukomys damarensis), with that in genomes of representatives
from the murine clade (Fig. S1P) (Methods; Data S8−S15). This revealed
that in contrast to other T-cell co-receptor genes, namelyCd8a, the four
CD3 encoding genes, and Cd4 to a lesser extent, Cd8b of NMR and DMR
has evolved under significantly relaxed purifying selective pressure
relative to that of murine rodents (multiple-hypotheses-adjusted
p<0.05; Fig. S1Q), suggesting it has lost someof itsmolecular functions.

The NMR TCR loci encode a small diversity of α and β variable
regions and a large diversity of γ and δ variable regions
NMRs have lost their NK cells andmaintain a small diversity (in terms
of number of genomically-encoded genes) of NK-cell receptor and
MHC-I genes, suggesting they have evolved under relaxed intracel-
lular pathogenic selective pressure39. Since CD8 αβT cells have
evolved to detect cells infected with intracellular pathogens through
αβTCR-recognition of MHC-I-presented peptides3–5, we hypothe-
sized that there would be a smaller diversity of α and β variable TCR
regions in the NMR genome relative to that in other mammalian
genomes. Some diversity of NMR α and β variable TCR regions
should nevertheless be maintained by selection imposed by extra-
cellular pathogens as their MHC-II-presented peptides are recog-
nized byαβTCRs expressed on CD4T cells54,55. Although the selective
pressures under which γδT cells have evolved are less well-char-
acterized, the surprisingly large proportion of these cells in NMR
spleens motivated us to additionally examine the genomic diversity
of γ and δ variable TCR regions.

To address these questions, we constructed a broad mammalian
phyletic pattern of the number of genomically-encoded variable and
constant regions for each of the four TCR loci (Figs. 2A and S2A, S2B;
Data S16; Methods). This revealed that the diversities of α and β vari-
able TCR regions in the NMR genome are ~1.75- and ~1.5 -fold smaller
than the mean among all rodent and all mammalian genomes,
respectively (Fig. 2A; Data S16). This pattern is conserved in all
hystricomorph genomes, except in the guinea pig genome, which like
other rodent genomes, shows an opposite pattern (Fig. 2A; Data S16).
This is consistent with the phyletic pattern of NK-cell receptor and
MHC-I genes39, likely reflecting the fact that the guinea pig has retained
its NK cells (termed Foa-Kurloff cells56,57) due to selective pressure
imposed by intracellular pathogens. In contrast, the diversity of α and
β variable TCR regions in the mouse genome is roughly similar to the
meanamongall rodent genomes and is ~1.1-fold larger than that among
all mammalian genomes, a pattern conserved in all other murine
genomes (Fig. 2A, the Mymomorpha suborder; Data S16).

Fig. 1 | ScRNA-seq of circulating T-cell subsets reveals that the NMR has a large
population of γδT cells. UMAP projections and corresponding gene-by-cell
expression-level heatmaps of splenocytes from: (A) four adult NMRs (n = 2 of each
sex), (B) four adult mice (n = 2 of each sex), and (C) the corresponding heatmap of
the NK and T -cell subsets of the two species; T cells from spleens of (D) three adult
and four old NMRs (all males), (E) four adult and four old mice (all males), and (F)
the corresponding heatmap of the two species; Bone-marrow cells from (G) four
adult NMRs (n = 2 of each sex), (H) four adult mice (n = 2 of each sex), and (I) the
corresponding heatmap of the T-cell subsets of the two species; T cells from (J)
cervical and thoracic thymuses of seven adultNMRs (n = 4 females and n = 3males),
(K) thoracic thymuses of four adult mice (n = 2 of each sex), and (L) the corre-
sponding heatmap of the two species. UMAPs provide a two-dimensional overview
of all cells, color-coding them by their annotated cell-type subset. Stacked bar

charts to the sides of the UMAPs show the proportions of cells assigned to each
T-cell subset out of the total immune-cell population in that tissue, as well as the
absolute number of cells in each subset. Heatmaps show normalized expression
levels of selected marker genes (marker genes relevant for identification of the
various T-cell subsets are labeled in red) in each cell, where cells are faceted by their
cell subset. Maturation trajectory arrows in (K, L) are knowledge based.M A violin
plot of the distributions of the normalized Itgae expression levels in each of the
NMRandmouse thymocyte subsets, highlighting the high expression levels unique
to the mouse γδT-cell subset. Abbreviations: APC Antigen Presenting Cell, Cyt
Cytotoxic, DC Dendritic Cell, DP Double Positive, ILC Innate Lymphoid Cell, NK
Natural Killer, NKT Natural Killer T, Non-cyt Non-cytotoxic, RBC Red Blood Cell, SP
Single Positive, Treg Regulatory T. Source data are provided as Source data file.
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We found that the levels of diversity of the γ and δ variable TCR
regions in mammalian genomes are positively associated with the
levels of diversity of the α and β variable TCR regions (Fig. S2C), which
may depend on the phylogenetic relationship between the repre-
sented genomes due to their shared evolutionary histories. We
therefore fitted a phylogenetic least squares model (Methods) to the
levels of diversity of the γ and δ variable TCR regions as a function of

the levels of diversity of theα and β variable TCR regions (Fig. S2C) and
used thefit residuals for expressing the levels of diversity of the γ andδ
variable TCR regions. This showed that the number of NMR γ and δ
variable TCR regions is ~18-fold larger than expected from its number
of α and β variable TCR regions (Fig. S2B). Similar to the diversity of α
and β variable TCR regions, all other hystricomorph genomes also
showpositive residuals, except for the guinea pig genome that shows a
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negative residual (Fig. 2B). In contrast, all murine genomes, except for
the blind mole-rat (Nannospalax galili) genome, show negative resi-
duals (Fig. 2B, the Mymomorpha suborder).

NMRs harbor a dominant γδT-cell clonotype and the αβ
clonotypic diversity of their CD8 T cells is smaller than that
of their CD4 T cells
The phylogenetic analysis of the diversity of genomically-encoded
variable TCR regions predicts that the clonotypic diversity of NMR
αβTcells is smaller thanofmouseαβTcells and viceversa for γδTcells.
This prediction, however, is not sufficiently informative about the
clonotypic diversities of the various subsets in each T-cell lineage. For
example, while αβTCRs are expressed on both CD8 and CD4 T-cells,
these two subsets evolved under different evolutionary selective
pressures and as a result might have considerably different clonotypic
diversities. The various γδT-cell subsets, both those known inmouse48,
and theNMRonesdiscoveredhere,might pose ananalogous situation.
Therefore, we devised a hybridization-capture approach for sequen-
cing single-cell-barcoded full-length TCR transcripts and applied it to
our NMR and mouse single-splenic-T-cell samples to profile their clo-
notypic diversity and how these change with age (Fig. S3A; Methods).

Our hybridization-capture approach sequenced over 99% of the
cells (means across all T-cell subsets: NMR: 99.75%±0.05; mouse:
99.76% ±0.08). However, in order to use cells in which both TCR
chains were sequenced and mapped, we retained an average of
~39% ± 3.3 of the NMR T cells (~49% ± 2.3 of αβ subsets and ~38% ± 3.4
of the γδ subsets) and an average of ~36% ± 3.5 of the mouse T cells
(~36% ± 3.5 of αβ subsets and ~50% ± 10 of the γδT subset), (NMR:
Fig. S3B–S3D; Data S17; mouse: Fig. S3E–S3G; Data S18; Methods).
Subsequently, we defined a T-cell clonotype by the constant, variable,
diversity, and joining TCR gene IDs, and the amino-acid sequence of
the complementary determining region (CDR) 3 of both of its TCR
chains.

The NMR γδT-cell clonotypes show a publicity by which ~1.4% of
them are observed in more than a single sample (Fig. 3A, B; Data S17),
yet the cytotoxic γδT-cell clonotypes are strikinglymore public (5.32%)
than the non-cytotoxic γδT-cell clonotypes (0.4%). Intriguingly, the
cytotoxic γδT-cell subset harbors a highly dominant and public clo-
notype (Cγ4, Vγ4-2, Jγ5-3, CDR3: TYWDSNYAKK; Vδ1-4, Dδ3, Jδ2, CDR3:
ALWELRTGGITAQLV), represented in all samples in the range of 15.6%
−65.1% of their cells (mean 34% ± 6.7), where several other nearly
identical clonotypes, contribute even more to this dominance and
publicity: 26.8%−81.4% of the cells across samples (mean 34% ± 7.8)
(clustered together in the top left of Fig. 3B). Phylogenetic recon-
struction of themammalianVγTCR regions (Methods) places theNMR
Vγ4-2 togetherwith themouseVγ1, Vγ2, Vγ3, andVγ4 (Fig. S3H).Mouse
γδT cells utilizing Vγ1 and Vγ4 are known to arise relatively late in fetal
development and even during neonatal and adult life58. They report-
edly express a diverse set of TCRs due to pairing with several Vδ TCR
regions, are heterogeneous in their capacity to produce various
effector cytokines, and are found in many tissues such as peripheral
lymphoid organs, blood, lung, liver, and dermis58. In contrast, mouse
γδT cells utilizing Vγ5 and Vγ6 arise earlier in fetal development and

populate various epithelial tissues58. The NMR Vγ4-2 is also placed
together with the conserved primate group-2 Vγ9, Vγ10, and Vγ11,
which in humans are also utilized by the major circulating γδT
subsets59. By contrast, NMR αβT-cell clonotypes are much more pri-
vate and no dominant clonotypes were observed (Fig. 3A, C; Data S17).

