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Nickel-catalyzed switchable arylative/endo-
cyclization of 1,6-enynes

Wenfeng Liu1,3, Wei Li1,3, Weipeng Xu2, Minyan Wang 2 &
Wangqing Kong 1

Carbo- and heterocycles are frequently used as crucial scaffolds in natural
products, fine chemicals, and biologically and pharmaceutically active com-
pounds. Transition-metal-catalyzed cyclization of 1,6-enynes has emerged as a
powerful strategy for constructing functionalized carbo- and heterocycles.
Despite significant progress, the regioselectivity of alkyne functionalization is
entirely substrate-dependent. And only exo-cyclization/cross-coupling pro-
ducts can be obtained, while endo-selective cyclization/cross-coupling
remains elusive and still poses a formidable challenge. In this study, we dis-
close a nickel-catalyzed switchable arylation/cyclization of 1,6-enynes in which
the nature of the ligand dictates the regioselectivity of alkyne arylation, while
the electrophilic trapping reagents determine the selectivity of the cyclization
mode. Specifically, using a commercially available 1,10-phenanthroline as a
ligand facilitates trans-arylation/cyclization to obtain seven-membered ring
products, while a 2-naphthyl-substituted bisbox ligand promotes cis-arylation/
cyclization to access six-membered ring products. Diastereoselective cycliza-
tions have also been developed for the synthesis of enantioenriched piper-
idines and azepanes, which are core structural elements of pharmaceuticals
and natural products possessing important biological activities. Furthermore,
experimental and density functional theory studies reveal that the regios-
electivity of the alkyne arylation process is entirely controlled by the steric
hindrance of the ligand; the reaction mechanism involves exo-cyclization fol-
lowed by Dowd-Beckwith-type ring expansion to form endo-cyclization
products.

The structural diversity of core molecular scaffolds is considered a
critical feature of compound libraries, which is decisive for ensuring
their success in drug discovery and biological research1–3. Compound
libraries constructed by traditional synthetic strategies are mainly
composed of molecules with similar structures. This is because the
structural diversity of the products depends only on the starting scaf-
folds andbuildingblocks. Therefore, thedevelopmentof new strategies
to efficiently construct structurally distinct and diverse molecular

scaffolds, thereby giving rise to compound libraries with differing and
selective biological activities is of great siginificance4,5. Ligand-directed
divergent synthesis (LDS) is highly sought-after in library synthesis
because it allows the construction of structurally diverse molecular
scaffolds from common starting materials by simply changing the
ligands of metal catalysts6. However, it is undoubtedly the most chal-
lenging strategy because ligand design alone requires subversion of the
inherent regiopreferences of reactants and metal centers.
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Cyclic scaffolds, especially heterocycles, are ubiquitous in nat-
ural products, pharmaceuticals, and numerous functional mole-
cules. The development of effective methods for the rapid
construction of various cyclic compounds represents one of the
major domains of synthetic organic chemistry. In this regard,
transition-metal-catalyzed cycloisomerization7–11 and reductive
cyclization12–16 of 1,6-enynes have been established to generate five-
membered (hetero)cycles. Advances along this line have revealed
some intriguing transition metal-catalyzed functionalizing cycliza-
tion reactions, providing efficient and convenient access to a wide
array of elusive cyclic systems17–34. The appeal of these cyclizations
lies in the streamlining construction of structurally complex and
functionalized cyclic scaffolds from readily accessible 1,6-enynes.
From a reaction mechanism perspective, these transformations are
primarily initiated by the formation of metalacyclic intermediates
via oxidative cyclization pathways or the formation of alkenyl metal
species via carbometallation processes. The former has been well
explored7–16, but controlling the regioselectivity of the latter is dif-
ficult, usually in two ways: α-insertion or β-insertion (Fig. 1a)35–38. 5-
Exo-cyclization of the resulting alkenyl-metal intermediate I (via β-
insertion) would provide the conventional five-membered ring
product III bearing an exocyclic double bond. Alternatively, α-
insertion followed by E/Z isomerization39–44 would afford alkenyl-
metal intermediate II, which undergoes 6-exo cyclization to afford
six-membered ring product V possessing an endocyclic double
bond. Despite enormous efforts, these strategies still suffer from
many limitations: the regioselectivity of alkynes insertion into
organometallic species is entirely substrate-dependent (electronic
or steric effects of substituents on alkynes). Furthermore, since exo-
cyclizations are anyway kinetically superior to the corresponding
endo-cyclizations, 6-endo- or 7-endo-cyclization products are rarely
obtained45–48.

