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Memristive tonotopic mapping with volatile
resistive switching memory devices

Alessandro Milozzi 1, Saverio Ricci 1 & Daniele Ielmini 1

To reach the energy efficiency and the computing capability of biological
neural networks, novel hardware systems and paradigms are required where
the information needs to be processed in both spatial and temporal domains.
Resistive switching memory (RRAM) devices appear as key enablers for the
implementation of large-scale neuromorphic computing systems with high
energy efficiency and extended scalability. Demonstrating a full set of spa-
tiotemporal primitives with RRAM-based circuits remains an open challenge.
By taking inspiration from the neurobiological processes in the human audi-
tory systems, we develop neuromorphic circuits for memristive tonotopic
mapping via volatile RRAM devices. Based on a generalized stochastic device-
level approach, we demonstrate the main features of signal processing of
cochlea, namely logarithmic integration and tonotopicmapping of signals.We
also show that our tonotopic classification is suitable for speech recognition.
These results support memristive devices for physical processing of temporal
signals, thus paving the way for energy efficient, high density neuromorphic
systems.

Perception of information from the surrounding environment is a
crucial task for animals to detect external stimuli and react to them.
Light, sound, gravity, touch, and chemicals are converted into enco-
ded spiking signalsbydedicated apparatus and then interpretedby the
brain1. Because of its high-energy efficiency and intrinsic error toler-
ance, the human brain provides inspiring novel paradigms to achieve
better computational performance2–6. In this framework, the auditory
system has gained strong attention due to its remarkable features: for
instance, sound can reach our ears fromall possibledirections in space
and can be perceived anytime when we are awake as well as we are
sleeping. Moreover, sound processing is not performed by the spatial
arrangement of sensory-afferent neurons such as in retinotopic or
somatosensory maps, rather it is internally processed by the auditory
system thanks to an internal representation of physical features1,7,8. As
a result, the auditory systemdoes not rely on the spatial positionof the
source such as in vision, where different light rays are focused on
different sensors in the retina. Instead, the sound is processed via
mechanical vibrations that are purely temporal signals. The frequency
of natural sounds perceivedbymammals usually spans from tens ofHz

to tens of kHz, covering about three orders of magnitude. To classify
these signals, there is a need for a spatial representation of this broad
range of temporal features. The cochlea solves this task by realizing a
tonotopic map of the incoming signals i.e., a mapping of different
frequency components along logarithmically-spaced positions of the
cochlear channel1,9,10. Emulating this kind of spatiotemporal signal
processing through simple and scalable hardware remains an open
challenge for neuromorphic computing11.

Resistive switching memory (RRAM) devices have attracted
strong interest for their ability to implement artificial neurons and
synapses in high-density, energy-efficient artificial neural networks12–17.
However, the main computing approach adopted in state-of-the-art
systems relies on the spatial arrangement of neural elements, i.e.,
spatial coding. In these systems, the capability to capture the temporal
component is introduced through complex auxiliary CMOS circuitry
and sophisticated temporal encoding of the programming pulses, thus
losing advantages in terms of area occupation, energy efficiency, and
biological plausibility. This is because RRAM devices are used as static
first-order memristors that are unable to directly cope with
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spatiotemporal signals, just playing the role of static memory for
mapping weights of neural networks18. To address this limitation and
enable device-level computation over time and frequency, it becomes
imperative to explore innovative materials and methodologies within
the increasing set of memristive devices. Such advancements hold
substantial promise for enhancing spatiotemporal pattern recognition
by exploiting the intrinsic dynamics of thedevice to capture the crucial
temporal component that is otherwise missing. Moreover, temporal
features generally cover broad scales, while actual demonstrations of
neurons and synapses integration mostly operate on a limited linear
scale due to physical limitations in the mechanisms of conductance
change19–21. This is in contrast with the brain being capable of per-
ception and classification of sound over a broad frequency range and
in presence of noisy signals22. By leveraging the dynamic, stochastic
response of volatile memristors, we demonstrate a device-level spatial
mapping of temporal spike signals on a logarithmic scale, where,
similar to biological systems, the device volatility contributes to the
system ability to relax to a resting state, being spontaneously ready for
a new computation. These characteristics serve as the fundamental
ground for replicating the intricate audio processing functions exe-
cuted by the human brain.

