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Quantum simulation of the bosonic
Kitaev chain

Jamal H. Busnaina1, Zheng Shi 1, Alexander McDonald2,3, Dmytro Dubyna 1,
Ibrahim Nsanzineza1, Jimmy S. C. Hung 1, C. W. Sandbo Chang1,
Aashish A. Clerk 2 & Christopher M. Wilson 1

Superconducting quantum circuits are a natural platform for quantum simu-
lations of a wide variety of important lattice models describing topological
phenomena, spanning condensed matter and high-energy physics. One such
model is the bosonic analog of the well-known fermionic Kitaev chain, a 1D
tight-binding model with both nearest-neighbor hopping and pairing terms.
Despite being fully Hermitian, the bosonic Kitaev chain exhibits a number of
striking features associated with non-Hermitian systems, including chiral
transport and a dramatic sensitivity to boundary conditions known as the non-
Hermitian skin effect. Here, using a multimode superconducting parametric
cavity, we implement the bosonic Kitaev chain in synthetic dimensions. The
lattice sites are mapped to frequency modes of the cavity, and the in situ
tunable complex hopping and pairing terms are created by parametric
pumping at themode-difference andmode-sum frequencies, respectively. We
experimentally demonstrate important precursors of nontrivial topology and
the non-Hermitian skin effect in the bosonic Kitaev chain, including chiral
transport, quadrature wavefunction localization, and sensitivity to boundary
conditions. Our experiment is an important first step towards exploring gen-
uine many-body non-Hermitian quantum dynamics.

While the development of universal fault-tolerant quantum computers
is still ongoing, analog quantum simulation (AQS) has emerged as a
promising approach to study classically intractable quantum
systems1–3. In AQS, the simulations take place on an artificial quantum
system built to have the same Hamiltonian as the system of interest.
One appealing aspect of AQS is that quantum degrees of freedom can
be represented natively. For instance, while bosonic degrees of free-
dom with infinite Hilbert spaces can be naturally simulated using
oscillator modes on an AQS platform, boson-to-qubit mapping on a
small-scale qubit-based computer typically requires a very large
overhead in the number of physical qubits and required gates to
implement bosonic operators4–7.

An important class of AQS is lattice models with topological
properties, which are intrinsically plagued by the infamous “sign pro-
blem” and thus are unsuitable for quantum Monte Carlo methods8–10.
Topological systems have been a focus of intense research, both the-
oretically and experimentally, for some time. More recently the study
of classical and quantum topological physics in non-Hermitian systems
has attracted significant interest11,12. These systems exhibit intriguing
and distinct properties owing to their nonorthogonal eigenstates
and singularities in the complex eigenvalue spectrum of non-
Hermitian matrices13. Compelling phenomena include oscillations
between eigenstates14,15, unidirectional invisibility16, high-performance
lasers17, and enhanced sensitivity for potential sensing applications18.
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Remarkably, non-Hermiticity fundamentally alters concepts such as
symmetry and energy gaps inherited from Hermitian physics, giving
rise to an enriched variety of topological phases with no Hermitian
counterpart13.

There are various approaches to non-Hermitian dynamics19–22.
In the quantum regime, non-Hermiticity appears naturally in open
quantum systems described by a Lindblad master equation: con-
ditioned on the absence of a quantum jump, state evolution is
described by an effective non-Hermitian Hamiltonian23,24. Experi-
mentally resolving potentially interesting effects from such non-
Hermitian Hamiltonians, while possible25–27, is challenging. By
definition, one must post-select on measurement records without
a jump, and such trajectories become exponentially rare at long
times. Consequently, one must perform many runs of the
experiment to acquire enough data for adequate statistics28. An
alternate route to obtaining non-Hermitian quantum dynamics is
through the use of Hermitian bosonic Hamiltonians. With unitary
squeezing and antisqueezing terms, the equations of motion
become effectively non-Hermitian despite the Hermiticity of the
underlying Hamiltonians29–31. These Hamiltonians present an
interesting avenue for probing coherent, genuinely quantum non-
Hermitian effects, without the use of dissipation32.

Previously, we have demonstrated the feasibility of an AQS plat-
form based on a multimode superconducting parametric cavity by
simulating a plaquette of the bosonic Creutz ladder33. The cavity
modes share a superconducting quantum interference device (SQUID)
which acts as a common boundary condition. Parametric modulation
of the boundary condition induces complex “hopping” couplings that
allow us to create a programmable graph of connected (coupled)
modes, realizing a lattice in synthetic dimensions. By controlling the
phases of the complex hopping terms, we showed that our platform
can implement interesting features including static gauge fields and
topological phenomena. We note similar work has been done in
the context of classical non-Hermitian optics34,35 and chiral photon
transport36,37.

In this work, we expand our programmable AQS toolbox by
introducing pairing terms between modes in the target Hamiltonian
in addition to the hopping terms. They allow us to construct a
topologically nontrivial Hamiltonian in synthetic dimensions, the
bosonic Kitaev chain (BKC) introduced in ref. 38. Working with a
3-site chain, we experimentally demonstrate phase-dependent chiral
transport, quadrature wavefunction localization, and a strong sen-
sitivity to boundary conditions. These observations serve as pre-
cursors to nontrivial topology and the much sought-after non-
Hermitian skin effect (NHSE)32,39–41. Our work enlarges the set of
topologically nontrivial models that can be simulated under genu-
inely quantum conditions, further highlighting the potential of our
AQS platform.

Results
We now review the features of the BKC38. In analogy with the
celebrated fermionic Kitaev chain42, a spinless p-wave topological
superconductor in one dimension, the BKC is a 1D bosonic tight-
binding model with both nearest-neighbor hopping and pairing
terms38. As a consequence of the pairing terms, the system has
effectively non-Hermitian equations of motion and supports
phase-dependent chiral transport. Furthermore, it has a topolo-
gically nontrivial phase where each band of the bulk spectrum of
the dynamical matrix has nonzero winding in the complex energy
plane. This is accompanied by the remarkable property of the
NHSE43–46: the entire spectrum depends sensitively on boundary
conditions, and the wavefunctions under open boundary condi-
tions are localized at the ends of the chain. (See Supplementary
Note 3 for a detailed discussion of the symmetry of the model,

the topological invariant, and the topological protection against
symmetry-preserving disorder).

