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Genetic associations of protein-coding
variants in venous thromboembolism

Xiao-Yu He1,5, Bang-Sheng Wu1,5, Liu Yang1,5, Yu Guo1,5, Yue-Ting Deng 1,5,
Ze-Yu Li2, Chen-Jie Fei1, Wei-Shi Liu1, Yi-Jun Ge 1, Jujiao Kang 2,
Jianfeng Feng 2,3,4, Wei Cheng 1,2,3,4 , Qiang Dong 1 & Jin-Tai Yu 1

Previous genetic studies of venous thromboembolism (VTE) have been largely
limited to common variants, leaving the genetic determinants relatively
incomplete. We performed an exome-wide association study of VTE among
14,723 cases and 334,315 controls. Fourteen known and four novel genes
(SRSF6, PHPT1, CGN, and MAP3K2) were identified through protein-coding
variants, with broad replication in the FinnGen cohort. Most genes we dis-
covered exhibited the potential to predict future VTE events in longitudinal
analysis. Notably, we provide evidence for the additive contribution of rare
coding variants to known genome-wide polygenic risk in shaping VTE risk. The
identified genes were enriched in pathways affecting coagulation and platelet
activation, alongwith liver-specific expression. The pleiotropic effects of these
genes indicated the potential involvement of coagulation factors, blood cell
traits, liver function, and immunometabolic processes in VTE pathogenesis. In
conclusion, our study unveils the valuable contribution of protein-coding
variants in VTE etiology and sheds new light on its risk stratification.

Venous thromboembolism (VTE), consisting of deep vein thrombosis
(DVT) and its complication, pulmonary embolism (PE), constitutes a
major global public health challenge with high morbidity and
mortality1. Given the steady increase in VTE incidence2, it is crucial to
elucidate the underlying risk factors associated with VTE to facilitate
individualizing approaches for prevention3.

VTE is a multifactorial disease involving interactions between
acquired environmental and inherited genetic predispositions for
thrombosis. Apart from recognized environmental factors such as
immobilization, obesity, and advancing age2, VTE is also strongly
influenced by genetics, with twin-based heritability estimates over
40%4,5. However, previous genetic studies of VTEhave focusedprimarily
on common variants with higher minor allele frequencies (MAF > 1%).
Such array-based (primarily noncoding variants) genome-wide asso-
ciation studies (GWAS)6–10 meta-analyses have successfully identified 93

VTE risk loci of individually small effect sizes. By contrast, only a few rare
variant studies of VTE with limited sample sizes and outcome events11

exist to date. While it has revealed a substantial utility of rare variants,
the identification of confidently associated genes remains scarce11.

Compared to common variants, rare coding variants often tend to
exhibit immediate biological effects12, pinpoint causal genes13, and
guide subsequent experiments14. Rare monogenic variants, leading to
the inactivation of natural anticoagulant proteins (SERPINC115, PROC16,
and PROS117) or congenital fibrinogen disorders (FGA, FGB, and FGG)18,
have emerged as important contributors to autosomal dominant
forms of thrombophilia19. And with widespread whole exome
sequencing (WES), a novel gene-hunting approach has been provided
for complex thrombotic disease19.

To advance gene discovery for VTE beyond GWAS, we leveraged
data from 349,038 UK Biobank (UKB) participants20,21 and performed
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the WES analyses for VTE across the allele frequency spectrum. We
showed that VTE was strongly influenced by 14 known and 4 novel
protein-coding genes and corroborated them in the FinnGen cohort,
all of which also exhibited significant associations with incident VTE
risk in longitudinal prospective analyses. Notably, the identified genes,
characterized by liver-specific expression, were enriched in coagula-
tion cascade and platelet (PLT) activation. Furthermore, our findings
also revealed the pleiotropic effects of the identified VTE genes, indi-
cating the potential involvement of coagulation factors, blood cell
traits, liver function, and immunometabolic markers in VTE develop-
ment. Finally, our present study demonstrated that VTE is influenced
by additive effects between rare coding variant burden and array-
based common variant polygenic risk, and combining them may bol-
ster the genetic risk stratification of VTE.