In order to compare clonotypic diversities, both between old- and
adult -age samples of the same T-cell subset, as well as between dif-
ferent T-cell subsets of the same age both within and between species,
we used three metrics: (1) Hill number, which quantifies clonotypic
richness regardless of abundance; (2) Shannon entropy, which weighs
clonotypes by their abundances and therefore quantifies clonotypic
evenness; and (3) Gini-Simpson index, which givesmore weight to rare
clonotypes60. Among all NMR T-cell subsets, only the cytotoxic γδT-
cell clonotypes show a significantly increased evenness and rarity with
age (multiple-hypotheses-adjusted p <0.05; Fig. 3D, E). The cytotoxic
γδT-cell clonotypes also show significantly smaller evenness and rarity
relative to the non-cytotoxic γδT-cell clonotypes in old-age samples
(multiple-hypotheses-adjusted p <0.05; Fig. 3D, E), as expected given
the dominant cytotoxic γδT-cell clonotypes (Fig. 3D). Interestingly,
CD8 αβT-cell clonotypes are significantly less diverse, by all metrics,
than CD4 αβT-cell clonotypes in the old-age samples (multiple-
hypotheses-adjusted p <0.05; Fig. 3D, E).

The mouse γδT-cell clonotypes show a slightly higher publicity
than either of the NMR γδT-cell clonotypes (4%), and also harbor a
dominant and public clonotype (Cγ1, Vγ6, Jγ1, CDR3: ACWDSSGFHKV;
Vδ4, Dδ2, Jδ2, CDR3: GSDIGGSSWDTRQMF), represented in five of the
eight samples in the range of 43.8%−100% of their cells (mean
64% ± 9.8) (Fig. 3F, G; Data S18), albeit the sample sizes in the two
species are drastically different (~4500 clonotyped NMR γδT cells
versus 47 clonotyped mouse γδT cells). Compared to NMR αβT-cell
clonotypes,mouseαβT-cell clonotypes show a slightly larger publicity
(~1.3% and 0.9% of the memory CD4 and CD8 αβT-cell clonotypes are
observed in more than a single sample, respectively) (Fig. 3F, G;
Data S18). Both the naive CD8 and CD4 T-cell clonotypes show an age
decline in diversity (multiple-hypotheses-adjusted p <0.15 for all
diversitymetrics), as expected51,61,62, whereas Treg clonotypes showthe
opposite trend (Fig. 3H, J). The only striking T-cell-subset differences in
mouse clonotypic richness and evenness are observed between the
old-ageGzmk-highmemory CD8 T cells relative tomemory CD8 T cells
(multiple-hypotheses-adjusted p <0.09; Fig. 3H, J), as expected51.

Comparing the clonotypic diversities between the two species,
NMR non-cytotoxic γδT-cell clonotypes show a larger diversity than
that of mouse γδT-cell clonotypes, significantly so for evenness and
rareness among the old-age samples (multiple-hypotheses-adjusted
p <0.05; Fig. 3K). In stark contrast, no interspecies diversity differ-
ences were evident between NMR cytotoxic γδT-cell clonotypes and
mouse γδT-cell clonotypes (Fig. 3E). Among the αβT-cell subsets, the
NMR CD8 T-cell clonotypes show a smaller diversity than that of the
mouse naïve CD8 T-cell clonotypes, and more strongly so among the
adult-age samples (multiple-hypotheses-adjusted p < 0.13; Fig. 3K). By
contrast, NMR CD4 T-cell clonotypes are generally more diverse than
mouse naïve and memory CD4 T-cell clonotypes, only among the old-
age samples (multiple-hypotheses-adjusted p <0.29; Fig. 3K).

Fig. 2 | Mammalian phyletic pattern of TCR regions reveals large diversity of γ
and δ, relative to α and β, variable regions in the NMR genome. A Phyletic
pattern showing the numbers of genomically-encoded constant and variable
regions (annotated protein-coding and pseudo -genes, and unannotated putative
pseudogenes) in each of the four TCR loci in 67 mammalian genomes (Methods),
revealing the small numbers of α and β variable TCR regions yet large numbers of γ
and δ variable TCR regions in the NMR genome relative to other mammalian
genomes. The phylogeny is color-coded by orders, where the Rodentia order is
further color-codedby suborder; (B) horizontalbar-chart showing the residuals of a
phylogenetic least squares model fitted to the sum of γ and δ variable TCR regions

as a function of the sum of α and β variable TCR regions, accounting for the
topology in the phylogeny (Methods). Negative and positive residuals are color-
coded in shades of blue and red, respectively, according to their magnitude, which
conveys the deviation of the sum of γ and δ variable TCR regions from what is
expected based on the sum of α and β variable TCR regions. The NMR genome, as
well as those of the other hystricomorphs except for the guinea pig, and several
other clades show a larger diversity of γ and δ variable TCR regions than expected
from the diversity of their α and β variable TCR regions. Abbreviations: C Constant,
V Variable. Source data are provided as Source data file.
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NMR CD8 and CD4 αβT-cell clonotypic diversities, MHC-I and
MHC-II gene-family sizes, and thymic involution
Although NMRs and mice maintain roughly equal proportions of
T cells among their splenic immune-cell populations (NMRs 26% and
mice 27.2%, Fig. 1A, B, respectively), their CD8 and CD4 T-cell subsets
show disparate proportions. In adult NMRs, CD8 T cells comprise 7%
whereas their CD4-T-cell population is ~2.5-fold larger (17%), becoming
even more CD4-biased in old NMRs (2.3% CD8 and 11% CD4)
(Figs. 1D and S1D). By contrast, naive CD8 and naive CD4 T cells
comprise 13% and 12% in adult mice, respectively, and in oldmice both
naive and memory CD8 and CD4 T cells are at similar proportions (4%
for both naive subsets and 6% for both memory subsets) (Fig. 1E). This
is consistent with the smaller clonotypic diversity of CD8 versus CD4
T cells in NMR spleens (Fig. 3D, E), in contrast to the equivalent clo-
notypic diversities of CD8 andCD4T cells inmouse spleens (Fig. 3H, J).
It is also consistent with the smaller clonotypic diversity in NMR
splenic CD8 T cells compared to those of mouse splenic CD8 T cells

(Fig. 3K). Assuming that the NMR versusmouse differential CD8 versus
CD4 T-cell proportions and clonotypic diversities reflect differential
intracellular versus extracellular pathogenic selective pressures under
which these species have evolved, we anticipate a corresponding dif-
ferentialMHC-I versusMHC-II gene-family sizes in their genomes, since
the twoMHC gene families are thought to have expanded in response
to these two pathogenic selective pressures, respectively13,63. To
address this hypothesis, we generated a mammalian phyletic pattern
of theMHC-I andMHC-II gene families (Methods). Consistent with our
previous findings39 and with the phyletic pattern of α and β variable
TCR regions (Fig. 2A, B), the size of theMHC-I gene family in the NMR
genome is ~11- and ~10 -fold smaller than itsmeanamong all rodent and
mammalian genomes, respectively (Fig. 4A; Data S19). By contrast, the
size of the NMR MHC-II gene family is only ~1.6- and ~2 -fold smaller
than itsmean among all rodent andmammalian genomes, respectively
(Fig. 4A; Data S19). Accordingly, the ratio of the NMR MHC-I/MHC-II
gene-family sizes is ~7.8- and ~5.3 -fold smaller than its mean among all
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Fig. 3 | Single-cell TCR sequencing reveals surprising features of clonotypic
diversity in NMR T-cell subsets. A UMAP projections of splenic T cells from three
adult and four old NMRs. Each point represents a cell, the topUMAP is color-coded
by T-cell subset and the bottomUMAP is color-coded by clonotype abundance; (B)
NMR γδT-cell and (C) αβT-cell clonotype network graphs. Pies correspond to clo-
notype clusters, their slices correspond to samples, their lines color-codedbyT-cell
subsets, and their areas correspond to clonotype abundances (only showing clo-
notypes with three cells or more). The dominant γδT-cell clonotype is shown in
Fig. 3C; (D) NMR T-cell clonotypic Hill, Shannon, and Gini-Simpson diversities
(Methods). Each point is a sample. Larger diversities are observed in the non-
cytotoxic relative to the cytotoxic γδT-cell subsets and in the CD4 relative to the
CD8 αβT-cell subsets; (E) multiple-hypotheses-adjusted −log10(p) contrasting clo-
notypicdiversities (mcpHill function;Methods), betweenold and adult samplesper
each T-cell subset (left), and between different T-cell subsets per each age group
(right), showing the larger diversities in the non-cytotoxic relative to the cytotoxic

