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The human gut microbiome establishes and matures during infancy, and dys-
regulation at this stage may lead to pathologies later in life. We conducted a
multi-omics study comprising three generations of family members to investi-
gate the early development of the gut microbiota. Fecal samples from 200
individuals, including infants (0-12 months old; 55% females, 45% males) and
their respective mothers and grandmothers, were analyzed using two inde-
pendent metabolomics platforms and metagenomics. For metabolomics, gas
chromatography and capillary electrophoresis coupled to mass spectrometry
were applied. For metagenomics, both 16S rRNA gene and shotgun sequencing
were performed. Here we show that infants greatly vary from their elders in
fecal microbiota populations, function, and metabolome. Infants have a less
diverse microbiota than adults and present differences in several metabolite
classes, such as short- and branched-chain fatty acids, which are associatedwith
shifts in bacterial populations. These findings provide innovative biochemical
insights into the shaping of the gut microbiome within the same generational
line that could be beneficial in improving childhood health outcomes.

The human gut microbiota is highly dynamic and evolves throughout
the lifespan, mostly in the first three years of life. From birth, there is a
symbiotic crosstalk between the microbiota and human cells, adapting
to changes over time. The gut microbiota is variable among individuals
because it is highly dependent on host-associated factors such as diet,
lifestyle, environmental factors, and age, among others1–3. Because of its
significant between-subject variability, it is difficult to define what
constitutes a “normal” or “beneficial” microbiota, although it is gen-
erally considered healthier the greater its diversity andbalance between
species4. In addition, its dysregulation– i.e., dysbiosis– at early stages of
life can be implicated in the development of pathologies later in life5–9.

The initial microbial seeding of the infant comes predominantly
from the maternal side since vaginal delivery and breastfeeding influ-
ence the primary colonization of the gut microbiota, among other
factors10–14. In addition, it has also been discussed that pre-birth colo-
nization could exist during pregnancy in utero; however, this remains
unclear15. Furthermore, it has been shown that the first 1000 days of
life, when newborns first encounter environmental exposures, are
critical for thedevelopment of the intestinalmicrobiota16. Thisdecisive
timeframe is an underexplored area with great potential for persona-
lizedmedicine interventions. Despite the emerging data, the infant gut
microbiota and theirmetabolic products are still poorly characterized,
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and little is still known about its changes with age and how this process
is influenced by the maternal line.

Omics methodologies have become an essential tool in the char-
acterization of the human microbiome, including high-throughput
technologies which allow the screening of large amounts of biological
data at different levels fromdifferent organisms. Indeed, genomics has
been used widely to investigate the composition of microbial ecosys-
tems – e.g., with 16S ribosomal RNA (rRNA) gene sequencing17 – and
their functions – e.g., with shotgun metagenomics sequencing18,19.
Several studies have applied genomics to analyze the microbiome in
infants and their mothers and, to a lesser extent, the elderly
generations20–22. However, this only provides information about the
bacterial taxonomy, and few studies have complemented genomics
with metabolomics, which is crucial in understanding the complex
metabolic interactions between gut microbiota and the host as
modulated by environmental exposures23,24. Furthermore, from those
related to aging, none of them have included three generations and
more than one platform for each omic as this study does25–30.

A valuable metabolomics technique in this regard is gas chroma-
tography coupled to mass spectrometry (GC-MS), as it can reliably
measure a wide range of metabolites associated with host-gut micro-
biota co-metabolism31–33. However, a common drawback in the case of
non-volatile biological samples is that the sample preparation is
usually time-consuming compared to other separation techniques,
especially in large-scale studies32,34,35. Consequently, alternative meth-
ods have appeared, such as alkyl chloroformate derivatization36, which
is faster and can be performed at room temperature in aqueous
media31,37. These noticeable advantages make it desirable for studies
with larger numbers of samples.

Another technique capable of detecting metabolites of interest
–such as short-chain fatty acids (SCFAs), amino acids, and other
charged metabolites– is capillary electrophoresis coupled to mass
spectrometry (CE-MS)33. An innovative application of CE-MS especially
designed for large cohorts is multisegment injection (MSI-CE-MS)38,
which allows themeasurement of up to 13 samples in a single run. This
results in a higher throughput for large-scale analyses (≈4min/sample)
and has recently shown remarkable advantages in metabolomics
studies38–41. Taking all this into account, we propose here a metho-
dology for large-scale GC-MS analyses using a quadrupole-time-of-
flight (QTOF) mass analyzer (GC-QTOF-MS) and complement these
results with a targeted search in MSI-CE-TOF-MS.

To date, no study has employed a multi-omics approach to
characterize in detail the gut microbiome, its functions, and its rela-
tionship to the fecal metabolome in young infants compared to their
maternal lineage including two elder generations. In this work, we
report a large-scale, multi-omics analysis of a three-generation cohort
of 200 fecal samples. We recruited infants younger than twelve
months of age, their mothers, and maternal grandmothers, and
appliedmetabolomics (untargetedGC-QTOF-MS and targetedMSI-CE-
MS) and metagenomics (16S rRNA gene and shotgun sequencing).
Furthermore, we integrated the results from these techniques using
multivariant analysis with the mixOmics package.

Here, we show the differences in the gut metabolome and meta-
genomes of 3 consecutive family generations and demonstrate the
unique multi-omics signature of young infants. Our study provides
interesting insights into the development of the microbiome and its
related metabolites throughout the lifespan that could serve to
improve childhood health outcomes.

Results
Study population and final sample numbers for each analysis
The study population characteristics are shown in Table S1. The mean
age (years ± SD) of the groups was: Infants (0.42 ±0.14; n = 69),
Mothers (34.31 ± 3.8; n = 67) and Grandmothers (63.09 ± 6.09; n = 64).
In each step of the analysis, due to insufficient quantity, equipment

malfunction, or outlier removal, a different final number of samples
was obtained. The justification for these differences in sample num-
bers is presented indetail in Fig. S1A for eachanalysis and in Fig. S1B for
the multi-omics integration. More specifically, those participants with
more extreme ages in each age group were deemed age outliers and
excluded from further analysis (Fig. S2).

Large-scale sample analysis using GC-QTOF-MS and successful
batch strategy
To measure our cohort of samples in a large-scale GC-MS analysis, we
adapted a short derivatization method (<15min) for sample
treatment31,42. To complement this methodology, samples were ana-
lyzed within a batch strategy using a common quality control sample
(QC) made from pooled samples from the three age groups and ana-
lyzed during all batches (Fig. 1A). We split the analysis in three batches
according to the age group (Infants,Mothers, andGrandmothers), and
the QC sample was used to normalize the data to correct analytical
drift and batch effects.

Data deconvolution and metabolite annotation – as detailed in
Methods – resulted in 152 molecular features obtained in all samples.
After quality assurance (QA), 134 features remained among the three
batches, as shown in Fig. S3A. Intra-batch and inter-batch
normalizations43–45 were applied after obtaining the principal compo-
nent analysis (PCA) model of the raw data (Fig. 1B). This normalization
strategy resulted in the clustering of the QCs from the three batches
(Fig. 1C). Other quality parameters that improved with the normal-
ization were the total useful signal (TUS) and the relative standard
deviation (RSD) of the two internal standards (IS): 4-methyl valeric
(4MV, IS1) for controlling the derivatization process and tricosane
(TRI, IS2) for instrumental performance (Fig. S3B, D). Additionally, a
higher number of features cleared the QA after normalization: 146 vs
134 passed in at least one batch, and 110 vs 65 in all three batches
–almost 1.7 times more features– (Fig. S3C).

To sum up, the analytical method and the QC strategy coupled to
the normalization allowed the successful joining of the three batches,
resulting in a decrease of the sample outliers compared to before
normalization (Fig. 1C). In addition, Infant samples clustered apart
from the adults in the PCA analysis, suggesting a great difference
between the metabolomes of Infants and adults.

