
Article https://doi.org/10.1038/s41467-024-47240-5

Enabling robust blue circularly polarized
organic afterglow through self-confining
isolated chiral chromophore

Mingjian Zeng1, Weiguang Wang1, Shuman Zhang1, Zhisheng Gao1,
Yingmeng Yan1, Yitong Liu1, Yulong Qi1, Xin Yan1, Wei Zhao1, Xin Zhang1,
Ningning Guo1, Huanhuan Li1, Hui Li1, Gaozhan Xie1, Ye Tao 1,2 ,
Runfeng Chen 1 & Wei Huang 1,3

Creating circularly polarized organic afterglow system with elevated triplet
energy levels, suppressed non-radiative transitions, and effective chirality,
which are three critical prerequisites for achieving blue circularly polarized
afterglow, has posed a formidable challenge. Herein, a straightforward
approach is unveiled to attain blue circularly polarized afterglow materials by
covalently self-confining isolated chiral chromophore within polymer matrix.
The formation of robust hydrogen bonds within the polymer matrix confers a
distinctly isolated and stabilized molecular state of chiral chromophores,
endowing a blue emission band at 414 nm, lifetime of 3.0 s, and luminescent
dissymmetry factor of ~ 10−2. Utilizing the synergistic afterglow and chirality
energy transfer, full-color circularly polarized afterglow systems are endowed
by doping colorful fluorescent molecules into designed blue polymers,
empowering versatile applications. This work paves the way for the stream-
lined design of blue circularly polarized afterglow materials, expanding the
horizons of circularly polarized afterglow materials into various domains.

Blue circularly polarized luminescence (CPL), one of the three primary
colors, is of paramount importance for the application in full-color
stereoscopic displays, poly-chromatic data recording, and anti-
counterfeiting as well as biological imaging and optical
communications1–14. Varied organic blue CPL materials have been pre-
pared including fluorescence15–19, metal-complex20,21 and thermally acti-
vated delayed fluorescence (TADF)22,23 materials, which have been
applied in field-effect transistors24, organic light-emitting diodes25, and
information storage26. Recently, circularly polarized organic afterglow
(CPOA) has gained significant attention as a cutting-edge research field
due to its exceptional photophysical properties for promising applica-
tions in various domains27–33. To design and develop CPOA materials,
chiral chain engineering34, ionic co-crystal35, polymerization36–38, and

multicomponent host-guest strategies39–41 have been proposed.
Although remarkable achievements in enabling CPOA materials have
been witnessed, developing blue CPOA materials with exceptionally
prolonged lifetimes and effective chirality still remains a formidable
challenge, let alone attaining adjustable CPOA emission colors.

Three necessary prerequisites should be met to achieve CPOA
emission. Firstly, the introduction of effective chirality into luminescent
phosphor chromophores is essential42; secondly, it is imperative to
enhance triplet exciton generation by expediting intersystem crossing
(ISC) from singlet to triplet excited states43; lastly, the stabilization of the
triplet excitonsof phosphors through the constructionof stable and stiff
molecular environments for suppressing non-radiative decay pathways
isofparamountneed44. Proverbially, triplet excitons areeasily exhausted
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through various non-radiative transition channels including triplet-
triplet annihilation and luminescence quenching45. A possible approach
to enhance CPOA emission is through chiral crystal engineering, which
involves intermolecular locking and stacking to suppress non-radiative
transitions of triplet excitons46–49. However, this tactic that leans upon
ordered molecule packing may lead to the loss of triplet excitons
through triplet-triplet annihilation and result in a spectrum shift towards
longer wavelengths in the afterglow emission, making the development
of long-lived blue CPOA challenging. Notably, compared to the aggre-
gated state in molecular crystal50, the CPOA emission not only can
experience a blue-shift when a singlemolecule is appropriately confined
into a polymer matrix but also can empower the stabilization of triplet
excitons for an ultralong lifetime. Based on these insights, we have
proposed a strategy that involves the self-confinement of isolated chiral
chromophores within a rigid polymer matrix to minimize non-radiative
transitions for effectively boosting blue CPOA polymers (Fig. 1a). In this
work, blueCPOApolymerdemonstrates ultralong lifetimesof up to3.0 s
andmaximum luminescentdissymmetry factor |glum| valueof 1.02 × 10−2.
More excitingly,with the aidof synergistic afterglowandchirality energy
transfer (SACET), full-color CPOA polymers with color tunability are
achieved through doping commercially available water-soluble fluor-
escent materials, showing green, red, and even white CPOA emission
with a lifetime of up to 2.1 s (Fig. 1b). These results not only provide a
feasible way to develop blue CPOA materials but also signify the feasi-
bility of the SACET strategy to construct full-color CPL materials.

