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Cost-effectiveness and cost-utility of a digital
technology-driven hierarchical healthcare
screening pattern in China

Xiaohang Wu1,9, Yuxuan Wu 1,9, Zhenjun Tu 2,9, Zizheng Cao1, Miaohong Xu1,
Yifan Xiang1, Duoru Lin1, Ling Jin1, Lanqin Zhao 1, Yingzhe Zhang3, Yu Liu4,
Pisong Yan1, Weiling Hu1, Jiali Liu1, Lixue Liu1, Xun Wang1, Ruixin Wang1,
Jieying Chen2, Wei Xiao1, Yuanjun Shang1, Peichen Xie1, Dongni Wang1,
Xulin Zhang1, Meimei Dongye1, Chenxinqi Wang1, Daniel Shu Wei Ting5,6,
Yizhi Liu1,10 , Rong Pan 2,10 & Haotian Lin 1,7,8,10

Utilization of digital technologies for cataract screening in primary care is a
potential solution for addressing the dilemma between the growing aging
population and unequally distributed resources. Here, we propose a digital
technology-driven hierarchical screening (DH screening) pattern imple-
mented in China to promote the equity and accessibility of healthcare. It
consists of home-based mobile artificial intelligence (AI) screening,
community-based AI diagnosis, and referral to hospitals. We utilize decision-
analytic Markov models to evaluate the cost-effectiveness and cost-utility of
different cataract screening strategies (no screening, telescreening, AI
screening and DH screening). A simulated cohort of 100,000 individuals from
age 50 is built through a total of 30 1-year Markov cycles. The primary out-
comes are incremental cost-effectiveness ratio and incremental cost-utility
ratio. The results show that DH screening dominates no screening, tele-
screening and AI screening in urban and rural China. Annual DH screening
emerges as themost economically effective strategy with 341 (338 to 344) and
1326 (1312 to 1340) years of blindness avoided compared with telescreening,
and 37 (35 to 39) and 140 (131 to 148) years compared with AI screening in
urban and rural settings, respectively. The findings remain robust across all
sensitivity analyses conducted. Here, we report that DH screening is cost-
effective in urban and rural China, and the annual screening proves to be the
most cost-effective option, providing an economic rationale for policymakers
promoting public eye health in low- and middle-income countries.

Digital technologies have brought revolutionary transformations to the
healthcare industry, including big data, artificial intelligence (AI), cloud
computing, the Internet of Things (IoT), 5th generation (5G) wireless
networks, and digital security capabilities such as blockchain1–5. The
accelerated development of these technologies could be leveraged to

improve resource allocations and medical efficiency, especially in low-
and middle-income countries (LMICs) where high-quality healthcare
resources are scarce or unevenly distributed6,7. To fully realize these
potential benefits, further innovation of integrated platforms using a
combination of technologies remains to be explored.
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Previous studies have shown that AI screening, telemedicine
screening (telescreening) and AI-telescreening programs are more
cost-effective than traditional face-to-face screening mode8–11. To fur-
ther promote the equity and accessibility of healthcare, a digital
technology-driven hierarchical (DH) screening pattern has been pro-
posed. It consists of AI screening and diagnosis models based on
multiple examination devices, with cloud computing and IoT facil-
itating telecommunications12–14. The Zhongshan Ophthalmic Center
(ZOC), a prestigious ophthalmic hospital in China, has implemented
this approach since 2018. DH screening comprises three steps for
common ophthalmic disease management. In the first step, partici-
pants are instructed to take ocular pictures at home via mobile term-
inals for AI screening. Second, individuals showing signs of potential
eye conditions are directed to community facilities where they
undergo comprehensive AI-based diagnostic assessments. Finally,
patients identified as requiring further medical attention based on
positive AI results are referred to specialized tertiary hospitals for
appropriate treatments (Fig. 1). The DH screening pattern has sub-
stantially promoted medical service capability compared with tradi-
tional face-to-face mode, with the potential to be further applied to
screening, monitoring, and managing eye diseases in a home-based
setting6. However, the economic effects remain to be evaluated to
support policymakers’ decisions regarding promoting the application
at scale.

