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LaMg6Ga6S16: a chemical stable divalent
lanthanide chalcogenide

Yujie Zhang1, Jiale Chen1, Kaixuan Li1, HongpingWu1, Zhanggui Hu1, JiyangWang1,
Yicheng Wu1 & Hongwei Yu 1

Divalent lanthanide inorganic compounds can exhibit unique electronic con-
figurations andphysicochemical properties, yet their synthesis remains a great
challenge because of the weak chemical stability. To the best of our knowl-
edge, although several lanthanide monoxides epitaxial thin films have been
reported, there is no chemically stable crystalline divalent lanthanide chalco-
genide synthesized up to now. Herein, by using octahedra coupling tetrahedra
single/double chains to construct an octahedral crystal field, we synthesized
the stable crystalline La(II)-chalcogenide, LaMg6Ga6S16. The nature of the
divalent La2+ cations can be identified by X-ray photoelectron spectroscopy,
X-ray absorption near-edge structure and electron paramagnetic resonance,
while the stability is confirmed by the differential thermal scanning, in-situ
variable-temperature powder X-ray diffraction and a series of solid-state
reactions. Owing to the particular electronic characteristics of La2+(5d1),
LaMg6Ga6S16 displays an ultrabroad-band green emission at 500 nm, which is
the inaugural instance of La(II)-based compounds demonstrating luminescent
properties. Furthermore, as LaMg6Ga6S16 crystallizes in the non-
centrosymmetric space group, P−6, it is the second-harmonic generation
(SHG) active, possessing a comparable SHG response with classical AgGaS2. In
consideration of its wider band gap (Eg = 3.0 eV) and higher laser-induced
damage threshold (5×AgGaS2), LaMg6Ga6S16 is also a promising nonlinear
optical material.

Lanthanide inorganic compoundswith lowoxidation state (+2) that are
capable of exhibiting intriguing physicochemical properties due to the
presence of outer shell 4f or 5d conduction carriers in divalent lan-
thanides ions have showcased the immense potential for application in
various frontier fields such as superconductivity, magnetics,
photoluminescence1–8. However, one intractable drawback to divalent
lanthanide compounds is the chemical stability, which seriously pre-
cludes their development9,10. Recently, although several new types of
divalent lanthanide monoxides epitaxial thin films, including YO and
LaO, have been prepared, the surfaces of these films must be capped
in-situ AlOx layer to prevent the oxidation at room temperature9,11.
Thus, synthesizing the chemically stable divalent lanthanide

compounds is still faced by great challenges. To date, as we know, no
any successful stable crystalline divalent lanthanide chalcogenide has
been synthesized.

Based on the first-principles calculations, Li et al. have uncovered
the octahedral crystal field is vitally pivotal for the formation of the
divalent lanthanum in LaO12. We have also noticed that almost all the
divalent lanthanides (Ln2+) in lanthanide monoxides and mono-
chalcogenides are coordinated by six Q (Q =O or S) atoms to form the
[LnQ6] octahedra

4,13. On the contrary, the high-oxidation-state lantha-
nides (Ln3+) is typically found in the high-coordinated [LnQx] (x = 7 or
8) polyhedra, e.g., La2S3

14, LaGaS3
15, La2Ga2GeS8

16, La6MgGe2S14
17,

K3LaP2S8
18, KYGeS4

19,20, Ba3La4O4(BO3)3X (X = F, Cl, Br)21, which also

Received: 25 August 2023

Accepted: 21 March 2024

Check for updates

1Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, College of Materials Science and Engineering, Tianjin University of
Technology, Tianjin, China. e-mail: yuhw@email.tjut.edu.cn

Nature Communications |         (2024) 15:2959 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-5607-0628
http://orcid.org/0000-0002-5607-0628
http://orcid.org/0000-0002-5607-0628
http://orcid.org/0000-0002-5607-0628
http://orcid.org/0000-0002-5607-0628
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47209-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47209-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47209-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-47209-4&domain=pdf
mailto:yuhw@email.tjut.edu.cn


conforms to Pauling’s well-known second rule, i.e., high-valence is
favored for high coordination22. On the other hand, Evans and Meyer
et al.’s research show that the construction of the proper anionic fra-
meworks in combination with lanthanide cations can enhance chemi-
cal stability by its gain in lattice energy23, as corroborated via the
synthesis of a series of stable divalent lanthanide organic complexes,
including [(18-crown-6)K][(C5H4SiMe3)3Y]

24, [K(18-crown-6)(OEt2)]
[(C5H3(SiMe3)2−1,3)3La]

10, and [K([2.2.2]crypt)][LaCp”3](Cp”=1,3-
(SiMe3)2C5H3), [2.2.2]crypt=4,7,13,16,21,24-hexaoxa-1,10-diazabicy-
clo[8.8.8]hexacosane)10.