Results
Cohort characteristics
A total of 349,038 unrelated White British samples with “Caucasian”
genetic ethnic grouping in the UKB were included in the WES analyses
after sample quality control (QC) procedures, including 14,723 VTE
cases and 334,315 controls (Supplementary Data 1). The median age at
enrollment was 58.0 years, and 161,319 participants (53.8%) were
women (more demographic and clinical characteristics of the study
population by VTE case-control status were provided in Supplemen-
tary Data 2). 13,795,592 high-quality autosomal genetic variants
remained in the exome sequencing data after variant QC. Among
those, 13,695,488 variants were classified as rare (MAF < 1%), while
100,104 were classified as common (MAF ≥ 1%).

Gene-level associations of rare coding variants with VTE
We first conducted a gene-level collapsing analysis to test associations
of rare coding variants with VTE. To account for variations across
genetic architectures, our framework encompassed 20,629 genes
under 12 different models (see the “Methods” section and Supple-
mentary Data 3). Within each gene, qualifying variants (QVs) contain-
ing either loss-of-function (LOF, stop gained, start lost, splice acceptor,
splice donor, stop lost or frameshift) only, likely deleterious missense
(Dmis, predicted to be deleterious by SIFT22, LRT23, PolyPhen2 HDIV,
PolyPhen2 HVAR24, and MutationTaster25 consistently) only, or both
LOF and Dmis were aggregated into distinct variant sets. These variant
sets were created usingQVs at fourMAF thresholds (<10−5, <10−4, <10−3,
and <10−2, Supplementary Data 3), and their impact on VTE was sub-
sequently assessed. No substantial inflation was observed in any indi-
vidual model, as indicated by genomic inflation factors consistently
below 1.179 (Supplementary Fig. 1).

Applying a Bonferroni correction (corresponding to
P = 2.42 × 10−6), we identified 30 significant associations implicating 6
VTE risk genes (PHPT1, PROC, PROS1, SERPINC1, SRSF6, and STAB2;
Fig. 1A, Table 1 and Supplementary Data 4). Consistent with previous
exome studies10,11, four genes have significant deleterious effects on
VTE risk (PROC, odds ratio (OR) = 1.07, 95% confidence interval
(CI) = 1.05–1.10, P = 1.22 × 10−10; PROS1, OR = 1.08, 95% CI = 1.06–1.11,
P = 1.31 × 10−9; STAB2, OR = 1.01, 95% CI = 1.01–1.02, P = 5.98 × 10−8; and
SERPINC1, OR = 1.19, 95% CI = 1.11–1.28, P = 8.89 × 10−7). In addition, we
uncovered SRSF6 and PHPT1 as novel VTE genetic risk genes. The
strongest associations of SRSF6were observed inmodels for LOF-plus-
Dmis burden with MAF < 10−3 (OR = 1.04, 95% CI = 1.02–1.06,
P = 6.57 × 10−7), while for PHPT1 it was LOF burden with MAF< 10−4

(OR = 1.08, 95% CI = 1.05–1.11, P = 6.82 × 10−7). The effect sizes of Dmis
burden plus LOF or not in SRSF6 were similar (OR = 1.04, Supplemen-
taryData 4, 5), suggesting that detected significant signals weremainly
driven by Dmis QVs in SRSF6. We also sought to confirm the exome-
wide significant associations in FinnGen (release 8)26. Of the six iden-
tified genes, five replicated when searching for the most significant

variantsmapped to eachgene,while fourwere validatedbyour ‘mBAT-
combo’ gene-based analysis (PBonferroni < 0.05, Table 1).

In subgroup analysis, the six VTE risk genes were nominally sig-
nificant (P <0.05) in both female and male groups and showed the
same effect directions as in the full sample (Supplementary Fig. 2).
Meanwhile, themale-specific analysis identified twomore novel genes,
FNBP1L and APOBEC4 (Supplementary Fig. 3 and Supplementary
Data 6). Furthermore, we have performed ancestry-specific and cross-
ancestry meta-analyses in non-British White, Asian, Black, and Mixed
populations, respectively (Supplementary Data 6). In ancestry-specific
analysis, the associations with nominal significance (P < 0.05) showed
the same effect directions as in the White British sample (Supple-
mentary Fig. 4). As firm conclusions could not be drawn for some
ethnic groups due to small sample sizes and low allele frequencies,
cross-ancestry meta-analyses were performed. We found that the
results were highly similar to those of only White British individuals
(Supplementary Fig. 5), suggesting that the identified associations
were not influenced by population stratification.