Results
Stochastic switching of volatile RRAM devices
To enable time and rate computation, we adopted volatile RRAM with
one-transistor/one resistor (1T1R) structure. Figure 1a shows a sche-
matic illustration of the device, where the select transistor allows to
control the maximum current flow (see Supplementary Note 2 for
MOSFET characteristics). The device relies on a switching layer made
of hafnium oxide (HfOx) interposed between two metallic electrodes.
Figure 1b shows the device structure, including a silver (Ag) active top
electrode (TE) and a bottom electrode (BE) made of carbon (C). The
RRAM device is initially in a high resistive state (HRS) due to the low
electrical conductivity of the HfOx layer. The application of a relatively
large positive voltage between TE and BE results in the formation of a
conductive filament (CF) made of migrated Ag atoms thus resulting in
a set transition to the low resistive state (LRS).When the voltage across
the device is removed, the CF spontaneously dissolves after a suitable
retention time, bringing the device back to the HRS23–25. Thanks to the
spontaneous dissolution of the CF, differently fromnon-volatile RRAM
devices, our device does not need a reset phase thus it can operate

with unipolar voltages. Figure 1c shows the measured quasi-static
current-voltage (I-V) curve of the RRAM devices, indicating the pre-
sence of a characteristic threshold voltage Vset to initiate Agmigration
and tobuild theCF and a holdvoltageVhold to start the dissolution. The
value of Vset might stochastically change from cycle to cycle due to the
continuous rearrangement of materials structure at the interfaces and
in the switching layer26. The cycle-to-cycle Vset variation generally
obeys a normal distribution (see Supplementary Notes 3–4 where
device-to-device variability is also reported). The Vset distribution
describes the probability for set transition by applying a pulse
with a specific voltage amplitude and duration. High values of
voltage amplitude compared to the median value of the distribution
of threshold voltage result in a high probability of switching
while low values of voltage amplitude result in a low probability of
switching.

To characterize the switching probability of our RRAM devices in
pulsed regime, we applied a train of voltage spikes reported in Fig. 2a
with fixed pulse-width Tpulse = 2.5μs and a total duration of
Twindow = 25ms. Figure 2b shows the response current and the evolu-
tion of the device conductance G. After an initial phase where the
current is zero, corresponding to the device being in the OFF state, the
device switches to the ON state after a number of spikes equal to
Nset = 38 which is marked by the onset of a current response and a
transition to G = 8μS. In this experiment, the waiting time between
each spike was lower than the retention time, thus ensuring that the
device remains in the ON state (see Supplementary Note 5). Figure 2c
shows the current response for various spike voltage amplitudes,
indicating that Nset (hence the switching time tON) decreases for
increasing spike amplitude (details about waveforms are reported in
Supplementary Note 6). Figure 2d shows the average tON as a function
of voltage amplitude and spike frequency with fixed Tpulse = 2.5μs,
indicating that tON decreases at increasing voltage amplitudes and
frequency. We can define the switching probability due to the appli-
cation of a train of spikes as:

Pswitch =
NtrainsjON
Ntrains

ð1Þ

where, NtrainsjON represents the count of applied trains that cause the
device to switch to the ON state and Ntrains is the total number of
applied trains (NtrainsjON ≤Ntrains). It is important to notice that this