Cataracts are the leading cause of visual impairment worldwide,
accounting for more than half of blindness in LMICs15. With the global
trend of population aging, the number of cataract blindness cases in
China is projected to reach 20 million by 205016. Early diagnosis and
timely management of cataracts are essential for improving patients’
quality of life and reducing healthcareburdens17. However, themedical
resource distributions are far from satisfactory, particularly in primary
healthcare within LMICs18. The DH screening pattern achieves high
accuracy and provides real-time referable advice for patients with

cataracts6. Additionally, moderate to severe cataracts are visible
through external appearances captured bymobile terminals,making it
possible for home-setting screening on a large scale19. Therefore, cat-
aracts were chosen as a case study to conduct an economic analysis of
the DH screening, hoping to fill the evidence gap and promote its
application.

In this study, webuild decision-analyticMarkovmodels to analyze
the cost-utility and cost-effectiveness ofDH screening and compared it
with no screening, telescreening, and AI screening with different fre-
quencies in urban and rural China (Supplementary Fig. 1). The primary
outcomes are incremental cost-utility ratios (ICURs) and incremental
cost-effectiveness ratios (ICERs). One-way and probabilistic sensitivity
analyses are performed to test the robustness of the results. The study
shows that DH screening dominates no screening, telescreening andAI
screening in urban and rural China. Annual DH screening emerges as
themost economically effective strategy compared with telescreening
and AI screening. The findings remain robust across all sensitivity
analyses conducted. The following results show that DH screening
proves to be a cost-effective strategy in urban and rural China, which
serves as a practical reference for policymakers and healthcare service
providers in LMICs.

Results
Different screening strategies vs. no screening
Themean expectedmedical costs for a participant in the next 30 years
were $2236 (2227 to 2244), the QALYs gained were 14.31732 (14.31271
to 14.32192), and the expected years of blindness were 0.40993
(0.40924 to 0.41063) in the urban setting. The values for rural areas
were $2913 (2902 to 2924), 13.65998 (13.65572 to 13.66423), and
0.56266 (0.56204 to 0.56327), respectively. The cost-effectiveness and
cost-utility analysis showed that telescreening, AI screening and DH
screening were all dominant over no screening in urban and rural
settings (Table 1 and Fig. 2).

Fig. 1 | Diagram of the digital hierarchical (DH) screening pattern.
a Compositions of the digital technologies in the hierarchical screening platform.
b The workflow of DH screening and referral patterns. c AI screening and diagnosis
through the IoT and community-based clinics help distinguish suspected patients

and suggest referable patients to tertiary eye centers for comprehensive treatment.
DH screening digital hierarchical screening. AI artificial intelligence, 5G 5th gen-
eration wireless networks, IoT internet of things.
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One-way and probabilistic sensitivity analysis
To verify the robustness of the results, we conducted an extensive sen-
sitivity analysis, showing that the base-case results were robust to the
broad range of parameter values, and the ICURs were consistently less
than the per capita GDP of urban and rural areas (Fig. 3). Tornado dia-
grams showed the parameters that had the greatest influence on the
ICURs. In our study, the prevalence and utility of cataracts and the
indirect costs of blindness were common parameters in most screening
strategies. The results showed that all screening strategies were domi-
nant over no screening, which were robust to randomly distributed
parameters in urban and rural settings (Supplementary Fig. 2). By taking
10,000 random draws from the probabilistic sensitivity analysis, the
cost-effectiveness acceptability curvediagramshowed thatDH screening
was the best strategy, accounting for 76.64% and 74.77% of the simula-
tions in urban and rural areas under the current WTP thresholds (Fig. 4).