γδT-cell subsets and in the CD4 relative to the CD8 αβT-cell subsets; (F−J) are
analogous to Fig. 3A–E for the splenic T cells from four adult and four old mice.
Unlike in NMRs, mouse CD4 and CD8 αβT-cell clonotypic diversities are not sig-
nificantly different; however, theGzmk-high CD8 T-cell subset is enriched with rare
clonotypes, likely on account of the old-agememory CD8 T-cell subset, fromwhich
it is thought to be derived; (K) multiple-hypotheses-adjusted -log10(p) contrasting
the clonotypic diversities (mcpHill function; Methods), between NMR and mouse
γδ (left) and αβ (right) T-cell subsets per each age group, showing the larger clo-
notypic diversity in the NMR non-cytotoxic γδT-cell subset relative to that of the
mouse γδT-cell subset, the smaller clonotypic diversity in the NMR CD8 αβT-cell
subset relative to that of themouse CD8αβT-cell subsets, and the larger clonotypic
diversity in the old NMR CD4 αβT-cell subset relative to that of the oldmouse CD4
αβT-cell subsets. Abbreviations: A Adult, CT Clonotype, Cyt Cytotoxic, NKTNatural
Killer T, Non-cyt Non-cytotoxic, O Old, P’ multiple-hypotheses-adjusted P value.
Source data are provided as Source data file.
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Fig. 4 |Mammalianphyletic pattern ofMHCgene families reveals a smallMHC-I,
relative to MHC-II, gene-family size in the NMR genome. A Phyletic pattern
showing the numbers of genomically-encoded MHC-I and MHC-II annotated
protein-coding and pseudo -genes, and unannotated putative pseudogenes, in 67
mammaliangenomes (Methods), revealing the small numbers ofMHC-Igenes in the
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rodent and mammalian genomes, respectively (Fig. 4B). Similar to α
and β variable TCR regions (Fig. 2B), this pattern is conserved among
the hystricomorph genomes, except for the guinea pig genome, which
similar to all other rodent genomes, shows the opposite pat-
tern (Fig. 4B).

Since CD8αβT-cell clonotypic diversity is smaller in NMRs relative
to mice, especially so among adult-age samples (Fig. 3K), we hypo-
thesized that early in life NMRs require less thymic tissue than mice.
Although NMRs have a large proportion of splenic γδT cells, the clo-
notypic diversity of the NMR γδT cells is dramatically smaller than that
of their αβT cells (Fig. 3D), and thus might have a negligible impact on
NMR thymic mass. Given that thymic involution, which manifests in a
sharpdecrease inmass and changes in tissue architecture, is a hallmark
of the age trajectory in mice64, we compared NMR and mouse thymic
weights and histology at physiologically equivalent early life, adult-
hood, and middle age time points (mean NMR n = 3.2 females and
n = 2.4 males per time point combining the thoracic and cervical tis-
sues in each animal; meanmouse n = 4.5 females and n = 4.7males per
time point; Data S20). The observed age trajectory of the mouse thy-
mic weight confirms previous reports65–68: the thymus increases in
weight up to one month of age and sharply diminishes thereafter
despite the increase in body weight. As such, by early adulthood (at six
months of age) the mouse thymus is less than half of its maximal
weight (Fig. 5A–C). The NMR thymus follows a relatively similar age
trajectory to that of themouse thymus with two key differences: (1) its
peak weight occurs at the early-life age of two months but is roughly
half themaximal weight of themouse thymus, both in absolute weight
and relative to body weight; (2) its major weight decline, which occurs
between two and twelve months, is not as steep as that of the mouse
thymus, which occurs at roughly equivalent physiological ages,
between one and twomonths (Fig. 5A–C). Histologically, young adult-
age mouse and NMR thymuses do not yet show microscopic signs
indicative of involution (at six and sixty months, respectively; Fig. 5D).
However, such signs, including less corticomedullary distinction, a
reduction in cortical tissue (comprised predominantly of lympho-
cytes), irregular margins with increased peripheral fat and adipocyte
infiltration, and formation of cysts69,70, are visible in both species from
early middle-age onwards (as of 12 and 120 months, respectively;
Fig. 5D). In NMRs, these microscopic signs indicative of involution are
apparent in both the thoracic and cervical thymic tissues (Fig. S5). In
other words, both species show microscopic signs of involution pro-
gression at physiologically equivalent ages. By counting thymocytes,
Emmrich et al. reported that the NMR thymus increases in cellularity
between 30 and 150months with no concomitant reduction in thymic
mass43. Given our observations, obtained using the gold-standard
histology approach over a wider age range, it is difficult to see how
NMR thymic involution only starts after 150 months of age.

Discussion
Our investigation of NMR T cells has uncovered several intriguing
findings. NMRs have a splenic population of γδT cells at roughly the
same proportion as that of mouse splenic NK cells, comprising two
subsets. One of these γδT-cell subsets expresses an inhibited cytotoxic
molecular profile homologous to that of mouse splenic NK cells, sug-
gesting the two cell types are functionally similar yet are likely to differ
in their activation mechanisms. Mouse γδT cells mostly reside in epi-
thelial tissues17,71 and the thymus is the only tissue where we observe
these cells to express high levels of Itgae, whose encoded CD103
integrin binds to epithelial cadherin53. If these Itgae-high mouse
γδT cells are indeed homed to epithelial tissues as they exit the
thymus53, the absence of equivalent Itgae expression patterns in NMR
γδT cells in the thymus may explain their large proportion in the cir-
culation and hence spleen. Compared to other mammalian genomes,
the NMR genome, like that of other hystricomorphs, with the excep-
tion of the guinea pig, has a considerably larger diversity of γ and δ

variable TCR regions relative to that expected from its small diversity
of α and β variable TCR regions. This may have evolved to generate a
large clonotypic diversity of circulating γδT cells capable of recog-
nizing a diverse spectrum of non-MHC-I ligands. In contrast, the small
genomic diversity of NMR α and β variable TCR regions, the smaller
proportion of the CD8 relative to the CD4 αβT-cell subset in the NMR
spleen along with a corresponding bias in the clonotypic diversities of
these NMR αβT-cell subsets, and the smaller size of the NMR MHC-I
relative to its MHC-II gene family, corroborate the loss of NMR NK
cells39. These observations support the hypothesis that this occurred
as a result of relaxed selective pressure imposed by intracellular
pathogens39. Although intracellular pathogens are thought to be one
of the most dominant selective forces in mammalian evolution72, the
subterranean ecological niche that NMRs occupy in isolated colonies,
is likely an evolutionary dead end for mammalian intracellular patho-
gens due to its limiting effect on spread of infections. This contrasts
with bats, which occupy a much more exposed and richer ecological
niche and harbor more virus species than any other mammal73. Thus,
the selective pressure operating on NMRs might have shifted from
defense against intracellular pathogens towards elimination of early
malignancies, maintenance of tissue homeostasis, and perhaps
defense against various extracellular pathogens, to which their
immune system has responded by utilizing γδT cells. It is tempting to
speculate that the dominant and public clonotype among the cyto-
toxic NMR γδT cells recognizes frequently encountered ligands that
signal a threat of strong selective magnitude, which therefore must be
rapidly eliminated.

The absence of Cd8b expression in NMR Cd8a-expressing T cells
outside the thymus and the relaxed purifying selective pressure
operating on theNMRCd8b gene, suggest that the cytotoxic activity of
NMR Cd8a-expressing T cells is regulated differently than of human
and mouse CD8 αβT cells74–77. In these latter species the CD8α-CD8β
heterodimer interacts with the monomorphic part of MHC-I thereby
facilitating tight αβTCR-MHC-I binding and subsequent CD8-T-cell
activation. Conversely, human and mouse CD8αα homodimers
decrease TCR sensitivity toMHC-I78, but can also facilitate cytotoxic-T-
cell activation by interacting with non-classical MHC-I ligands79.
Human and mouse CD8αα T cells populate the gut as γδT cells80 and
the skin as αβT cells, and even comprise tumor-infiltrating innate-like
T cells with high cytotoxicpotential (ILTCK) asαβTcells81. It remains to
be established whether these human andmouse CD8αα T-cell subsets
are homologs of the NMR Cd8a-expressing T-cell subsets.