Results
Material design and synthesis
As a proof of concept, a series of CPOA polymers R/S-PAMCOOCzX
(Fig. 1a) were synthesized through radical copolymerization. In this

design, a pair of high triplet energy level enantiomers (Supplementary
Figs. 1–15), R/S−2-((2-(9H-carbazol-9-yl) propa-noyl)oxy)thyl acrylate-
with (R/S-VCOOCz)51,52, is chosen as the blue light-emitting monomer,
which simultaneously exhibits good phosphorescent properties and
chirality. Polyacrylamide (PAM), which has carbonyl and amino groups
is chosen as amatrix because it not only can effectively promote ISC to
generate the triplet excitons but also can form a strong hydrogen-
bonding network to confine the blue chromophore for inhibited the
non-radiative decay of triplet excitons.

Photophysical properties of blue CPOA polymer
To ensure the chiral purity, the chiral resolution for R-VCOOCz and S-
VCOOCz were performed. The enantiomeric excess values for R-
VCOOCz and S-VCOOCz are calculated to be 99.9% and 98.1% (Sup-
plementary Fig. 14). Moreover, the calculated circular dichroism (CD)
spectra (Supplementary Fig. 15 and Supplementary Data 1) of R-
VCOOCz and S-VCOOCz are consistent with the experimental spectra,
which confirm the absolute configuration of R-VCOOCz and S-
VCOOCz. Chiral polymers R/S-PAMCOOCzX (X = 1 ~ 4) were synthe-
sized through radical binary copolymerization using the self-designed
central chiral monomer of R/S-VCOOCz and acrylamide (AM) (Sup-
plementary Fig. 1) with molar feed ratio of 1:50 (R/S-PAMCOOCz1),
1:100 (R/S-PAMCOOCz2), 1:200 (R/S-PAMCOOCz3) and 1:400 (R/S-
PAMCOOCz4). The structure characterizations of the target chiral
monomer and polymers were confirmed by nuclear magnetic reso-
nance spectroscopy, powder X-ray diffraction, and gel permeation
chromatography (Supplementary Figs. 1–17 and Supplementary
Table 1).

R/S-PAMCOOCz2 shows carbazole-dominated absorption spectra
in both solution and amorphous thin film, which exhibits π-π*
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Fig. 1 | Construction of blue CPOA polymers for enabling full-color chiral
afterglow emission. a Design of blue CPOA copolymer through covalent self-
confinement of isolated chiral chromophores within a polymeric matrix.