Nickel-catalyzed reductive cross-coupling has been emerged as
a powerful and straightforward method for constructing carbon-
carbon bonds49–54. Furthermore, due to its unique properties, nickel
has been used in a range of ligand-controlled divergent
transformations55–57. To address the major remaining challenges of
1,6-enyne cyclization, we were curious whether changing the struc-
ture and/or electronegativity of the ligands in nickel catalysts would
enable regioselective and switchable arylation of alkynes. Here, we
demonstrate that judicious choice of ligands enables the switchable
arylation/ cyclization of 1,6-enynes, in which the nature of the ligand
dictates the regioselectivity of alkyne arylation, while the electro-
philic trapping reagents determine the selectivity of the cyclization
mode. Specifically, in the presence of electron-deficient alkenes,
using a commercially available 1,10-phenanthroline as a ligand
facilitates trans-arylation/endo-cyclization to obtain seven-
membered ring products, while a 2-naphthyl-substituted Bisbox
ligand promotes cis-arylation/endo-cyclization to access six-
membered ring products (Fig. 1b). Diastereoselective cyclizations
have also been developed for the synthesis of enantioenriched
piperidines and azepanes, which are core structural elements of
pharmaceuticals and natural products possessing important biolo-
gical activities. This transformation is modular, with the ligand
rather than the substrate precisely determining the regioselectivity
of alkyne arylation process, and the electrophilic trapping reagents
determining the regioselectivity of cyclization. Such ligand-directed
divergent synthesis (LDS) remains hitherto elusive despite persis-
tent interest.

Results and discussion
Reaction development
To test our hypothesis, we started our investigation by evaluating
the nickel-catalyzed three-component cascade cyclization of 1,6-
enyne (1) with PhBr (2) and trifluoromethyl alkene (3) (Table 1). After
a series of experiments, a combination of NiBr2(DME), 1,10-phe-
nanthroline L4, Mn, CsF, and DMA at 60 °C afforded gem-difluor-
oallylated seven-membered ring product 4 in 63% isolated yield with
exquisite regioselectivity (4/5 = 20/1) (entry 1). Inferior results were
observed when either TBAI or NaI was used instead of CsF (entries 2
and 3). Lowering the reaction temperature to 40 °C resulted in no
reaction, while increasing the reaction temperature to 80 °C resul-
ted in lower yield (entries 4 and 5). Traces, if any, of 4were observed
when Zn was used instead of Mn as the terminal reducing
agent (entry 6). Notably, the direct reductive coupling of aryl bro-
mides and trifluoromethyl alkenes in this catalytic system is well
suppressed.

We evaluated a range of different ligands with the goal of
identifying the conditions for switchable access to the seven-
membered ring product 4 and the six-membered ring product 5.
2,2′-Bipyridine (L1-L3) and 1,10-phenanthroline (L4) favored the
formation of 4, especially the latter providing 4 in higher yield and
excellent regioselectivity (entries 7–10). Strikingly, under the same
reaction conditions as shown in entry 10, the use of relatively
electron-rich Pyrox L5 or Bisbox L6 as ligands resulted in a regio-
selective switch en route to 5, albeit in lower yields (entries 11 and
12). We further synthesized a series of Bisbox ligands with different
substituents on the oxazoline ring and examined their perfor-
mances. The phenyl-substituted ligand L7 showed slightly higher
regioselectivity (4/5 = 1/8, entry 13). The benzyl-substituted ligand
L8 provided 5 in 58% yield and improved the regioselectivity to 1:15
(entry 14). Using a 2-naphthyl-substituted Bisbox ligand L9, 5 was
obtained in 71% isolated yield and excellent regioselectivity
(4/5 = 1:28) (entry 15). These results clearly demonstrate that the
backbone of the ligand determines the regioselectivity pattern.