DH screening vs. telescreening and AI screening with different
frequencies
We evaluated the cost-effectiveness and cost-utility of DH screening
compared with telescreening and AI screening. The expected medical
costs for a participant in DH screening were $2189 (2181 to 2197), the
QALYs gained were 14.33654 (14.33191 to 14.34117), and the expected
years of blindness were 0.39556 (0.39487 to 0.39625) in the urban
setting. The data for rural settings were $2737 (2727 to 2747), 13.71855
(13.71417 to 13.72292), and 0.50804 (0.50739 to 0.50869), respec-
tively. The DH screening dominated telescreening and AI screening
(Table 1). We compared different frequencies to derive the most cost-
effective screening strategy (Fig. 2). For a screening range from once-
off, every 5 years to every year, a series of comparisonswith the former
interval showed that annual screening was the most cost-effective
strategy in DH screening (Table 2). Furthermore, annual DH screening
proved to be the most cost-effective strategy compared to tele-
screening and AI screening (Supplementary Table 1).

Discussion
In this study, we conducted economic evaluations of DH screening
with different screening strategies and found that it was more cost-

effective than no screening, telescreening, and AI screening strategies
in urban and rural China. Annual screening proved to be themost cost-
effective strategy to avoid cataract-related vision loss under the latest
WTP thresholds. In broad sensitivity analyses, the main outcomes
remained robust to a wide range of changes in parameters.

The traditional face-to-face screening and referral mode remains
mainstream in LMICs, requiring enormous amounts of manpower and
specialized equipment, thus compromising medical coverage and
efficiency. With further consolidation of telehealth in recent years,
telescreening has been widely accepted and has facilitated large-scale
screening in remote areas where high-quality medical services are
lacking. Recent studies have shown the cost-effectiveness of tele-
screening in common eye disease screening10,20,21. The rapid develop-
ment of AI technologies has brought novel breakthroughs in medical
industries, significantly improving healthcare efficiency and resource
utilization. Evidence indicates that AI screening is cost-effective in
screening retinopathy of prematurity, diabetic retinopathy (DR), mel-
anoma, dental caries, precancerous polyps, etc.22,23. Xie and colleagues
conducted a cost-minimization analysis to prove the superiority of
semi-automated AI telescreening of DR9. Recently, Liu et al. proved
that AI telescreening was cost-effective in multiple eye disease
screening in China11. Currently, the development of mobile health
(mHealth) and the IoT facilitates screening is undergoing a rapid
transition toward decentralization, where some or all health assess-
ments are performed remotely in participants’ homes instead of in
medical centers24. Numerous diseases have the potential to be
screened by deep learning using photography or video on smart-
phones as a diagnostic tool, including melanoma, scoliosis, certain
ocular disorders and related systematic diseases25–27. A previous study
showed the potential of cataract screening through anterior segment
pictures captured by smartphones13. A deep learning screening model
for infant vision impairment has recently been developed, allowing
parents to detect children’s vision disorders by recording their gazing
behaviors through smartphones at home with high accuracy13. In our
study, a DH screening patternwas implemented further promoting the
accessibility of vision screening in China. Our results showed that the
pattern could obtain even better economic returns than telescreening

Table 1 | Base-case cost-effectiveness and cost-utility results of different screening strategies in urban and rural settings

Cost-utility Cost-effectiveness
Comparison
screening interval
for ICER
calculation

Costs
per per-
son, $

QALYs
per
person

Incremental costs
per 100,000 peo-
ple screened, $

Incremental
QALYs per
100,000 people
screened

ICURs
(95% CI), $

Years of
blindness
per person

Years of blindness
avoided per 100,000
people screened

ICERs
(95% CI), $

Urban

No screening \ 2236 14.31732 \ \ \ 0.40993 \ \

Telescreening No screening 2215 14.33164 −2,099,312 1433 Dominating 0.39921 1073 Dominating