Compared to the mouse genome the NMR genome has a larger
diversity of γ and δ variable TCR regions. However, the absolute
diversity of α and β variable TCR regions in the mouse genome is
substantially larger than in the NMR genome, likely reflective of the
stronger intracellular pathogenic selective pressure that mice have
evolved under. This translates to a much larger potential diversity of
mouse thymocyte clonotypes, which need to pass the strict selection
imposed by thymic epithelial cells to ensure they are released into the
circulation as functional and self-tolerant T cells, a process especially
critical in early postnatal life when the various immune system com-
partments need to be populated42,82. Based on the much larger
potential diversity of mouse thymocyte clonotypes, the strikingly
disparate early-life weights and subsequent rates of decline between
the age trajectories of mouse and NMR thymuses become intuitive.
One of the theories explaining thymic involution suggests that once a
T-cell clonotypic repertoire is established the metabolically costly
process of thymopoiesis is turned off in order to divert energy to other
physiological processes42,83. This reasoning can explain the thymus age
trajectories we observed in this study: the larger perinatal thymuses of
mice are required for generating their larger initial ‘pulse’ of T cells,
with their overall larger clonotypic diversity and a subsequent steeper
decline, yet by their equivalent middle age, thymuses of both species
show signs of involution.
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Notwithstanding our findings our study has several limitations.
Although the evidence for relaxed selective pressure imposed by
intracellular pathogens underwhichNMRshave evolved is strong, data
regarding NMR susceptibility to such insults is limited84,85 and chal-
lenging to generate because it is unclear which intracellular pathogens
might be able to infect NMR cells. In addition, despite the surprisingly
large fraction of splenic γδT cells in NMRs, and especially the subset

with the inhibited cytotoxic transcriptional profile that resembles
mouse splenic NK cells, we do not offer direct evidence regarding their
effector functions. Hence whether and how these splenic γδT cells
contribute to any of the unique NMR features, namely cancer resis-
tance, remains to be investigated. A possible follow-up study to that
end would involve single-cell and TCR profiling combined with spatial
transcriptomics in NMR tumor microenvironments to test for the
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presence of expanded NMR γδT-cell clonotypes which engage in
cancer-cell killing. This obviously depends on the ability to transform
NMR cells and have them form tumors in an NMR host yet might be
feasible as the former has already been demonstrated35. It should be
noted that a large proportion of circulating γδT cells and large geno-
micdiversities of γ andδ variableTCR regions is not unique toNMRs as
these are also found in ruminants and equines86–88. Whether γδT cells
in these species relate to cancer resistance, maintenance of home-
ostasis, and lifespan is also unknown and compounded by the possi-
bility that these traits may have been affected by the domestication of
these farm animals89,90. In humans, however, larger proportions of
γδT cells in a diverse set of tumor types were found to be significantly
associated with a favorable cancer prognosis90. Finally, phyletic pat-
terns, considerably utilized in this work, are sensitive to the integrity
levels of the genome assemblies. Although we limited our data to
genomes assembled at the scaffold and chromosome levels and
benchmarked our approach using the well assembled and annotated
human and mouse genomes, the gene-family sizes we obtained are
likely only an approximation of their true magnitudes.

The hybridization-capture approach we introduced in this work
allows studying clonotypic dynamics of any T-cell lineage, in any spe-
cies, unlike the 10× V(D)J kit, which is limited to human and mouse
αβT cells. Moreover, our approach is relevant to any target genes of
interest and can be applied to previously generated and currently
stored 3′-barcoded scRNA-seq samples, which should be abundant as
only ~25%of themare required for short-read sequencing. Althoughwe
obtained paired αβ and γδTCR sequences in only a ~1/3 of the profiled
αβ and γδTcells, likelydue to suboptimal capture-probe hybridization
efficiencies and insufficient sequencing depth, using many more cells
by defining γδ and αβ T-cell clonotypes by their γ and β chains,
respectively, does not change our results and conclusions.

In summary, our work provides a detailed view of the T-cell sub-
sets of the NMR immune system in terms of their composition, gen-
ome evolution, development, and clonotypic diversity. This adds
another steppingstone in the path towards deciphering the blueprint
of the remarkable longevity and cancer resistance of the NMR and
might provide invaluable contributions for developing immune-based
therapeutics.

Methods
Ethics statement
All animal use and experiments were approved by the Buck Institute
institutional animal care and use committee (IACUC) protocol number
A10173.

Animals
In this study, we used comparative histomorphology, comparative
genomics, and single-cell transcriptomics to study the immune system
of the NMR in comparison with that of themouse. The complete list of
animals can be found in Data S21. In brief, the animals used for scRNA-
seq in this study comprised:
1. Sixteen C57BL/6 mice, purchased from Jackson Laboratories (Bar

Harbor,ME), JAX stock #000664, (n = 4 females and n = 8males at

2 months of age, referred to as “adult” throughout the text and
figures; n = 4 males at 24 months of age, referred to as “old”
throughout the text and figures; all virgins), housed within the
Laboratory Animal Resources (LAR) vivarium, which is part of the
AAALAC-accredited animal care and use program at the Calico
Life Sciences LLC, at a room temperature range of 14.5−26 °Cwith
a humidity range of 30−70%, maintained on a 12-house dark-light
cycle, receiving food and water ad libitum, and used in
experiments only after two weeks of vivarium housing.

2. Nineteen NMRs (n = 6 females and n = 9 males 2 years of age,
referred to as “adult” throughout the text and figures; n = 4males
at 26−28 years of age, referred to as “old” throughout the text and
figures; all non-breeding virgins), from 20 different captive
colonies housed within Calico Life Sciences colonies at the Buck
Institute, Novato, CA, at a room temperature range of 28−31 °C
with a humidity range of 40−50%, maintained on a 12-house dark-
light cycle, receiving food ad libitum yet no supplemented water
since the water content of their fresh fruit and vegetable diet is
sufficient for maintaining appropriate hydration, in accordance
with standard colony management.

Figure 1A–C and S1A-S1C are based on data from our previous
study39. The animals used for the thymus age trajectory study
(Fig. 5A–C) comprised 55 C57BL/6 mice, purchased from Jackson
Laboratories (Bar Harbor, ME), JAX stock #000664, (n = 27 females
and n = 28 males, both sexes at an age range of 1–24 months) and 28
NMRs (n = 16 females and n = 12 males, both sexes at an age range of
1–120 months), housed in the same conditions as detailed above.
Thymuses from all mice at 2, 6, and 12 months of age, as well as from
thirteenmice at 30months of age (n = 8 females and n = 5males), and
thymuses of all NMRs at 24, 60, and 120 months of age, as well as
from four NMRs at 6 months of age (n = 2 females and n = 2 males)
and two NMRs at 312 months of age (both males), were used for
histological examination (Figs. 5D and S5) The age rangewe chose for
comparing adult versus old animals was targeted to allow use of
healthy individuals that were physiologically age-matched between
the species (approximately 5–10% and 70–80% of observed max-
imum life spans in adult and old animals, respectively). The age range
for the thymus age trajectory study was determined based on pre-
vious studies in mice91,92.

Organ collection and processing
Organ collections for sequencing purposes were performed on all
animals between 8AM and 10AM. Animals were euthanized using
isoflurane followed by thoracotomy and cardiac exsanguination.
Details regarding the dissociation of each of the organs to single-cell
suspensions, for the purpose of constructing 10× GEM single-cell
libraries are detailed below. For the thymus age trajectory study, we
characterized the thymuses of the NMRs andmice by their weight and
histology (for NMRs both thoracic and cervical tissues were included
for each animal). Thymuses were immersion fixed in neutral buffered
formalin, and were routinely processed into paraffin-embedded
blocks, section to 5 µm and stained with hematoxylin and eosin.

Fig. 5 | Age trajectories ofmouse and NMR thymuses reveal that NMRs develop
significantly smaller thymuses early in life but follow a similar trajectory to
mouse thymuses, accumulating similar microscopic signs of involution. Age
trajectories of (A) thymic weights (mg), (B) corresponding body weights (g), and
(C) thymic weights (mg) scaled to body weights (g) from physiologically-
equivalently-aged mice (mean n per time point = 9.16; left) and NMRs (mean n per
time point = 5.6; right), where in each NMR the thymus weight is the sum of its
thoracic and cervical thymic tissueweights. The trend lines in eachof thefigures are
values obtained from fitting the polynomial regression: ∼age+ sex to the y-axis
values, emphasizing the much smaller NMR thymic mass compared to the mouse

thymic mass in early life; (D) images of hematoxylin and eosin (H&E) stained sec-
tions from the thoracic thymuses of physiologically-equivalently-aged young adult
(left), middle-aged (center), and old (right) mouse and NMR. Microscopic signs
indicative of involution are not apparent in young adults of both species, yet from
middle-age onwards thymuses of both species show these signs, including less
corticomedullary distinction, a reduction in cortical tissue, irregular margins with
increased peripheral fat and adipocyte (fat) infiltration (arrows), and cysts.
Abbreviations: C Cortex, Cy Cyst, M Medulla. Source data are provided as Source
data file.
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Histological assessment of these thymic sections was performed by a
certified veterinary pathologist.