Having identified optimal reaction conditions for the ligand-
controlled divergent synthesis of seven- and six-membered ring
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Fig. 1 | Transition metal-catalyzed functionalization/cyclization of 1,6-enynes.
a The state of the art of transition metal-catalyzed arylative cyclization of 1,6-
enynes; b Ligand-controlled regiodivergent arylative cyclization of 1,6-enynes.
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products, we turned our attention to investigating the scope and
limitations of those two protocols. We first explored the trans-ary-
lative/endo cyclization protocol for the selective synthesis of seven-
membered ring products using ligand L4 (Fig. 2). In terms of 1,6-
enynes, the carbon-tethered and nitrogen-tethered 1,6-enynes were
examined, and the corresponding products 6 and 7were obtained as
expected. The molecular structure of 7 was unambiguously con-
firmed by single-crystal X-ray diffraction analysis. Electron-donating
(OMe) or electron-withdrawing groups (CF3, CN) on the aromatic
ring at the alkyne terminal (R1) were found to be compatible, leading
to the corresponding products 8-10 in 49-69% yields. Notably,
chlorine substitution on the aromatic ring also proceeded smoothly,
affording 11 in 68% yield, providing an opportunity for further
derivatization of the obtained product. Complex molecules such as

estrone could also be successfully incorporated into product (12).
Nonetheless, alkyl-substituted alkynes and terminal alkynes failed to
produce the expected products. Introduction of a phenyl group on
the alkene moiety did not preclude the transformation (13).

We then evaluated the scope of aryl (pseudo)halides. We were
pleased to find that the presence of electron-donating and electron-
withdrawing groups at the para or meta position of the aromatic ring
did not affect selectivity and efficiency (14–23). Aryl triflate was also
tolerated as shownby the efficient formation of product 15. Heteroaryl
bromides such as 5-bromo-2-methoxypyridine, 3-bromothiophene, 2-
bromodibenzofuran, 2-bromodibenzothiophene, 5-bromobenzo-
furan, 5-bromoindole, and 3-bromocarbazole were all efficiently
transformed into the corresponding products (24–30) in satisfactory
yields.

Table 1 | Optimization of reaction conditions

entry deviation from standard conditions yield (%)a 4/5b

1 CsF 70 (63) 20/1

2 TBAI instead of CsF 48 15/1

3 NaI instead of CsF 54 15/1

4 40 oC n.r. –

5 80 oC 30 15/1

6 Zn instead of Mn trace –

7 L1 instead of L4 21 2/1

8 L2 instead of L4 23 7/1

9 L3 instead of L4 31 11/1

10 none 46 15/1

11 L5 instead of L4 17 1/1.2

12 L6 instead of L4 33 1/6

13 L7 instead of L4 41 1/8

14 L8 instead of L4 58 1/15

15 L9 instead of L4 75 (71) 1/28

Reaction conditions: 1 (0.2mmol), 2 (0.2mmol), 3 (0.1mmol), NiBr2(DME) (0.01mmol), ligand (0.02mmol), Mn0 powder (0.3mmol), and additive (0.1mmol) in DMA (2mL) in sealed tube at 60 oC for
48h.
aYieldswere determinedby 19F NMR spectroscopy using trifluorotoluene as the internal standard. The values in brackets corresponds to the yields of isolated products after columnchromatography
on silica gel.
bRatio determined by 19F NMR spectroscopy.
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The generality of the electron-deficient alkenes was also inves-
tigated. Trifluoromethyl alkenes with various useful functional
groups, such as cyano, ester, amide, sulfonate, trifluoromethoxy,
chloro, and alkoxy on the aromatic ring, could be successfully
transferred to the corresponding products (31–40). In addition,
quinoline, benzothiophene and carbazole-substituted tri-
fluoromethyl alkenes (41, 42 and 43) were also compatible with the
reaction conditions. The seven-membered ring product 44 and 45
were also obtained under the same reaction conditions when
electron-deficient alkenes such as acrylate or vinyl sulfone were
used respectively.