Fig. 1 | Ag-based resistive random access memory. a 1T1R structure used in the
experimental characterization: the programming pulses are applied to the top
electrode (TE) while the bottom electrode (BE) is grounded and used to read the
current. The transistor is placed in series to obtain better control of the maximum
flowing current. (see Supplementary Note 1 for the experimental setup) b Sche-
matic description of the arrangement of the silver atoms inside hafnium oxide: in
the low resistive state (LRS) or ON state, silver atoms build a bridge between

electrodes resulting in a high value for conductance. In the high resistive state
(HRS) or OFF state, there is no conductive path between the top electrode and
bottom electrode resulting in a low conductance value. c Quasi-static I-V curve of
the device: when the applied voltage is above the threshold voltage, the device
switches on andmoves to LRS.When the applied voltage is lower thanhold voltage,
RRAM cell relaxes to HRS.
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definition of switching probability does not refer to the single pulse,
but rather to a train of pulses with amplitude V, frequency f, and
duration Twindow, representing a more comprehensive and general-
ized framework for addressing switching probability. Figure 2e
shows that Pswitch increases by increasing the spiking frequency,
while Fig. 2f shows that Pswitch increases by increasing the applied
voltage. Figure 2g summarizes the dependence of Pswitch on f and V,
respectively. Note that the frequencies on the x-axis of Fig. 2e and on
the y-axis of Fig. 2g are logarithmically spaced, spanning 3 orders of
magnitude, in analogy with the pitch tonotopic classification in the
human cochlea.

RRAM circuit for frequency sensing
Based on the spiking frequency properties of the device, Fig. 3a shows
the RRAM circuit to provide the tonotopic sensing of the auditory
signal frequency. In this circuit, RRAM devices have separate TE and a
common BE to collect the summation current from all devices based
on Kirchhoff’s law. The gate voltage is common for all devices, thus
ensuring that the current is approximately the same for each device in
the ON state due to transistor channel saturation. The spike trains
applied to different TEs have the same frequency while the voltage
amplitude VTE decreases from one TE to the next one, e.g., TE voltages
V1 = 2 V, V2 = 1.5 V, and V3 = 1 V are applied to the three RRAMdevices in
Fig. 3a. Based on Fig. 2, the application of a signal at relatively low
frequency causes the switchingofonly a small fractionof devices in the

range of high VTE, while an input signal with high-frequency causes the
switching of a large fraction of devices, including those biased at
relatively low voltages.

Figure 3b shows a trace example of the measured response cur-
rent for the circuit of Fig. 3a, where spiking trains were applied with
increasing frequencies from 20Hz to 20 kHz. Based on the maximum
measured current, it is possible to infer the number of devices in the
ON state thanks to the compliance current Ic of the select transistor.
Results in Fig. 3b indicate that in the reported experiment, for
f = 20Hz, none of the devices can switch within the experimental time
window of 25ms. As we increase the frequency of spikes, the number
of devices in the ON state increases, reaching the maximum of 3
devices in the ON state for f = 20 kHz. In this case, it is possible to
identify three distinct steps in the current trace, each corresponding to
the switching on of a device. Figure 3c shows the experimental histo-
grams of the number of devices switching to the ON state for a specific
spiking frequency: Being normalized histograms, it is possible to
interpret the y-axis as the probability PN,ON of observing a specific
number of ON-state devices (shown on the x-axis) for a particular
frequency of input train. Figure 3d shows the average number of
devices in the ON state as a function of the input train frequency. Note
that the number of devices in the ON state increases linearly with the
logarithm of the input frequency. Such a logarithmic dependence of
the frequency sensitivity is the keypoint for processing audio signals in
the auditory system from the environment1. In the cochlea, in fact,

Fig. 2 | Switching time and switching probability for different operative con-
ditions. a Voltage pulse train for programming: a train of equally spaced voltage
pulses of duration tpulse = 2.5 µs and a fixed timewindowduration of Twindow = 25ms
is applied to the device. b Current response to voltage pulse train: initially, the
device is in the OFF state and the current is zero. After some spike, the RRAM
switches on, and the current increases. Respective conductance values associated
with spike number show a step. c Time to switch on: the time needed for the device
to turn on is depending on the voltage amplitude of the train. Increasing the vol-
tage, the time decreases. d Time to switch on heat map under different operative
conditions: Changing the frequency of the spikes and the voltage amplitude of the

train, the time to switch on changes. In particular, the minimum of time is reached
for themaximum tested voltage and frequencywhile the device remains in the OFF
state for minimum tested voltage and frequency. e Switching probability versus
frequency: Increasing the frequency of the train of pulses, the probability of
switching increases due to a larger number of spikes applied to the device i.e.,
larger number of trial to switch it on. f Switching probability versus voltage
amplitude: increasing the voltage amplitude of the train of pulses, also the
switching probability increases. g Switching probability heat map for all the com-
binations of voltage and frequency summarizing the experimental
characterization.
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different frequencies from 20Hz to 20kHz are mapped into linearly
spaced distances from the apex of the cochlea as reported in
Fig. 3d27,28. This highlights the similarity of the RRAM-based frequency
sensing circuit of Fig. 3a to the biological cochlea.