The BKC is described by the 1D tight-binding Hamiltonian

ĤB =
1
2

X
j

ðteiφt ây
j + 1âj + iΔâ

y
j + 1â

y
j +h:c:Þ, ð1Þ

illustrated in Fig. 1a. Here âj is a bosonic annihilation operator on site j,
and teiφt and iΔ are respectively the complex hopping and pairing
strengths between adjacent sites, with magnitudes t and Δ. Without
loss of generality, we choose the pairing strength to be purely
imaginary.

To demonstrate that the model supports phase-dependent chiral
transport, we consider the Heisenberg equations of motion for the
Hermitian position and momentum quadratures x̂j = ðâj + â

y
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Fig. 1 | Quantum simulation of the bosonic Kitaev chain. a Schematic repre-
sentation of the bosonic Kitaev chain (BKC). Black and blue arrows indicate the
hopping and pairing couplings, respectively. b Device cartoon. The short circuit
at one end of the resonator is replaced by a SQUID that creates a tunable
boundary condition for the resonator modes. The cavity’s fundamental mode is
around 400 MHz, with 13 higher modes within the measurement bandwidth of
4–12 GHz.We achieve uneven spacing between cavity modes through impedance
engineering59,60. This allows us to selectively activate couplings between desired
pairs of modes. We create parametric interactions by pumping the SQUID
through an on-chip flux line. The blue and black signals represent the two pumps
that create complex hopping and pairing couplings, respectively. a, c Synthetic
Kitaev lattices. We program 3-site BKCs in synthetic dimensions with (a) open and
(c) periodic boundary conditions, using four and six pump tones, respectively.
We probe the open chain (a) by sending a coherent tone at the frequency of one
site and measuring the reflected and transported signals at all sites. The injected
signal propagates through the chain and eventually leaks out, where it is then
detected at all site frequencies via three RF digitizers. In the closed chain (c), we
focus on the spectrum by measuring the reflection coefficient around the fre-
quency of each site. d Complex spectrum of the N-site BKC with Δ/t = 0.6 and
κ/t = 1 under open and periodic boundary conditions, as predicted by Eqs. (4)
and (6). Lines correspond to long chains with N≫ 1 andmarkers indicate the case
N = 3. For periodic boundary conditions, each band of the spectrum has nonzero
topological winding when j cosφt j<Δ=t. Further decreasing j cosφt j eventually
drives the system into instability once the spectrum touches the real axis
(dashed line).
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In the special case φt = ± 90°, as long as Δ ≠0, the equations of motion
correspond exactly to two decoupled non-Hermitian Hatano–Nelson
chains with asymmetric left-right hopping for the x and p
quadratures47. This is an example of effective non-Hermitian dynamics
in Hermitian systems31,48. The decoupling of the x and p quadratures,
alongwith the left-right coupling asymmetry in each chain, gives rise to
phase-dependent chiral propagation, with quadratures representing
the two chiral species. The chirality becomes perfect in the Δ→ t limit:
forφt = 90° (−90°), the x (p) quadraturepropagates to the right and the
p (x) quadrature to the left. From Eqs. (2) to (3), we see that away from
φt = ± 90° a finite cosφt term mixes the left and right-moving
quadratures, leading to an overall reduction in the chiral nature of
the transport38.

Let us consider the spectrum of the dynamical matrix, i.e., the
coefficient matrix of Eqs. (2)–(3), taking into account a uniform onsite
single-photon loss rate κ. Eqs. (2)–(3) are now understood as the
Heisenberg-Langevin equations of the expectation values hx̂ji and hp̂ji,
and acquire the damping terms �κhx̂ji=2 and �κhp̂ji=2.

We can perform a spatially uniform squeezing transformation to
identify a topological phase transition at tj cosφt j=Δ. For tj cosφt j>Δ
the transformed Hamiltonian for the squeezed fields β̂j is equivalent
to a model with only hopping. In the more interesting case of
tj cosφt j<Δ, the transformed Hamiltonian assumes the form of Eq. (1)

with renormalized parameters t0 = t sinφt , Δ0 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 � t2cos2φt

q
and φ0

t =90
�.

Exploring the second case further, we consider both open and
periodic boundary conditions. The complex energy spectrum for the
open chain reads

Eo
n =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � Δ2

p
cos kn � i

κ
2
, ð4Þ

where kn = nπ/(N + 1), n = 1, 2,…,N and N is the number of sites. The
open chain spectrum Eq. (4) is independent of the coupling phase φt,
and can be obtained through a second, position-dependent squeezing
transformation38. This position dependence is reflected in the
quadrature wavefunctions which do depend on φt:
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where bdn is the annihilation operator for the eigenstate corresponding

to momentum kn, x̂
0
j = ðβ̂j + β̂

y
j Þ=

ffiffiffi
2

p
, and p̂0
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y
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2

p
. It is clear

from the exponential factors that different quadrature components of
a givenwavefunction are localized at opposite edges of the chain in the
topological phase.

The spectrum for periodic boundary conditions is found by
Fourier transforming the dynamical matrix,

Ep
n = t sinφt sinkn ± i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 � t2cos2φt

q
cos kn � i

κ
2
, ð6Þ

where kn = 2nπ/N, n = 1, 2,…,N. In the topological phase tj cosφt j<Δ,
Eq. (6) formsan ellipse in the complex energyplane, yielding anonzero
winding number around the point E = −iκ/2 for each band. Comparing
with Eq. (4), we see that the spectrum of the system depends drasti-
cally on its boundary conditions, a feature which holds for arbitrary
system size (see Fig. 1d). Together with the (phase-dependent) locali-
zation in the open-chain wavefunctions in Eq. (5), it thus serves as a
paradigmatic example of the NHSE43,44.