AI screening No screening 2197 14.33589 −3,806,182 1858 Dominating 0.39605 1389 Dominating

DH screening No screening 2189 14.33654 −4,628,416 1923 Dominating 0.39556 1438 Dominating

Telescreening \ \ −2,529,104 490 Dominating \ 365 Dominating

AI screening \ \ −822,234 65 Dominating \ 49 Dominating

Rural

No screening \ 2913 13.65998 \ \ \ 0.56266 \ \

Telescreening No screening 2806 13.70500 −10,708,193 4503 Dominating 0.52060 4205 Dominating

AI screening No screening 2750 13.71655 −16,372,083 5658 Dominating 0.50991 5275 Dominating

DH screening No screening 2737 13.71855 −17,608,255 5857 Dominating 0.50804 5462 Dominating

Telescreening \ \ −6,900,061 1354 Dominating \ 1256 Dominating

AI screening \ \ −1,236,171 199 Dominating \ 187 Dominating

Costs areexpressed inUSdollars.Costs,QALYs, andyearsofblindness are definedas lifetime valuesper person. Incremental costs, incrementalQALYs, ICURs, years ofblindnessavoided, and ICERs
aredefinedas values per 100,000people. The ICER thresholdsof cost-effectiveness are$31,656 and$41,757perQALYgained for rural andurban settings, respectively. The ICER thresholds of being
highly cost-effective are $10,552 and $13,919 per QALY gained for rural and urban settings, respectively. Negative ICUR or ICER is defined as dominating. ICER incremental cost-effectiveness ratio.
QALYs quality-adjusted life-years, ICUR incremental cost-utility ratio, DH screening digital hierarchical screening.
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Fig. 2 | Cost-utility curves for different screening strategies in China. a Cost-
utility analysis in urban setting.bCost-utility analysis in rural setting. Black solid line =
Three times the per capita GDP for the highly cost-effective frontier. Black dashed
line = One times the per capita GDP for the cost-effective frontier. Green dot = no
screening. Purple dots and dashed line = telescreening with different frequencies.

Pink dots and dashed line = AI screening with different frequencies. Blue dots and
dashed line = DH screeningwith different frequencies. Strategies on the cost-effective
frontier dominate strategies above the frontier. GDP gross domestic product, AI
artificial intelligence, QALYs quality-adjusted life-years, DH screening digital hier-
archical screening. Source data are provided as a Source Data file.
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and AI screening. The superiority ismainly attributed to easy access to
smartphone AI screening, increased referral compliance, and the
substantial reduction in human assessment time and labor costs
without sacrificing accuracy due to further community-based AI con-
firmation. The DH screening system has brought primary screening
into home settings through mobile terminals, which are much more
accessible to the population, especially in remote areas. Additionally,
participation through the IoT andAI canhelp address patient retention
challenges and promote the compliance of residents who need regular

screening and further referral7. After AI self-screening at home, only
suspected patients were referred for further examinations, thus
effectively avoiding costs related to unnecessary referrals and
examinations.

Previous economic evaluations of eye screeningmainly focused on
glaucoma,DR and age-relatedmacular degeneration (AMD)which cause
irreversible vision impairment and blindness9,10,28. Most strategies were
reported to be cost-effective in population-based screening. However,
in this study, we find that all cataract screening strategies dominate no

Fig. 3 | Deterministic one-way sensitivity analysis. Costs are expressed in US
dollars. The top five parameters that caused the greatest impact on the ICURs are
shown in the above figures. We performed one-way sensitivity analyses for tele-
screening vs. no screening (a andb), AI screening vs. no screening (c andd), andDH
screening vs. no screening (e and f) in urban (a, c, e) and rural (b, d, f) settings. The