These experimental results were described by a probabilistic
model reported in Supplementary Note 10 and validated in Supple-
mentary Note 11. The model enables the simulation of large-scale
networks and is utilized in the following sections to simulate the
logarithmic integration and tonotopic mapping in bioinspired neuro-
morphic systems where the variability of device-to-device switching
probability is included (see Supplementary Note 8). Nevertheless, the
model applies to any RRAMdevice by adjusting themodel parameters,
e.g., the threshold voltages and their distributions, thus providing a
general simulation tool for stochastic computing with resistive
switching devices.

Cochlea-inspired tonotopic sensing of audio frequency
Figure 4a schematically illustrates the human auditory system where
the acoustic wave reaches the tympanic membrane and the cochlea.
Along the cochlear channel, different frequencies of the acoustic
wave are detected at different positions by the hair cells, which are
specialized biological strain detectors29. The stimulation of hair cells
causes the mechanical opening of ion channels, thus enabling the
flow of a small ionic current converting mechanical stimulation into
an electrical signal30,31, which eventually propagates to the brain
through auditory nerves. High frequencies (up to 20 kHz) are

detected in the initial part of the cochlea, while low frequencies
(around 20Hz) are detected in the deepest region of the cochlea i.e.,
the center of the spiral. The intermediate values are logarithmically
spaced through the length of the cochlear channel28,32. The cochlea
thus allows for a spatiotemporal processing capable of mapping
temporal signals in different spatial coordinates of the cochlear
channel. Such a tonotopic map of frequencies was experimentally
demonstrated by von Békésy, worth the Nobel prize for medicine in
196133. Figure 4b shows the calculation results of a model derived
after Zwislocki28: the spectral amplitude response shows a peak for a
particular frequency, thus enabling frequency detection on a loga-
rithmic scale.

Emulating the processing of the auditory system, Fig. 4c shows
the schematic of a RRAM circuit that enables tonotopic mapping of
different frequencies which we refer to as memristive tonotopic map
(MTM), where we completed a system of parallel volatile RRAMs with
a XOR gate comparing the output voltages in each pair of RRAM
devices. As in the previous experiment, the trains applied to different
top electrodes have a common frequency, corresponding to the
input signal frequency, while the applied voltage VTE decreases from
the highest V1 to the lowest VN. As a result, device i + 1 is sensitive to
higher frequencies compared to the device i, with index i = 1, 2,…, N.
This property becomes evident when examining the calculated
switching probability Pswitch shown in Fig. 4c: we show this beha-
vior in six cells with increasing VTE values, derived from our prob-
abilistic model, which was calibrated using experimental

Fig. 3 | Experimental demonstration of RRAM circuit for frequency sensing.
a Schematic of the arrangement of parallel cells: each device has its own TE while
the BE is in common, where the sum of the currents from devices is collected. The
gate voltage is the same for all the MOSFET and it is equal to VG = 1 V. The spike
trains applied to the top electrodes have the same frequency while the voltage
amplitude is scaled for each device from higher to lower. b Examples of filtered
temporal current traces of i(t) collected from BE in the experiment: when f = 20Hz,
none of the devices switch on. Increasing the frequency, also the number of ON
devices increases. It is possible to see that for f = 20 kHz the devices switch on at
different times, resulting in 3 steps in the current traces. (see SupplementaryNote 9
for raw current traces.) c Normalized histograms of the number of ON devices at