b Synergistic afterglow and chirality energy transfer (SACET) for achieving full-color
CPOA polymers. cMolecular structures of PAMCOOCzX (X = 1 ~ 4), fluorescent dyes
fluorescein sodium (Fluc), rhodamine 123 (Rh123), and sulforodamine (SR101).
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absorption band at ~290nm and n-π* absorption band near 330 nm
(Supplementary Fig. 18), indicating that carbazole is the main
absorption and chromophore unit53. Upon 254 nm UV light excitation,
intense blue luminescence was recorded with emission peaks at
364 nm and lifetimes of 12.9 ns and 11.7 ns in R- and S-PAMCOOCz2
films (Fig. 2a, b and Supplementary Fig. 19). Excitingly, after the cease
of excitation light, the obvious ultralong-lived blue afterglow could be
observed by the naked eye under ambient conditions (Supplementary
Fig. 19), showcasing emission peaks at 414, 442, and 470nm (Fig. 2a)
with lifetimes of 3.0, 3.1, and 3.1 s as well as 3.0, 3.1, and 3.0 s for R- and
S-PAMCOOCz2 films (Fig. 2c and Supplementary Table 2), respectively.
The CD spectra show mirror curves, which are consistent with the
absorption spectra of R/S-PAMCOOCz2 films, suggesting the success-
ful introduction of chirality into the blue afterglow R/S-PAMCOOCz2
polymers (Supplementary Fig. 20). CPL spectra reveal a strong and
mirror signal (Fig. 2d, top panel) exhibiting main emission peaks at
364 nm with corresponding glum values of +6.4 × 10−3 and −7.8 × 10−3,
and shoulder emission peaks at 442 nmwith glum values of −1.02 × 10−2

and +6.8 × 10−3 for R- and S-PAMCOOCz2 films (Fig. 2d, bottom panel),
respectively. These results indicate the achievement of a blue CPOA
polymer.

To systematically investigate the effect ofmolar feed ratios on the
blue CPOA emission, the chiral polymers with different molar feed
ratios between R/S-VCOOCz and AM were constructed. Considering
the quite similar photophysical properties of R- and S-PAMCOOCz2
films, S-PAMCOOCzX polymers were selected as the model polymers
(Supplementary Figs. 21 and 22) to perform the investigations. The
afterglow intensities and CPL signals are firstly enhanced when the
molar feed ratios of S-VCOOCz/AM rise from 1: 50 to 1: 100; however,
with further increase the feed ratio of S-VCOOCz/AM from 1: 100 to 1:

200 and 1: 400, the afterglow intensities and CPL signals are gradually
decreased. These results suggest that the rigidity of R/S-PAMCOOCz2
film suppresses non-radiative decay of triplet excitons, thus enabling
elongated lifetime, improved afterglow intensity as well as enhanced
CPL properties. It should be noted that, with further increase AM
content, the hydrogen bonds in the corresponding polymeric films are
largely enhanced, thus achieving identical lifetimes and non-radiaitve
decay rates (Supplementary Table 3) in S-PAMCOOCzX (X = 1 ~ 4) films;
however, the concentration of chiral chromophores S-VCOOCz is
decreased, leading to the largely decreased afterglow intensities and
CPL signals. Considering the similar DC spectra (Supplementary
Fig. 22), the higher CPL intensities endow higher glum, thus empow-
ering the glum values in the order of S-PAMCOOCz2 > S-
PAMCOOCz3 > S-PAMCOOCz4 > S-PAMCOOCz1. Therefore, R- and S-
PAMCOOCz2 films render the best CPOA attributes and their PLQY
reached 28.6% and 24.7%, respectively (Supplementary Table 4).
Notably, the copolymerization is much more effective than the phy-
sically blended polymer system of PAM and R-VCOOCz in endowing
the CPOA emission (Supplementary Fig. 23).

In light of the excellent afterglow and CPL characters, R/S-
PAMCOOCz2 films were chosen as the model polymers to investigate
the blue CPOA properties. Time-resolved emission spectra (TRES)
confirm that R/S-PAMCOOCz2 films have strong and stable afterglow
luminescence (Fig. 2e and Supplementary Fig. 24). As shown in the
excitation-delayed PL emission spectra (Fig. 2f and Supplementary
Fig. 25), the blue CPOA could be effectively excited by UV light ranging
from 210–360nm with optimal excitation light at 299 nm. Interest-
ingly, the excitation delayed PL spectra of emission peaks at 414, 442
and 470 nm in R/S-PAMCOOCz2 films are quite similar, indicating that
these three emission peaks (414 nm, 442 nm, and 470 nm) originate
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from the same chromophore (Supplementary Fig. 26). To further
investigate the luminescent source of R/S-PAMCOOCz2 films, low-
temperature spectra of R/S-VCOOCz monomer, R/S-PAMCOOCz2, and
PAM were performed (Supplementary Fig. 27). The low-temperature
(77 K) delayed PL spectra of R/S-VCOOCz in dilute solution and poly-
methyl methacrylate doped film are consistent with these of the R/S-
PAMCOOCz2 films at 77 K and room temperature, demonstrating the
blue afterglow emission peaks at 414, 442, and 470nm and high triplet
energy level of 3.0 eV. Considering the combined results of the almost
identical photophysical properties between R/S-PAMCOOCz2 and R/S-
VCOOCz and a broader emission peak at ~420 nm of PAM films, the
luminescent origination of blue CPOA polymer should be the isolated
chiral R/S-VCOOCz chromophore. This self-confining isolated chro-
mophore of R/S-VCOOCz monomer is further confirmed by the wide-
angle X-ray scattering measurements (Supplementary Fig. 28), show-
ing almost identical patterns to that of PAM film. Only broader scat-
tering peaks at 1.54A−1 arising from PAM film are observed54.