Equations (4) and (6) imply that, provided

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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the system is dynamically stable under open boundary conditions (i.e.,
all energy eigenvalues have nonpositive imaginary parts), but unstable
under periodic boundary conditions. Such instability in the presence
of loss stems from the effective non-Hermiticity induced by pairing,
and provides direct evidence for the nontrivial topology of the system.

We now describe the experimental realization of the BKC on our
AQS platform (see Fig. 1b and ref. 33). We program a chain of three sites
in the synthetic frequency dimension. For the open chain, the sites are
connected by two links where each link is created by two coherent
pumps: apumpat themodes’ frequencydifferenceωt

j,j + 1 = jωj � ωj + 1j to
activate the hopping and a pump at the sum frequencyωΔ

j,j + 1 =ωj +ωj + 1

to activate the pairing. Themagnitudes and phases of these pump tones
in turn determine the magnitudes and phases of the complex hopping
andpairing terms. To imposeperiodicboundary conditionson the3-site
chain, we create an additional link with two more pump tones that
connect the open ends, forming a closed chain (Fig. 1c).

We measure the spectra of both chains using a vector network
analyzer (VNA), determining the eigenmode frequencies directly from
the reflection coefficients.We further characterize the open chain using
phase-sensitive transport measurements. Sending in a tone set at a
constantmagnitude butwith a phase that ramps at a constant rate from
−180° to 180°, we probe at various site frequencies to measure signal
transport in synthetic dimensions. The phase-sensitivity of the trans-
port converts the phase sweep of the input signal into magnitude var-
iations in theoutput signals. Additional details ondevice fabrication and
the measurement setup are given in Supplementary Notes 1 and 2.

Twisted-tubes picture
Before discussing the details of our transport measurements, we pre-
sent a twisted-tubes picture (Fig. 2) explaining the role of individual
hopping and pairing phases. Experimentally, while all pumpphases are
separately tunable, they are difficult to calibrate absolutely at the
sample, which is deep in the cryostat. The twisted-tubes picture is an
intuitiveway to understand how adjusting the pumpphases affects the
dynamics of the system.

We begin from a single link a–b with hopping tabe
iφt

ab and pairing
Δabe

iφΔ
ab . For future convenience, we define the sum and difference

phases,φ±
ab = ðφt

ab ±φ
Δ
abÞ=2. The transport properties are solvedusing a

phase-dependent input-output theory (seeMethods). The transported
signal strength from a to bdepends on the input phase.We refer to the
input quadrature at a that maximizes transport, together with the
corresponding output quadrature at b, as the favored quadratures in
transport from a to b. On the other hand, the orthogonal quadratures
dominate the transported signal in the opposite direction. This is
represented in Fig. 2 as a pair of interleaved directional tubes with
(squeezed) elliptic cross sections, where red (blue) tubes transport to
the right (left). The favored quadratures in a given transport direction
are along the major axis of the corresponding tube. We can twist the
tubes by varying φ�

ab and φ+
ab, which individually rotate the a and b

ends, respectively (Fig. 2a).
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In a 3-site chain with two connected links, the relative orienta-
tion of the two tubes at site b is quantified by the phase Θ=φ+

ab +φ
�
bc

(Fig. 2b), which is invariant under local gauge transformations
(see Methods). When the two tubes are maximally misaligned
(Θ=0� mod 180�, Fig. 2c), transport along the chain from a to c or
from c to a is independent of the input phase. On the other hand,
when the two tubes are exactly aligned (Θ=90� mod 180�, Fig. 2d),
we achieve the maximum transport magnitude for the favored input
phase and maximum suppression of the orthogonal phase. The
values Θ=90� mod 180� and Θ=0� mod 180� thus represent two
limiting cases of the 3-site chain, which we refer to as the “chiral”
chain and the “trivial” chain, respectively. In the translationally
invariant BKC in Eq. (1), Θ becomes exactly φt and the chiral chain is
topologically nontrivial.

We calibrate the 3-site chain by injecting a signal into the central
site (b) andobserving the transport to the endswhile twisting theb end
of the a–b tube by varying φ+

ab, effectively changingΘ (see Fig. 3). The
phase is calibrated by sweeping it and comparing the complete
response to theory, similar to Fig. 4. The calibrated phases are then
used for subsequent measurements. Furthermore, we calibrate the
magnitudes to be reflection and transport coefficients by normalizing
them to an input of unit magnitude during the fitting process (see
Methods). Figure 3 shows the measured phase-dependent transport
for two extremal casesφ+

ab =0
� and 90°. The approximately sinusoidal

shape of the magnitudes of the transport coefficients is a manifesta-
tion of the transport sensitivity to the input phase, with the maxima
(minima) corresponding to the favored (suppressed) phases. At
φ+

ab =90
� (red), the transport magnitudes to a and c are in phase,

indicating that the same input phases are favored or suppressed. This
corresponds to a trivial chain as the ends of the tubes are completely
misaligned at b.

More interestingly, at φ+
ab =0

� (blue), the twisted tubes are
aligned and we realize a chiral chain. The experimental signature of
this is that the transport magnitudes to the ends become completely
out of phase. That is, when a certain input phase is enhanced in
transport to a, its transport to c is highly suppressed, and vice versa.
This corresponds to the chiral chain with the ends of the two tubes
aligned at b.

We investigate the chain chirality by performing phase-sensitive
transport measurements along the length of the chain while varying
φ+

ab. The results, in Fig. 4, reveal the predicted chiral transport prop-
erties. The chiral regime emerges gradually as we slowly varyφ+

ab away
from the trivial caseφ+

ab =90
�, reachingmaximum chirality atφ+

ab =0
�.