different frequencies: Increasing the frequency, the peakof the histogrammoves to
the right due to an increase in the number of ON cells. d Linear mapping of log-
spaced frequencies in our systems and in the cochlea after Zwislocki28: Applying
trains of different frequencies to the system of parallel devices, the number of ON
cells is proportional to the logarithm of the frequency thanks to the logarithmic
dependence of switching probability (dark blue curve). The same behavior of
mapping the audio frequency range in a linear space has been observed in the
cochlea (light blue curve). Here, logarithmically spaced frequencies from 20Hz to
20kHz are mapped into different linearly spaced locations from the apex of the
cochlea.
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characterization data (see Supplementary Note 11). Specifically, as
VTE increases, the probability of switching to a lower frequency also
increases. The role of the XOR gate is to identify the boundary
between the last ON device and the first OFF device (see Supple-
mentary Note 12). Figure 4c also shows a matrix plot of the simulated
average XOR output as a function of frequency, indicating that the
response of each XOR gate is maximum for a specific frequency. This
behavior is further highlighted in Fig. 4d, showing the normalized
simulated response for each XOR output as function of train fre-
quency. The first XOR gate has peak activity around f = 20Hz,
while XOR gates at higher orders respond at higher frequencies. The
maximum frequency of the audio range (f = 20 kHz) is detected in the
last XOR.

This approach can be further optimized by emulating the hair-cell
redundancy in the biological system: as depicted in Fig. 4e (left), hair
cells in the cochlea are on average 15.000, working in different loca-
tions but also in parallel at the same location thus introducing
redundancy to mitigate the effects of stochasticity and/or mal-
functioning hair cells. The same approach can be emulated by intro-
ducing a higher number of parallel RRAM devices in the tonotopic
circuit to provide a better averaging as reported schematically in
Fig. 4e (right). To support this latter approach, we simulated a larger
networkwith n = 30 cells in the circuit of Fig. 4c and 500parallel RRAM
devices for each frequency. As an audio sample, we choose the “Finale”
of Symphony n°9 in D minor by Beethoven due to its reduced tones
(frequencies) spanning from C note (260Hz) to G note (390Hz).

Fig. 4 | Tonotopic mapping of spatiotemporal signals to emulate cochlea
processing. a Schematic representation of the human ear: the acoustic wave
entering the ear canal reaches the tympanic membrane. Here, mechanical oscilla-
tions in the air are propagated to the lymph of the cochlear channel. Different
oscillation frequencies are detected by hair cells in different locations of the
cochlea. Red dots are regions in which higher frequencies are detectedwhile going
towards yellow dots, lower frequencies are distinguished in the inner part of the
cochlea. b Relative response of hair cells for different distances from the cochlea
apex, model from28: each region shows a peak for a particular frequency, enabling
frequency detection. cMemristive tonotopic map (MTM): each cell is tuned with a
different spike train voltage amplitude from the maximum V1 to minimum Vn. The
P(f) plot shows for n = 6 how this voltage arrangement results in different prob-
abilities to switch on the device. Low-index devices (i = 1) are low-frequency sen-
sitives while high-index devices are high-frequency sensitives (i = 6). XOR logic

enables the detection of the location of transition between ON and OFF devices.
#XOR output versus frequency plot shows that for each frequency, the maximum
response is related to a specific XOR i.e., specific spatial position. d Normalized
response for different XOR locations: similarly to the cochlea, each XOR shows a
peak in the response to a specific frequency.Moving to a higher indexXOR, also the
peak of the frequency moves to higher values. e The analogy between hair cells
arrangement and stochasticity mitigation technique in MTM: in the cochlea, many
hair cells are present and there is redundancy to mitigate damaged cells and sto-
chasticity. Following the same approach, we put in parallel Nmemristive tonotopic
maps fed by the same train toobtain an average response. fResponse of the system
to “Symphony No. 9 in Dminor”: with n = 30 cells forN = 500 parallel MTM, we can
reach higher frequency resolution and we can see how the position of the most
active XOR changes following the music sheet also for a moderate span of
frequencies.
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Figure 4f shows the simulated responseof the circuit, clearly indicating
the change of the active XOR following the behavior of the
music sheet.