Analysis of selected fecal metabolites by MSI-CE-MS
Complementarily to the GC-QTOF-MS analysis, we obtained a total of
14 key metabolites of the host-gut microbiota co-metabolism with the
MSI-CE-MSmethodology after a targeted search (Fig. S4A), as detailed
in Methods. Of these, 6 were in common with GC-QTOF-MS to check
the accordance between both techniques (Fig. S5), while the other 8
were crucial metabolites that had not been previously detected. The
justification of this selection is shown in Fig. S4B, while the PCA that
shows the successful clustering of the QCs is shown in Fig. S4C.

Fecal metabolome differences between the age groups
After checking the quality of the data and the success of both meta-
bolomics platforms, we focused further on determining the differ-
ences between the three age groups.

To address the dependence between samples (Infants, Mothers,
and Grandmothers), and the situation of relatives, we applied uni-
variate statistics using a linear mixed-effects model (GLM) to both
datasets. Regarding the GC-QTOF-MS data, a total of 77 metabolites
showed statistical variation among age groups (FDR <0.05, Supple-
mentary Data 1). As expected, higher numbers of differences were
observed between Infants and their Mothers (n = 67), and Infants and
their Grandmothers (n = 62) than betweenMothers andGrandmothers
(n = 29). These variations were compared in a Venn diagram (Fig. S6A)
and are presented in Supplementary Data 1 with their biochemical
information. Among the significant metabolite classes, amino acids,
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Krebs cycle intermediates, indoles, and mainly fatty acids (including
short- and branched-chain fatty acids, SCFA and BCFA) can be found.
On the other hand, from the MSI-CE-MS data, 12 out of the 14 meta-
bolites were significantly different between the age groups (Fig. S6B),
including key metabolites that increased with age –such as butyric/
isobutyric acid– and others that decreased with age –γ-aminobutyric
acid (GABA), cadaverine, and choline (Supplementary Data 2).

To evaluate this data globally, all the features from both datasets
–146 features from GC-QTOF-MS and 14 from MSI-CE-TOF-MS– were
combined in a unified metabolomics dataset using the samples mea-
sured by both techniques (n = 169, see Fig. S1). This combined matrix
was used to build multivariate models: firstly, a PCAmodel with all the
samples (Fig. 2A), which showed a clear separation by the first com-
ponent of the Infants, to the left, and the adults, to the right.
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Fig. 1 | Large-scale sample analysis by GC-QTOF-MS and successful batch join-
ing. A Experimental design of the study, analysis, and workflow schematic.
B, C Unsupervised multivariate models (PCA) of all the samples, including QCs,
before (B) andafter (C) normalization.QCs are shown tightly clustered in the center
in (C). The most evident difference is between the Infants (in green) and the adults
(Mothers in purple and Grandmothers in orange). Source data are provided as a
Source Data file. R2: percentage of the variability of the samples that each com-
ponent is able to explain. All multivariate models were built with univariate scaling

(UV) andwithout any transformation of the data. Numbers of samples used to build
the model (n) are shown in each (B, C). The full explanation for sample numbers is
presented in Fig. S1. NIST: National Institute of Standards and Technology Mass
Spectral Library, PCDL: Personal Compound Database and Library, QC: quality
control sample, QC-Norm: inter-batch normalization byQCs, QC-SVRC: QC Sample
– Support Vector RegressionCorrection (intra-batch normalization), PCA: Principal
Component Analysis, PLSDA: Partial Least Square Discriminant Analysis, OPLSDA
Orthogonal PLSDA. Icons were created using biorender.com.
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Fig. 2 | Comparisons between age groups using the combined metabolomics
dataset. A PCAmodel of the combinedmetabolomics dataset for the samples that
were measured in both techniques. B–E Supervisedmultivariate models: B PLS-DA
model of all samples. C Cross-validated OPLS-DA model of Mothers vs Infants.
D Cross-validated OPLS-DA model of Grandmothers vs Infants. E Cross-validated
OPLS-DA model of Grandmothers vs Mothers. R2: percentage of the variability of
the samples that the model is able to explain. Q2: capacity of the model to predict

the classification of new samples. Values of R2 and Q2 closer to 1 indicate higher
quality of themodel. All multivariatemodels were built with univariate scaling (UV)
and without any transformation of the data. Numbers of samples used to build the
model (n) are shown in each (A–E). The full explanation for the differences in
sample numbers and the removal of outliers is given inMaterials andMethods and
presented in Figs. S1 and S2. Source data are provided as a Source Data file.
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This clustering of the Infants was also shown to be independent from
the most important covariates: sex, type of birth, milk allergy status
(allergic vs non-allergic), and type of diet (breastfeeding or formula)
(Fig. S6C–F).

Then, we built supervised models using partial least square dis-
criminant analysis (PLS-DA) among the three groups (Fig. 2B) and
orthogonal-PLS-DA (OPLS-DA) models for pairs of groups (Fig. 2C–E).
All in all, these models showed that the greatest differences were
between Infants and the adult groups (Mothers and Grandmothers),
where the prediction scores (Q2) were close to 90% (Fig. 2C, D).

Pathway analysis of metabolic differences between the
age groups
Statistically significant and identified metabolites (FDR <0.05, Sup-
plementary Data 1 and 2) were used to perform a metabolic pathway
enrichment analysis (Fig. 3A, Table S2). Seven pathways were sig-
nificant (FDR <0.05), including “Biosynthesis of unsaturated fatty
acids”, “Butanoate metabolism”, “Alanine, aspartate and glutamate
metabolism”, and “Propanoate metabolism”. Additionally, although not
significant (FDR >0.05), “Citrate cycle” and “Tryptophan metabolism”

were also selected for their importance in the context of the host-
microbiome co-metabolism.

Regarding the “Biosynthesis of unsaturated fatty acids” pathway,
while the levels of saturated fatty acids (i.e., palmitic and stearic acids),
monounsaturated fatty acids (MUFA; i.e., oleic acid) and linoleic acid
were higher in adults, the opposite was observed for polyunsaturated
fatty acids (PUFA; e.g., arachidonic and docosahexaenoic acids)
(Fig. 3B). Thus, theMUFA/PUFA ratio was calculated and showed to be
increased with age (Fig. 3C). On the other hand, several pathways
related to energetic and biosynthetic pathways – including “Alanine,
aspartate and glutamate metabolism” and “Citrate cycle” – were
represented in Fig. 4A, including metabolites that are significantly
higher in Infants, such as choline, glucose (and other hexoses), GABA,
succinate, and citrate. Finally, in the case of “Tryptophan metabolism”,
the levels of tryptophan presented a trend to decrease with age, along
with a significant increase in its catabolic metabolites, both from host
(i.e., anthranilic acid) and microbial pathways (i.e., indole and 3-
methylindole/skatole) (Fig. 4B).

Boxplots for other important metabolite classes –SCFAs, BCFAs,
and polyamines–were depicted in Fig. 5. Regarding SCFAs (Fig. 5A), in
addition to their related pathways (“Butanoate metabolism” and “Pro-
panoate metabolism”), Infants displayed higher levels of acetic acid
and lower amounts of the other SCFAs, namely propionic, (iso)butyric,
caproic, and (iso)valeric acids. Similarly, all BCFAs were significantly
increased with age (Fig. 5B) and, as a result, the SCFA/BCFA ratio was
higher in the Infant group (Fig. 5C). Lastly, polyamines (i.e., putrescine
and cadaverine) were also shown to decrease with age (Fig. 5D). Our
data demonstrated that Infants exhibit a distinctive metabolic profile
that significantly differs from that of their Mothers and Grandmothers
in several microbiota-derived metabolites.

Infants show a different – and less diverse –microbial signature
than their Mothers and Grandmothers
To analyze the gut microbiota, we applied metagenomic techniques
(16S rRNA gene and shotgun sequencing, Fig. 6A) to a subset of the
fecal samples (N = 128, 64.0% of the original cohort, Fig. S1A). A total of
19,523,010 sequences were generated from the 16S rRNA gene
sequencing analysis. Of these, 12,955,391 remained after filtering for
quality and length and removal of chimeras, resulting in 9641 amplicon
sequence variants (ASVs) for the gut microbiome. Likewise, for shot-
gun sequencing, a total of 3,569,152,984 paired-end reads with an
average of 3,379,879 sequences per sample were obtained.