Clearly, the above studies have implied that the strong octahedral
crystal fields and proper anionic framework are crucial for the for-
mation of stable divalent lanthanide compounds. In the recent
research, by adopting octahedra to couple tetrahedra single/double
chains strategy, a stable crystalline [Mg/Ga-S]∞ anionic frameworkwith
octahedral channel (C3h) has been constructed by our group and Pan’s
group25,26, where alkali and alkaline-earth or even other monovalent or
divalent cations can be filled (Fig. 1), and all of the resulting com-
pounds exhibit the similar crystal structures, e.g., AMg3M3Q8 (A=Li, Na,
Ag; M=Al, Ga; Q = S, Se) and AeMg6Ga6S16 (Ae=Ca, Sr, Ba). Based on
these, we speculated that the framework should be also available for
the syntheses of the divalent lanthanide chalcogenide because of its
particular structural feature and strong accommodating ability for a
wide range of elements and oxidation states. Guided by these ideas,we
introduced the lanthanum (La) into the stable [Mg/Ga-S]∞ anionic
framework and successfully synthesized the crystalline La(II)-chalco-
genide, LaMg6Ga6S16. In its structure, the stable [Mg/Ga-S]∞ framework
channels create the strong [LaS6] octahedra crystal field, which results
in the formation of stable divalent La2+ possessing the presence of
outer shell 5d1 conduction carriers. Interestingly, owing to the unique
electronic characteristics of La2+(5d1), LaMg6Ga6S16 exhibits an
ultrabroad-band green emission at 500nm with an excitation of
360nm. This is the inaugural instance of La(II)-based compounds to
display luminescent properties. Additionally, as LaMg6Ga6S16 crystal-
lizes in the noncentrosymmetric space group of P−6, the excellent
nonlinear optical (NLO) properties are also observed in LaMg6Ga6S16,
including the relatively large second-order harmonic generation (SHG)
response (~0.8×AgGaS2), wide band gap (Eg = 3.0 eV), high laser-
induced damage threshold (LIDT) (5 × AgGaS2), and wide transparent
window (0.41-20 μm). These make LaMg6Ga6S16 a promising NLO

crystal. Herein, we will report its synthesis, structure, and luminescent
and NLO properties.

Results and discussion
Experimental synthesis and structure determination of
LaMg6Ga6S16
Polycrystalline LaMg6Ga6S16 was synthesized through a conventional
solid-state technique in sealed silica tubes at 1233 K and the purity of
phase was verified by the powder X-ray diffraction (XRD) (Supple-
mentary Fig. 1). Furthermore, the energy-dispersive spectroscopy
measurement showed the existence of La/Mg/Ga/S, and their average
atomic ratios were approximately equal to the theoretical ones, 3.45%,
20.69%, 20.69%, and 55.12% (Supplementary Fig. 2). Then, the
millimeter-sized single crystals of LaMg6Ga6S16 were grown bymelting
and re-crystallizing the stoichiometric pure phase. By using these
crystals, the crystal structureof LaMg6Ga6S16was determinedby single
crystal XRD. It indicates that LaMg6Ga6S16 crystallizes in the non-
centrosymmetric hexagonal space group P-6 (No.174), with cell para-
meters of a = 16.7154(5) Å, c = 7.4147(3) Å, and V = 1794.15(13) Å3 (Sup-
plementary Table 1). In the asymmetric unit, there are three unique La,
six unique Mg, three unique Ga, and eleven S atoms (Supplementary
Table 2). TheMg atoms are six-coordinated forming [MgS6] octahedra
with the Mg−S distances ranging from 2.482(11) to 2.834(18) Å. All of
the Ga atoms are coordinated by four S atoms to form [GaS4] tetra-
hedra, and theGa-S distances range from2.226(7) to 2.333(6) Å. The La
atoms are coordinated by six S atoms to form [LaS6] octahedra with
La–S distances ranging from 2.963(7) to 2.994(7) Å. All of these dis-
tances (Supplementary Table 3) are consistent with those in other
chalcogenides17,27,28.

The structure of LaMg6Ga6S16 is shown in Fig. 2. Clearly,
LaMg6Ga6S16 features a three-dimensional (3D) framework with C3h

symmetry along the c axis and constructed by the [MgS6] octahedra
coupling [GaS4] tetrahedra single/double chains (Fig. 2a). In detail, the
MgS6 octahedra are connected with each other via corner-sharing and
face-sharing (in the a-b plane) and edge-sharing (along the c-axis) to
fabricate a [Mg-S]∞ framework, as shown in Fig. 2b. While the [GaS4]
tetrahedra are connected via corner-sharing to form two types of Ga-S
chains along the c-axis, i.e., [Ga(1)S3]∞ single chains (Fig. 2c) and
[Ga(2,3)2S4]∞ double chains (Fig. 2d). Furthermore, the resulting [Ga(1)
S3]∞ single chains are connected and fixed in the [Mg-S]∞ frameworkby
theGa-S bonds to create the [Mg/Ga-S]∞ framework (Fig. 2e), which are
further linked by the [Ga(2,3)2S4]∞ double chains to construct the 3D
framework structure of LaMg6Ga6S16. The La atoms fill the channel-like
cavities of the 3D framework to balance the residual charges (Fig. 2f).