thresholdsof cost-effectivenesswere$31,656and$41,757 perQALYgained for rural
and urban settings, respectively. The intervention was dominant if the ICUR value
was negative. DH screening digital hierarchical screening, GDP gross domestic
product, ICUR incremental cost-utility ratio, QALYs quality-adjusted life-years, AI
artificial intelligence. Source data are provided as a Source Data file.
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screening, achieving greater economic and societal returns. This is
attributed to the relatively high prevalence, low screening and treat-
ment costs, and significant postoperative visual improvement of catar-
acts compared with the foregoing irreversible blindness-causing
diseases. Importantly, our findings suggest that annual cataract
screening is the most cost-effective option for elderly individuals over
50. From once-off, every 5 years to 1 year, the more frequent the
screening strategy is, the more cost-effective it becomes. Aligning with
the guidelines indicating that high-risk individuals should have ocular
examinations once a year, this annual screening interval is clinically and
economically appropriate29. Additionally, different trends are shown in
urban and rural areas regarding the costs and benefits of DH screening
with varying frequencies (Fig. 2). In urban areas, both costs and QALYs
increase as the frequency increases sincemore frequent screening leads
to more spending and blindness years avoided. In rural settings, as the
screening frequency increases, more benefits are gained while total
costs decrease. The main reason is that more frequent DH screening
could save more indirect costs due to blindness in rural areas. First, the
prevalence of cataracts and the proportions of severe cataracts are
higher in rural areas. Second, due to relatively limited medical resour-
ces, the opportunistic case finding rate is lower than that in urban set-
tings. Rural patients would benefit from more frequent screening
programs for being spotted and treated; hence, total societal spendings
were saved by avoiding utility loss and blindness-related indirect costs.
The results suggest that DH screening could produce great economic
benefits especially in rural China, which can also serve as an example for
LMICs with similar settings or epidemiologic characteristics.

This study has several strengths. We propose the pilot DH
screening pattern and assess its cost-effectiveness and cost-utility in
urban and rural China. Key parameters are derived from real-world
investigations and research mostly specific to China and Asian coun-
tries. The thresholds are calculated based on the latest data, including
the local GDP in 2022, the urbanization rate in 2022, the mortality rate
in the China Population Census Yearbook 2020, etc., ensuring the
accuracy and effectiveness of the main conclusions. However, there
remain limitations to be discussed. First, the process of disease treat-
ment was simplified in illustrating the workflow of the DH screening
strategies. Cataracts were selected for analysis as they are recognized

as the leading cause of vision loss and blindness worldwide. Addi-
tionally, it was presumed that patients with bilateral cataracts would
demonstrate similar levels of severity and postoperative visual out-
comes. The costs and utility might vary if dissymmetric cataracts or
postoperative complications are considered. Second, comprehensive
ocular examinations including the anterior segment and retinal fundus
are more practical and efficient in real-world applications. Multiple eye
disease screening will be considered in our future research. Although
only cataract is considered in the simulated analysis, we would
replenish the workflow to address this ethical issue, meanwhile sum-
marize the percentages of missing out those chronic diseases (e.g.,
glaucoma, AMD) in preparation for the next study involving multiple
diseases screening. For instance, once the participants are presented
with nonreferral mild cataract but accompanied by unmatched poor
vision (suspicious of other ocular diseases), the trained staff in the
community-based clinic will give a reminder of further referral and
comprehensive examinations, thus avoidmissing out other chronic eye
diseases. Third, although per capita GDP is the standard way of setting
WTP thresholds in cost-effectiveness analysis, the conditions in China
are different. China has a smaller proportion of consumptionmarket in
GDP than theUnited States. Thus, the “money in the people’s pocket” is
not reflected by the GDP in the same way as the other countries and a
better way to derive WTP in the Chinese setting is needed.

In conclusion, this study provides initial evidence that the DH
screening pattern is more cost-effective than no screening, tele-
screening and AI screening in China and feasible for further imple-
mentation in other fields of medicine worldwide. The results suggest
that the combination of digital technologies andmHealth applications
could effectively promote public eye health management and quality
of life, thus providing a valuable reference for the government and
policymakers in LMICs.