Comparedwith Infants, adults showed a significant increase of the
α-diversity (Shannon diversity index) and richness using 16S rRNA
gene sequencing (p < 0.001) (Fig. 6B, C). This finding was further

evidenced when presenting the major taxa obtained in this analysis
separatedby each agegroup, as shown inFig. 7A, B formicrobial phyla,
and Fig. 7C, D formicrobial genera by both 16S rRNAgene and shotgun
sequencing. Extensive differences can be appreciated in most taxa
regardless of the technique. Phylum relative abundances demonstrate
that Infants have a much higher proportion of Actinobacteria (syno-
nym Actinomycetota) and Proteobacteria (synonym Pseudomona-
dota), while Firmicutes (synonymBacillota) are themain phylum in the
adult microbiota (Fig. 7A, B). In addition, more than 50% of the Infant
gut microbiota is composed of three genera – Bifidobacterium,
Escherichia/Shigella, and Veillonella – and some that contribute highly
to the Infant microbiota are almost absent in adults – e.g., Klebsiella
and Lactobacillus. In contrast, other genera that are abundant in the
adult microbiota are practically absent in Infants – e.g., Faecali-
bacterium, Blautia and Roseburia (Fig. 7C, D). The relative abundance
of Bacteroidetes phylum (synonym Bacteroidota) and Bacteroides
genus remains similar in both groups of age in both techniques
(Fig. 7A–D). Overall, the taxonomic distribution in each age group
between 16S rRNA gene and shotgun sequencing data was highly
similar for microbial phyla and genera (Supplementary Data 3).

To test the significance of these differences between the groups,
we applied GLM statistical analysis. Significant ASVs for phylum
(Fig. S7A, B, Supplementary Data 4) and for genus (Fig. S7C, D, Sup-
plementary Data 5) were obtained. When comparing phyla, 9 and 12
differences were found when comparing Infants individually to both,
Mothers and Grandmothers for 16S rRNA gene and shotgun
sequencing, respectively (Supplementary Data 4). Additionally, 75
and 85 genera were significantly different between Infants and their
mothers or grandmothers according to 16S rRNA and shotgun
sequencing, respectively (Supplementary Data 5). No significant dif-
ferences were found between Mothers and Grandmothers in phyla
nor in genera.

We further analyzed the ASVs data using the linear discriminant
analysis (LDA) effect size (LEfSe) tool in the Galaxy / Hutlab webpage,
which resulted in the LDA scores shown in Fig. 7E and the cladogram
shown in Fig. 7F. These results confirm that the main genera enriched
in the Infant microbiota – compared to the other two groups – are
Bifidobacterium and Lactobacillus, while Mothers are enriched in the
Clostridia class (Clostridium III group and Blautia genus), and Grand-
mothers have higher levels of the Deltaproteobacteria class and Ver-
rumicrobia phylum (synonym Verrucomicrobiota).

Furthermore, for shotgun sequencing, the analysis of species was
carried out (Fig. S7E). The results confirmed that the microbiota of
elders was more diverse than that of the Infants, where 7 species
including Bifidobacterium bifidum, B. breve, B. longum, Escherichia coli,
and Faecalibacterium prausnitzii accounted for the 40% of the micro-
biota in Infants. These were confirmed to be significant after GLM
analysis (Fig. S7F, Supplementary Data 6).

Additionally, the abundances of several bacterial phyla, genera,
and species known to be producers of relevant metabolites were
correlated with the abundances of the corresponding metabolites:
GABA (Table S3) and SCFAs (Table S4). The significant results are
presented in Fig. S8. Of note, the levels of GABA correlate with the
abundances ofGABA-producing phyla – i.e., Actinobacteria (Spearman
rho, ρ = 0.240, p <0.05) –, genera: Veillonella (ρ =0.551, p < 0.001),
Bifidobacterium (ρ =0.362, p < 0.001) and Enterococcus (ρ = 0.453,
p <0.001) –, and species – i.e., Bifidobacterium breve (ρ =0.382,
p <0.001) (Table S3 and Fig. S8A). As for SCFAs, significant correla-
tions appeared for the genera Bifidobacterium (acetic acid; ρ =0.243,
p <0.01), Roseburia (propionic acid: ρ =0.329, p <0.001), Blautia
(propionic acid; ρ =0.289, p <0.01), Faecalibacterium ((iso)butyric
acid; ρ =0.526, p < 0.001), Clostridium clusters III, IV, and XIVb (valeric
acid; ρ =0.194/0.425/0.488, p <0.05/p < 0.001/p < 0.001), and the
species Faecalibacterium prausnitzii ((iso)butyric acid: ρ =0.56,
p <0.001) (Table S4 and Fig. S8B).
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Fig. 4 |Othermetabolic pathways of interest alteredbyage.APathway related to
energetic metabolism showing significantly altered metabolites using box and
whiskers plots (statistical test was linearmixed-effectsmodel with the correction for
multiple test comparisons, FDR p-value <0.05). In this, the box ranges from the first
to the third quartile, and the center the median value, while the whiskers extend
from each quartile to the minimum or maximum values. The graph shows normal-
ized abundance of the metabolite in the Y-axis and age group in the X-axis. All
metabolites were from GC-QTOF-MS (n= 63, n= 64, n = 58 of biologically indepen-
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and Grandmothers groups, respectively). For A and B pathways, names highlighted
in gold indicate that the metabolite is increased with age, while names in blue
indicate that the metabolite decreases with age. *p <0.05; **p <0.01; ***p <0.001,
exact p-values and FDR p-values are provided in Supplementary Data 1 and 2. Source
data are provided as a Source Data file. Icons were created using biorender.com.
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provided in Supplementary Data 1 and 2. Source data are provided as a Source
Data file.
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Fig. 7 | Taxonomic differences between generations according to 16S rRNA
gene and shotgun sequencing data. A,BMain phyla for each age group using 16S
rRNA gene and shotgun sequencing, respectively. C, D Main genera for each age
group using 16S rRNA gene and shotgun sequencing, respectively. Data are
represented using stacked bars. Minor phyla: <0.1% relative abundance in all
groups. Minor genera: <2% relative abundance in all groups. Other: Unmatched

phyla/genera with minor relative abundance. E Linear discriminant analysis (LDA)
scores resulting from the LDA-effect size (LEfSe) tool in the Galaxy / Hutlab web-
page. F Cladogram of the results of the previous LEfSe analysis, showing the taxa
that are enriched in each age group, categorized by their taxonomic relationships.
Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-47182-y

Nature Communications |         (2024) 15:3004 10



These results show that the Infants harbor a much less diverse
microbiota, mainly composed of Bifidobacterium, Escherichia/Shigella,
and Veillonella, and they present extensive differences with both
Mothers and Grandmothers in many taxa. On the other hand, the two
groups of adult women do not significantly differ, suggesting that the
changes in the microbiota of adults are more subtle.

The functionality of the Infant microbiota differs in many
pathways from that of adults
A total of 9867 KEGG Orthologs (KOs) were obtained from our meta-
genomic data after applying SqueezeMeta, of which 4708 became
significant between Infants and adults (Mothers or Grandmothers)
upon statistical analysis (Supplementary Data 7). These significant KOs
were grouped according to their respective KEGGPathways and tested
between the age groups at two different levels: BRITE level B (corre-
sponding to pathways such as “Energy metabolism”; Supplementary
Data 8) and level C (corresponding to more specific pathways, such as
“Glycolysis/Gluconeogenesis”; Supplementary Data 9). Results from
level B showed thatmany general pathwayswere significantly different
between Infants and adults, including “Carbohydrate metabolism” and
“Energy metabolism” (Fig. 8A). Further analysis into level C pathways
confirmed this, with pathways such as “Glycolysis / Gluconeogenesis”,
“Pentose phosphate pathway” and “Starch and sucrose metabolism”

being more abundant in Infants whereas “Oxidative phosphorylation”
and “Carbon fixation pathways in prokaryotes” were enriched in the
adults (Supplementary Data 9). These pathways are reflective of the
type of diet and metabolic capacity, which is highly different between
Infants and adults.