Interestingly, the La atoms in LaMg6Ga6S16 exhibit the scarcely
seen divalent state (+2), which was only reported in three metastable
inorganic compounds LaO, LaS and LaS2 with multiple phase transi-
tions (α: P21/b; β: Pnam; γ: P4/nmm)29,30 and two organic complexes
[K(18-crown-6)(OEt2)][(C5H3(SiMe3)2−1,3)3La] and [K([2.2.2]crypt)]
[LaCp”3](Cp” = 1,3-(SiMe3)2C5H3), [2.2.2]crypt=4,7,13,16,21,24-hex-
aoxa-1,10-diazabicyclo[8.8.8]hexacosane)4,9,10. To ascertain the oxida-
tion state of La2+ in LaMg6Ga6S16, X-ray photoelectron spectroscopy
(XPS) measurement and analysis for La metal, LaMg6Ga6S16, and La2S3
were conducted and demonstrated, as shown in Fig. 3a. The results
show that the peak position of La 3d3/2 (851.5 eV) and 3d5/2 (834.1 eV) in
LaMg6Ga6S16 is located between those of La 3d3/2 (851.7 eV) and 3d5/2
(834.9 eV) in La metal (La0) and La 3d3/2 (851.2 eV) and 3d5/2 (833.7 eV)
in La2S3 (La

3+), suggesting the divalent state (+2) of La in LaMg6Ga6S16
9.

To better characterize the chemical valence of La in LaMg6Ga6S16, the
synchrotron X-ray absorption spectroscopy (XAS) measurements of
LaMg6Ga6S16 and La2S3 were performed. As indicated by the La L-edge
X-ray absorption near-edge structure (XANES) spectra (Fig. 3b),
LaMg6Ga6S16 exhibits an absorption edge with energy lower than that
of La2S3, indicating a lower valence state La inLaMg6Ga6S16 than thatof
La2S3 (+3)

31,32. This is in good agreement with the XPS results. Further,

128

144
152

186
197

215
222

100

125

150

175

200

225

250

)
mp(

suidar
ci

mot
A

Cu Ag Li Na Ca Sr Ba

AgS3/CuS3 LiS6/NaS6 CaS6 SrS9/BaS9

C3h

Fig. 1 | The accommodating ability of [Mg/Ga-S]∞ framework. The accom-
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rahedron, and LaS6 octahedron a; [Mg-S]∞ framework b; 1D [Ga(1)S3]∞ chain c;
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viewed along the c-axis, the dashed line represent single unit cell f. The MgS6
octahedra firstly connect with each other via corner-sharing (in the a-b plane) and

edge-sharing (along the c-axis) to form Mg-S framework with [Ga(1)S3]∞ single
chains connected and fixed in the framework by the Ga-S bonds. Then, these
adjacent open frameworks are further linked by the [Ga(2,3)2S4]∞ double chains to
create the [Mg/Ga-S]∞ framework. The color codes for the atoms are blue: La, violet:
Mg, red: Ga, grey: S.
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we also used electron paramagnetic resonance (EPR) to characterize
the La2+ (5d1) in LaMg6Ga6S16 sample. As shown in Fig. 3c, a distinct EPR
signal is observed for LaMg6Ga6S16 at g = 1.980, which could be
attributed to an unpaired electron interacting strongly with the
nucleus of 139La23. The similar EPR signals have been well-reported on
defective [K(18-crown-6)(OEt2)][(C5H3(SiMe3)2−1,3)3La] and [K([2.2.2]
crypt)][LaCp”3] and can be considered as the signature of the exis-
tence of La2+ 10. In addition, the bond valence sums calculations result
in the values of 1.96–2.13 for La2+, 1.80–2.05 for Mg2+, 2.97–3.00 for
Ga3+, and 1.82–2.18 for S2- 33. All of these indicate the nature of the
divalent La2+ cations in LaMg6Ga6S16.

Further, the thermal behavior of LaMg6Ga6S16 was studied by
differential thermal scanning (DSC) measurements. Clearly, only one
endothermic peak at 1140 °C was observed on the heating DSC curve
(Supplementary Fig. 3), suggesting that LaMg6Ga6S16 did not undergo
the decomposition and structural phase transitions when the tem-
perature was increased from room temperature to 1140 °C. Moreover,
in-situ variable-temperature powder X-ray diffraction and a series of
solid-state reactions in the sealed silica tubes with the different calci-
nated temperatures show LaMg6Ga6S16 has no phase transition when
its polycrystalline sample was heated from 10K to 1273 K (Supple-
mentary Fig. 4), which also manifest that LaMg6Ga6S16 is thermally
stable.Meanwhile, the crystal of LaMg6Ga6S16 was placed in the air and
water at room temperature for one week with no decomposition or
degradation observed (Supplementary Fig. 5). In addition, Global
Instability Index (GII) of LaMg6Ga6S16 is calculated33,34, and the result
(0.088) is lower than 0.2 v.u. That also indicates the structural stability
of LaMg6Ga6S16