Demonstration and investigation of SACET
Benefitting from the blue chiral afterglow emission with ultralong
lifetime of 3.0 s and chirality with maximum glum of 1.02 × 10−2 as well
as water-solubility, wide afterglow emission spectrum ranging from
400–550 nm and acceptable oscillator strength, R/S-PAMCOOCz2
could be an ideal host platform to on-demand construct full-color
CPOA polymers with robust and tunable afterglow emission55. There-
fore, the commercializedwater-soluble fluorescent dyes of fluorescein
sodium (Fluc, λabs = 400–480nm), rhodamine 123 (Rh123,
λabs = 450–520 nm), and sulfo-rhodamine (SR101, λabs = 520–640nm)
were selected as guest to develop the full-color CPOA polymers due to
the large spectra overlap between the afterglow spectra of energy
donor R/S-PAMCOOCz2 (host) and the absorption spectra of energy
acceptor (fluorescent guest)56–58, respectively. The well-overlapped
spectra couldmaintain effective SACET fromhost to guest (Fig. 3a and
Supplementary Fig. 29). Additionally, both the host and guest are
water-soluble, leading to good compatibility for the physically blended
host-guest system to shorten the distance between the donor and
acceptors for further enhancing ET efficiency. Experimentally, to
confirm the SACET, Fluc/R-PAMCOOCz2 films with different Fluc
weight concentrations were fabricated by mixing and evaporating the
aqueous solution of Fluc and R-PAMCOOCz2. As shown in Fig. 3b,
besides the blue emission from R-PAMCOOCz2, newly emerged lumi-
nescent peaks are found in both SSPL anddelayed PL spectra in Fluc/R-
PAMCOOCz2 film. Compared to the emission peak of Fluc in aqueous
solution and an inert poly (vinyl alcohol) doped film (Supplementary
Fig. 30), the newly emerged luminescence peak at 555 nm in the SSPL
and delayed PL spectra of the Fluc/R-PAMCOOCz2 film should be from
Fluc; and with rising Fluc concentrations, the intensities of emission
peakat 550–650nmare gradually increasedwhile the emission fromR-
PAMCOOCz2 is decreased, signifying the plausible occurrence of ET
from R-PAMCOOCz2 to Fluc. Compared to the SSPL emission (Sup-
plementary Fig. 31a), the afterglow emission from R-PAMCOOCz2
almost disappeared in Fluc/R-PAMCOOCz2 film when the doping
concentration of Fluc increased to0.1wt.%, demonstrating effective ET
for achieving tunable afterglow emission. Eventually, the afterglow
achieves a shift from blue to yellow-green (Fig. 3c).