Among the significant annotated KOs, functions related to the
metabolism of fatty acids (i.e., K11533), SCFAs (i.e., K00135, K04072,
K01902, K01903) and citrate cycle (i.e., tricarboxylic acids, TCA cycle:
K00239, K00240,K01902, K01903)weremoreabundant in Infants. On
the other hand, polyamines signaling (i.e., K01596, K00850) and
BCFAs metabolism (i.e., K00248, K00249) associated entries were
increased with age. Lastly, for tryptophan metabolism, opposite tra-
jectories were observed for enzymatic activities participating in its
biosynthesis (i.e., K01696, TrpB, reduced with age) and catabolism
(i.e., K01667, TnaA, increased with age) (Fig. 8B, Supplemen-
tary Data 7).

Integrationof different omics data –metabolites, ASVs, andKOs
– usingmixOmics demonstrates a high correlation among them
and reveals the unique signature of the Infants
With the aim of integrating the three omics datasets – (i), metabolites
from both GC-QTOF-MS andMSI-CE-MS, (ii) ASVs from 16S rRNA gene
sequencing, and (iii) KOs from shotgun metagenomics –, we applied
the mixOmics package using the Data Integration Analysis for Bio-
marker discovery using Latent Components (DIABLO) framework46,47.
Selection of ASVs taxonomic data from 16S rRNA gene over shotgun
sequencing was due (i) to high correlation for the 85 most abundant
matched genera (with a minimum abundance of at least 1000 counts
among samples) showed by 90% of them being significant and all
positively correlated (ρ >0.70 in 70% of the genera, Table S5); and (ii)
to include information from three independent datasets.

Thus, we used the data from the samples that were measured
successfully in all the analyses (N = 113, see Fig. S1B and Supplementary
Data 10 for explanations). The results of the script are displayed in
Fig. 9. Sample plots (PLS-DA models) of the DIABLO model in Fig. 9A
displayed that the three omics datasets were able to discriminate
between Infants and adults, in agreement with what was described in
the previous sections separately. Furthermore, receiver operating
characteristic curves (ROC) showed that the comparison “Infants vs
Others”was the onewith the highest Area Under the Curve (AUC) in all
three datasets (>0.9), being the KOs dataset the most discriminating
with an AUC value of 0.9929 (Fig. 9B). Figure 9C showed that the latent

components of each omic dataset were highly correlated between
each other, highlighting that DIABLO could model a good agreement
between the datasets. The best correlation was between KOs and ASVs
with an index of 0.94. Once again, the scatterplots show the Infants
clearly separated from the adults in their own cluster. The strongest
correlations between the most important features of each dataset are
presented in a circosPlot (Fig. 9D) which displays the different types of
significantly correlated features on a circle and shows their link
between omics or within an omic, indicating strong positive or strong
negative correlations (in red and blue, respectively). Almost all strong
correlations arepositive, except for glucose andBifidobacteriumwhich
are negatively correlated with most KOs from this subset. Lastly, the
unique multi-omic signature of the Infants was depicted using a clus-
tered imagemap (CIM) (Fig. 9E). Hierarchical clustering of the samples
using the 75 best features from the model (25 from each dataset)
classified the Infants almost perfectly into their own cluster, with only
one Grandmother wrongly classified as an Infant. Mothers and
Grandmothers, as before, did not separate well into distinct clusters.
The signature (the rows) is clearly visible, with only the 9 variables in
the top section being higher in the Infants, while the other 66 are
lower. From these 9 variables higher in the Infants, we can highlight
previously mentioned genera (Bifidobacterium, Veillonella, and
Escherichia/Shigella) and metabolites (glucose, putrescine, and cho-
line). On the other hand, among others, Faecalibacterium, linoleic/
oleic acid, and several BCFAs (isotridecanoic acid, isopentadecanoic
acid, and iso/anteisopalmitic acid), appear as the most important
variables that are lower in the Infant population. Of note, all the KOs
cluster together and show a specific signature, distinct from the other
two omic datasets. Finally, this information was represented and
integrated in a pathway analysis using Cytoscape (Fig. S9).

Discussion
The crosstalk mechanisms between the microbiota and host metabo-
lism are complex, and how they change with age is still not fully
understood. To our knowledge, this is a pioneering study character-
izing the fecal microbiome and metabolome of Infants, their Mothers,
and Grandmothers, leaving out heterogeneity due to the genetic line.
The samples were analyzed using two omics methodologies: meta-
bolomics (using a novel GC-QTOF-MS protocol in an untargeted
approach and MSI-CE-MS in a targeted approach) and two genomic
approaches (16S RNA gene sequencing and shotgun metagenomics).

GC-MS is a crucial technique that has been hampered in its use for
large-scale analyses. Combining a cutting-edge derivatization
technique31 with a batch strategy and the use of a commonQC sample,
we have demonstrated that this methodology can be applied suc-
cessfully to the analysis of large-scale studies. The GC-QTOF-MS ana-
lysis was complemented by the MSI-CE-MS protocol which allowed us
to detect key metabolites of the host-gut microbiota crosstalk and
round up our biological interpretation.

Among the results frommetabolomics, the changes in MUFA and
PUFA have been studied in relation to aging through their role in
oxidative stress48. This is because,whileMUFAs arepractically resistant
to this phenomenon, PUFAs aremore susceptible to lipid peroxidation
via reactive oxygen species (ROS) due to the presence of multiple
double bonds49. Thus, the decrease of PUFA levels (C20:3, C22:6, and
C20:4) in adults compared with the Infants could be due to higher
levels of lipid peroxidation, wherein PUFAs are metabolized into oxi-
dized PUFAs that act as free radicals and contribute to cellular aging. In
contrast, MUFA (e.g., C18:1) have been seen to prolong lifespan50, and
therefore couldbe considered as potent regulators of longevity. In line
with this, a recent study showed that increased levels of MUFA and
decreased levels of PUFA in a young mouse model inoculated with
aged microbiota correlated with alterations in the expression of dif-
ferent genes related to lipid biosynthesis51. Of note, here we observed
alterations in different bacterial functional activities regarding fatty
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Fig. 8 | Functional pathways in the three generations according to shotgun
metagenomics. A Functional pathways from level B of the BRITE Hierarchies,
grouped by their level A (“Metabolism”, “Genetic Information Processing”, “Envir-
onmental Information Processing” and “Cellular Processes”). Significant pathways
are presented as box and whiskers plots (statistical test was linear mixed-effects
model with the correction for multiple test comparisons, FDR p-value < 0.05). For
the box and whiskers plots, the box ranged from the first to the third quartile, and
the center the median value, while the whiskers extend from each quartile to the
minimum or maximum values (n = 38, n = 43, n = 40 of biologically independent
samples for Infants, Mothers, and Grandmothers groups, respectively). The graphs
show pathway counts in the X axis. Complementary information is presented in
Supplementary Data 8 for level B and Supplementary Data 9 for level C pathways.