35–37.
The nature of the stable divalent La2+ cations in LaMg6Ga6S16

could be attributed to the unique [Mg/Ga-S]∞ anionic framework.
Comparing LaMg6Ga6S16 with LaO and LaS, it can be seen that these
La2+ cations exhibit the similar coordination features, i.e., La2+ cations
are six-coordinated in LaO6 or LaS6 octahedral crystal fields (Fig. 3d),
while the previous studies in LaO also elucidate that octahedral crystal
field is helpful for the formation of divalent lanthanum12. In LaO and
LaS, LaO6 and LaS6 octahedra are connected with each other via edge-
sharing to build the whole structure, respectively. According to Paul-
ing’s third rule22, such connections are disadvantageous for structural
stability owing to the increased cation–cation electrostatic repulsion.
Also, the calculated results of their GII show that LaO (0.215) and LaS
(0.349) have greater than 0.2 valence unit (v.u)34, which indicates their
structures are indeedmetastable. Importantly, previous research finds
that constructing the proper anionic frameworks to couple lanthanum
cations can enhance the chemical stability of compounds by effec-
tively harnessing the gain in lattice energy23. The formation of both
divalent lanthanum organic complexes is an excellent example to
demonstrate this concept (Fig. 3e). Similar to the case with organic
complexes, we developed a crystalline [Mg/Ga-S]∞ structural frame-
work by adopting octahedra coupling tetrahedra single/double chains
strategy. Of note, such a framework possesses interconnected struc-
tures inwhich the neatly arranged [Ga-S] chainswere connected by the
[Mg-S] framework via covalent bonds. Such interconnected structure
endowed [Mg/Ga-S]∞ structural framework with strong chemical sta-
bility, which has also been demonstrated in the reported covalent
organic frameworks38. Additionally, the stable structural framework
can be used as a template to accommodate a series of A atoms (A=Li,
Na, Ca, Sr, Ba, and even La) while spatially confining these atoms into
atomic-scale channels via coordination configurations. In particular,
the coordination bond lengths of A-S are in the range of 2.934–3.138 Å,
which provides a suitable micro-environment for La because the bond
lengths of La-S are about 3.000Å16,39. More importantly, the crystalline
[Mg/Ga-S]∞ framework channels possess C3h symmetry along the c-
axis, in which the six-coordinated LaS6 octahedral crystal field can be
created (Fig. 3f). That facilitates the formation of divalent lanthanum
when introducing La into the crystalline [Mg/Ga-S]∞ anionic

framework. Further, the LaS6 octahedra in LaMg6Ga6S16 are isolated
and aligned arrangements along the c-axis with a longer La-La distance
of 7.4147Å than 4.1394Å in LaS, which greatly reduces electrostatic
repulsionbetween La2+. These structural attributes of LaMg6Ga6S16 will
be able to promote it exhibiting good chemical stability.

Photoluminescence (PL) properties
Given the electronic characteristics of divalent lanthanum, we inves-
tigated the luminescence features of LaMg6Ga6S16. The PL excitations
at room temperature (298 K) were measured under the excitation of
340–380nm. As shown in Fig. 4a, the optimal excitation wavelength is
about 360nm. Under the excitation of 360nm at room temperature,
LaMg6Ga6S16 shows anultrabroad-bandgreen emission at 500nmwith
a full width at half maximum (FWHM) of 127 nm (Fig. 4b). The ultrab-
road emission band cover almost the whole visible light region and
could find applications in the field of human-centric full-visible-
spectrum lighting40. Meanwhile, this characteristic green emission
under 360 nm excitation endows LaMg6Ga6S16 with the potential light-
emitting diode application under the excitation of commercial near
ultraviolet chips41. Further, to investigate the origin of luminescence
properties, the thermoluminescence (TL) measurement of
LaMg6Ga6S16 is performed. As shown in Fig. 4c, the sample shows a
very weak TL glow curve in the range of 290K to 450K, indicating a
low content of defects in LaMg6Ga6S16. By fitting the TL curve with two
Gaussian bands peaking at 346K and 384K, the characteristic trap
depths (ET) were estimated to be 0.69 and 0.77 eV by using the crude
relationship ET = Tm/500 eV, where Tm represents the temperature (K)
of the TL fitting peak42,43. In view of the EPR results (g = 2.008) (Fig. 3c),
it is evident that the two trap depths originate from the intrinsic
defects, corresponding to the slight S vacancies defect44,45. Based on
these studies, the strong green emission observed in LaMg6Ga6S16
does not stem from intrinsic defects of exceedingly low content. In
order to find out the origin of PL property of LaMg6Ga6S16, we also
measured the luminescence features of CaMg6Ga6S16 and
SrMg6Ga6S16, which are isomorphous to LaMg6Ga6S16 with chemical
substitutions from La to Ca or Sr. Experimental results indicate
CaMg6Ga6S16 (Fig. 4d) and SrMg6Ga6S16 (Supplementary Fig. 6) have
no PL emission. Also, when the polycrystalline samples of
CaMg6Ga6S16, SrMg6Ga6S16 and LaMg6Ga6S16 were radiated by the UV
irradiation, only LaMg6Ga6S16 exhibited the green light emission
(Supplementary Fig. 7). These results suggest that the PL property of
LaMg6Ga6S16 shouldcome from the La cations, rather than the [Mg/Ga-
S]∞ anionic frameworks. But, the previous research46 has confirmed
that the trivalent La3+ cations cannot exhibit luminescent properties
(we also measured the PL spectrum of La2S3 (Supplementary Fig. 8),
which show that La2S3 with the trivalent La3+ cations have no PL
property). So, these results also further indicate the nature of the
divalent La2+ (5d1) cations in LaMg6Ga6S16. Referencing Li’s, et al. first-
principles calculations on the octahedral crystal-field splitting gap
between the upper-lying eg and lower-lying t2g for the La2+ 5d orbitals in
monoxide LaO, we can conclude that the green emission position at
500 nm in LaMg6Ga6S16 should originate from the d-d transition of the
La2+ within the low-coordinated octahedral crystal field, because the
octahedral crystal-field splitting gap for the La2+ 5d orbitals is
approximately 2.50 eV (Fig. 4e)1,10,12,47, which is precisely consistent
with the green emission position at 500nm in LaMg6Ga6S16.