Interpretability of tonotopic map: speech recognition
In the biological auditory system, the electrical signals generated by
the cochlea in response to the incoming audio signal need to be
interpreted by the auditory cortex34. Here, a classification process
takes place to recognize the sound, discriminating the tweet of a bird
from the sound of the flowing water of a river. The human brain,
moreover, shows the capability of speech recognition i.e., the cap-
ability of attributing meaning to a particular combination of
phonemes35. To demonstrate such capability in our memristive
auditory system, we simulated the task of speech recognition
implemented with our MTM. We selected a set of 4 words that carry
logical information (“yes”, “no”) or spatial information (“up”, “down”)
spoken by a single person and repeated 20 times. Figure 5a shows the
spectrograms of audio traces for these four words: one can notice
different time durations, e.g., “up” is shorter than “down”, and dif-
ferent frequency spectra, e.g., the high frequencies in “yes” due to
the letter “s”. Also, note that phonemes differ not only in terms of
frequencies but also regarding the pressure that they exert on hair
cells. Figure 5b adapted from ref. 36, shows a map of phonemes that
are located depending on their frequency and threshold pressure,
highlighting the features used by biological systems for classifica-
tion. Vowels span a broad spectrumof frequencies and are linked to a

higher threshold pressure, such as the higher amplitude of the sound
“ye” in “yes” and “o” in “no”. The system for speech recognition is
shown in Fig. 5c, with the MTM for n = 3. We kept this value as low as
possible to showcase the capabilities of our system with a minimal
number of elements, thus gaining in power consumption and occu-
pied area (see Supplementary Note 13 for results for different n
values and different numbers of cortical network neurons). Spike
trains are applied to each TE based on the raw normalized audio trace
with the analog-to-spike (A2S) conversion reported in Supplemen-
tary Note 14. The conversion operates with different thresholds for
each channel to capture different pressure levels i.e., amplitude of
the signal, thus providing an additional feature for the recognition
task. The three outputs of the XOR gates are submitted to a classical
feedforward neural network that performs the same role as the
auditory cortex of the biological brain. We selected N = 20 for the
MTM parallelization to obtain an average response to the applied
trains. Figure 5d shows the output values of MTM for each XOR for
100 trials for each word. At every cycle, the audio sample of the
selected word is randomly chosen from the set of available samples.
It is possible to recognize the different patterns, where, e.g., “yes”
corresponds to a higher average activity while “up” corresponds to a
lower average activity. This behavior can be attributed to the spec-
trograms of Fig. 5a, where “up” displays a shorter duration and
medium-frequency composition whereas “yes” displays a longer
duration and high-frequency components. We used the first
50 examples of MTM output traces to train the neural network and

Fig. 5 | Speech recognition fromthe tonotopicmap. a Spectrograms for different
spoken words: each combination of phonemes results in different frequency
compositions and different amplitudes of power spectrum. b Schematic map of
different phonemes as a function of their principal frequency component and
sensation level for hearing (adapted from ref. 36). cArtificial auditory system: audio
signals of different words are processed with simple analog-to-spike conversion.

Trains of spikes reach the cochlear processing layer made with a MTM and its
output is fed to an FF-neural network for classification. d Outputs of XORs for
different spokenwords for 100 different cycles. For each cycle, the selectedword is
randomly picked from the set of available audio samples. e Confusion matrix for
the classification of spoken words.
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the last 50 examples for inference. Figure 5e shows the confusion
matrix for the inference, reaching an accuracy of 96.5%.

Discussion
By exploring the building blocks of sensory biological systems, it is
possible to identify the features that are responsible for the excep-
tional computation capabilities of the brain. Implementing these
paradigms in hardware, however, requires new technologies and
methodologies. Through CMOS technology system-level approach,
simulation of the functional behavior of biological mechanisms can be
achieved, however at the cost of a large area occupation, a complex
design, and a high power consumption (an indicative comparison is
provided in Supplementary Note 15). Furthermore, these systems pose
challenges in terms of interpretability, as the biological mapping and
meaning are often lost37. This difficulty makes it challenging to
implement powerful computational neurosciencemodels in hardware,
thus hindering the potential to attain the efficiency and capabilities of
the biological brain38.