B SelectedKEGGOrthologues (KOs) groupedby pathwaysof interest arepresented
as box and whiskers plots (statistical test was linear mixed-effects model with the
correction for multiple test comparisons, FDR p-value < 0.05). For the box and
whiskersplots, the box ranged from the first to the thirdquartile, and the center the
median value, while the whiskers extend from each quartile to the minimum or
maximum values (n = 38, n = 43, n = 40 of biologically independent samples for
Infants, Mothers and Grandmothers groups, respectively). Complementary infor-
mation is presented in Supplementary Data 7. EC: enzyme commission number.
Source data are provided as a Source Data file. Significance: *p <0.05; **p <0.01;
***p <0.001; n.s.: not significant; *p <0.05; **p <0.01; ***p <0.001, exact p-values
and FDR p-values are provided in Supplementary Data 7, 8, and 9.
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Fig. 9 | Integration of the three omics using mixOmics and DIABLO. A Sample
plots (PLS-DA models) of the final DIABLO model for each omic dataset. B ROC
Curves for each dataset. Values of the Area Under the Curve (AUC) of each “one-vs-
all” comparison are superimposed on top of the corresponding graph. C Sample
scatterplot from plotDiablo (the graphical output for the DIABLO framework)
displaying the first component in each data set (upper diagonal plot) and Pearson
correlation between each component (lower diagonal plot). Samples are repre-
sented with a 95% confidence ellipse. The bottom left numbers indicate the cor-
relation coefficients between the first components from each data set.D circosPlot
of the most significant variables from each dataset and their pairwise correlations.
Variables are represented on the side of the circosPlot, where colors indicate the

type of data (KOs, ASVs or Metabolites), and external lines display the measured
levels with respect to each outcome category (Infants, Mothers or Grandmothers).
In the center, red lines signify a positive correlation between the linked variables,
and blue lines a negative one. E Clustered Image Map (CIM) from the cimDiablo
function showing themulti-omicmolecular signature expression of the samples (in
columns) for the 75 most important variables from the model (top 25 from each
dataset, in rows). A hierarchical clustering – built with Euclidean distance and
complete linkagemethod –was applied to both rows and columns. This CIM shows
the clear differential multi-omic signature of the Infants, who are perfectly clus-
tered. The legendof KOs fromHeatmapand circosplot is shown in Table S6. Source
data are provided as a Source Data file.
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acid synthesis pathways, such as fatty acid synthase type II (FAS-II,
K11533), greatly decreased in adults.

In addition, our metabolomics and metagenomics data suggest
that there is an inverse and possibly gut microbiome-mediated rela-
tionship between age and several energetic and biosynthetic path-
ways, including the TCA cycle. The age-related decline in
mitochondrial function, where the TCA cycle takes place, has already
been described and has been attributed to several causes52. However,
very little is known about the influence of the microbiota on this
process, but we believe our results could shed some light in this
matter. Mitochondrial dysfunction is a hallmark of human aging,
showing loss of electron chain oxygen consumption and ATP
production53. Furthermore, several studies have linked alterations in
the microbiota to various pathologies involving mitochondrial
dysfunction54–57 and TCA alterations51,58, suggesting a crosstalk
between themicrobiota andmitochondria. In this respect,metabolites
such as GABA may have a direct impact on energetics by controlling
the availability of substrates such as glutamate41,59. Indeed, the higher
levels of GABA in Infants when compared with both adult groups
correlate with high abundances of GABA-producing phyla (Actino-
bacteria), genera (Veillonella, Bifidobacterium and Enterococcus), and
species (Bifidobacterium bifidum, B. breve, B. longum) – the latter one
according to the Virtual Metabolic Human database60 – as shown in
Table S3 and Fig. S7A.

Regarding tryptophan, this essential amino acid can be metabo-
lized via endogenous or bacterial pathways61. Because it depends on a
microbiota that changes over the years, tryptophanmetabolism is also
affected by age62. Interestingly, our metagenomic data showed oppo-
site trajectories for enzymatic activities of its biosynthesis and cata-
bolism: TrpB (which catalyzes the last two steps in the biosynthesis of
Trp) decreased with age, while TnaA (tryptophanase, a bacterial
enzyme involved in its degradation to indole) increased with age.
These results, together with lower levels of tryptophan, suggest there
is an upregulation of tryptophan catabolism with increasing age2. At
the biological level, both tryptophan and its metabolites act as aryl
hydrocarbon receptor (AhR) ligands and regulate the expression of
genes involved in the modulation of inflammation and intestinal
homeostasis61. Consequently, tryptophan has been considered a
potent regulator of lifespan and age-related diseases like
inflammaging63.

In addition, SCFAs have key roles as energy sources48 and as sig-
naling molecules that contribute to intestinal homeostasis64–67. They
are the main metabolites produced by the human microbiota through
the anaerobic fermentation of undigested proteins and carbohydrates
in the colon68,69. In the case of Infants, their diet is based on milk
(whether breastmilk, formula or a combination of both), which is
mainly composed of oligosaccharides that are metabolized by differ-
ent strains of Bifidobacterium70. The higher levels of Bifidobacterium
(genera and species) in Infants correlated positively with acetic acid,
the shortest SCFA (ρ =0.21 to 0.25, p < 0.05). On the contrary, the
composition of the adult microbiota was characterized by a higher
bacterial richness according to Shannon α-diversity. Adult microbiota
was more abundant in Bacteroidetes and Firmicutes phyla, SCFA-
producing genera, such as Faecalibacterium, Roseburia, Blautia, and
Clostridium clusters, and species such as Faecalibacterium prausnitzii.
Consequently, adults showed increased levels of longer-chain SCFAs
(specifically propionic, butyric/isobutyric acid, valeric, isovaleric, and
caproic acids)71,72. As shown in the boxplots, the differences are higher
the longer the carbon chain of the SCFA. These correlations were
proven statistically, as shown before, for Roseburia, Blautia, Clos-
tridium clusters III, IV, and XIVb, Faecalibacterium genus and Faecali-
bacterium prausnitzii species (Table S4 and Fig. S8B)73.

RegardingBCFAs, our data showed that their levels increasedwith
age which, in addition to the longer-chain SCFA data, proves the
negative correlation between proteolytic and saccharolytic capacity

with age74. BCFAs are methylated saturated fatty acids derived from
several sources which are considered to promote health effects75,76. In
humans, they are believed to derive mainly from the diet (especially
from ruminant-derived products, such as milk, cheese or beef) and
they are present to a lesser extent in several tissues including skin,
adipose tissue, and serum76,77. Thus, their higher levels in adultsmaybe
a direct consequence of a diet with higher quantities of ruminant-
derived products. In addition, BCFAs are major components of bac-
terial membranes across many genera and species78, so they arise as
well from bacterial activity. Finally, they are products of the endo-
genous catabolism of branched-chain amino acids (BCAAs), which are
three essential amino acids – valine, leucine, and isoleucine – that are
believed to be involved, among others, in the regulation of different
biological processes including aging79–81. Our study suggests thatBCAA
conversion to BCFA is altered with age, as enzymatic functions from
this catabolic pathway (e.g., K00248, K00249) were more abundant in
adults than Infants.

Lastly, polyamines such as putrescine or cadaverine are essential
molecules for cell proliferation that come from the diet and endo-
genous or microbial decarboxylation of amino acids82. It has been
shown that levels of polyamines decrease with age and that their
administration increases lifespan in animal models83. Surprisingly, the
same effect was achieved only by administrating probiotic Bifido-
bacterium strains, giving rise to the importance of an Actinobacteria-
enriched microbiota, such as that of Infants, in the production of
polyamines84. These polycationic metabolites may exert a longevity
effect through differentmechanisms, including AMP-activated protein
kinase (AMPK) activation48. In support of this, our study found that
microbial enzymatic activities related to the AMPK pathway (i.e.,
phosphoenolpyruvate carboxykinase and 6-phosphofructokinase-1)
were increased in adults.

The three omics techniques individually raised complementary
information about the same metabolic pathways, allowing us an inte-
grative view of how the interaction between the host and the micro-
biota changes over the lifespan. Although each omic technique
showed good discrimination parameters, it was only the integration of
the three different datasets using mixOmics that allowed to draw an
almost perfect fingerprint for the microbiota of Infants. This was
possible as high correlation in the most abundant taxa between 16S
rRNA gene and shotgun sequencing was demonstrated, as stated by
other authors85,86. Thus, in our mixOmics results, the functions
(represented by the KOs) seem to be the most discriminant char-
acteristic among them. This, coupled to the fact that the highest cor-
relation parameters were found between KOs and ASVs (that come
from different analyses), showed that not only is the microbiota of
Infants different, but it also behaves differently and is accountable for
the changes that we see between age groups.