Meanwhile, the decay curve of LaMg6Ga6S16 under excitation at
360nm, monitored at the peak of 500nm at room temperature is
presented in Fig. 4f. The decay curve can be fitted using a double
exponential decay formula (1)48

IðtÞ= I0 +A1expð�t=τ1Þ+A2expð�t=τ2Þ ð1Þ

Tave = A1τ1
2 +A2τ2

2� �
= A1τ1 + A2τ2
� � ð2Þ
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where I(t) and I0 denote the luminescence intensity, A1 and A2 are the
corresponding fitting constants, and τ1 and τ2 are the decay time for an
exponential component. As shown in Fig. 4f, by using the above fitting
equation, the decay time for LaMg6Ga6S16 can be fitted to τ1 = 1.32μs
and τ2 = 15.01μs. According to the formula (2)43, the value of average
lifetimes (τave) was calculated to be 6.63μs, which is similar to divalent
lanthanide compounds with lifetimes in the microsecond time-range
(0.5–10μs)1,3,48,49.

From the above discussion, LaMg6Ga6S16 not only represents the
inaugural instance of La(II)-based compounds to exhibit PL properties
but also exhibits an ultrabroad-band green emission at 500 nm with
FWHM of 127 nm owing to the d-d transition of the La2+ in the low-
coordinated octahedral crystalfield. In particular, the FWHMof 127 nm
for LaMg6Ga6S16 is larger than the developed rare earth-doped phos-
phor, such as CaY2HfAl4O12:Ce

3+ (FWHM: 120 nm)50, β-SiAlON:Yb2+

(FWHM: 66 nm)51, Li2SrSiO4:Pr
3+ (FWHM: 50nm)52, β-SiAlON:Eu2+

(FWHM: 55 nm)53, Ca3SiO4Cl2:Eu
2+ (FWHM: 59 nm)54,

Ba2CaZn2Si6O17:Eu
2+ (FWHM: 80 nm)55, Ba3Si6O12N2:Eu

2+ (FWHM:
75 nm)56, and Ca10Na(PO4)7:Eu

2+ (FWHM: 80nm)57. More importantly,
such anultrabroad FWHMwill be helpful its applications in 3D sensing,
food analyzing, and other specific fields1,40.

NLO properties
Since LaMg6Ga6S16 belongs to the non-centrosymmetric class and
features the stable [Mg/Ga-S]∞ frameworks constructed by the NLO-
active [GaS4] tetrahedra and [MgS6] octahedra, the NLOproperties are
also investigated. As a result, LaMg6Ga6S16 shows a phase-matchable
(PM) SHG response of 0.8×AgGaS2@2090 nm (Fig. 5a and Supple-
mentary Table 4)58–60. The birefringence of LaMg6Ga6S16 was also
measured on a plate-shaped crystal. It indicates that the birefringence
of LaMg6Ga6S16 at visible light is 0.041 (Fig. 5b and Supplementary
Fig. 9)61,62. Meanwhile, the ultraviolet–vis–NIR diffusion spectrum
shows that the band gap of LaMg6Ga6S16 is 3.0 eV (Fig. 5c). The rela-
tively large band gap causes LaMg6Ga6S16 to generate a high powder

LIDT (~105MW·cm−2)63–65, which is more than five times that of AgGaS2
(~20MW·cm−2)66. Furthermore, Fourier transformation infrared (IR)
(Fig. 5d) andRaman spectra (Fig. 5e) indicates that LaMg6Ga6S16 has no
obvious absorption in a wide IR range from 4000 to 500 cm−1 (i.e.,
2.5 ~ 20 μm). Especially, compared with commercial AgGaS2 and other
important IR NLO crystals, LaMg6Ga6S16 exhibits well-balanced NLO
properties, including wide transmission region and band gaps, high
LIDT, moderate birefringence as well as PM SHG responses (Fig. 5f and
Supplementary Table 5). These suggest that LaMg6Ga6S16 is also a
promising IR NLO crystal. It is worth noting that the excellent NLO
properties of LaMg6Ga6S16 can, to some extent, be attributed to the
particular contribution of La2+ cations. Since rare-earth La2+ cation can
exhibit similar polarizability with the transition Ag+ and Zn2+ cations
and comparable electropositivity with the alkali and alkaline-earth
cations, LaMg6Ga6S16 can combine the advantages of large SHG
responses of transition-cations chalcogenides and large band gaps of
alkali and alkaline-earth chalcogenides and achieve a better balance
between large SHG response and wide band gap.