To investigate the specific ETmechanism indepth, the lifetimes of
the Fluc/R-PAMCOOCz2 films were analyzed. Upon increasing Fluc
concentrations from 0 to 0.1 wt.%, the lifetimes are decreased from
12.9 ns to 9.4 ns for fluorescence emission peaks at 364 nm and from
3.0 s to 2.0 s for afterglow emission peaks at 414 nm (Supplementary
Fig. 31b and Fig. 3d), respectively. These results verify that the non-
radiative ET process should be responsible for this ultralong afterglow
emission from Fluc. The afterglow lifetimes of long-lived emission
peaks at 555 nm are over 1.8 s (Fig. 3e and Supplementary Table 5).
According to themeasured amplitude averaged lifetime (τamp) of Fluc/

R-PAMCOOCz2 films at the emission peaks at 364, and 414 nm, the
fluorescence and afterglow ET efficiencies are calculated to be 27.1%
and 64.3%, respectively (Supplementary Table 6). Compared to the
fluorescence ET efficiency, much-enhanced afterglow ET efficiency
should be due to its larger spectra overlap between the afterglow
emission of R-PAMCOOCz2 and the absorption spectrum of Fluc.
Moreover, the TRES of Fluc/R-PAMCOOCz2 film shows continuous and
pronounced luminescence with elongating the delayed time (Supple-
mentary Fig. 32), suggesting the stability of the sensitized ultralong
afterglow luminescence from Fluc, demonstrating that the ET strategy
should be an alternative way to modulate the afterglow color59. With
increase Fluc concentrations, the photoluminescence quantum effi-
ciencies of the Fluc/R-PAMCOOCz2 system are also increased from
23.3% to 28.1% (Supplementary Table 4). The excitation-delayed PL
spectra ofR-PAMCOOCz2 and 0.1wt.% Fluc/R-PAMCOOCz2 (Fig. 3f) are
almost identical, showing quite similar excitation-delayed PL spectra
with effective excitation wavelength from 208 nm to 362 nm. In con-
trast, no afterglow luminescence can be observed when the excitation
wavelength ranges from 400nm to 450 nmwhere Fluc exhibits strong
absorption abilities, indicating that the ultralong lifetime triplet exci-
tons of Fluc/R-PAMCOOCz2 films should be attributed to the afterglow
ET fromR-PAMCOOCz2 to Fluc rather than thedirect excitationof Fluc.
The Fluc/S-PAMCOOC2 systems endow similar spectra variations when
modulated the doping concentrations of Fluc.

Since the Fluc/R-PAMCOOCz2 and Fluc/S-PAMCOOCz2 films
empower effectual fluorescence and afterglow ET process, their chir-
ality energy transfer properties were subsequently investigated. In
comparison with the R-PAMCOOCz2 film, a new peak at 555 nm is
observed after excitation by a 280 nm light. With increased Fluc con-
centrations in Fluc/R-PAMCOOCz2 film, the enhanced CPL signals ori-
ginating from555 nmare foundwhile theCPL signals ofR-PAMCOOCz2
film at the regions of 330–450nm are gradually decreased (Fig. 3g and
Supplementary Fig. 33a). After the aiding of 0.1 wt.% Fluc, the CPL
signal of R/S-PAMCOOCz2 almost disappears, and only a strong CPL
signal at 555 nm is retained with glum values of + 3.4 × 10−3 and
− 5.7 × 10−3, respectively (Fig. 3h, i and Supplementary Fig. 33b).
Namely, the chirality of R/S-PAMCOOCz2 is successfully transferred to
Fluc. These results agree well with the variation of SSPL emission of
Fluc/R-PAMCOOCz2 films (Supplementary Fig. 31a). Notably, the CD
spectra (Supplementary Fig. 34) of Fluc doped R/S-PAMCOOCz2 films
are similar to the corresponding CD spectra of R/S-PAMCOOCz2 films
(Supplementary Fig. 20) and the use of strong absorption peak at
460nm of Fluc as the excitation wavelength (Fig. 3a) could not trigger
the CPL emission of Fluc/S-PAMCOOCz2 (Supplementary Fig. 35),
confirming that the chirality of Fluc doped systemsoriginates from the
chiral R/S-PAMCOOCz2 hosts

60–62.