Spleen dissociation
Spleens were removed by dissection, transferred to a sterile petri dish
containing PBS with 5% FBS, and minced using surgical blades. Spleen
fragments were then ground through 100μmand 40μmcell strainers,
pelleted, and resuspended in the ACK lysis buffer as described in the
thymus tissue collection section. Cell density and viability were
determined using Countness II Cell Counter. Subsequently, spleno-
cytes were resuspended at 1 million cells per ml of 0.04% BSA/PBS. In
order to sort out the splenocyte T-cell subsets for constructing 10×
GEM single-cell libraries, splenocytes were resuspended at 1 million
cells per ml of FACS buffer (PBS with 1% FBS and 5mM EDTA). Subse-
quently, mouse splenocytes were pre-incubated with 1μg mouse Fc
blocker (BD 553141) per 1million cells/100μl FACS buffer for 5min and
incubated with an anti-mouse CD3e (clone 17A2, eFlour450, 2μg/ml)
and an anti-mouse CD11b (M1/70, Alexa 488, 2μg/ml) on ice for
40min. NMR splenocytes were pre-incubated with the isotype control
antibodies (100μg/ml mIgG1 & 50μg/ml rat IgG1) per 1 million cells/
100μl FACS buffer for 10min. Following that, cells were washed and
resuspended at 2 million cells per 1ml FACS buffer and incubated on
ice for 40min with an anti-NMR CD3e (Abbvie-clone-5, Alexa 647, 1:10,
hence ~10μg/ml) and the anti-mouse CD11b (M1/70, Alexa 488, R-PE,
5μg/ml),whichcross reactswith theNMRCD11b93. The anti-NMRCD3e
antibody was validated in-house using a series of dilutions of the
fluorescence-conjugated antibody and measuring the resulting per-
centage of CD11b-/CD3e+ sorted cells. For bothmouse and NMR, after
incubation, cells were washed and resuspended in the FACS buffer
containing Sytox Blue Live/Dead dye for cell sorting using FACS BD
Aria. Viable, single cells were gated, and the CD11b-/CD3e+ cells were
collected for the generation of 10× GEM single-T-cell libraries.

Bone-marrow dissociation
Femurs and tibias of the euthanized animals were dissected using
sterile surgical techniques and transferred to a petri dish containing
the basal medium (Minimal Essential Medium supplemented with 10%
FBS and 1X antibiotics antimycotic solution (Gibco)). The dorsal and
distal ends of femurs and tibias were cut with scissors to reveal the
bone marrow cavity, and the bone marrow cells were flushed out with
the basal medium using needles/syringes. Cells were then passed
through 100μm and 40μm cell strainers, washed, pelleted, and
resuspended in 5mL of ACK lysis buffer (Lonza BP10-548E, Basel,
Switzerland) for 5min at room temperature. After determining their
density and viability, cells were resuspended at 1 million cells perml of
0.04% BSA/PBS prior to generating the 10× GEM single-cell libraries.

Thymus dissociation
The thoracic and cervical thymic tissues were dissected using sterile
surgical techniques and subsequently transferred to a petri dish con-
taining PBS. Fat tissue surrounding the thymic parenchyma was care-
fully removed with microscissors and tissue forceps under a surgical
microscope. Excess liquid/PBS was carefully removed with Kimwipes
before weight measurement. For histological analysis, the tissues were
fixed in 10% formalin and following standard tissue processing pro-
cedures. For the purpose of creating single-cell suspensions, thymic
tissues were ground through 100μm and 40μm cell strainers (Falcon
352360 and 352340, Corning, NY) with a syringe plunger. Cells were
subsequentlypelleted (300 g, 3min, 4 °C), resuspended in 5mLofACK
lysis buffer (Lonza BP10-548E, Basel, Switzerland) for 5min at room
temperature, and washed and resuspended with PBS with 0.04% BSA.
Cell density and viability were determined using the Countness II Cell
Counter (Thermofisher AMQAF1000). The cells were pelleted and
resuspended at 1 million cells per ml of 0.04% BSA/PBS prior gen-
erating the 10× GEM single-cell libraries.

ScRNA-seq data and analysis
Single cells were captured in droplet emulsion using the Chromium
Controller (10× Genomics, Pleasanton, CA), and GEM single-cell
libraries were constructed according to the 10× Genomics protocol
using the Chromium Single-Cell 30 Gel Bead and Library 3’ V3 kit (10×
Genomics, Pleasanton, CA). In brief, cell suspensions were diluted in
PBS with 0.04% BSA to a final concentration of 1 × 106 cells/mL (1000
cells per μL). Cells were loaded in each channel with a target output of
10,000 cells per sample. All reactions were performed in a C1000
Touch Thermal Cycler (Bio-Rad Laboratories, Hercules, CA) with a 96
Deep Well Reaction Module. Twelve cycles were used for cDNA
amplification and sample index PCR. Amplified cDNAandfinal libraries
were evaluated using a Bioanalyzer 2100 (Agilent Technologies, Santa
Clara, CA) with a high sensitivity chip.

ScRNA-seq fastq files were demultiplexed to their respective
barcodes using the 10×GenomicsCell Ranger “mkfastq”utility. Unique
molecular identifier (UMI) counts were generated for each barcode
using the Cell Ranger “count” utility. Themm10 reference genome and
themouse Gencode vM25 primary assembly annotation were used for
mapping the mouse reads94. The HetGla2.0 reference genome along
with the combined RefSeq95 GCF_000247695.1 and Ensembl96 101
release Heterocephalus_glaber_female 1.0 annotations (see Phyletic
patterns section below for further details on how genome annotations
were combined), were used formapping theNMR reads. Similar to our
previous work39, for each sample, barcodes that were not likely to
represent captured cells were filtered out by detecting the first local
minimum above 2 in a distribution of log10(#UMIs). Similarly, for each
sample, genes that were too sparsely captured across barcodes were
filtered out by detecting the first local minimum above 3 in a dis-
tribution of log10(#barcodes). Finally, barcodes capturingmore than a
single cell (multiplets) were sought as local modes in the distributions
of log10(#genes) and log10(#UMIs), whose x-axis maxima are more
than 1.5-fold larger than the x-axis location of the global maximum of
the respective distribution and include less than5%of the total number
of barcodes. In other words, barcodes that, based on the number of
genes or UMIs they captured, appeared inflated with respect to all
other barcodes, were regarded as multiplets and thus filtered out.

To identify transcriptionally-defined cell clusters, we followed the
same steps as performed in our previous work39. Samples from each
species were first concatenated, UMIs were then scaled to the read
depth of their respective barcodes, then multiplied by a scaling factor
of 1 × 104, added a constant of 1, and finally natural log transformed.
Following that, genes with high expression dispersion were obtained
using the “FindVariableGenes” function implemented in the R97 Seurat
v2.3.3 package98. Subsequently, principal components analysis (PCA)
was performed on these variable-gene-by-cell–scaled UMI matrices
using the R97 rsvd package99 in order to reduce the gene dimension,
retaining the 50 PCs explaining the largest amount of variation. We
then used Seurat’s methodology98 to build a shared nearest neighbor
(SNN) graph of these cell-embedding data, first generating a k-nearest
neighbor (kNN) graph using k =min(750, #cells-1) and a Jaccard dis-
tance cutoff of 1/15. The SNN graph was then used as input to the
Louvain algorithm, implemented in the ModularityOptimizer
software100. We searched the 0.05–1.225 range of the resolution para-
meter implemented in this software, for the value maximizing the
mean unifiability isolability clusteringmetric. This process was initially
doneon all cells in our data and subsequently repeated for each cluster
individually, in an iterative manner in which convergence was defined
as not being able to break down a cluster into sub-clusters.

In order to assign cell-subset identities to the transcriptionally
defined clusters, we used gene markers which we derived for each
cluster both computationally, using the R97 singleCellHaystack
package101 applied to the variable-gene-by-cell–scaled UMI matrix, as
well as manually, using genes which are known to mark mouse
immune-cell subsets (cell barcode to cell-type subset maps for NMR
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and mouse, respectively: spleen: Data S2 and S3; bone marrow:
Data S4 and S5; thymus: Data S6 and S7).

In the thymus dataset, in addition to T cells, thymic APCs were
captured and sequenced yet for the purpose of focusing on T cells
were omitted from Fig. 1J–L and S1J–S1L. Maturation trajectories of
NMRandmouse thymocytes (Fig. 1J, K, respectively) were drawnbased
on biological knowledge since neither the R97 Slingshot package102 nor
the Python103 Scanpy104 diffMap101,105 and PAGA105 methods produced
trajectories that fit this well-established biological knowledge as it is
laid out in the UMAP embedding space.

Estimating effects on cell-type proportions
In order to estimate the effect of age on cell-type proportions in the
spleen T-cell datasets, we fitted the mblogit multinomial logit random
effects model, implemented in the R97 mclogit package106, to the cell-
type labels, expressing age as a fixed effect and sample (animal) as a
random effect (i.e., cell-type ~ age + 1|sample). We created an artificial
baseline cell-type category which is the mean across all ages and
samples, hence estimating the age effect on cell-type count relative to
the mean cell-type count per each age and sample.