Theoretical analysis
To better understand the structure–performance relationship, the
electronic structures of LaMg6Ga6S16 were calculated by the first-
principles calculations.The calculated electronic band structure shows
that LaMg6Ga6S16 is an indirect bandgap compoundwith a band gapof
2.2 eV (Fig. 6a), which is smaller than the experimental value (3.0 eV)
due to the limitation of using a generalized gradient approximation as
the exchange- correlation functional67. Further, the partial densities of
states of LaMg6Ga6S16 were analyzed (Fig. 6b). It can be found that the
tops of valence bands (VBs) are composed of S 3p, Mg 2p, and La 5d
orbitals, and the La 5d orbitals possess the vital contribution to the top
of VBs. The bottom of the conduction bonds (CBs) region ismainly Ga
4s, Ga 4p, Mg 3s, Mg 3p, La 6s, La 5d, and S 3p orbitals. These results
indicate that the 5d electronic states of the La atom have a crucial
effect on the band gap of the optical properties of LaMg6Ga6S16. In
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Fig. 4 | Luminescence properties of LaMg6Ga6S16 and CaMg6Ga6S16. Excitation-
dependent PL spectra of LaMg6Ga6S16 at room temperature a, the black dashed
square indicates the ultrabroad emission range; PL emission spectra of
LaMg6Ga6S16 under 360 nm excitation at the room temperature b; Fitted TL
spectrum of LaMg6Ga6S16, two Gaussian bands peaking at 346 K (yellow dashed

line) and 384K (violet dashed line) c; Excitation-dependent PL spectra of
CaMg6Ga6S16 at room temperature d; Schematic diagram of the 5d orbitals split of
La2+ driven by the octahedral crystal field in LaMg6Ga6S16 e; Room-temperature PL
decay curves monitored at 500 nm and excited at 360 nm f.
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addition, we also calculated SHG coefficients based on the electronic
structure by the first-principles calculations. Clearly, the calculated
SHG coefficients of LaMg6Ga6S16 (d11 = 12.27 pm/V and d22= 4.00pm/V)
are greater than that of the AeMg6Ga6S16 (Ae =Ca, Sr, Ba) (Supple-
mentary Table 6), suggesting divalent La make the partial contribution
to SHG response of LaMg6Ga6S16.

In summary, the chemically stable crystalline La(II)-chalcogenide,
LaMg6Ga6S16 has been synthesized by constructing the strong [LaS6]
octahedra crystal field in the [Mg/Ga-S]∞ framework structure. XPS,
XANES and EPR unequivocally identified the nature of the La2+ in
LaMg6Ga6S16. Meanwhile, DSC, in-situ variable-temperature powder
XRD and a series of solid-state reactions further illustrate its stability.

Benefiting from the unique electronic configurations of La2+, an
ultrabroad-band green emission at 500nm with FWHM of 127 nm was
discovered in LaMg6Ga6S16. In particular, compared with a few syn-
thesized divalent lanthanides organic complexes, the thermal stable
divalent lanthanides inorganic compounds are still rarely researched.
LaMg6Ga6S16 may be able to provide some insights for the efficient
syntheses of other low oxidation state lanthanide compounds.

Methods
Materials
La (99.9%)waspurchased fromAladdinCo. Ltd. (China),MgS (99.99%),
Ga2S3 (99.9%) and S (99.9%) were purchased from Beijing Hawk

Fig. 5 | Optical properties of LaMg6Ga6S16. Particle size dependence of SHG
intensities of LaMg6Ga6S16 (blue line) and AgGaS2 (pink line) a, the error bars from
left to right correspond to sieved crystal particle size ranges: 54–75, 75–100,
100–125, 125–150, 150–180 and 180–250 μm; Thickness of LaMg6Ga6S16 crystal,
inset: crystal for birefringence determination and its interference color observed in

the cross-polarized light b; UV–vis–NIR diffuse reflectance spectrum (inset: band
gap of LaMg6Ga6S16 is 3.0 eV) c, FTIR spectrum between 4000 and 500 cm−1 d, and
Raman spectrum between 1000 and 50cm−1 e of LaMg6Ga6S16; Well-balanced
nonlinear optical properties of LaMg6Ga6S16 compared to AgGaS2 f.

-5.0

-2.5

0.0

2.5

5.0

)Ve( ygrenE

L

2.2 eV

VBmax

CBmin

HMKHA

(a) (b)

-5.0 -2.5 0.0 2.5 5.0 7.50
1
2
3

Energy (eV)

 La 6s 
 La 5d

0
4
8

12  Mg 3s 
 Mg 2p

0
5

10
15

)Ve/setaS( S
O

D

 Ga 4s 
 Ga 4p

0
20
40
60
80  S 3s 

 S 3p

Fig. 6 | Theoretical calculation results of LaMg6Ga6S16.Calculated band structure a and the projected density of stateswith the energy region from −5.0 eV to 7.5 eVb of
LaMg6Ga6S16.

Article https://doi.org/10.1038/s41467-024-47209-4

Nature Communications |         (2024) 15:2959 6



Science and Technology Co. Ltd. (China), and all the reagents were
used without further refinement.