We next examined the scope of the cis-arylative/endo cyclization
protocol for the selective synthesis of six-membered ring products
using ligand L9 (Fig. 3). Similar to what we observed with the trans-
arylative/endo cyclization, C- or N-tethered 1,6-enynes had little effect
on the reactivity and selectivity, providing the correspondingproducts
(46-47) in 58–63% yields. 1,6-Enynes with substituents on the alkene
moiety such as phenyl and ester were also compatible (48-49). Both
electron-withdrawing (Cl) and electron-donating groups (OMe) on the
aromatic ring at the alkyne terminal (R1) were found to be compatible
(50-51).

Aryl (pseudo)halides with versatile functional groups were then
examined. It is noteworthy to mention that substrates with both
electron-donating and withdrawing groups proceed smoothly to
afford the corresponding products (52-58) inmoderate to good yields.
In particular, the p-chlorine substituted product 54 and the
3-bromocarbazole substituted product 59 were both isolated in good
yields.

In addition, the compatibility of the transformation with various
trifluoromethyl alkenes was evaluated in a robustness screening. A
series of valuable functional groups such as cyano, ester, amide, sul-
fonate, ketone, trifluoromethoxy, chloro, and alkoxy were all well-
tolerated (60–69). Trifluoromethyl alkenes bearing heterocyclic
groups could also be transformed into the desired products 70–73 in
moderate yields. In the case of the trifluoromethylalkenes with a
strong electron-donating group, the desired defluorinative products
68–72 were isolated in a mixture with the reductive Heck coupling
products which retained the trifluoromethyl group.

Enantiomerically pure N-heterocyclic compounds, especially
piperidines and azepanes, represent important motifs in pharmaceu-
tically important natural alkaloids58. Consequently, it is of great sig-
nificant to develop reliable syntheticmethods for the synthesis of such
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heterocycles. We screened a series of chiral ligands in an attempt to
render the reaction asymmetric (Supplementary Table 1). Simulta-
neously controlling the regioselectivity of alkyne migratory insertion
and the stereoselectivity of the cyclization process is indeed a very
challenging task, and all our attempts resulted in only racemic
products.

We turned to developing a solution to obtain enantioenriched
piperidines and azepanes by diastereoselective cyclization of sub-
strates with pre-existing stereocenters59,60. Enantioenriched 1,6-enyne
74 (e.r. > 99:1) was prepared employing Ellman’s auxiliary61 to test
subsequent ligand-controlled arylative cyclization for the divergent
synthesis of chiral piperidines and azepanes (Fig. 4a). Excitingly, by a
simple ligand switch, enantioenriched piperidines 75–82 and azepanes
83–86 can be obtained, respectively, from the same starting materials
in syntheticallyuseful yields andexcellent diastereoselectivities (15:1 to
> 20:1 d.r.). The absolute configuration of 76wasdetermined by single-
crystal X-ray diffraction analysis, and that of all other products were
assigned accordingly.

We further found that the reaction of 1,6-enyne with aryl bromide
underwent trans-arylative exo-cyclization/cross-coupling to give diary-
lated products when 1,10-phenanthroline L4 was used as a ligand
(Fig. 4b). The presence of electron-donating and electron-withdrawing
groups at thepara- ormeta-position of the aryl bromides does not affect
selectivity and efficiency (87–95). Diastereoselective diarylative cycliza-
tion gave enantioenriched piperidine96 in excellent diastereoselectivity
( > 20:1 d.r.). Despite extensive attempts, cis-arylation cyclization/cross-
coupling products have not yet been obtained using L9 as a ligand.

Mechanistic investigation
To shed light on the reaction mechanism, we designed a series of
experiments as outlined in Fig. 5. First, Ph-Ni(II)Br complex 98 and
99 were synthesized and submitted to the reactions with 1,6-enyne
97 and trifluoromethyl alkene 3 under our standard reaction con-
ditions. The corresponding products 7 and 47 were obtained in 31%
and 30% yields, respectively (Fig. 5a). These results clearly demon-
strate that active aryl-nickel(II) species are generated during the
reaction and that the ligand determines the regioselectivity alkyne
arylation.