Enabling multicolor CPOA polymers
To further demonstrate the university of the SACET to obtain wide-
range color tenability16, the achiral Rh123 and SR101 were chosen as
fluorescence guests to prepare thin films since their absorption spec-
tra endow favorable spectra overlaps with afterglow emission of R/S-
PAMCOOCz2 films. As anticipated, orange and red chiral afterglow
emission peaked at 574 nm and 640nm, corresponding to the lumi-
nescencepeaks of Rh123 and SR101, are observed in0.1wt.%Rh123 and
SR101 doped R-PAMCOOCz2 films, respectively (Fig. 4a and Supple-
mentary Fig. 36). Compared to pure R-PAMCOOCz2 film, significantly
reduced delayed PL intensities and lifetimes are found in the emission
peaks at 414 nm in Rh123 and SR101 doped films (Fig. 4b), proving the
occurrence of afterglow ET. This ET can be further verified by
excitation-delayed PL spectra and emission mapping, which show
quite similar excitation wavelength to that of the R-PAMCOOCz2 host
(Fig. 4e, f and Supplementary Fig. 37). Since the doping concentration
of the guest is vital to enable multicolor CPOA, the SR101 doped R-
PAMCOOCz2 films with the weight concentrations of 0.05 wt.%, 0.1
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wt.%, and 0.2 wt.% were prepared; As shown in Supplementary Fig. 38,
0.1wt.% SR101/R-PAMCOOCz2filmdemonstratesmuchenhanced SSPL
and afterglow emission that originates from SR101, suggesting that the
optimal doping concentration is 0.1 wt.%. Moreover, 0.1 wt.% Rh123
and SR101 doped R-PAMCOOCz2 films obtain strong and stable long
afterglow luminescence (Supplementary Fig. 32) and show ultralong
lifetimes of 1.9 and 2.2 s (Fig. 4c, d and Supplementary Table 7).

Expectedly, when 0.1 wt.% Rh123 and SR101 were doped into R/S-
PAMCOOCz2 films, the CPL signal originated from R/S-PAMCOOCz2 is
largely decreased, while newly emerged emission bands derived from
Rh123 (574 nm) and SR101 (640nm) are observed (Fig. 4g, h), respec-
tively. The maximum glum of +2.1 × 10−3 and −5.5 × 10−3, + 2.5 × 10−3, and
−3.7 × 10−3 for 0.1 wt.% Rh123 and SR101 doped R/S-PAMCOOCz2 films
couldbe also recorded (Fig. 4i andSupplementary Fig. 39),figuringout
the effective chirality transfer from R/S-PAMCOOCz2 to fluorescent
guests. Compared to R/S-PAMCOOCz2 and Fluc doped R/S-

PAMCOOCz2 films, the reduced CPL signals of 0.1 wt.% Rh123 and
SR101 doped R/S-PAMCOOCz2 films should be due to their decreased
energy transfer efficiencies (Supplementary Table 6)63. To further
verify the vital role of SACET to achieve multicolor CPOA system, the
direct excitation of the achiral guest SR101 in 0.1 wt.% SR101/R-
PAMCOOCz2 films using the corresponding maximum absorption
band at 550nm as excitation light was performed. No obvious CPL
signals are detected (Supplementary Fig. 40), testifying that the chiral
characteristics should be derived fromblue R/S-PAMCOOCz2 polymer.
More excitingly, chiralwhite light emissioncanbe achieved inRh123/R-
PAMCOOCz2 films by carefully regulating the doping concentration of
Rh123 (Supplementary Fig. 41).