Phyletic patterns
In order to obtain counts of theα,β, γ, andδ constant and variableTCR
regions, and of theMHC-I andMHC-II gene families, across a large and
representative sample of mammalian genomes, we applied the fol-
lowing procedure:

Merging Ensembl and RefSeq genome assemblies and annotation.
We first downloaded the genome assemblies and annotations of 67
mammalian species from the Ensembl database96, release 101, except
for mouse and human, for which we used the vM25 and v35 primary
assembly Gencode annotations, respectively94,95 (Data S22). We
noticed that some well-established immune-cell marker genes are
absent from the NMR Ensembl annotation, such as the constant
regions of the β and γ TCR loci yet are present in the RefSeq95

GCF_000247695.1 annotation. Moreover, the Ensembl and RefSeq
genome assemblies do not have a perfect one-to-one mapping
between their respective scaffolds, and therefore it is possible that
coordinates of genes annotated by only one of these databases might
not exist in the genome assemblyof the other database, and vice versa.
In addition, in the construction of the phyletic patterns we include hits
of putative pseudogenes, which are not annotated by either database
(seemore details below) yet may reside in scaffolds only annotated by
one of the databases. Due to these challenges, wemerged the Ensembl
and Refseq genome assemblies and annotations for each of the
67 mammalian genomes. To achieve this while minimizing introduc-
tion of assembly and annotation redundancies, for each of the
67 mammalian species, we downloaded the <species_name>.<gen-
ome_assembly_name>.<ensembl_release>.dna.top.level.fa.gz genome
sequence file, the <species_name>.<genome_assembly_name>.
<ensembl_release>.gtf.gz genome annotation file, and the <spe-
cies_name>.<genome_assembly_name>.<ensembl_release>.entrez.
tsv.gz and <species_name>.<genome_assembly_name>.<ensembl_
release>.refseq.tsv.gz files mapping between Ensembl and RefSeq
genes, and their corresponding RefSeq <RefSeq_assembly_accession>_
<genome_assembly_name>_genomic.fna genome sequence file, the
<RefSeq_assembly_accession>_<genome_assembly_name>_genomic.
gtf genome annotation file, as well as the RefSeq <RefSeq_assem-
bly_accession>_<genome_assembly_name>_assembly_report.txt file
that maps between the genome scaffold names of the two databases.
Following that, we eliminated from the RefSeq genome annotation file
all genes present in the Ensembl-to-RefSeqmapping files, and from the
RefSeq genome sequence file all scaffolds with a one-to-one mapping
in the Ensembl assembly. If subsequent to these filtering steps genes
and/or scaffolds remained in the RefSeq genome annotation and

sequencefiles theywere augmented to the corresponding Ensembl set
of genome annotation and sequence files. Coordinates of augmented
genes located on scaffolds with an Ensembl mapping were converted
to the coordinate system of the latter database. Finally, for each spe-
cies, we created a set of amino-acid and RNA (cDNA and non-coding
RNA) sequences files that encompass the merged annotations
(Data S22).

Detecting annotated protein-coding and pseudo -genes, and
putative unannotated pseudogenes. Immune gene families, such as
those encoding the α and β variable TCR regions and their MHC-I and
MHC-II ligands, have been subject to strong pathogenic selective
pressures and are therefore characterized by having evolved under
high rates of gene birth and death13,107,108. In order to construct a phy-
letic pattern that represents the evolutionary histories of these gene
families we sought to detect both their annotated protein-coding and
pseudo -genes (hence extant and recently extinct genes) and unan-
notated putative pseudogenes (anciently extinct). To this end, we used
the following reciprocal BLAST approach. Each annotated constant
and variable regionof the four TCR loci, aswell as theMHC-IandMHC-II
genes, encodes one or more characteristic conserved protein
domains, annotated by the NCBI Conserved Domains Database
(CDD)109 (Data S23). We thus first used the translated BLAST nucleo-
tides (tBLASTn) tool110 to search a translated genome for hits of a given
conserved domain using its position specific scoring matrix (PSSM) as
query and retaining the top tenhits, and subsequently used the reverse
position-specific BLAST (rpsBLAST) tool111 with all three open reading
frame translations of these PSSM top ten hits as queries against the
entire CDD, eventually retaining only those genomic regions which hit
the conserved domain we initiated the search with. For the variable
TCR regions we benchmarked this approach using the mouse and
human genomeannotations. Only in the humangenome this approach
found three unannotated Vδ domain hits, which translates to potential
false positive rates of 0% and 2.3%, for themouse andhumangenomes,
respectively (Fig. S2A, B for the mouse and human genomes, respec-
tively; Data S16 for hits in all genomes). The false negative rates across
all TCR loci for the mouse and human genomes (annotated variable
TCR regions that our approach did not find) were 6.75% and 9.1%,
respectively, where the vast majority of them are annotated pseudo-
genes (Fig. S2A, B for the mouse and human genomes, respectively;
Data S16 for hits in all genomes).

The situation for the MHC genes is more complicated. First,
whereas each of the variable TCR regions has only a single unique
conserved domain, annotatedMHC genes are more diverse and hence
harbor many more conserved domains: 20 for MHC-I (classical and
non-classical) and 15 forMHC-II (fromwhichwe filtered out theDMand
DO MHC-II genes because they function intracellularly) (Data S19).
Some of these conserved domains are also harbored by MHC-related
gene families we wished to exclude, such as theMHC-I-likeMR1,MICC,
and CD1 gene families.

In order to minimize the number of false positives that can arise
due to this issue we first clustered the proteome and transcriptome
sequences of the 67 genomes to groups of orthologs (orthogroups)
using OrthoFinder112 (Data S24). Any conserved domain hit which lies
within an annotated region of the genome that encodes a gene that is
not a member of any of theMHC orthogroups was thus filtered out. In
addition, any conserved domain hit which lies within an unannotated
region of the genomewas filtered out if that region lies in proximity to
genomic regions on which non-MHC orthogroups are encoded
(Data S25 lists the intervals that were eliminated). In other words, our
conservedMHCdomain hits canbe classified as: (1) annotated: hits that
are encoded on annotated regions of the genomewhere the annotated
genes are members of MHC orthogroups; (2) syntenic unannotated:
hits that are encoded on an unannotated region of the genome, which
is syntenic to a genomic region on which MHC orthogroups are
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encoded; and (3) non-syntenic unannotated: hits that are encoded on
an unannotated region of the genome which is non-syntenic to any
MHC orthogroup. In the well annotated human and mouse genomes,
97.6% and 89.8% of the conserved MHC-I domain hits are annotated,
respectively, and the remaining respective 2.4% and 10.2% are syntenic
unannotated (Fig. S4A; Data S19), which can thus be regarded as upper
bounds to our false positive rate. With respect to false negatives, with
the exception of human HLA-S (Enembl accession:
ENSG00000225851), all annotated MHC-I genes in the human and
mouse genomes were detected by our approach (Data S19). ForMHC-
II, in the human genome 83.3% of the conserved domain hits are
annotated, 11.1% are syntenic unannotated, and the remaining 5.6% are
non-syntenic unannotated. In themouse genome, 94.4%of the hits are
annotated and the remaining 5.6% are non-syntenic unannotated
(Fig. S4D;Data S19). Thus, again these unannotatedproportions canbe
regarded as upper bounds to our false positive rates. With respect to
false negatives, all annotated humans andmouseMHC-IIwere detected
by our approach (Data S19). Finally, across all 67 genomes, 72.6% of the
conserved MHC-I domain hits are annotated, 20.1% are syntenic
unannotated, and the remaining 7.3% are non-syntenic unannotated,
whereas for MHC-II these proportions are 78.8%, 17.6%, and 6.6%,
respectively (Fig. S4A, S4D, for MHC-I and MHC-II, respectively;
Data S19).

A second issue with detecting MHC genes based on conserved
domain hits is thatMHC conserved domain hits is thatMHC conserved
domains are often encoded across multiple exons, in contrast to
conserved domains in TCR variable regions. Therefore, counting each
conservedMHCdomain hit as anMHCgenewould artificially inflate the
size of the gene family. However, the distribution of distances between
pairs of genomically adjacent conserved MHC domain hits, encoding
the same gene, is distinguishably different from that of pairs of gen-
omically adjacent conserved MHC domain hits encoding different
genes (Fig. S4B, S4C showing the distributions for the annotated
human and mouse MHC-I genes; Fig. S4E, S4F showing the distribu-
tions for the annotated human and mouse MHC-II genes). Thus, for
each genome we used the annotated MHC genes to search for a
genomic distance cutoff that maximizes the F-measure, which is the
harmonic mean of precision and recall ( precision�recall

precision+ recall), of correctly
classifying the distances between pairs of genomically adjacent con-
served MHC domain hits as either intragenic (i.e., the pair of adjacent
conserved MHC domain hits encodes the same gene) and intergenic
(i.e., the pair of adjacent conservedMHCdomainhits encodesdifferent
genes) (Fig. S4B, S4C showing the cutoffs for humanandmouseMHC-I;
Fig. S4E, S4F showing the cutoffs for human and mouseMHC-II). With
such a cutoff per each search genome, we grouped conserved MHC
domain hits to genes, whereby per each scaffold with conserved
domain hits, we started from themost upstreamhit, and assigned each
hit to the gene towhich its upstreamhitwas assigned to if the genomic
distance separating them was below the selected genomic distance
cutoff. Otherwise, that hit was assigned to a ‘new’ MHC gene.