We further synthesized alkenyl iodide 100 and subjected to the
reaction with trifluoromethylalkene 3 under standard conditions. The
target product 7 was isolated in 65% yield, evidently confirming the
formation of the key alkenyl-nickel intermediate and the involvement
of cis/trans isomerization of alkenyl-nickel species during the reaction
(Fig. 5b). Deuterium labeling experiments were performed. Reaction of
100 with 5 equivalents of D2O afforded the deuterated exo-cyclization
product 101-D in 43% yield. Reaction of 100with trifluoromethylalkene
3 in the presence of 10 equivalents of D2O gave product 101-D and 7 in
24% and 49% yield, respectively (Fig. 5c). These deuterated products
should result from deuteration of the corresponding organonickel
intermediates, suggesting that both 6-exo-cyclization and 7-endo-
cyclization of alkenyl-nickel intermediate appear to be possible.

Three possible reaction pathways are proposed to explain the
transformation of six-membered-ring nickel intermediate 103 to
seven-membered-ring nickel intermediate 106 in Fig. 5d. Considering
that β-carbon elimination from a non-strainedmetal complex is a high

Fig. 3 | Scope for cis-arylative cyclization. a Scope of 1,6-enynes; b Scope of aryl halides; c Scope of electron-deficient alkenes. aThe ratio of product to reduced Heck
product was determined by 19F NMR spectroscopy.
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energy process62–64, a retro 6-exo cyclization via β-carbon elimination
followed by 7-endo cyclization deemed less probable (Path I, Fig. 5d).

To verify 1,2-dyotropic rearrangement mechanism (Path II,
Fig. 5d), deuterated 1,6-enyne (Z)-107-Dwasprepared and subjected to
the reaction with trifluoromethylalkene 3 and PhBr under standard
conditions. Product 7-D was isolated in 55% yield with 1:1 diastereos-
electivity (Fig. 5e). Although this process is non-stereoselective, con-
sidering the carbon-nickel bond is easily undergo homolytic cleavage
to generate the corresponding carbon radical and then recombine, we
cannot rule out the mechanism of 1,2-dyotropic rearrangement65–67.

Furthermore, Dowd-Beckwith ring expansion process was also
considered (Path III, Fig. 5d)68,69, that is, the primary radical inter-
mediate 104 and the tertiary radical intermediate 105 coexist in the
reaction system; the type of electrophilic trapping reagents determine
the structure of products. When cross-coupling with aryl bromides via
an oxidative addition/reductive elimination mechanism, primary
radicals 104 are preferred because the process is more sensitive to
steric hindrance of ligands. The nucleophilic tertiary radicals 105 are
favored when cross-coupling with less hindered electron-deficient
alkenes (acrylates or trifluoromethyl alkenes) via Giese addition.

DFT calculations
To better understand the reaction mechanism and the origin of
selectivity-controlled steps of arylative of alkynes with different

ligands, density functional theory (DFT) studies were performed
(Fig. 6)70. The computed energy profile for the nickel catalytic cycle
using ligand L4 is shown in Scheme 8 A, while the influence of ligand
L9 is shown in Supplementary Fig. 6. The overall pathway com-
mences with the coordination of bromobenzene 2 to the in-situ
generated Ni(0)/ligand species, forming intermediate INT1A. The
oxidative addition of the C−Br bond proceeds through transition
TS2A and subsequent substrate 1 replaces the Br− ligand at INT2A,
resulting in the formation of INT3A. The noncovalent interactions
(NCI) between substrates and ligands is more pronounced for the
regioselectivity of migratory insertion (Fig. 6b)71,72. In the case of
smaller ligand L4, phenyl connected with nickel center and phenyl
substituent of alkyne are themost sterically congestingmoiety, thus
resulting the energy barrier of transition state TS4A-L4 is
4.9 kcal mol−1 higher than that of transition state TS4B-L4 (17.8 vs
12.9 kcal mol−1). The α-migratory insertion to form intermediate
INT4B-L4 is kinetically more favorable pathway. For ligand L9, there
is a significant attractive interaction between naphthyl group and
phenyl unit of alkyne, rendering an increased energy barrier of
TS4B-L9 to 21.8 kcal mol−1. This result illustrates intermediate
INT3A-L9 favors β-insertion over α-insertion. The resulting inter-
mediate INT4B-L4 undergoes rapid cis/trans isomerization via
reversible Ni–C bond homolysis73–75 or a η2-coordinated alke-
nylnickel species (see Supplementary Information for details)76–78 to