Figure 5 illustrates the line cuts corresponding to the trivial and
chiral chains. In the trivial chain (red), the transported signals are
nearly reciprocal and show only minimal changes in response to the
varying input phase.

The constant transport magnitude can serve as a baseline for the
chiral transport. Conversely, in the chiral chain (blue curves), the
transport magnitudes between the ends exhibit strong sensitivity to
the input phase. In Fig. 5a, for instance, the transport from the site a to
site c is enhanced for ϕ =0°, compared to the baseline, while the
transport of the orthogonal input phases at ϕ = −90° and 90° is highly
suppressed. The ratios of enhanced and suppressed magnitudes,
compared to the baseline, are expected to be t +Δ

t�Δ and t�Δ
t +Δ, respectively,

which give us a rough estimate of Δ ≈0.4t.

90o

180o

(a)

(d)

(b) (c)

Left tube Right tube

Fig. 2 | Twisted-tubespicture of theBKC. aThea-b link is representedby a pair of
interleaved directional tubes, with blue (red) tubes describing transport to the
left (right). For a given transport direction, the major axis of the elliptical cross
section at the input (output) end determines the favored input (output) phase. At
site a, for instance, the major axis of the red (blue) ellipse shows the favored
phase transported to (from) site b. For the sake of visual clarity, we absorb a 180∘

phase change in the red tube. Curved arrows connecting the IQ planes show how
a signal evolves in the IQ plane as it propagates in the corresponding direction.
Importantly, the favored quadratures in the transport from a to b are generally
not the same at the a and b ends; this is represented by the twisting of the
tubes. The a (b) end of the a-b tube can be twisted by varying the difference
phase, φ�

ab, and sum phase, φ+
ab. b We now consider transport in an open chain

with two links a-b and b-c assuming tab = tbc and Δab =Δbc. The interface between
the two tubes at the common site b determines the transport across the 3-site
chain. The IQ plane of site b shows misaligned tubes, where the alignment is
quantified by the gauge-invariant phase Θ=φ +

ab +φ
�
bc. c Maximally misaligned

tubesΘ = 180∘ when the red tube of one link meets the blue tube of the next link.
As a result, the transport along the chain is phase insensitive: a favored signal
from a arrives at b orthogonal to the favored quadrature propagating to c and is
subsequently suppressed. In (d), by twisting the b end of the b-c tube by changing
φ�

bc and aligning the tubes at Θ = 90∘, we create two continuous paths along the
chain and realize chiral transport. We see this maximum input phase dependence
(see Methods) regardless of the absolute orientation of the tubes at b, which is a
gauge degree of freedom. In the transport from c (a) to a (c), the favored quad-
rature has the input phase ϕ= � φ +

ab (ϕ=φ�
bc).

Fig. 3 | Calibration of the gauge-invariant phase, Θ, of the 3-site chain. The
lattice cartoon depicts a signal injected in the centermode bwhile the reflected and
transported signals aremeasured.The input signal (inset) has a constantmagnitude
and a phase that sweeps from −180∘ to 180∘ during the measurement. The magni-
tudes of the transported signals are plotted as functions of the input phase in the
trivial (red) and chiral (blue) cases, together with the theoretical fits (black). The
signals are normalized such that they correspond to reflection and transport
coefficients (seeMethods).Note that all transported signals are stronglymodulated
along the input phase axis. The transported signals to modes a and c are in phase
for the trivial chain. However, they are out of phase in the chiral case, where
quadratures transported to opposite ends are orthogonal to each other.
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An additional signature of chirality, illustrated in Fig. 5a, is the
flattening of the transport phase. Specifically, referring to the right
panel of (a) and the left panel of (b), we see that in the trivial case (red),
the output phase is approximately linear, the same as the input phase.
Conversely in the chiral case (blue), the output phase has a stairstep
shape, approximately locking to the phase of the preferred quadrature
before jumping by ±180° (which is the same quadrature with opposite
amplitude). We see that the observed behavior agrees well with the
theoretical predictions.

We further examine the non-Hermitian topology by extracting
the x and p quadrature wavefunctions (see Methods). The trivial and
chiral chains exhibit a striking difference in the spatial support of the
x and p wavefunctions (Fig. 5c, d). In the trivial case, the quadratures
are delocalized with nearly equal weights on both ends. In stark
contrast, we observe the characteristics of the NHSE in the chiral
case: the x and pwavefunctions are strongly localized at the right and
left ends, respectively. This demonstrates how we can control non-
Hermitian topological effects by changing the gauge-invariant phase
of our chain.

We examine the sensitivity of the chiral chain to boundary con-
ditions by connecting the chain ends (Fig. 1d). These measurements
are done on a separate device from the above measurements (see
Methods). Wemeasure the reflection coefficient around the frequency
of site bwhile varying both hopping and pairing phases of the a–c link
(Fig. 6a–c). The dominant pattern is the spectra braiding as a function
of φt

ac, which is determined by the loop phase33. However, for certain

phase conditions, we observe discontinuities in the central branch of
the spectrum (Fig. 6b–d), indicating that the chain is approaching
dynamical instability (see Methods).

It is remarkable that the instability is determined solely by the link
phases (thepumpmagnitudes are constant), revealing the transition to
the chiral regime of the closed chain. In the twisted-tubes picture, we
start withmisaligned tubes (Fig. 6e), then rotate botha and cof thea–c
tube until it aligns with both the a–b and b–c tubes, forming two
directional loops (Fig. 6f). Sufficient alignment of the link phases is
necessary to realize nontrivial winding, and consequently, instabilities
under periodic boundary conditions (Fig. 1d).