Methods
Model overview
A decision-analytic Markov model was constructed using TreeAge Pro
2022 (TreeAge Software; Williamstown, MA, USA) for the economic
analysis of different screening strategies for cataracts. The model was
built on a simulated cohort of 100,000 residents from 50 years

Fig. 4 | Cost-effectiveness acceptability curves of the screening strategies with
different frequencies. a Cost-effectiveness acceptability curves in urban setting.
b Cost-effectiveness acceptability curves in rural setting. The curve of each color
represents a screening strategy, and its acceptability probability represents the
ratio by which the corresponding screening strategy outperforms other screening
strategies as WTP changes in the probabilistic sensitivity analysis. Costs are

expressed in US dollars. Solid line = Three times the per capita GDP for the highly
cost-effective frontier. Dashed line = One times the per capita GDP for the cost-
effective frontier. DH screening digital hierarchical screening, GDP gross domestic
product, AI artificial intelligence, WTPwillingness to pay. Source data are provided
as a Source Data file.
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through a total of 30 1-yearMarkov cycles, which is the common target
population based on previous economic evaluations of eye disease
screening in elderly individuals10,11,28. The participants were allowed to
enter the model as either healthy (free from cataracts) or unhealthy
(with cataracts) and could progress to death from any health states.
The primary outcomes were ICURs and ICERs. We assumed that the
severity and postoperative visual acuity for bilateral cataract patients
were similar. Based on the clinical practice guidelines, the severity of
cataracts is assessed by slit-lamp photographs using LOCS grading
standards30. Increased cataract severity is strongly associated with a
decrease in visual acuity31. Therefore, cataract patients’ BCVA is one of
the common classification methods in clinical trials11,32,33. We derived
data of mild, moderate and severe cataracts based on patients’ best
corrected visual acuity (BCVA) > 0.3, 0.1–0.3, and <0.1 respectively
from published research11,34. Moderate and severe cataracts were
identified as referable cataracts35,36. A Markov model was constructed
to simulate the disease progression of mild and moderate to severe
cataracts. During each cycle, the participants either stayed in the same
stage or transitioned to themore severe phase (Supplementary Fig. 3).
Accordingly, wedefined three postoperative groups basedonpatients’
BCVA after surgery, namely the POST-1 group (BCVA >0.3), the POST-2
group (BCVA 0.1–0.3), and the POST-3 group (BCVA<0.1) for utility
analysis32,33. Since there was no significant change in postoperative
visual outcomes during the long-year follow-up, we assumed that
patients’ visual acuity and utility remained stable after surgery36.
Severe cataracts and the POST-3 group were combined as bilateral
blindness for indirect cost calculations10,28. We collected data from
real-world eye screening programs and a literature search of pre-
valence, compliance, utility, and other parameters,most ofwhichwere
specific to China or other LMICs. The costs of screening, examination,
and treatment came from real-world eye disease screening programs
and the ZOC.

Screening strategies and scenarios
No screening. Cataract patientsmight be diagnosed and treated upon
opportunistically presenting at a hospital for another concern, without
routine ophthalmic screening.

Telescreening. Residents over 50 were educated and invited to par-
ticipate in a cataract telescreening in community-based clinics,
including the visual acuity test and slit lamp photography. The data
were transmitted to the ZOC telemedicine platform. One certificated
ophthalmologist assessed the severity and provided an assessment
report back to the primary care settings. The participants returned to
collect the reports after one week. Once referable cataracts were
detected, patients were referred to the ZOC for comprehensive
examinations, diagnosis, and treatments. The others were suggested
for follow-up.

AI screening. Residents over 50 were educated and invited to parti-
cipate in AI screening in community-based clinics, including the visual
acuity test and slit lamp photography. The AI models provided a real-
time diagnosis and referable advice. Participants with referable catar-
acts were referred to the ZOC. The others were suggested for
follow-up.