Syntheses
For the preparation of LaMg6Ga6S16, reactants of La (0.2mmol),
Ga2S3 (0.6mmol), MgS (1.2 mmol), S (0.3mmol) were mixed and
respectively loaded into graphite crucible and then they are sealed
into the silica tube and flame-sealed under 10–3 Toor. The tubes were
placed in a temperature-controlled furnace with the following
heating process: firstly, heated to 773 K at a rate of 5 K/h and held
this temperature for 10 h, then heated to 1273 K at a rate of 5 K/h and
kept at that temperature for 100 h. Subsequently, the furnace was
slowly cooled down to 573 K at a rate of 5 K/h. N, N−dimethylfor-
mamide (DMF) solvent was chosen to wash the products. Finally,
many millimeter-level pale-yellow crystals of LaMg6Ga6S16 was
obtained with yields of ∼80 %, and all of them are stable under air
and moisture conditions for at least 3 months. In addition, their
thermal behaviors were studied by a series of solid-state reactions
with the following process: their pure polycrystalline samples were
firstly loaded into graphite crucibles. Then the graphite crucibles
were put into silica tubes and flame-sealed under 10–3 Toor. These
tubes were heated to 373 K in 10 h and kept at this temperature for
about 24 h. Subsequently, they were cooled to room temperature
and the mixture in the tube were thoroughly grinded and sealed
into silica tubes again. The silica tubes were further heated to a
higher temperature, 473 K in 10 h and kept the temperatures for
24 h. Repeating the above process with a 100 K higher calcined
temperature than the last reaction.

Structural refinement and crystal data
PXRD patterns were collected setting from the 2θ range 10–70° with a
stepwidth size of 0.01° and a step timeof 2 s on an automated SmartLab
3KW powder X-ray diffractometer using Cu-Kα radiation (λ= 1.54057Å)
radiation. The purity of compound LaMg6Ga6S16 was verified by PXRD
with the results as shown in Supplementary Fig. 1. To study their thermal
behaviors, in-situ variable-temperature powder XRD data of
LaMg6Ga6S16was collectedusing anSmartLab9KWX-raydiffractometer
(Supplementary Fig. 4a),meanwhile, a series of solid-state reactionswith
different reaction temperatures (room temperature-1323 K) were also
conducted and shown in Supplementary Fig. 4b. The crystal structure of
LaMg6Ga6S16 was determined by single-crystal XRD on a Bruker SMART
APEX III CCD diffractometer using Mo Kα radiation (λ=0.71073Å) at
297(2) K and the data was integrated with the SAINT program. All cal-
culations were implemented with programs from the SHELXTL crystal-
lographic software package68. Their crystal structures were solved by
direct methods using SHELXS and refined with full-matrix least-squares
methods on F2 with anisotropic thermal parameters for all atoms69.
Crystallographic data for the structure reported in this paper has been
deposited with the Cambridge Crystallographic Data Centre (CCDC),
under deposition number 2280420. These data can be obtained free of
charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_r-
equest@ccdc.cam.ac.uk, or by contacting The Cambridge Crystal-
lographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK. Crystal
data and structure refinement parameters were given in Supplementary
Table 1. Somestructural parameters including interatomicdistances and
angles, final refined atomic positions and isotropic thermal parameters
are listed in Supplementary Table 2 and Supplementary Table 3,
respectively.

X-Ray photoelectron spectroscopy
TheXPS (ESCALLAB250Xi, ThermoScientific) using amonochromatized
AlKα sourceequippedwithAr ion sputteringwasused fordepthprofiling
measurements of ionic valence and composition, where the peak posi-
tions were calibrated using the C 1s peak position (284.8 eV).

Energy-dispersive spectroscopy
Microprobe elemental analyses and the elemental distribution maps
were measured on a field-emission scanning electron microscope
(Quanta FEG 250) made by FEI.

Synchrotron X-ray absorption spectroscopy
The XAS measurements were carried out at the XAS Beamline at the
Australian Synchrotron in Melbourne, Australia using a set of liquid
nitrogen cooled Si (111) monochromator crystals. The electron beam
energy is 3.0GeV. With the associated beamline optics (Si-coated
collimating mirror and Rh-coated focusing mirror), the harmonic
content of the incident X-ray beam was negligible. Data was collected
by using transmission mode, and the energy was calibrated using a Co
foil. The beam size was about 1 × 1mm. Note that a single XAS scan
took about 1 h.

Electron paramagnetic resonance spectroscopy
The EPR measurement was conducted on Bruker EMXplus-6/1 EPR
spectrometer with a 9.2 GHz magnetic field.

Thermal Analysis
The thermal behavior of LaMg6Ga6S16 was performed using an HCT-4
analyzer (Beijing Henven Experimental). The sample of ∼10mg was
sealed in the customized vacuum-sealed tiny silica tubes and heated
from 50 to 1300 °C at a rate of 10 °C/min. The measurements were
carried out in an atmosphere of flowing N2.

Photoluminescence spectroscopy
The PL spectra were measured in room temperature using a fluores-
cence spectrometer (FLS-980, Edinburgh, UK). A 450W xenon arc
lamp was employed as a continuous excitation light source. The
FLS980 spectrometer was configured with Red PMT photomultiplier
with spectral coverage from 370 nm to 650 nm.

Thermoluminescence spectroscopy
TheTLcurvewas collectedby theTOSL-3DSmeasuring instrument (PMT
detector) with a heating rate of 5 °C/s after pre-irradiation for 5min.

Birefringence
The birefringence of LaMg6Ga6S16 was measured based on a cross-
polarizing microscope method with plate-shaped crystals61. The
thickness of the used crystal is 22.4μm for LaMg6Ga6S16 (Fig. 5b), and
the observed interference color is second-order yellow along [0_10]
plane of the crystal in the cross-polarizingmicroscope (Supplementary
Fig. 8). Based on the Michal-Levy chart, its retardation (R value) is
about 920nm. According to the equation R =Δn×d (where R, Δn, and d
represent retardation, birefringence, and thickness, respectively)60,62,
the birefringence of LaMg6Ga6S16 can be calculated.