We can give an intuitive picture of the instability in terms of cir-
culating gain. In the absence of onsite loss, when the tubes are aligned,
an initial excitation traverses the loop, being amplified indefinitely,
resulting in dynamical instability. If the tubes are misaligned, the cir-
culating signal will be amplified through one link but then deamplified
through the next, allowing for a stable steady state. Local loss, as in our
chain, simply shifts the eigenvalues down in the complex plane (see
Fig. 1), increasing the instability threshold for Δ. (The threshold is
Δ= κ

2). We have confirmed that for higher values of Δ, the system
becomes unstable, leading to coupled parametric oscillations of
the modes.

Discussion
We have demonstrated on our AQS platform that nontrivial non-
Hermitian topological systems can be realized using parametric down-

Fig. 4 | Transport along the 3-site open chain. The magnitude and phase of the
experimental (left) and theoretical (right) normalized output signals are plotted as
functions of the a-b link sum phase, φ +

ab, and input phase, ϕ. The top panels show
transport from left (site a) to right (site c), and the bottom panels show transport
fromright to left. The labels {Smn} indicate theoutput signal at sitemwhen the input

signal is injected at site n. We clearly see that the transport between the chain ends,
Sac and Sca, exhibits distinct features between the trivial cases atφ +

ab = ±90� and the
chiral caseφ+

ab =0
�, ±180�. While the trivial transport shows little to no dependence

on the input phase, the alternating blue and red regions highlight the chiral fea-
tures. Figure 5 shows line cuts of the {Smn} at select link phases.
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conversion. Unlike dissipation-induced non-Hermiticity, this approach
allows us to preserve some of the Hamiltonian symmetries, such as
time-reversal symmetry. Therefore, this platform can be used to
explore the rich topological phases and symmetries of non-Hermitian
systems. Furthermore, since the dynamics are the results of a coherent
process, as opposed to dissipation, in a Hermitian Hamiltonian31, our
AQS platform can implement genuine quantum dynamics with effec-
tive non-Hermiticity. An interesting futuredirection for our platform is
to explore the interplay between interactions, topology and non-
Hermiticity49–53. In fact, the BKC exhibits nonlinear dynamics in the
above-threshold regime, where we have observed coupled parametric

oscillations in the system. This would serve as a first example of non-
Hermitian non-linear quantum dynamics.

Furthermore, the 3-site chain can also be used in interesting
applications. We can utilize the chiral features as a phase-dependent
quantum amplifier38,54,55. Alternatively, vacuum squeezing can be used
to realize entangled multimode states, which is a complex resource
that can play a central role in continuous-variable quantum informa-
tion processing, e.g., Gaussian boson sampling56. In addition, non-
Hermitian systems have a wide range of applications from quantum
sensing57 to entanglement creation and control58.

We discussed future directions to improve our AQS platform in
earlier work33. Briefly, we can improve the hardware efficiency by
increasing the length of the parametric cavity. This would increase the
number of modes that can be utilized as lattice sites in AQS. In addi-
tion, a single parametric cavity can be used as a sublattice in a network
of coupled cavities. The flexibility of controlling local coupling phases
allows us to simulate topological models requiring nontrivial phase
conditions, which gives our platform advantages over competing
platforms.

Methods
Input-output theory
Here we describe in detail the input-output theory used to quantita-
tively study the transport in our system. Additional information on the
fitting procedure is provided in Supplementary Note 4.

We denote the cavity mode j as âj and its bare frequency as ωð0Þ
j .

To couple modes j and j0, we apply a beam-splitter pump with fre-
quencyωt

jj0≈jω
ð0Þ
j � ωð0Þ

j0 j and a down-conversion pump with frequency
ωΔ

jj0 ≈ω
ð0Þ
j +ωð0Þ

j0 ; in the rotating-wave approximation, they generate the
hopping and pairing terms in the Hamiltonian, respectively. More
concretely, we choose a set of frequencies ωj, such that ωj ≈ω

ð0Þ
j for all

modes, and ωt
jj0 = jωj � ωj0 j, ωΔ

jj0 =ωj +ωj0 for all pumps; since there are
only as many free variables ωj as the number of modes, generally the
pump frequencies are not independent of each other.

We should distinguish between signal and idler frequencies in the
presence of down-conversion pumps. Given the probe detuning Ω,
an input signal at the frequency ωj +Ω is coupled to other signal
frequencies ωj0 +Ω by beam-splitter pumps, and to other idler fre-
quenciesωj0 �Ω bydown-conversionpumps. In the frequency-domain
spectrum measurements, we send in a coherent state as the input
signal at ωj +Ω and detect the reflected signal at the same frequency;
the spectrum is mapped out as a function of the probe detuningΩ. On
the other hand, in the phase-dependent transport measurements, we
set Ω =0 such that the signal and idler frequencies coincide for every
mode, which generates interference between signal and idler fre-
quencies and results in phase-dependent transport. We send in a
coherent tone as the input signal at the frequencyωjwhile scanning the
input phase, anddetect the reflected signal atωj and transported signal
at ωj0 .

After the rotating wave approximation, the general quadratic
Hamiltonian that can be programmed in our AQS takes the following
form:

ĤS =
X
j

_δωj â
y
j âj +

1
2

X
h jj0i

tjj0e
iφt

jj0 ây
j âj0

�
+Δjj0e

iφΔ
jj0 âj âj0 +h:c:

�
: ð8Þ

Here we work in the reference frame rotating at the frequency ωj at
mode j, and the pump detunings are defined as δωj =ωj � ωð0Þ

j . The
second sum runs over all pairs of connected sites j and j0, and the
hopping and pairing strengths tjj0 and Δjj0 have tunable phases φt

jj0 = �
φt

j0 j and φΔ
jj0 =φ

Δ
j0 j, respectively.