Phylogenetic least squares
In the phyletic pattern of the α and β, and γ and δ variable TCR regions
(Fig. 2A), we noticed that the sum of γ and δ variable TCR regions is
positively associated with that of the α and β variable TCR regions.
Expressing γ and δ TCR diversities as the sum of the γ and δ variable
TCR regions scaled to the sum of the α and β variable TCR regions
(Fig. S2D) would ignore the dependency of this ratio between different
species in the phylogeny due to their shared evolutionary histories,
and hence might misrepresent the distribution of this ratio across the
phylogeny. To account for this issue, we fit a phylogenetic least
squares model to the sum of the γ and δ variable TCR regions as a
function of the sumof theα and β variable TCR regions, using the “gls”
function implemented in the R97 nlme package113, using the ML
method, where for the correlation argument we used the

“corBrownian” function implemented in the R97,114 ape package114. The
species tree used in this phylogenetic least squares, and presented in
Figs. 2A and 4A, was obtained from http://vertlife.org/data/
mammals115. The R2 value for the fit was obtained using the “nagelk-
erke” function implemented in the R97 rcompanion package116. Since
the association between the number of MHC-I genes versus the num-
ber ofMHC-II genes was not strong (R2 = 0.25; Fig. S4G), we expressed
theMHC-I diversity as the size of its gene family scaled to that ofMHC-
II (Fig. 4A).

Quantifying relaxation in the intensity of purifying selective
pressure operating on the Cd8b gene in hystricomorphs
Given the lack of Cd8b expression in any of the NMR CD8 T-cell sub-
sets, in any scRNA-seq profiled tissue except for in the thymus, we
wondered if it is related to a change in the molecular function of the
gene, as a result of a different selective regime it evolvedunder. To test
this hypothesis, we selected the one-to-one Cd8b orthologous protein
isoforms of NMR and DMR, as closely related representatives of the
hystricomorph clade, to be contrastedwith thoseofmouse, rat, prairie
vole, deer mouse, chinese hamster, and blind mole-rat, as repre-
sentatives of the murine clade, and the human sequence as an out-
group (Fig. S1M; Data S15). One-to-one protein isoform orthology was
obtained during the process of clustering the proteome and tran-
scriptome sequences of the 67 mammalian genomes we used (see
Phyletic patterns section for further details), where one-to-one
orthologs were defined as best reciprocal BLAST hits. We then
aligned these sequences usingMAFFT version 7.490117,118 (Data S8), and
subsequently used the corresponding multiple codon-sequence
alignment as input to the RELAX tool of the HyPhy suite of codon
models118, specifying the hystricomorph clade as “test” and themurine
clade as “reference”. The output of RELAX is the estimated Κ para-
meter, which quantifies the magnitude of relaxation in purifying
selection operating on the foreground clade relative to the back-
ground clade. In order to compare the estimated Κ values of Cd8bwith
that of other closely related T-cell receptor genes, we repeated this
procedure for Cd8a, Cd4, and the four CD3 subunit genes: Cd3d, Cd3e,
Cd3g, and Cd247 (Fig. S1M; Data S15 for the selected representative
sequence IDs and Data S9–S14 for their respective multiple coding-
sequence alignments). The phylogenetic tree used in this analysis
(Fig. S1P), was obtained by pruning the phylogenetic tree of the 67
mammalian species (see Phylogenetic least squares for details).

TCR-scRNA-seq data and analysis
Hybridization-capture and TCR single-cell long-range sequencing.
In order to estimate T-cell clonotypic diversity, full-length TCR
sequencing (atminimumcovering the variable, joining, anddiversity in
the case of the β and δ loci, TCR regions) is required at the single-cell
level. Moreover, in order to associate full-length sequenced TCRs with
the T-cell subsets they originated from, this single-cell TCR sequencing
approach needs to be applied to the same cells whose whole tran-
scriptomes are scRNA-seq profiled (see refs. 60,119 for recent reviews
on TCR sequencing approaches). The commercial 10× V(D)J kit satis-
fies these requirements, yet is limited to human and mouse samples,
only targeting their α and β TCRs, and additionally requires use of the
10× 5′ scRNA-seq kit120. These requirements make this commercial kit
irrelevant for our problem because of its inability to sequence NMR
samples and γ and δ TCRs, and since our scRNA-seq spleen data
(Fig. 1D–F and S1D–S1F) have alreadybeen generatedwith the standard
10× 3’ kits (Methods). Tu et al. have devised an approach that is able to
utilize 3′-barcoded scRNA-seq samples for TCR sequencing yet is reli-
ant on primers targeting variable TCR regions121, for which our NMR
genomic information might not be sufficiently reliable. We thus bor-
rowed from that approach and devised a hybridization-capture
approach by adding biotinylated lockdown probes targeting all con-
stant regions of the four TCR loci (Fig. S3A), whose NMR and mouse
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genomic sequences are well annotated, to 75% excess 10× Chromium
NextGen Single-Cell 3’V3 3′-barcoded scRNA-seq cDNA libraries of our
sorted splenic T-cell data, which were not used for constructing
libraries for short-read sequencing. Hence, we obtained unfragmented
cDNA enriched for TCRs by using the xGen Hybridization andWash kit
with the customized Discovery Pools from Integrated DNA Technolo-
gies, Inc (IDT, Coralville, Iowa). Lockdown probes (Fig. S3A) were
designed by IDT, based on the mouse and NMR TCR constant region
sequences (Data S26). For each constant region, probes were gener-
ated against the coding sequence using 2× tiling. Probes were QC’ed
using the IDT internal BLAST tool against the mouse and NMR gen-
omes (used in the phyletic patterns analyses; Data S26). Custom
blocking probes were designed and synthesized by IDT using their
proprietary xGen Blocking oligo strategy. For each sample, 500 ng of
amplified cDNA was mixed with the blocking probes and xGen human
Cot DNA, and the mixtures were dried down in a SpeedVac system
(ThermoFisher). The hybridization and washing steps were performed
according to the protocol from IDT. The hybridization and post-
capture amplification steps were performed in a C1000 Touch Ther-
mal Cycler (Bio-Rad Laboratories, Hercules, CA). Fourteen cycles were
used for post-capture PCR amplification, and the amplified cDNA was
evaluated using a Bioanalyzer 2100 (Agilent Technologies, Santa Clara,
CA) with a high sensitivity chip.

Amplified cDNA at >200ng per sample was used to generate
Pacific Biosciences (PB) SMRTcell libraries. Full-length PB sequencing
wasperformedon the PB Sequel II platform atHistogenetics (Ossining,
NY). Target library-depth was calculated based on the estimated dis-
tribution of TCR lengths (500–2500 bps), the average target number
of cells per sample (6000–10,000), the expression level in the scRNA-
seq data (95% of cells have less than 30 TCR transcripts), and the
estimated HiFi circular consensus sequences (CCS) per chip (2–2.5
million). We pooled four libraries per one SMRTcell and expected to
acquire 25–30 TCR reads per cell.

Processing of raw read data. For processing of the hybridization-
capture reads we followed several of the steps in the cDNA_Cupcake
workflow for IsoSeq single-cell analysis122. Namely, for each sample we
used the PB SMRT LINK V11 software123,124 to generate circular con-
sensus sequences (CCS), requiring a predicted accuracy≥Q20. Fol-
lowing that, we used the lima software124 for removing the 5’ and 3’
cDNAprimers from theCCSs of each sample, using the command: lima
--isoseq --dump-clips <sample_demultiplexed_CCS.bam> <primers.fa>,
where primers.fa is a fasta file with these sequences:

>5p
AAGCAGTGGTATCAACGCAGAGTACATGGG
>3p
AGATCGGAAGAGCGTCGTGTAG
We then detected UMIs and cell barcodes using the “tag” com-

mand implemented in the Iso-Seq3 software125, with the “--design
T-12U-16B” argument. Subsequently, we removed the polyA tails and
artificial concatemers using the “refine” command in the Iso-Seq3
software. Finally, we clustered the reads by the unique founder
molecules using the “dedup” command in the Iso-Seq3 software,
using the “--max-tag-mismatches 1 --max-tag-shift 1” arguments. We
then filtered out any of these deduplicated reads which correspond
to cells that we filtered out from our scRNA-seq data. Retained reads
were then mapped to their respective genomes (the same ones used
for the scRNA-seq data) using the minimap2 aligner126,127 with the “-t
30 -ax splice -uf --secondary=no” arguments. As our hybridization-
capture approach sequenced both the constant and variable, diver-
sity, and joining TCR regions (Fig. S3A), we required that each
demultiplexed CCS read, which wemapped to its respective genome,
intersected one of the constant TCR regions (Data S27). Any read that
did not meet that criterion was filtered out (Fig. S3B–D for NMR and
S3E–G for mouse).