Fig. 4 | Substrate scope. a Diastereoselective synthesis of enantioenriched piperidines and azepanes; b Diarylative cyclization of 1,6-enynes.
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form intermediate INT5B-L4, which facilitates the proximity of the
nickel(II) center to the C = C bond for the subsequent cyclization
process35,79,80. The competitive cyclizationmodes with ligand L4 and
L9 are further investigated, respectively (Fig. 6c). Compared to the
endo-cyclization, the exo-cyclization through TS5B-L4-exo and
TS5A-L9-exo is a more favorable process (14.3 vs 11.3 kcal mol−1 for
L4 and 19.4 vs 2.8 kcal mol−1 for L9). Upon addingD2O, the generated
INT5B-L4-exo can be converted into six-membered skeleton
smoothly, consistent with the experimental observation shown in
Fig. 6c. Finally, the Ni(II)-alkyl bond of intermediate INT5B-L4-exo
and INT5A-L9-exo undergoes homolytic cleavage to generate alkyl
radical and Ni(I) species, which was then reduced by the present of
Mn to regenerate INT1A, completing nickel catalytic cycle.

Furthermore, extensive computational studies on alkyl-nickel(II)
species INT5B-L4-exo and INT5A-L9-exo were performed (Fig. 7a, b).
We located ahomolytic cleavagepathwayof alkyl-nickel(II) to generate
radical INT7B (Fig. 7a). By comparison, the alternative pathways

involving directly insertion into the double bond of trifluoromethyl
alkene 3 (TS6A-L4-exo and TS6A-L9-exo, ΔG≠= 24.0 and
33.0 kcalmol−1, respectively), 1,2-alkenyl/Ni concerted dyotropic rear-
rangement (TS6C-L4-exo and TS6C-L9-exo, ΔG≠= 41.5 and
47.2 kcalmol−1, respectively), and 1,2-alkyl/Ni concerted dyotropic
rearrangement (TS6D-L4-exo and TS6D-L9-exo, ΔG≠= 52.1 and
57.7 kcalmol−1, respectively), were calculated to be kinetically
unfavorable.

The subsequent pathway for the generated radical INT7B was
shown in Fig. 8. The radical induced Dowd-Beckwith-type ring
expansion68,81–85 through transition TS8B and TS9B, leading to the
formation of seven membered ring radical INT9B. After that, INT9B
captured by substrate 3 leads to the formation of INT10B with an
activation free energy barrier of 7.9 kcalmol−1. For the enantiomeri-
cally pure N-heterocyclic compound 72, the radical addition pre-
ferentially occurred at the less steric hindrance to result excellent
diastereoselectivities. Owing to the computed high energy barrier
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(TS11B, ΔG≠= 29.6 kcalmol−1), the direct β-F elimination of INT10B is
excluded. The single electron transfer (SET) process between INT10B
and reductant Mn proceeds to afford anion INT11B, which is followed
by β-F elimination via transition state TS12Bwith an activation energy
of 9.9 kcalmol−1, yielding the desired product 4. The energy profile for
the radical produced by INT5A-exo-L9 is also calculated to obtain
product 5 (for the details of the computational data, see Supplemen-
tary Fig. 8). The frontier molecular orbital theory is further used to
analysis the reactivity of the generated radicals (Fig. 8c). Compared
with radical INT7B, the radical INT9B with higher SOMO energy
exhibits more nucleophilicity, which should be thermodynamically
more favorable to attack electron-deficient alkenes to generate radical
INT10B, delivering the desired cyclization products.