Under the local gauge transformation âj ! UâjU
y = âje

iθj , the

link phases in the transformed Hamiltonian Ĥ0
S =UĤSU

y become

Fig. 5 | Transport of the 3-site open chain at selected pump phases. Line cuts of
Fig. 4 are shown for the chiral chain atφ+

ab =0
� (blue curves) and the trivial chain at

φ +
ab =90

� (red curves) as well as the fit to theory (black). a Signal injected at the left
end. In the trivial chain, wemeasure largely phase-insensitive transport for all input
phases. However, in the chiral chain, themagnitudes of transported signals change
significantly with the input phase. We clearly note the enhancement and suppres-
sion of the transport compared to the baseline defined by the trivial chain trans-
port. For instance, the transport is enhanced at the input phase ϕ =0∘ and
suppressed at the orthogonal phase ϕ = ± 90∘. Moreover, the transported phase is
flattened despite the fact that ϕ is swept in a continuous linear fashion, a strong
indication of how the signal propagates through a single quadrature. b When a
signal is injected at the right end of the chiral chain, the enhanced input phase is
ϕ = ± 90∘, which is orthogonal to the favored phase in the transport of the opposite
direction. c, d The weights of x and p quadrature wavefunctions. In (c), the x and p
quadrature wavefunctions in the chiral chain are localized on the opposite chain
ends. In the trivial chain, however, we see in (d) that both wavefunctions are
delocalized. In both cases, the wavefunctions have minimal support in the center
site as the zero eigenmode of an odd chain is not supported on even sites.
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φt
jj0 ! φt

jj0 � θj +θj0 and φΔ
jj0 ! φΔ

jj0 +θj +θj0 . Therefore, in agreement

with our twisted-tubes picture, the phasesφ±
jj0 = ðφt

jj0 ±φ
Δ
jj0 Þ=2 transform

as φ+
jj0 ! φ+

jj0 +θj0 and φ�
jj0 ! φ�

jj0 � θj ; furthermore, for two links j–j0

and j0–j ″, the phase φ+
jj0 +φ

�
j0 j00 is fully gauge invariant.

Input signals are sent in through a measurement line, which is
coupled to the system by the Hamiltonian

ĤP = i
X
j

ffiffiffiffiffiffiffiffi
κext
j

q
ây
in, j � âin,j

� �
ây
j + âj

� �
: ð9Þ
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Fig. 6 | Spectrum of the 3-site closed BKC. a–c The measured (top) and fit (bot-
tom) reflection magnitudes at site b as functions of φt

ac and probe detuning. From
the fit, we estimate Δ ≈0.41κ. a Spectrum at φΔ

ac = 120
�. The tubes are misaligned,

reducing the total gain around the loop. In this case, sweeping φt
ac produces a

braided spectrum typical of loops with only hopping. b At φΔ
ac =0

�, the braided
spectrum is overall similar, but we observe a discontinuity (black square) when the
tubes are exactly aligned at φt

ac = 310
�. c Offsetting φΔ

ac by 180∘ forces the dis-
continuity to jump from the top to the bottom zero eigenmode. d To examine the
nature of the discontinuity, we plot line cuts for the aligned (blue) and misaligned

(red) cases at a higher pairing strength (Δ ≈0.68κ). We see that the dip of the near-
zero eigenmode turns into an amplification peak, with the reflection magnitude
growing beyond 1. This indicates that the system is approaching a dynamical
instability, which is the cause of the discontinuities in (b, c). We note that the
magnitudes of all pumps are constant in (a–c), so the onset of instability is caused
only by satisfying the chirality condition. (The system nonlinearity is more pro-
nounced at this pairing strength, causing the deviation in the fit from the linear
theory).e, fTwisted-tubes depictionof the closed chain before and after alignment.
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Here κext
j is the external coupling rate to the input mode âin,j . Taking

the onsite single-photon loss rate κj into account, we can solve the
Heisenberg-Langevin equations of motion for the signal/idler modes
âS=I
j in terms of the corresponding input modes âS=I

in,j :

i _ðδωj +ΩÞ+ i κj

2

h i�
âS
j

�
+

ffiffiffiffiffiffiffiffi
κext
j

q �
âS
in,j

�
+ i

2

P
j0

tjj0e
iφt

jj0 âS
j0

D E
+Δjj0e

�iφΔ
jj0 âIy

j0

D E� �
=0,

ð10Þ

�i _ðδωj �ΩÞ � i κj

2

h i
âIy
j

D E
+

ffiffiffiffiffiffiffiffi
κext
j

q
âIy
in,j

D E
� i

2

P
j0

tjj0e
�iφt

jj0 âIy
j0

D E
+Δjj0e

iφΔ
jj0 âS

j0

D E� �
=0:

ð11Þ

Finally, employing the input-output relation

âα
out,j =

ffiffiffiffiffiffiffiffi
κext
j

q
âα
j � âα

in,j,α = S, I, ð12Þ

we express the output modes in terms of the input modes,

âS
out,j

D E
=
X
j0

SSSjj0 âS
in,j0

D E
+ SSIjj0 âIy

in,j0

D E� �
: ð13Þ

Transport properties are now given by the scatteringmatrix Sαβjj0 . In the
frequency-domain spectrum measurements, each idler frequency
generally only receives a vacuum input, which is negligible compared
to the coherent state input at the signal frequencies; thus the
measured reflection amplitude at mode j is simply SSSjj . On the other
hand, in the phase-dependent transport measurements at zero probe
detuning Ω =0, the signal and idler frequencies always have identical
inputs. The transport from j0 to j is therefore characterized by the
normalized phase-dependent transport coefficient with unit input,

Sjj0 ðϕÞ= SSSjj0 eiϕ + SSIjj0e
�iϕ, ð14Þ

where ϕ is the input phase at mode j0.
We extract the x and p quadrature wavefunctions in chiral and

trivial chains in Fig. 5c, d as follows. For an input signal with phase
ϕ =0° at site b, the xwavefunction at the site j = a, b, c is related to the x
quadrature of the output mode via the input-output relation

hx̂ji= ðhx̂out,ji+ hx̂in,jiÞ=
ffiffiffiffiffiffiffiffi
κext
j

q
(cf. Eq. (12)), where hx̂in,ji is nonzero for

j = b. To compare the different cases, we normalize the weights of the

wavefunction such that
P

jhx̂ji2 = 1. We repeat the same process to

extract the p wavefunctions.