The most significant features presented in the CIM and the cir-
cosPlot figures belonged, among others, to the metabolic pathways
that we had previously identified in our metabolomics, 16S rRNA gene
sequencing, and shotgun metagenomics data. Interestingly, the top 35
KOs were mainly increased in adults and belonged, among others, to
pathways related to the carbohydrate and energy metabolism cate-
gories fromKEGGOrthology BRITE Database (e.g. subunits β (K02109),
γ (K02110), and ε (K02114) from bacterial F-type ATPase). Additionally,
most of these KOs negatively correlated with the most characteristic
features of the gut microbiota of Infants (Bifidobacterium and glucose),
proving that the most discriminant difference between Infants and
adults is the energetic functionality of their microbiota, which is
directly related to their type of diet. In the case of Infants, their diet
based on milk gears their microbiota towards a saccharolytic metabo-
lism (as evidenced by metabolites such as glucose, and their over-
expressed metagenomic pathways), carried out mainly by the genera–
Bifidobacterium, Escherichia/Shigella, and Veillonella, and the species –
B. bifidum, B. breve, B. longum, and E.coli – that conformmore than 50%
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and 40%, respectively, of their microbiota. In contrast, these genera
account for less than 7% of the adult microbiota, which is much more
diverse, and this is reflected in their metabolic profile with the higher
abundances of SCFAs and BCFAs and lower levels of sugars and TCA
metabolites.

The strengths of this one-of-a-kind study include the sample col-
lection, including three different generations of participants from two
hospitals and five health centers in Madrid; the broad epidemiologic
variables obtained, and the rigorous and state-of-the-art analysis in two
omics methodologies and 4 high throughput techniques. However,
this study had certain limitations which should be considered in future
studies. The stool samples were collected at a single time point in the
study; therefore, it was not possible to assess changes in the compo-
sition of the microbiota over time, provide information on evolution,
or monitor the threshold at which the microbiome becomes more
stable and similar to that of adults. In addition, the dietary variable was
highly confounded with the age groups, as it is closely linked to the
circumstances of each age period, making it difficult to dissociate the
effects of diet and aging.

All in all, the integration of our data showed that the microbiota
of infants is metabolically, compositionally, and functionally distinct
from that of adults. Our study stands out as the pioneer to integrate
different omics approaches in an intergenerational study while
controlling genetic variability and provides valuable data that could
be used as a starting point for new hypotheses. It is also worth
noticing that human samples were used instead of animal models,
and the pathways were reported in detail –including the bacterial
enzymes involved as well as the actual metabolites– providing
compelling evidence of the interrelated processes and significantly
strengthening the biological interpretation. In addition, the results
have beenpresented in a clear and visually appealingmanner, andwe
believe they represent a significant contribution to the field of
microbiota and aging.

In any case, further studies are needed to elucidate the relation-
ship between these processes and how they can be improved for
human health, especially by monitoring the same participants over
time andproviding prospective follow-up data on birth outcomes later
in life. In addition, other sample matrices –such as the serum meta-
bolome–, and other metabolomics platforms –such as lipidomics–
may provide valuable information and complement the results of this
work in the future.

Methods
Study design
We performed an intergenerational and observational study approved
by the Regional Ethics Committee for Clinical Research of Hospital
Universitario Infantil Niño Jesús in Madrid according to the ethical
guidelines outlined in the Declaration of Helsinki and its
amendments87. The cohort of participants was initially recruited for a
study regarding cow’s milk allergy, which showed scarce differences
between allergic and non-allergic infants88. Participants were recruited
at Hospital Universitario Infantil Niño Jesús, Hospital General Uni-
versitario Gregorio Marañón and five Health Centers in Madrid (Spain).
All participants provided informed consent.

Study population
The final study population consisted of 200 participants: 69 Infants up
to twelve months of age, their 67 Mothers, and their 64 maternal
Grandmothers. Infants were sex balanced, with a slightly higher pro-
portion of females (55%) (Table S1). None of the infants had transi-
tioned into a solid diet, and all were fed with either breastmilk alone,
formula milk, or a combination of both. Mothers and grandmothers
reported no dietary restrictions or specific diets. Exclusion criteria for
all age groups were antibiotics intake in the 3 months prior to study
recruitment and any other concomitant severe disease. Due to the

difficulties in locating families with all three generations willing to
participate, recruitment of the research population took two years.

All participating centers applied the same recruitment protocols
and questionnaires. Information on age, sex, mode of birth, antibiotics
use at birth, cow’s milk allergy and feeding regime for Infants, and age
and smoking habits ofMothers andGrandmotherswere collected. This
data is presented in Supplementary Data 10, along with the family
number and the techniques and datasets in which each sample was
measured and/or included.

Sample collection and processing
Each participant received a sample collection kit developed by our
group for easier collection at home. We published this procedure
elsewhere88,89. Subjects were asked to record the sample collection
date, to not contaminate the sample with urine or toilet paper and to
store the samples in the home freezer at −20 °C before taking them to
the laboratory. A total of 200 fecal samples were collected at the
laboratory and stored at −80 °C before being processed for metabo-
lomics analysis and DNA extraction.

Gas chromatography coupled to QTOF mass spectrometry
analysis (GC-QTOF-MS)
Prior to this study, we adapted a derivatization method that allows for
shorter derivatization times <15min31 compared to the 16 h of tradi-
tional approaches32,35. It also enhances the coverage of keymetabolites
of the host-gut microbiota co-metabolism, such as SCFA, which have
poor recoveries in the traditional derivatization reactions since they
require anhydrous media and samples must be evaporated up to total
dryness. We applied this methodology to a QTOF mass analyzer, a
high-resolution equipment well-known for its powerful capabilities for
unveiling unknown compounds. It allows for the determination of
accurate mass in all detected mass-to-charge (m/z) fragments, which
enormously enhances the selectivity and the sensitivity of the analysis
and leads to a much more reliable identification32,90. The samples
analyzed were n = 67, n = 67, n = 63 of biologically independent sam-
ples for Infants,Mothers, and Grandmothers groups, respectively. The
number of QCs were n = 24, and the biological replicates were n = 1.

Sample preparation. The protocol for sample preparation was adap-
ted fromZhao et al.31, with somemodifications42. Briefly, feces samples
were lyophilized overnight at −110 °C in a LyoQest −85 lyophilizer
(Telstar) until completely dried. Then, the lyophilizate from each
individual sample was homogenized mechanically. Samples were
taken as quickly as possible from the −80 °C freezer to avoid any
thawing that would interfere with the lyophilization.

Metabolite extraction. 10mg of lyophilized feces were mixed with
300μL of NaOH (1M) solution inMilli-Q water and 10μL of 1000ppm
4-methyl valeric acid (4MV) solution, IS1, in a 0.5mL Eppendorf tube
and vortexed vigorously for 2min. Samples were then centrifuged at
16,000× g at 4 °C for 20min. Each 200μL of supernatant was trans-
ferred into an autosampler vial, and the residue was further extracted
with 200μLof coldmethanol. After repeating the homogenization and
centrifugation as above, 167 μL of supernatant was combined with the
first supernatant in the sample vial. Blank sampleswere prepared in the
same way, omitting the 10mg of lyophilizate.

Derivatization with methylchloroformate (MCF). To derivatize the
extractedmetabolites, 20μL ofMCFwere added to each vial, as well as
34μL of pyridine. The samples were then vortexed vigorously for
exactly 30 s. Another 20μL of MCF were added again, and samples
were vortexed for another 30 s. Subsequently, 400μL of 20 ppm tri-
cosane (TRI) solution, IS2, in chloroform were added, and samples
were vortexed for 30 s, followed by an addition of 400 μL of sodium
bicarbonate solution (NaHCO3, 50mM inMilli-Q water) and additional
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vortexing for 30 s. Samples were then centrifuged at 2000× g for
20min at 4 °C in order to clearly visualize the doublemeniscus. Finally,
350μL of the bottom chloroformic phase were transferred to trans-
parent GC vials containing ∼100mg of anhydrous sodium sulfate
(Na2SO4).

GC-quadrupole-time of flight (QTOF)-MS equipment and analysis.
The GC system (Agilent Technologies 7890B) consisted of an auto-
sampler (Agilent Technologies 7693A) and an Accurate-Mass Q-TOF
(Agilent Technologies 7250). Data collection was performed with
MassHunter Workstation GC/MS Data Acquisition Version 10.0.
(Agilent).