Memristive devices mitigate these issues thanks to their high
scalability and low power, as well as the capability to directly compute
within the memory for reduced latency and energy consumption.
Memristive devices display 2 terminal devices and tunable con-
ductance, thus providing a realistic hardware description of synaptic
plasticity in the brain, paving the way for the emulation of biological
neural elements. Major research efforts have gone in this direction,
where the memristive element is used as a static first-order memory
element to store the synaptic weight of an artificial neural network39. In
this framework, memristors can act as accelerators of hardware neural
networks within the context of in-memory computing40,41. Other
research directions aim at the exploration of biologically plausible
paradigms using memristors as synaptic dynamic elements. The main
features of biological mechanisms such as spike-timing dependent
plasticity (STDP) and Hebbian learning have been demonstrated
through these approaches42–44. However, the full potential of mem-
ristor devices can be exploited by moving the computation to the
device level, thusminimizing the need for external circuitry45, building
through a bottom-up approach, explainable and biologically plausible
systems.

In our work, the computation in memristors relies on the prob-
ability of switching i.e., the probability of transmission of the infor-
mation in a volatile memory, dealing with bursts of spikes rather than
individual spikes. Biological systems, in fact, operate through an
ensemble of probabilistic elements that together perform computa-
tion in a stochastic way46. Moreover, biological networks make unre-
liable elements sufficiently reliable by working with spike bursts as the
units of neural information47. Thanks to this approach, we have shown
that it is possible to perform a stochastic integration of the number of
spikes, where the integrable range can be controlled by the voltage
amplitude of spikes without the need for large capacitances. This
result enables a new approach for spiking networks, capable of
enlarging the space of computation to a logarithmic range of times
and/or frequencies. Moreover, as the brain does not rely on a single
synapse, we are not relying on a single device to properly mitigate the
stochastic variation, usingmultiple parallel devices. Ourmethodology,
which can map 3 orders of magnitudes of temporal features into a
linear space of voltage, has a general validity beyond audio signals,
with applications ranging from tactile to visual sensors48,49. Also, there
is a largemargin for improving the systemby increasing the number of
devices in the singleMTMand increasing the number of parallel MTMs
to perform a more challenging task, such as recognizing more pho-
nemes and even complete words. However, large-scale simulations go
beyond the scope of this work, which is mainly focused on the proof-
of-concept demonstration of the tonotopic classification of audio
signals by memristive networks. Nevertheless, our devices promise
good energy scaling even in large systems: when the device is in the

OFF state, the resistance value is in the range of tens of TΩ, and no
relevant current is flowing in the device. Figure 1c shows that the OFF-
current is below the resolution of the instrument in the order of
picoampere (pA). Referring to the same figure, it is possible to see that
when the device is in the ON state the current IC flowing in the 1T1R
series is limited by the transistor. In this work, the value of IC has been
chosen high enough to beproperly readable through a low-impedance
channel of the oscilloscope (current resolution in the order of 1 µA).
This value alsoprovides a fast estimationof the energy consumptionof
a single spike through the ON device, given by:

E =VTEICtpulse = 1V × 16μA×2:5μs = 40pJ ð2Þ

However, note that the device can be switched on with much lower
currents (see Supplementary Note 16) down to IC = 10 nA, thus pro-
viding excellent scalability of energy consumption. The ultra-low
energy operation also allows for efficient parallelization, accommodat-
ing high values of n and N parameters for MTM. Additionally, the
presented system achieves logarithmic integration through a prob-
ability mechanism, thus eliminating the need to supply energy for
charging a capacitance with each spike or for integration operations.
Thus, the device reduces the number of spikes, being effective in
consumption just after its switching i.e., when conductance is in
the LRS.