Potential applications of CPOA materials
Considering CPOA materials capable of ultralong lifetime, full-color
tunability, and easy water processing ability, their applications in
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Fig. 3 | Demonstration and investigation of SACET. a Delayed PL spectra of R-
PAMCOOCz2 film (delayed time, 10ms) and absorption spectra of aqueous solu-
tions (10−5mol/L) of Fluc. b–e Delayed PL spectra (b), Commission International de
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Fluc/R-PAMCOOCz2 at different concen-trations. f Excitation-delayed PL emission
spectrum of 0.1 wt.% Fluc/R-PAMCOOCz2 film. g, h CPL spectra (g) and glum values
(h) of Fluc/R-PAMCOOCz2 films with doping concentrations of 0.0 wt.% and 0.1
wt.%. i Schematic diagram of the SACET mechanism.
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multiplex information encryption, functionalization fibers and three-
dimensional objects were explored. As shown in Fig. 5a, various lumi-
nescent materials including chiral R-PAMCOOCz2 (blue), Fluc/R-
PAMCOOCz2 (yellow-green), and SR101/R-PAMCOOCz2 (red), and
achiral PAMCz (blue), Fluc (yellow-green), Fluc/PAMCz (yellow-green),
SR101 (red) and SR101/PAMCz (red) were selected as the water-soluble
anticounterfeiting inks (Supplementary Fig. 42). Multiplex Morse
Codes with a three-dimensional encrypted features of CPL and color,
long-life had been prepared using screen-printing technology (Sup-
plementary Fig. 43). Under daylight, due to the colorless of blue inks,
the falseMorseCode 1 RWHWPNKwith light-yellow and pink color can
be obtained. Upon irradiation by a 254nmUV lamp, all emission colors
can be observed and the false fluorescence Morse Code 2 LPHPPCQ
can be recorded. After withdrawing the UV lamp, the false OA Morse

Code 3 RPSPWCM with red, green, and blue colors appeared as the
Fluc and SR101 fluorescence disappeared. In contrast, with the aid of
CPL analysis, the true three-dimensional encrypted CPOAMorse Code
4 showing the information of RESPECT is finally captured (Supple-
mentary Fig. 44). Meanwhile, CPOA functionalized fibers could be
easily prepared by soaking the commercial fiber into the CPOA poly-
mer aqueous solution and then drying in an oven at 50 °C, rendering
varied shapes and the tunable afterglow of blue (R-PAMCOOCz2) and
green (Fluc/R-PAMCOOCz2) emission colors (Fig. 5b). Interestingly,
colorful three-dimensional objects (Fig. 5c) emitting blue (R-
PAMCOOCz2, left), yellow-green (0.1 wt.% Fluc/R-PAMCOOCz2, mid-
dle), and red (0.1 wt.% SR101/R-PAMCOOCz2) CPOA emissions can be
also constructed, reflecting their greatpotential applications inflexible
wearable electronics.
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Discussion
In summary, we have successfully proposed an efficient self-
confinement method for the construction of blue CPOA polymers.
This tactic depends on simultaneously confining the isolated chiral
chromophores into a rigid and water-soluble polymer matrix for the
stabilization of triplet excitons to enable highly efficient CPOA emis-
sion. The resultant water-soluble CPOA polymers exhibit an ultralong
lifetime of up to 3.0 s, a |glum| of 1.02 × 10−2. Benefiting from afterglow
and chirality properties, a series of full-color CPOA systems are pre-
pared by physically blendingwater-soluble non-chiral fluorescent dyes
into blue CPOA polymers through SACET. Employing the full-color
tunability CPOA features, multilevel information encryption, func-
tional fibers, and three-dimensional display objects have been fabri-
cated. This study not only guides the design and synthesis of blue
CPOA materials, but also opens a map to on-demand modulate the
CPOA emission colors for varied applications.

Methods
Materials
All reagents and solvents were purchased from Nanjing Chemical
Reagent Co. and Energy Chemical. Unless otherwise specified, these
reagents and solvents were used without further purification. The puri-
ties for all purchased materials are described below: carbazole (99%),
methy (R)-2-chloropropionate (98%), methy (S)-2-chloropropionate

(97%), 2-hydroxyethyl acrylate (99%), acrylamide (99.9%), fluorescein
sodium (99.7%), rhodamine 123 (98%), sulfo-rhodamine (95%). And 2,2’-
azobis(2-methylpropionitrile) (98%) was used after three times
recrystallization.