DH screening. Residents over 50 were educated and invited to parti-
cipate in DH screening by using an app for AI cataract screening on
smartphones at home. The photographs of ocular anterior segments
were captured by themselves or family members as instructed. High-
quality images were uploaded for AI diagnosis. Suspected patients
were referred to community clinics for visual acuity tests and slit lamp
photography assisted by primary eye care staff. Once referable catar-
actswere detected byAI, patientswere referred to the ZOC. Theothers
were suggested for follow-up (Supplementary Fig. 1).

Cataract prevalence, transition probabilities, and screening
performances
The prevalence of senile cataracts is 26.66% and 28.79% in urban and
rural areas, respectively, based on the systematic review and meta-
analysis of large-scale epidemiological surveys of people over 50 years
old in China37. The annual transition probabilities were derived from
the literature on the natural progression of cataracts in the Chinese
population. In studies reporting multiyear incidences, the annual
incidence was calculated as r = −log(1- p)/t, where r represents the
1-year incidence and p means the cumulative incidence over interval
t38. (Supplementary Table 2).

Themodel performances of DH smartphone-based screening and
community-based AI/DH screening were derived from an ongoing
national cataract AI screening investigation launched by the ZOC in
2018 to promote collaborative efficiency and medical resource
coverage6. The AI cataract screening model involving multilevel clin-
ical scenarios proved to be robust in a real-world evaluation. In the first
stage of smartphone-based screening, the AI model achieved a sensi-
tivity of 88.67% and a specificity of 89.33%. Next, in the community-
based screening setting, the AI agent distinguished referable cataracts
with a sensitivity of 94.80% and a specificity of 97.00%. The perfor-
manceof telemedicine screeningwas collected fromprevious research
and had a sensitivity of 95.00% and a specificity of 97.00%39. (Sup-
plementary Table 3).

Screening and treatment costs
Direct and indirect costs were included in the analysis. Direct costs
included ophthalmic screening, examination, treatment, follow-up,
transportation, food, and accommodation charges for further visits to
specialized hospitals. Indirect costs consisted of one accompanying
family member’s time and wage loss based on the time spent and per
capita daily income in rural and urban areas. The costs of examination,
treatment, and follow-up were obtained from the ZOC under the
Chinese government’s control and varied little from institution to
institution. All costs were expressed in US dollars at the exchange rate
as of 2 November 2022 (1 USD = 7.2 CNY), listed in Supplementary
Table 4.

Screening costs included equipment, labor, and transportation
costs. The annualized cost offixed assets was calculated by assuming a
life span of 5 years, collected from the Finance Department and Pro-
curement Center of the ZOC. Since the participants were over 50, we
assumed that they did not produce a wage loss (Supplementary
Table 5).

Patients with mild cataracts were suggested for follow-up till next
screening. For referable patients, cost computation for examination,
treatment and follow-up are listed in detail in Supplementary Table 6.
For patients with bilateral blindness, the annual economic burden of
indirect costs was assumed to be $3600 per person, including loss of
labor resources and productivity of caregivers, based on previous
research28.

Other parameters (compliance, utility, mortality rate, and
threshold)
We assumed that 98% of residents had access to a smartphone and
could use the app for AI cataract screening on their own or with
assistance from family members based on the coverage of mobile
phones and 5G network in China40,41. Compliance with telescreening
and AI screening in community-based clinics was derived from a pre-
vious study that indicated 95% compliance in rural and 90% com-
pliance in urban settings10,11. Additionally, a randomized controlled
trial (RCT) study suggested that the hospital referral adherence of AI
screening and traditional screeningwas 52% and 40%, respectively7,10,11.
Considering that patients in the DH screening group had received two
positive results and referral reminders, once home-based self-screen-
ing feedbacks more than other groups, a reasonable higher referral
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adherence rate of 62% was used in this group. Compliance of surgical
therapywas 91% and 80% in urban and rural settings, respectively11. For
those who fail to participate in the screening program, or don’t adhere
to referral or treatment, the possible results can be natural progression
of cataracts; otherwise, they can also be diagnosed and treated in
opportunistically case finding or next screening cycle10,42.