Constructing a TCR IgBLAST database. In order to use the IgBLAST
tool127 for identifying the variable, joining, anddiversity composition in
our processed TCR reads we downloaded the mouse and NMR anno-
tated nucleotide sequences (F+ORF+all P) of these regions from the
Immunogenetics (IMGT) V-QUEST reference directory128, June 2022
release. We then used tBLASTn110,111 with each of the variable region
sequences as query against its respective species genome in order to
identify their genomic coordinates and test whether they encode their
respective TCR conserved protein domain by using rpsBLAST129 with
the three reading frame translations of a hit asqueries against theCDD.
Although not all these IMGT variable region sequences were found to
encode their respective conserved domain, we nevertheless retained
them in the IgBLAST database. On the other hand, in the mouse gen-
ome our phyletic patterns approach detected 21 and 2 α and δ unan-
notated variable TCR regions, respectively, where 18 of the α variable
TCR regions and both δ variable TCR regions were observed in our
TCR read data. In the NMRgenome, our phyletic patterns (see Phyletic
patterns section for more details) approach detected a single unan-
notated variable TCR region in each of the α, β, and γ TCR loci, where
the γ variable TCR region was also observed in our TCR read data (see
Data S28–S30 and S31–S33 for the respective variable, diversity, and
joining IgBLAST sequence databases, for the mouse and NMR,
respectively). Finally, we also downloaded the mouse germline aux-
iliary file from IMGT (mouse_gl.aux; Data S34) and created a similar file
for NMR (Data S35) in order for IgBLAST to include the CDR3 amino-
acid sequences in its hit results.

Assigning clonotypes to cells. Prior to using the reads retained after
step 2 as IgBLAST queries, we limited the reads to lengths of up to
700 bps in order to prevent IgBLAST from reporting junctions
between variable, diversity, and joining regions that are unrealistically
downstream only due to cases where the sequencing extended much
downstream to that region. We additionally required the constant
region to be included in a retained read. We subsequently used the
IgBLAST nucleotides (IgBLASTn) command providing the variable,
diversity, and joining databases, and germline auxiliary files created in
step 2, and the “-domain_system imgt -ig_seqtype TCR -show_transla-
tion -num_alignments_V 5 -num_alignments_D 5 -num_alignments_J 5”
arguments. Reads with an IgBLAST E-value support >0.001 for their
variable or joining TCR regions were filtered out because this implies
that they are not TCR transcripts and subsequently, reads labeled as
unproductive TCR due to a lack of an open reading frame were addi-
tionally filtered out. For the retained reads, we removed the allele
information from the hit accessions and subsequently collapsed hits
with identical accessions. For a small fraction of hits, IgBLASTmaps the
read to variable and joining accessions which are discordant with
respect to their TCR loci. Most of these cases are typically variable
regions that match equally well both to an α and δ variable regions, as
they are encoded on the same locus, and IgBLAST does not take into
account the TCR locus identities of the variable and joining regions it
assigns a hit to. We resolved these discordances using the TCR locus
identity of the constant region, which we obtained in step 1. Any read
with such a discordance, which was not a combination of the α and δ
TCR loci, was filtered out. We then extracted the constant region of
each read by removing the read sequence portion downstream to the
read start site of the variable region, as determined by IgBLAST. We
then followed refs. 130,131, who also used full-length TCR sequencing,
applied to immunoglobulin (Ig) and TCR repertoire of the rhesus
macaque, and used the CD-HIT software131, version 4.8.1, with the “-c
0.97 -G 0 -aL 0.95 -AL 100 -aS 0.99 -AS 30” arguments to cluster these
constant regions, separately for each of the TCR loci. This step did not
change the constant region assignments obtained from step 1. How-
ever, we also extended this approach to the variable, diversity, and
joining regions, on a TCR-locus cell-specific basis, in order to aid with
the clonotype assignment of each read. That is, in each sample, for
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each cell, we ran CD-HIT with the same arguments as above, for the
variable, diversity, and joining parts of the read sequences, separately
for each of the four TCR loci. In cases where a set of cell-specific reads,
originating from a specific rearranged TCR locus, spans a range of
lengths due to the variability in the TCR fragment extraction and
sequencing steps, IgBLAST might not report identical mapping infor-
mation for them. For example, a sufficiently long read might be map-
ped to Vβ6, Dβ2, and Jβ2-3, whereas IgBLASTmight assign uncertainty
in the joining region of a shorter read, which is expressed by a comma-
separated list of joining regions, such as: Jβ2-3, Jβ2-4. In such cases, CD-
HIT clusters such reads to the same cluster and hence the IgBLAST
uncertainty of the joining, diversity, and/or variable region identities
can be resolved using all reads in the CD-HIT cluster. In order to use
cells with both TCR chains, in addition to filtering out cells with no
sequenced constant region, low IgBLAST support for a TCR, and an
unproductive TCR, we additionally filtered any cell with either only a
single (orphan) TCR chain, nomapping of the diversity region in either
the β or δ TCR chain (for αβ and γδ T cells, respectively) (NMR:
Fig. S3B–D; Data S17; mouse: Fig. S3E–G; Data S18). We hypothesize
that high fractions of orphan-chained cells (Fig. S3D–G) likely stem
from a combination of low expression levels of the α and δ TCR chains
(relative to that of the γ and β TCR chains)132,133, lockdown probe effi-
ciency, and insufficient library and sequencing depths.

Obtaining clonotype network graphs. For the purpose of displaying
T-cell clonotypic diversity we used the Python103 Scirpy package134,135,
which is part of the Scverse single-cell omics computational
ecosystem135, as follows: distances between pairs of clonotypes were
computed based on their CDR3 amino-acid sequence alignment with a
cutoff score of 15, where the subsequent clonotype clusters were
obtained using both VJ and VDJ TCR arms, and the subsequent clo-
notype cluster network required a minimum of three cells per clono-
type cluster. Clonotype networks were plotted using the R97 ggplot2
package60,136.

Quantifying T-cell clonotypic diversity. For the purpose of quanti-
fying clonotypic diversity for eachT-cell subset in each sampleweused
three distinct metrics which capture different aspects of diversity: (1)
Hill number,which relates to thenumberofunique clonotypeswithout
accounting for their abundances and hence quantifies richness; (2)
Shannon entropy, which weighs clonotypes by their abundances and
hence quantifies evenness; and (3) Gini-Simpson index, which gives
more weight to rare clonotypes (reviewed in ref. 60) (Fig. 3H for NMR
and 3Q formouse). In order to contrast between clonotypic diversities,
either between old and adult samples of the same T-cell subset, or
between two different T-cell subsets either of the same age in each
species (Fig. 3E for NMR and 3J formouse), or between the two species
(Fig. 3K), we used the “mcpHill” function implemented in the R97 sim-
boot package137, using all default parameters (hence 5000 bootstrap
replications).

Reconstructing the Vγ phylogenetic tree. In order to shed light on
the dominant clonotypes in the NMR cytotoxic γδT-cell subset, we
reconstructed the phylogenetic tree of Vγ. To this end, we first
retrieved the genomic sequences of the Vγ TCR regions from all 67
mammalian genomes included in our phyletic pattern analysis (see
Phyletic patterns section for details). Following that, in order to obtain
a reliable multiple Vγ sequence alignment, we first translated these
sequences and filtered out any sequence for which we did not obtain
an open reading frame, and subsequently ran these amino-acid
sequences through the GUIDENCE2 tool117,138,139 using MAFFT version
7.490117,140 as the selected aligner (Data S36 is the resulting multiple
sequence alignment). Subsequently, for reconstructing the Vγ phylo-
geny using the GUIDENCE2 correctedmultiple Vγ sequence alignment
we used RAxML version 8.2.9140 with the “-p 1 -m PROTGAMMAWAG -T

5 -x 1 -# autoFC” arguments. For the purpose of presentation, we only
kept the human, mouse, and NMRVγ phylogenetic tree tips (Fig. S3H).
Although the bootstrap support values for the splits in the Vγ phylo-
genetic tree are not large, that tree is in strong agreement a tree pre-
sented in a recent review on the evolution of the TCRγ locus in
mammals141.

Statistics and reproducibility
Animal studies (sequencing and histology) were designed to have a
minimum of three samples (animals) per group (species, and where
relevant age and sex). Aside from the splenic T-cell sequencing study,
where we did not have enough old-age females and hence used only
males, all other studies conducted in this work included both sexes.
For the NMR samples, animals were selected from distinct colonies in
order to avoid colony-specific biases. Any statistical method used in
this work is referred to from its relevant part within the Methods
section. In all cases where multiple hypotheses statistical tests were
performed p-values were adjusted using the False Discovery Rate
method142.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The Raw fastq files, filtered (empty barcodes and sparse genes) gene-
by-barcode UMI count comma separated files, and aligned read BAM
files, generated in this study have been deposited in the Gene
Expression Omnibus (GEO), under accession code GSE214390. All
other data produced and used in this work are provided as Supple-
mentary Information. Source data are provided with this paper.

Code availability
Scripts to build data resources and reproduce figures are available at
https://zenodo.org/record/8384311.
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