Carrier frequency of 6 VTE-associated genes andVTE prevalence
in variant carriers
We then quantified the carrier frequency of putatively pathogenic
variants among six VTE-associated genes in unrelated UKB partici-
pants. Dmis variants were more prevalent in the population compared
with LOF variants (Dmis 0.0112–0.9003%, LOF 0.0016–0.1581%),
although the VTE prevalence in carriers was lower (Dmis 5.39–15.38%,
LOF 6.83–54.55%; Fig. 1B, C, Supplementary Data 7). Furthermore, an
inverse trend was observed between the frequency of variants and
their phenotypic impact, indicating that alleles that contribute to
higher VTE prevalence are generally held at lower frequencies in the
population. Notably, with the lowest carrier frequency (0.0016%, 11
carriers), SERPINC1 exhibited the largest effect size (Fig. 1D) and
striking VTE prevalence (54.5%) in carriers.

Burden heritability estimation for rare coding variants
Burden heritability regression (BHR)27 was used to estimate the phe-
notypic variance (burden heritability) explained by the gene-wise
burden of rare coding variants. In our analysis, the burden heritability
for VTE ranged from 0.0073% to 0.1582% across different frequency
bins and functional categories (Fig. 1E, Supplementary Data 8). Con-
sistent with the previous report27, ultra-rare LOF variants with
MAF < 10−5 explained a majority of the total heritability (0.1582%), but
Dmis variantswith higherMAF capturedmore variance than thosewith
lower MAF. However, the aggregated burden heritability of the rare
coding variants (0.5637%) is far less than the previously reported
heritability based on common variants (13.2%)10, which can be
explained by the flattening hypothesis28.

Leave-one-variant-out (LOVO) analysis for 6 VTE-
associated genes
To further assess the stability of our results and identify influential
variants in genes associated with VTE, we performed the LOVO ana-
lysis. The associations in PROC, PROS1, SERPINC1, and STAB2 remained
robust when iteratively excluding each variant (Supplementary Fig. 6,
Supplementary Data 9), suggesting these genes were identified due to
a burden of multiple contributing rare variants.

Conversely, the significant associations of PHPT1 and SRSF6 with
VTE were mainly driven by rs749387376 (p.Q84Gfs*98) and
rs147863077 (p.R184H) respectively, although gene-level collapsing
analysis excluding these two variants remained nominally significant
(PHPT1, OR = 1.07, 95% CI = 1.02–1.12, P = 5.48 × 10−3; SRSF6, OR = 1.03,
95% CI = 1.01–1.06, P = 1.28 × 10−3; Supplementary Data 9). We also did
additional Firth’s bias-reduced logistic regression and confirmed that
the most important variants within both genes were independently
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associated with increased odds of VTE (rs749387376, OR = 6.52, 95%
CI = 3.43–12.36, P = 4.88 × 10−9; rs147863077, OR = 2.52, 95%
CI = 1.63–3.87, P = 1.42 × 10−5, Supplementary Data 10).

Interplay between genome-wide polygenic risk score (PRS) and
rare coding variants
Both common and rare alleles contribute to the risk of VTE, but their
interaction has been insufficiently investigated due to limited datasets
encompassing both common and rare variants. We calculated VTE
genome-wide PRS (PRSGW) in UKB. The PRSGW was derived from a VTE
GWAS performed in an independent cohort, allowing us to explore its
interplay with rare coding variants of substantial effect size in shaping
risk for VTE10.

First, analyses incorporating rare and common variants were
performed based on PRSGW quintiles and rare variants’ carrier status
using logistic regressionmodels. Relative to noncarriers in the average
40–60% PRSGW category, ORs ranged from 0.36 (95% CI = 0.33–0.39)
to 3.92 (95% CI = 3.70–4.14) for noncarriers and from 0.54 (95%
CI = 0.35–0.83) to 6.38 (95% CI = 5.50–7.39) for carriers in the lowest

and highest PRSGW quintile, respectively (Fig. 2, Supplementary
Data 11).