The utility of healthy individuals without cataracts was defined as
128. Patients with mild, moderate, and severe cataracts have utility
values of 0.60, 0.45, and 0.26, respectively43. The utility values of the
POST-1, 2 and 3 groupswere0.75, 0.55 and0.53, respectively, based on
previous research43.

Age-specific mortality was obtained from the China Population
Census Yearbook 2020 from the National Bureau of Statistics44.
According to previous research, increased odds of mortality for
patients with cataracts and no difference after surgery were also
accounted for (Supplementary Table 3)45,46. The discounted cost and
utility rate was 3.5% per annum10,47.

According to theWHO, the definition of being cost-effective refers
to interventions that cost less than three times the per capita gross
domestic product (GDP). The highly cost-effective strategy refers to
interventions that cost less than the per capita GDP48. The per capita
GDPwas calculated for urban ($13,919) and rural ($10,552) China based
on the 2022overall per capita nationalGDP ($12,741), urbanization rate
(0.65), and urban-rural ratio (2.45) of per capita disposable income
using the following formulas10,11,49:

The per capita GDP of urban China

=
overall per capita national GDP

ð1 + 1
urban to rural ratio of per capita disposal incomeÞ×urbanization rate

,

The per capita GDP of rural China

=
overall per capita national GDP

ð1 +urban to rural ratio of per capita disposal incomeÞð1� urbanization rateÞ :

As a result, the thresholds of willingness to pay (WTP) were
$41,757 and $31,656 per quality-adjusted life year (QALY) gained for
urban and rural China, respectively. Notably, if the ICUR or ICER was
negative with fewer costs spent andmore benefits gained, the strategy
was defined as dominating47.

Primary outcomes
The primary outcomes were ICURs and ICERs, calculated using the
following formulas:

ICURs=
incremental cost
QALY gained

,

ICERs =
incremental cost

years of blindness avoided
:

Sensitivity analysis
We performed extensive deterministic sensitivity analysis and prob-
abilistic sensitivity analyses to assess the robustness of the main out-
comes. Fluctuation ranges of 10% (probability data including
prevalence, sensitivity, specificity, utility, transition probability, etc.),
20% (costs of examinations, treatments, follow-up, etc.), and 50%
(screening costs and indirect costs for blindness) were set for sensi-
tivity analysis10. Tornadodiagrams showed theparameters thathad the
greatest influence on the ICURs. Probabilistic sensitivity analysis eval-
uated the impact on the results by taking 10,000 random samples
from the probability distribution of each parameter. Themethods and
results conforming to the Consolidated Health Economic Evaluation
Reporting Standards were listed in Supplementary Table 7.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used to construct the model are publicly available and refer-
enced. All parameters and their values can be found in Supplementary
Tables 2–3 and SupplementaryReferences. Data can only be shared for
noncommercial academic purposes and will require a formal data use
agreement. Please email all requests for academic use of raw and
processed data to corresponding authors at linht5@mail.sysu.edu.cn.
For requests from verified academic researchers, access will be eval-
uated by the data access committee and be granted within one
month. Source data are provided with this paper.

Code availability
The model was constructed using the software TreeAge Pro 2022
(Healthcare version). Themodel is intended for research purposes and
its use is limited to this purpose. The model can be obtained via a
request to the corresponding author linht5@mail.sysu.edu.cn. How-
ever, access will only be granted if the intended use is limited to non-
commercial academic purposes. Access will be evaluated by the code
assessment committee and grantedwithin onemonth. The example of
Markov model and the pseudocode for the algorithm analysis used in
this paper is provided in the Supplementary Data 1.
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