General procedure of radical polymerization
In an argon atmosphere, 0.01 equivalent (eq) of 2,2’-azobis(2-methyl-
propionitrile) (AIBN) and 1.0 eq of vinyl derivative were dissolved in
25mL freshly distilled tetrahydrofuran (THF) under icewater. After the
solid was completely dissolved, the mixture was gradually heated to
55 °C and stirred for 16 h. After the reaction, the mixture was added
dropwise to 200mLmethanol to precipitate polymericmaterials, then
the crude product was filtered, followed by washing with petroleum
ether and dichloromethane, acetone in sequence. Then the solid was
dissolved in deionizedwater and dialyzed by a dialysis tube (molecular
weight cut-off = 1000) for 72 h.

S-PAMCOOCz1
Following the general procedure of radical polymerization using S-
VCOOCz (0.337 g, 1.0mmol, 1.00 eq), acrylamide (AM, 3.55 g,
50.0mmol, 50 eq), and appropriate amount of AIBN (0.0836 g,
0.51mmol, 0.51 eq) in 25mL freshly distilled THF to afford 3.31 g white
powder polymer with a yield of 85.2%. Mn = 16817Da; Mw= 25661 Da;
PDI = 1.53.
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Fig. 5 | Potential applications of CPOA materials. a Fabrication procedure of
multiplex Morse Code by screen-printing and corresponding photographs of var-
iedMorse Code under daylight, under 254 nmUV light excitation and after turning
off 254nm UV light excitation. b Preparation procedures and an illustration of

CPOA fibers and corresponding photographs of CPOA fibers under and after
turning off 254nm UV light excitation. c Blue (left), yellow-green (middle), and red
(right) three-dimensional CPOA objects.
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S-PAMCOOCz2
Following the general procedure of radical polymerization using S-
VCOOCz (0.169 g, 0.5mmol, 1.00 eq), acrylamide (3.55 g, 50.0mmol,
100 eq), and appropriate amount of AIBN (0.0828 g, 0.505mmol,
1.01 eq) in 25mL freshly distilled THF to afford 3.51 g white powder
polymer with a yield of 94.5%. Mn = 23603Da; Mw= 38866Da;
PDI = 1.65.

R-PAMCOOCz2
Following the general procedure of radical polymerization using R-
VCOOCz (0.169 g, 0.5mmol, 1.00 eq), acrylamide (3.55 g, 50.0mmol,
100 eq), and appropriate amount of AIBN (0.0828 g, 0.505mmol,
1.01 eq) in 25mL freshly distilled THF to afford 3.56 g white powder
polymer with a yield of 95.8%. Mn = 22006Da; Mw= 38117Da;
PDI = 1.73.

S-PAMCOOCz3
Following the general procedure of radical polymerization using S-
VCOOCz (0.0843 g, 0.25mmol, 1.00 eq), acrylamide (3.55 g,
50.0mmol, 200 eq), and appropriate amount of AIBN (0.0824 g,
0.5025mmol, 2.01 eq) in 25mL freshly distilled THF to afford 3.51 g
white powder polymer with a yield of 96.6%. Mn= 25102Da; Mw=
41739Da; PDI = 1.66.

S-PAMCOOCz4
Following the general procedure of radical polymerization using S-
VCOOCz (0.0421 g, 0.125mmol, 1.00 eq), acrylamide (3.55 g,
50.0mmol, 400 eq), and appropriate amount of AIBN (0.0822 g,
0.5013mmol, 4.01 eq) in 25mL freshly distilled THF to afford 3.50 g
white powder polymer with a yield of 97.4%. Mn = 29095Da; Mw=
46679Da; PDI = 1.60.

Preparation of full-color polymer films
0.5 g of polymer powder and a certain amount of organic fluorescent
dyes were dissolved in deionized water (10mL) followed by vigorous
sonication for 10min under ambient conditions; then the solution was
poured into a flask and stirred at 60 °C for 1 h to obtain a completely
transparent polymer solution; finally the mixed solution was placed in
a petri dish and dried in an oven at 70 °C overnight to fabricate
transparent polymer films for subsequent photophysical and mor-
phological characterizations.

Data availability
The data that support the plots within this paper and other findings of
this study are available from the corresponding author on
request. Source data are provided in this paper.
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