UV−vis−NIR diffuse reflectance
The UV−vis−NIR optical diffuse reflectance spectrum of LaMg6Ga6S16
in the range of 300–2100 nm was measured on Shimadzu SolidSpec-
3700DUV with BaSO4 as a reference. The band gap was estimated on
basis of the absorption spectra that was derived from the reflection
spectrum using the Kubelka-Munk formula70.

IR and Raman spectroscopy
The IR spectrum in the range of 4000–500 cm−1 was recorded on a
Fourier transform IR spectrometer usingNicolet iS50FTwith ATR. The
Raman spectrum of LaMg6Ga6S16 in the range of 1000–50 cm−1 was
recorded on WITec alpha300R. The characteristic vibrations in the
Raman spectrum at 424, 354, and 310 cm−1 correspond to asymmetric
and symmetric stretching vibrations of S-Ga-S and S-Mg-S modes, and
peaks below 200 cm−1 are due to the La-S and Mg-S vibrations. These
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coincide with those of other related chalcogenides, such as
LaCaGa3S6O and AeMg6Ga6S16 (Ae = Ca, Sr, Ba)27,71.

Second harmonic generation measurement
The SHG signals of LaMg6Ga6S16 and benchmark AgGaS2 were
investigated under incident laser radiation of 2090 nmbymodified
Kurtz-Perry method, respectively72. Samples LaMg6Ga6S16 and
AgGaS2 were sieved into several distinct particle size ranges
(54–75, 75–100, 100–125, 125–150, 150–180 and 180–250 μm) for
the PMmeasurements. The SHG signals were detected by a charge-
coupled device. The second harmonic efficiency of the
LaMg6Ga6S16 powder was compared to that of AgGaS2 powder with
the same particle size.

Laser-induced damage threshold measurement
The LIDTs of the LaMg6Ga6S16 and AgGaS2 powder at the particle size
range of 100 − 125μm were evaluated under using a high-power laser
irradiation of 1064 nm (pulse width τp = 10 ns) by the single-pulse
method73,74. Themeasurement processes were performed by gradually
increasing the laser power until the damaged spot was observed under
amicroscope. The damage thresholds were derived from the equation
I(threshold) = E/(πr2τp), where E is the laser energy of a single pulse, r is the
spot radius, and τp is the pulse width.

Computational methods
The electronic band structures, the partial density of states and
optical properties for LaMg6Ga6S16 were carried out using the
CASTEP package based on density functional theory (DFT)75. Gen-
eralized gradient approximation (GGA) parametrized by
Perdew–Burke–Ernzerhof (PBE) functional was chosen for the
exchange-correlation energy, and the pseudopotential was set as
norm-conserving pseudopotential (NCP)76. The valence electrons
were set as: La 6s25d1, Mg 2s22p63s2, Ga 3d104s24p1, S 3s23p4 for
LaMg6Ga6S16. The plane-wave energy cutoff value was set at
800.0 eV. The numerical integration of the Brillouin zone was per-
formed using 2 × 2 × 4 Monkhorst-Pack κ-point meshes77. The local-
density approximation (LDA) + U approach (where U is the Hubbard
energy) was adopted to deal with the strong on-site Coulomb
repulsion amongst the localized La 5d electrons78–80.

The SHG coefficients were calculated from the band wave func-
tions using the so-called length-gauge formalism derived by Aversa
and Sipe at a zero-frequency limit. The static second-order nonlinear
susceptibilities χαβγ

(2) can be reduced as81–83:

χαβγ
ð2Þ = χαβγ

ð2Þ VEð Þ+ χαβγð2Þ VHð Þ, ð3Þ

Virtual-Hole (VH), Virtual-Electron (VE) and Two-Band (TB) pro-
cesses play an important role in the total SHG coefficient χ(2). The TB
process can be neglected owing to little contribution for SHG. The
formulas for calculating χαβγ

(2) (VE) and χαβγ
(2) (VH) are as follows:
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Here, α, β, γ are Cartesian components, v and v0 denote valence
bands, c and c0 refer to conduction bands, and P(αβγ) denotes the full
permutation. The band energy difference and momentum matrix
elements are denoted as ℏωij and Pijα, respectively. As we know, the
virtual electron (VE) progresses of occupied and unoccupied states are
the main contribution to the overall SHG effect84.

Data availability
The representative data and extended datasets that support the find-
ings of this study are available within the paper and its Supplementary
Information files. Additional data are available from the corresponding
author. The source data for Figs. 1, 3a–c, 4a–d, f, 5a, c–f, 6a, b and
Supplementary Figs. 1, 3, 4a, 4b, 6, 8 are provided as a Source Data file.
The X-ray crystallographic coordinates for structure reported in this
study have been deposited at the Cambridge Crystall graphic Data
Center (CCDC), under deposition number 2280420. These data can be
obtained free of charge from The Cambridge Crystallographic Data
Center via www.ccdc.cam.ac.uk/data_request/cif. Source data are
provided with this paper.
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