The device-level approach also exploits the volatility of the
memristive devices, which allows the spontaneous relaxation to a
ground energy state of the system where all devices are OFF. As a
result, after sufficient timedictated by the RRAM retention, the system
becomes ready again for a new computation without any need for
repeated initialization, thus leading to a substantial reduction of
energy consumption and system complexity. This property is also
fundamental to emulate the asynchronous computation of the biolo-
gical nervous system since the arrival of the signal serves as the trig-
gering input for computation while the absence of the signal lets the
system return to the ground state by spontaneous relaxation1,50. Fur-
thermore, since the reset phase is not required for our RRAM, the
device can be operated with unipolar voltages, thus providing a sig-
nificant advantage in the complexity of programming circuits and area
scaling of the selector device. Although the area scaling of the 1T1R
structure is not the focus of this study, it is useful to highlight certain
features of the presented RRAM device that may offer insight for
future developments. Specifically, our device exhibits the capability to
reduce the crucial parameters of programming voltage and program-
ming current in scaling 1T1R structures, in compliance with the
requirements for the integration of RRAM in the most recent techno-
logical nodes51. Additionally, it is important to emphasize that, due to
its volatility, the device does not require bipolar voltages for resetting
since it can operate in a unipolarmanner. This characteristic could also
potentially pave theway for a transition to a bipolar junction transistor
(BJT) selector, similar to the reported phase-change memory (PCM)
technology with related advantages52.

In summary, this work presents the neuromorphic circuits for
spatio-temporal signal processing with volatile RRAM relying on a
device-level approach. We demonstrate the implementation of the
main neuromorphic primitives for audio signal processing in the
cochlea, namely logarithmic integration and tonotopic mapping of
temporal information. Our tonotopic transformation is suitable for
speech recognition mimicking the biological counterpart, preserving
biological plausibility and explainability. These results have a general
validity beyond the audio signal processing thus supporting memris-
tive device for hardware processing of temporal signals with loga-
rithmically spaced features, enlarging the set of available
neuromorphic primitives necessary to reach the energy efficiency,
error tolerance, and high integration density promised by neuro-
morphic computing paradigm based on memristive devices.
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Methods
Devices fabrication
The volatile resistive devices presented in this work are co-integrated
on with Si-based transistors fabricated with standard CMOS tech-
nology. The bottom electrode is a graphitic carbon pillar with a
diameter of 70 nm connected to the transistor drain. The 5 nm of
hafnium oxide (HfOx) switching layer and the 100 nm silver (Ag) top
electrode are sequentially deposited by e-beam evaporation without
breaking the vacuum, within a monitored pressure of 3 × 10−6

mbar to carefully tune the HfOx stoichiometry and the Ag/HfOx

interface quality.

Devices characterization
All electrical characterizations and experiments are carried out in
probe station by using rhodium-plated tungsten needles for contact-
ing. Semiconductor parameter analyzer Agilent HP4156C is used for
the quasi-static characterization of the devices. Dynamic properties, as
well as the experiments, are studied using an AimTTi TGA12104 Arbi-
trary Waveform Generator and a Tektronik MSO58 Oscilloscope for
the acquisition.

Switching probability measurement protocol
In the presented measurement, the train amplitude and frequency
were set randomly in each cycle to avoid correlation effects.We tested
every possible combination of selected voltage and frequency for the
desired number of cycles. SupplementaryNote 7 schematically reports
our measurement protocol.

Simulations
All the numerical simulations concerning the switching probability and
MTM for cochlear-sensing and speech recognition are carried out on
MATLAB R2022b with our developedmodels. Neural network training
and inference for interpretability of MTM results are performed with
MATLAB Statistical and Machine learning toolbox.

Analog-to-Spike conversion
For our study of speech recognition, the analog audio signals are
processed with an analog-to-spike conversion algorithm. The infor-
mation about the amplitude of audio signals is captured thanks to 3
different thresholds used to generate 3 different pulse waveforms that
are supplied as input signal to the memristive tonotopic map circuit
(see Supplementary Note 14 for the block diagram of analog-to-spike
conversion and conversion traces examples).

Data availability
All data that support the findings of this study are provided within the
paper and its Supplementary Material. All additional information is
available from the corresponding authors upon request.

Code availability
The code used for simulations is available from the corresponding
author upon request.
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