2-mode and 3-mode open chains
In this section we consider the chiral transport in 2-mode and 3-mode
BKCs with open boundary conditions in the framework of the input-
output theory. For a single link a–b with hopping tabe

iφt
ab and pairing

Δabe
iφΔ

ab , solving Eqs. (10) and (11), we obtain the transport coefficient
Eq. (14) from a to b as

SbaðϕÞ

=
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κext
a κext

b

q
D2

ie�iφ+
ab ½tabeiðϕ�φ�

ab
Þ +Δabe

�iðϕ�φ�
ab
Þ�,

ð15Þ

and the transport coefficient from b to a as

SabðϕÞ

=
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κext
a κext

b

q
D2

ieiφ
�
ab ½tabeiðϕ+φ+

ab
Þ +Δabe

�iðϕ+φ+
ab
Þ�:

ð16Þ

Here, the common denominator is

D2 = t
2
ab � Δ2

ab + κaκb, ð17Þ

and we define the sum and difference phases as before,
φ±

ab = ðφt
ab ±φ

Δ
abÞ=2. As Δab !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2ab + κaκb

q
, Eq. (17) indicates the

transport coefficients increase rapidly and the system approaches
instability, which is consistent with the upper bound of Δ in Eq. (7)
for N = 2.

Equations (15) and (16) clearly show phase-dependent chirality, as
explained in Fig. 2. The input phase ϕ=φ�

ab maximizes the magnitude
of Eq. (15), and corresponds to the output phase 90� � φ+

ab. These
constitute the favored quadratures in the transport from a to b (major
axes of the red ellipses). By contrast, the orthogonal quadratures with
the input phase ϕ=90� +φ�

ab and the output phase 180� � φ+
ab are

suppressed (minor axes of the red ellipses). The favored quadratures
from a to bmay be different at both sites, e.g., appearing as x at site a
but as p at site b, xa→ pb; it is φ�

ab (φ+
ab) that determines the favored

quadrature at site a (b). On the other hand, the quadratures sup-
pressed in the transport froma to b are favored in the transport from b
to a (major axes of the blue ellipses), in our example pa← xb. By pro-
gramming the coupling phases on a single link, we can tune con-
tinuously between different transport scenarios: for instance, starting
from favored quadratures xa→ pb and pa← xb, we can varyφ+

ab to arrive
at xa→ xb and pa← pb, or vary φ�

ab to arrive at pa→ pb and xa← xb.
In an open chain with two links a–b and b–c, the transport coef-

ficient from b to a is still given by Eq. (16), except that the real prefactor

is replaced by 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κext
a κext

b

q
κc=D

o
3 , where

Do
3 = ðt2ab � Δ2

abÞκc + ðt2bc � Δ2
bcÞκa + κaκbκc: ð18Þ

Similarly, making the substitutions b→ c, a→ b and replacing the real

prefactor with 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κext
b κext

c

q
κa=D

o
3 in Eq. (15), we obtain the transport

coefficient from b to c. As discussed in the main text, the favored
quadrature from b to a is ϕ= � φ+

ab while that from b to c is ϕ=φ�
bc,

and the difference between the two is given by the gauge-invariant
phaseΘ=φ+

ab +φ
�
bc. We alsomention that Eq. (18) is consistent with Eq.

(7) for N = 3.

The phase dependence of the transport coefficient from a to c is
slightly more complicated:

ScaðϕÞ

=
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κext
a κext

c

p
Do
3

e�iφ+
bc ð�tabtbce

�iΘ +ΔabΔbce
iΘÞeiðϕ�φ�

ab
Þ�

+ ð�Δabtbce
�iΘ + tabΔbce

iΘÞe�iðϕ�φ�
ab
Þ�:

ð19Þ

While φ�
ab (φ+

bc) determines the favored quadrature at site a (c), the
other two link phases enter Eq. (19) only through the gauge-invariant
linear combination Θ. When Θ = ± 90° (Θ=0� mod 180�), a construc-
tive (destructive) interference ensues, and we find a strong (weak)
dependence on the input phase ϕ. All the above points are consistent
with the twisted tubes picture.

3-mode closed chain
In this section we study how a closed 3-mode chain can approach
dynamical instability when we tune its link phases. Here we choose to
examine the determinant of the coefficient matrix of the 6 coupled
Heisenberg-Langevin equations, Eqs. (10) and (11), which come from
the input-output theory; solving an eigenvalue problemwill lead to the
same quantity. We focus on vanishing pump detuning Ω =0, where
discontinuities are seen to arise in the spectrum in Fig. 6. For a closed
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chain of three links, a–b, b–c and c–a, the determinant is found as

Dc
3 = 4tabtcaΔabΔca ðt2bc +Δ2

bcÞ cos 2Θa

hn
�t2bc cos 2ðΘb +ΘcÞ � Δ2

bc cos 2ðΘb �ΘcÞ
i

+2t2bcΔ
2
caΔ

2
ab cos 2ðΘb +Θc �ΘaÞ+perm:

o
+2t2bct

2
cat

2
ab cos2ðΘa +Θb +ΘcÞ+Cc

3,

ð20Þ

where we have defined the gauge-invariant combinations
Θa =φ

+
ca +φ

�
ab, Θb =φ

+
ab +φ

�
bc and Θc =φ

+
bc +φ

�
ca, and “perm.” repre-

sents the permutation-symmetric contributions (abc)→ (bca), (cab).
The last term Cc

3 is independent of phases,

Cc
3 =K3 + 2t

2
bct

2
cat

2
ab � 4Δ2

abΔ
2
bcΔ

2
ca

+ ð2t2bcΔ2
abΔ

2
ca � 4Δ2

bct
2
abt

2
ca +perm:Þ,

K3 = κaκbκc + κaðt2bc � Δ2
bcÞ+ κbðt2ca � Δ2

caÞ
h
+ κcðt2ab � Δ2

abÞ
i2
:

ð21Þ

Note that the link phases appear exclusively through the three
gauge-invariant combinations. In the open chain limit of
tbc = Δbc = 0, we can explicitly verify that all phase dependence
drops out. Also, if all pairing strengths vanish, only the loop
phase Θa +Θb +Θc remains.