GC-QTOF parameters were optimized from Zhao et al.31 to
increase the coverage of relevant SCFAs by enabling the analysis of the
most volatile SCFAs. One μL of each derivatized sample was injected
using a splitless injection technique into a DB-5 MS capillary column
(30m×0.25mm i.d., 0.25μm film thickness; (95% dimethyl/5%
diphenyl) polysiloxane bonded and cross-linked with a precolumn
(10m) integrated; Agilent J&W Scientific, Folsom, CA), with helium as
the carrier gas at a constant flow rate of approximately 1.0mL·min−1.
The solvent delay time was set to 2.9min. The optimized temperature
gradient was the following: 30 °C held for 1min, then increased at a
rate of 10 °C·min−1 up to 120 °C for 9min, 20 °C·min−1 to 320 °C for
10min, and then held there for 2min. The total time of analysis was
22min. The temperatures of the injector, transfer interface, and ion
source were set to 270, 270, and 220 °C, respectively. Electron impact
ionization (70 eV) at the examinedm/z range of 38 − 650was used. The
acquisition rate was 20 spectra·s−1. To avoid signals from the solvents
that could saturate theMS, the detectorwas turnedoff in the following
retention time (RT) segments: 3.52–3.90 and 4.84–5.30.

Experimental design for large-scale sample analysis in GC-QTOF-
MS: batches and QC strategy. To be able to measure reliably all the
samples from our cohort we divided them into three batches,
according to the age group – batch 1: 67 Mothers, batch 2: 63 Grand-
mothers, and batch 3: 67 Infants. The samples were randomly mea-
sured inside their batch.

To later be able to join these batches and compare the data
between them, we devised a quality control (QC) strategy. To prepare
the QC samples, 17mg of 30 lyophilized samples were taken (10 ran-
dom samples from each of the 3 age groups) and a pool of 510mgwas
obtained. This pool was split into three parts, one for each batch
(170mg per batch). Inside each batch, 11 QC samples were prepared,
by taking 10mg of the lyophilized feces and following the same pro-
tocol as the samples. From these 11 QCs, 3 were used as equilibrium
QCs at the start of the analysis, and the other 8 were placed in the
worklist every 9–10 samples – whose order was randomized inside
eachbatch. This assured that the batches could be joined later byusing
a normalization strategy. Schematics detailing the preparation of QC
samples and theworklistsmeasured in the equipment are presented in
Fig. S10.

Additionally, for GC-QTOF-MS a mix of n-alkanes was injected at
the beginning of the worklist to later build calibration files that would
allow converting RT into retention index (RI). This parameter is later
used for the enhancement of metabolite annotation, as
explained below.

Data treatment and compound identification in GC-QTOF-MS. The
data treatment procedure was adapted from recently published pro-
tocols that have been rigorously tested and fine-tuned at CEMBIO32.
GC-QTOF-MS data, peak detection, and spectra processing algorithms
were applied usingMassHunter Software (Agilent) using an untargeted
workflow.

The overall analytical performance was carefully examined by
inspection of total ion chromatograms (TIC) of experimental samples,

QC samples, blanks, and both internal standards (IS): 4MV and TRI,
following the guidelines of previousworkonQA91. 4MV is the IS1 that is
added before the derivatization and thus controls the reproducibility
of the whole sample preparation process, while TRI is the IS2, added
after the derivatization, and is used to control mostly the analytical
performance of the GC-QTOF-MS equipment (drifts in response and
performance of the injection process).

Then, the SureMass mass spectral deconvolution algorithm was
applied inMassHunter Unknowns Analysis (B.10.0, Agilent) to identify
co-eluted compounds by matching deconvoluted spectra and/or RTs
to two spectral libraries: (i) a “Personal Compound Database and
Library” (PCDL) built by analyzing chemical standards with the same
method and (ii) a further search into the NIST20 library (National
Institute of Standards and Technology, U.S. Department of Com-
merce). The details and parameters of these analyses are described in
detail elsewhere32.

For obtaining the abundances of the metabolites, MassHunter
Quantitative (B.10.0, Agilent) was used. First, the target ions were
carefully checked with the experimental data, avoiding saturated ions
and discarding compounds derived from the solvents, derivatizing
agents or column bleeding. This process allowed the better revision of
compound annotation using the NIST20 library with the tool MS
Interpreter in NIST MS Search v.2.4 in MassHunter Qualitative
(B.08.00, Agilent).

The result of the peak integration was an Excel file (Microsoft®
Excel® forMicrosoft 365MSOv. 2401) for eachbatch (Infants,Mothers,
and Grandmothers) (N = 161 features). The following step was a blank
subtraction to ensure that signals from the reagents, solvents, con-
taminants, and derivatizing agents were removed (N = 152). Then, a
quality assurance procedure (QA) was performed92,93. First, we applied
a filter by presence, where features that appeared in <50% of QCs and
<70% of samples were removed (N = 152). Then, we applied a filter by
Relative StandardDeviation (RSD), wheremetaboliteswere kept if they
had, in at least one batch, an RSD< 30% in the QC samples (N = 134).
This was performed independently for each batch.

Normalization procedures were also carried out to ensure the
comparison between the three batches. First, an intra-batch correction
using “QC Sample – Support Vector Regression Correction” (QC-
SVRC)43, and after the fusion of the three batches in a unique Excel, an
inter-batch correction with QC-Norm44,45 were applied. After these
normalizations, the QA filters resulted in 152 features after the pre-
sence check and 146 final features after the RSD filter.

SCFA/BCFA and MUFA/PUFA ratios. The SCFA/BCFA ratio was calcu-
lated as the sum of the abundances of (Acetic + Propionic + Valeric +
Caproic acid) divided by the sum of (Isotridecanoic acid + Isomyristic
acid + Isopentadecanoic acid +Anteisopentadecanoic acid + [Iso/Ante-
iso]palmitic acid + Isomargaric Acid +Anteisomargaric acid).

The MUFA/PUFA ratio was calculated as the abundance of “Lino-
leic Acid/Oleic Acid” divided by the sum of (Arachidonic Acid +
Eicosatrienoic Acid +Docosahexaenoic Acid). Both ratios were calcu-
lated from the data of GC-QTOF-MS for these metabolites.

Multivariate statistical analyses. After all the procedures described
above, the data were imported into SIMCA (v.16.0.1, Sartorius Stedim
Data Analytics AB) to build multivariate statistics models. Non-
supervised models (PCA) and supervised models (PLS-DA and OPLS-
DA) were obtained. The cross-validated scores from the OPLS-DA
models and the “Variable Importance for the Projection” (VIP) values
were also obtained from the significant models.

Multisegment injection (MSI) capillary electrophoresis coupled
to TOF mass spectrometry analysis (MSI-CE-TOF-MS)
The samples were also measured in capillary electrophoresis coupled
to MS (CE-MS), using a methodology published by Shanmuganathan
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and co-authors38. This methodology, called Multisegment Injection
(MSI)-CE-MS, is specially designed for large-scale studies, as in the
present case, and employs serial injections of 13 samples in the CE
system to allow for greater sample throughput (≈4min/sample). In this
case, we applied a targeted search for importantmetabolites of the gut
microbiota metabolism that had not been previously detected in the
GC-QTOF-MS analysis. The samples analyzedweren = 57,n = 66,n = 60
of biologically independent samples for Infants, Mothers, and Grand-
mothers groups, respectively. The number of QCs were n = 31, and the
biological replicates were n = 1.

Sample preparation. We employed fecal extracts prepared by taking
25mg of feces lyophilizate and extracting with a mixture of
H2O:ACN:IPA in a 10:6:5 (vol/vol/vol) proportion. This extract was fil-
tered through Micro centrifuge filters (0.45 µm Nylon, Costar) at
16,100 × g for 15min at 4 °C. For this extract to be suitable for MSI-CE-
MS analysis, 100μl aliquots of each sample were dried in a N2 eva-
porator and reconstituted with 50μl of H2O:Methanol in a 70:30
proportion, containing the corresponding IS – 40μM chloro-tyrosine
(Cl-Tyr) as the IS for positivemode and 1mMnapthalenemonosulfonic
acid (NMS) as the IS for negative mode.