Proposed reaction mechanism
Based on the above experimental and DFT studies, a plausible cat-
alytic cycle is outlined in Fig. 9. Oxidative addition of aryl bromide to
Ni(0) species produces aryl-nickel(II) species. The steric interaction
between the ligands and substrates precisely controls the regios-
electivity of the migratory insertion of aryl-nickel(II) species into
alkynes, where L9 promotes β-insertion to form alkenyl-nickel(II)
intermediate A and L4 facilitates α-insertion to form alkenyl-nick-
el(II) intermediate E. Intermediates A and E undergo highly selective
exo-cyclization to give alkyl-nickel(II) intermediates B and F, which
then undergo homolytic cleavage to afford the corresponding pri-
mary alkyl radical intermediates C and G, respectively. Direct cross-
coupling of radical G with aryl bromides in the presence of Ni(0)
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gives diarylated products. Intermediates C and G undergo Dowd-
Beckwith ring expansion to form more stable tertiary radical inter-
mediatesD and H, respectively. Finally, radical addition followed by
fluorine elimination will furnish the corresponding six- and seven-
membered ring products, respectively.

The structure of the final products is related to the nature of the
electrophilic trapping reagents. The primary radical G may react
preferentially because it is formed first and is more kinetically
accessible. The tertiary radicals D and H, although more crowded,
are more stable and survive longer in the reaction system. When
reacting with ArBr via an oxidative addition/reductive elimination
mechanism, primary radicals C and G are preferred because the
process is more sensitive to steric hindrance of the ligand. More
nucleophilic tertiary radicalsD andH are favoredwhen reactingwith
electron-deficient alkenes such as trifluoromethylalkenes or acry-
lates via Giese addition.

Methods
General procedure for the synthesis of 7-membered ring
products
An oven-dried sealed tube equipped with a PTFE-coated stir bar was
charged with NiBr2(DME) (10mol%), L4 (20mol%), trifluoromethyl
alkene (0.1 mmol), 1,6-enyne (0.2 mmol), CsF (1.0 equiv), Mn powder
(3.0 equiv), aryl bromide (2.0 equiv) and anhydrous DMA (2mL).
The sealed tube was sealed and removed from the glovebox.

Then the reaction was stirred at 60 oC until the reaction was
complete (monitored by TLC). The resulting mixture was
quenched with saturated NH4Cl solution (5mL) and further diluted
with water (10mL). The aqueous layer was extracted with EtOAc and
the combined organic layers were washed with brine, dried over
anhydrous Na2SO4, filtered, and concentrated under vacuum. The
residue was purified by chromatography on silica gel, eluting with
PE/EtOAc (50/1 ~ 5/1) to afford the desired 7-membered ring
products.

General procedure for the synthesis of 6-membered ring
products
An oven-dried sealed tube equipped with a PTFE-coated stir bar was
charged with NiBr2(DME) (10mol%), L9 (20mol%), trifluoromethyl
alkene (0.1mmol), 1,6-enyne (0.2mmol), Mn powder (3.0 equiv), aryl
bromide (2.0 equiv) and anhydrous DMA (2mL). The sealed tube was
sealed and removed from the glovebox. Then the reaction was stirred
at 60 oC until the reaction was complete (monitored by TLC). The
resulting mixture was quenched with saturated NH4Cl solution (5mL)
and further diluted with water (10mL). The aqueous layer was
extracted with EtOAc and the combined organic layers were washed
with brine, dried over anhydrous Na2SO4, filtered, and concentrated
under vacuum. The residue was purified by chromatography on silica
gel, eluting with PE/EtOAc (50/1 ~ 5/1) to afford the desired
6-membered ring products.
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mation files or from the corresponding author upon request. The
X-ray crystallographic coordinates for structures reported in this

study have been deposited at the Cambridge Crystallographic Data
Centre (CCDC), under deposition numbers 2220556 (7), 2220555
(46), and 2240774 (74). CIF files and crystal structure data are
available in the Supplementary Information and Supplemen-
tary Data 1.
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