When all pairing terms are turned off, simple algebra shows
that Dc

3 is positive definite as a function of pump phases. Once the
pairing strength exceeds a threshold value, Dc

3 can become zero
for some link phases and Eqs. (10) and (11) become singular: this
is the point where the closed chain turns unstable and the linear
theory fails. This motivates us to find the minimum of Dc

3 with
respect to all link phases.

Equation (20) allows an analyticalminimizationwith respect toΘa

by expanding out the cosine and sine terms,

Dc
3 ≥ 8tabtbcΔabΔbcðt2ca +Δ2

caÞ cos 2Θb

+8tcatbcΔcaΔbcðt2ab +Δ2
abÞ cos2Θc

� 8tabtcaΔabΔca t2bc cos 2ðΘb +ΘcÞ
�

+Δ2
bc cos 2ðΘb �ΘcÞ

i
+ const:

ð22Þ

Since cosines range between −1 and 1, it is clear that theminimum
with respect to Θb and Θc is found at cos 2Θb = cos2Θc = �1. Con-
sistent with the permutation symmetry, at this point we also have
cos2Θa = �1. This is reminiscent of the chiral transport regime in the
open 3-mode system, achieved at Θ = ±90°. The minimum of Dc

3 with
respect to link phases reads

Dc
3,min =K3 � 4 ΔbcΔcaΔab +Δbctabtca +ΔbctcaΔab

	
+ΔbcΔcatab


2
:

ð23Þ

In particular, when all hopping/pairing terms have the same
strength tbc = tca = tab = t and Δbc =Δca =Δab =Δ and all loss rates are
equal κa = κb = κc = κ,

Dc
3,min = ðκ2 � 4Δ2Þ½3t2 + ðκ +ΔÞ2�½3t2 + ðκ � ΔÞ2�: ð24Þ

Therefore, if the pairing strength satisfiesΔ > κ/2, the closed chain
can become unstable for some choices of link phases. This is con-
sistent with the stability/instability condition Eq. (7).

Following theprocedure in themain text, we align thea–b and b–c
tubes at b by fixing cos2Θb = �1. Consequently

Dc
3 = � 2 tcaðtabtbc +ΔabΔbcÞ cosðφt

ac � φ�
ab � φ+

bcÞ
�

� ΔcaðtabΔbc +ΔabtbcÞ cosðφΔ
ac +φ

�
ab � φ+

bcÞ
�2

+K3 + 4ðt2bc � Δ2
bcÞðt2ca � Δ2

caÞðt2ab � Δ2
abÞ,

ð25Þ

where we have used Θc +Θa = � φt
ac +φ

�
ab +φ

+
bc and Θc �Θa =

�φΔ
ac � φ�

ab +φ
+
bc. Equation (25) indicates that provided cos 2Θb = �1,

Dc
3 has two nonequivalent minima in the φt

ac–φ
Δ
ac plane, found

at cosðφt
ac � φ�

ab � φ+
bcÞ= � cosðφΔ

ac +φ
�
ab � φ+

bcÞ= ± 1. This agrees
with Fig. 6b, c, which shows both φt

ac and φΔ
ac change by 180° between

the two discontinuities in the spectrum.

Calibration and characterization
An arbitrary chain is calibrated by activating each link separately while
turning off the remaining links. First, upon activating the hopping term
of the link j–j0, the single mode resonance splits into two resonances
whose frequency difference gives twice the coupling strength, 2tjj0 . We
choose tjj0 to be in the strong-coupling regime: the resonance splitting
is greater than photon decay rates, 2tjj0 > κj,κj0 , such that the split
resonances are resolved. Furthermore, we set tjj0 to be roughly equal
along the chain.

Then, we activate each link’s pairing term. In this case, there is no
simple spectral feature that quantifies the pairing strength, Δjj0 . We
roughly calibrate Δjj0 using transport measurements in the following
way. With both hopping and pairing terms applied, we sweep the
input phase of the signal described above at site j and measure the
contrast of the transport at site j0 as a function of input phase. Here
the contrast, defined as ðAmax � AminÞ=ðAmax +AminÞ where Amax (Amin)
is the maximum (minimum) magnitude of the transported signal,
evaluates to minft,Δg=maxft,Δg according to Eqs. (15) and (16). We
then vary the pairing pump power, interpreting the power where the
observed contrast is maximum as Δjj0 ≈ tjj0 . As we further increase the
pairing pump power, the system eventually becomes dynamically
unstable, as discussed below Eq. (17). We choose a pairing strength
that satisfies the stability/instability condition Eq. (7) for N = 3; this
means the 3-site open chain is dynamically stable, and the spectrum
of the 3-chain closed chain shows a discontinuity at some pump
phases (Fig. 6).

The phases of the signals acquire arbitrary offsets from traveling
through the measurement lines between the instrument and the
sample. We calibrate the input and output phases of the system as
follows. First, we connect the 3-site chain with hopping and pairing
terms, and perform phase-sensitive transport measurements when a
signal is injected in the center site b. We then tune the chain gauge-
invariant phase Θ until we realize the chiral chain. To conveniently
present the results, we finally set the right-moving quadratures as I and
the left-moving quadratures as Q in the chiral chain.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request.

Code availability
The code used for data analysis and simulation are available from the
corresponding author upon request. Because the analysis code is
closely integrated with instrument-control code, which depends on
specialized instrument drivers, it is notmeaningful to share the code in
a general repository.
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