QC samples were prepared by pooling 5μl of each sample in the
study to a “GrandPool”, fromwhich six 50μl aliquotswerepreparedby
the same protocol as the rest of the samples. These QC samples were
measured throughout the run to monitor analytical variability and
equipment performance.

MSI-CE-TOF-MS equipment and analysis. Samples weremeasured in
aG7100ACE equipment coupled to a 6230TOFdetector38. The sample
preparation and analysis in the equipmentwereperformed in theBritz-
McKibbin lab, at McMaster University (Hamilton, ON, Canada). Data
collection was performed with MassHunter Workstation LC/MS Data
Acquisition for 6200 series TOF (Agilent).

Targeted search of metabolites using in-house library. Once the
data were obtained, they were processed following the published
procedures38. The QA procedures and statistical analyses were applied
in the same way as for the GC-QTOF-MS data. Of note, GABA was not
detected in all samples (total n = 160) due to isomeric interferences.
Thus, a K-nearest neighbors (KNN) missing value imputation was car-
ried out with a MATLAB script94.

16S rRNA gene sequencing and shotgun metagenomic
sequencing
For both genomic techniques – 16S rRNA gene sequencing and shot-
gun metagenomics – a subset of samples was selected, due to limita-
tions in sample quantity. Therefore, 40 Infants, 45 Mothers, and 43
Grandmothers (n = 128) were included.

DNA extraction. DNA was extracted from 200mg of feces using the
QIAamp DNA Stool Mini Kit (QIAGEN, Hilden, Germany) following the
manufacturer’s instructions plus an additional membrane disruption
step using metal beads95. The extracted DNA was quantified by Qubit®
2.0 Fluorometer following the dsDNA HS Assay Kit protocol. All
128 samples had a concentration higher than 0.2 µg/µL and were sui-
table for sequencing.

16S rRNA gene amplification and sequencing. The V3-V4 regions of
the 16S rRNA gene were amplified and sequenced using the MiSeq
platform from Illumina, as described in the manual for “16S Metage-
nomic Sequencing Library Preparation” of the MiSeq platform
(Illumina, San Diego, California, EEUU).

Bioinformatics and statistical analyses for 16S rRNA gene sequen-
cing. 16S rRNA sequences were denoised and processed with DADA2

v1.11 in order to define ASVs96. In addition, DADA2 and the command
removeBimeraDenovo were used to remove chimeras. Taxonomy was
assigned using the DADA2 implementation of the RDP classifier97,
using the formatted RDP training set 16 release 11.5 from the DADA2
website. Shannon’s α-diversity index was estimated using the package
vegan v2.6-4 and the R 4.2.2 software. Richness was defined as the
number of ASVs identified in a given sample.

For the cladogram of differences in species abundance between
groups, we applied the linear discriminant analysis (LDA) effect size
(LEfSe) tool98, via the interactive webpage (https://huttenhower.sph.
harvard.edu/galaxy/). This high-dimensional data analysis tool for
biological indicators compares various groups, focuses on biological
correlations and statistical significance, and identifies biological indi-
cators that differ significantly between groups.

Shotgun metagenomics sequencing. Metagenomic sequencing was
performed using a NextSeq platform (Illumina, USA) according to the
manufacturer’s recommendations for obtaining paired-end sequences
of 150 base pairs.

16S rRNA gene and shotgun sequencing phylum taxonomy.
For both 16S rRNA gene sequencing and shotgun metagenomics
sequencing, the phylumnomenclaturewas established using up to two
nomenclature codes: previous informal names, and the new names
published by the International Code of Nomenclature of Prokaryotes
(ICNP)99.

Bioinformatics and statistical analyses for shotgun metagenomics
sequencing. First, the paired-end Fastq files were filtered by quality
with the Fastp application (version 0.20.1)100: low-quality bases were
trimmed from the tail of each read, low complex reads were
removed, and reads shorter than 35 bases were discarded. Next, all
the reads passing the previous filters were mapped onto the Homo
sapiens genome (GCA_000001405.28 GRCh38.p13 assembly) by
means of Bowtie2 (version 2.4.2)101. Finally, the reads which did not
align concordantly against theHomo sapiens genomewere analyzed
with the SqueezeMeta pipeline with coassembly mode (version
1.3.1; database built on September 2020)102. Tabular outputs were
generated from the SqueezeMeta results using the sqm2tables.py
SqueezeMeta script, ignoring unclassified reads in the TPM
calculation.

Next, for shotgun sequencing data, we analyzed both taxonomic
data (phyla, genera, and species) and metabolic functions. For func-
tional pathways, we tested these differences at several levels: KEGG
Orthology (KO) terms, that identify orthologous groups of genes
organized using the BRITE functional hierarchy103, and level B and C of
the hierarchy, explained below.

We joined these KO terms according to the BRITE functional
hierarchies (see https://www.genome.jp/kegg/kegg3b.html) to which
they belong, obtaining: 52 BRITE functional hierarchies (level B), (e.g.,
Amino acid metabolism, Carbohydrate metabolism, Endocrine sys-
tem), and 483 BRITE functional hierarchies (level C), (e.g., Histidine
metabolism, Galactose metabolism, Glucagon signaling pathway).

For KEGG and BRITE the following parameters were used:
minimum abundance and prevalence applied were: 0.0. The nor-
malization was performed with the trimmed mean of M values
method (TMM) also using a linear model test (LM) with a maximum
significance 0.10.

Statistical univariate analysis. Analysis was performed using the
MaAsLin2 (MicrobiomeMultivariableAssociationswith LinearModels)
R package104 applying GLM models establishing the family as the ran-
domeffect and the generation as thefixedeffect (Infants,Mothers, and
Grandmothers). The False Discovery Rate (FDR) was performed, and
statistical significancewas set at95% level (FDR<0.05).We applied this
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test for the metabolomics data (GC-QTOF-MS and MSI-CE-MS), the
taxonomic data from metagenomics (16S rRNA gene and shotgun
sequencing) i.e. phyla, genera, and species, and the functional data
from shotgun sequencing (KEGG and BRITE B and C functional
hierarchies).

TheMetaboAnalyst online tool (v. 6.0) was used for metabolomic
pathway analysis. GraphPad Prism (v.9.5.0) was used to represent
statistical graphs.

Multi-omics dataset integration using mixOmics. Integration of the
different Omic datasets was performed with the mixOmics script46

using theData IntegrationAnalysis for Biomarker discovery using Latent
Components (DIABLO) framework47 using R (v. 4.2.2). This is a multi-
omics integrative method that seeks common information across dif-
ferent data types through the selection of a subset of molecular fea-
tures, while discriminating between multiple phenotypic groups.
For this integration we used the 113 samples that were common to all
techniques used (Fig. S1B, Supplementary Data 10). We assessed the
performance of the model using 5-fold cross-validation repeated 10
times with the function perf(). We then assessed the accuracy of the
prediction on the left-out samples (KOs, ASVs, metabolites). ROC
curves and AUC plots per block were plotted using the function
auroc(). We set the number of variables to select to 25 on each of the 3
components (KOs, ASVs, Metabolites) of PLS-DA. The circosPlot was
built based on a similarity matrix. A cutoff of 0.65 was included to
visualize correlation coefficients above this threshold in the multi-
omics signature.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The 16S rRNA and shotgun metagenomics sequencing files and
metadata data generated in this study have been deposited in the
Sequence Read Archive (SRA) at NIH database under accession code
PRJNA991269. The metabolomics raw data generated in this study
have been deposited to the EMBL-EBI MetaboLights database105 under
accession code MTBLS7670. In addition, the processed omics data
(16S rRNA and shotgunmetagenomics sequencing, andmetabolomics
from GC-QTOF-MS and MSI-CE-MS platforms) in this study are pro-
vided in the Source Data file. Source data are provided with this paper.
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