Second, to probe potential interaction effects, we divided UKB
individuals into quintiles based on their PRSGW, and the prevalence of
VTE was significantly higher in rare variant carriers than in noncarriers
within most of the quintiles, demonstrating a significant interaction
between PRSGW and rare variants (OR ranging from 1.36 to 1.63,
P ranged from 0.0623 to 1.55 × 10−11, Fig. 2, Supplementary Data 12).
Although therewasno interaction on themultiplicative scale (P ranged
from 0.06 to 0.67 for multiplicative interaction, Supplementary
Data 13), we observed a significant additive effect (relative excess risk
due to interaction, RERI = 2.01, 95% CI = 1.22–2.79; synergy index,
S = 1.58, 95% CI = 1.35–1.85; Supplementary Data 14). Our findings sug-
gest a reciprocal enhancement betweenVTEPRSGWand rare variants in
an additivemanner, and one-thirdof the excess riskwas attributable to
the interaction between them (attributable proportion, AP =0.31, 95%
CI = 0.22–0.40).

We specifically explored the interaction between rare coding
variants and factor V Leiden variant rs6025 (p.R534Q), a well-studied
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heritability across different frequency and functional categories (estimated using
BHR), with colored bars showing burden heritability estimates and error bars
showing the standard errors. The input summary statistics were obtained from a
single variant association test for VTE (14,723 cases and 334,315 control subjects).
A–DDisplay genes with the smallest P values achieved across all collapsingmodels.
Source data are provided in the Source Data file, Supplementary Data 7 and 8.

Article https://doi.org/10.1038/s41467-024-47178-8

Nature Communications |         (2024) 15:2819 3



high-risk common variant, for which only STAB2 showed additive
effects (RERI = 1.17, AP =0.30, S = 1.67, Supplementary Data 15).

Single variant associations of common coding variants with VTE
To further access the contribution of common coding variants to VTE
risk without relying on imputation, we tested for the associations
between common variants (MAF ≥ 1%) and VTE using an additive
model in logistic regression by PLINK229. We found 13 lead single
nucleotide polymorphisms (SNPs) significantly associated with VTE
after clumping (Fig. 3 and Table 2). Thirteen identified loci were
mapped to 12 genes (including F5, PLCG2, SLC44A2, PROCR, KNG1,
FGA, CYP4V2, KLKB1, ABO, VWF, CGN, and MAP3K2), among which 2
novel genes were not reported before (rs142913144 in CGN, OR =
0.76, 95% CI = 0.68–0.84, P = 6.83 × 10−7; rs3732209 in MAP3K2,
OR = 1.07, 95% CI = 1.05–1.10, P = 5.86 × 10−8). We also queried the
GWAS summary results for VTE in FinnGen to validate the associa-
tions that we identified, and 12 of 13 significant associations were
replicated (PBonferroni ranged from 1.47 × 10−156 to 8.66 × 10−3, Table 2).
Subgroup analysis stratified by sex showed no significant sex het-
erogeneity of the identified loci (Supplementary Figs. 7, 8). More-
over, the identified associations were also significant in the cross-
ancestry meta-analysis (Supplementary Figs. 9, 10) and were not
influenced by population stratification as indicated by the high
similarity with those of White British individuals (Supplementary
Fig. 11). Furthermore, 10 out of 12 genes remained significant after
inclusion of non-coding variants in the single variant analysis and
linkage disequilibrium (LD)-based clumping process (Supplemen-
tary Fig. 12).Ta
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Association between identified coding variant genes and
incident VTE
Time-to-event analysis was performed to investigate the association
between identified genes, lead SNPs, and incident VTE risk. Among
300,523 participants without VTE at baseline, 6920 incident VTE cases
were identified. During a median (inter-quartile range) follow-up of
9.23 (7.07–11.13) years, 5 of 6 genes and all lead SNPs identified from
WES analysis were significantly associatedwith incident VTE (PBonferroni
ranged from 2.88 × 10−66 to 0.021, Fig. 4A). In comparison to non-
carriers, rare variant gene carriers exhibited hazard ratios (HRs) ran-
ging from 1.37 (STAB2, 95% CI = 1.20–1.57, PBonferroni = 2.72 × 10−5) to
6.65 (PROS1, 95% CI = 4.01–11.04, PBonferroni = 1.39 × 10−12), while com-
mon lead SNP carriers showed moderate HRs ranging from 0.71
(rs142913144, 95% CI = 0.60–0.84, PBonferroni = 5.56 × 10−4) to 2.08
(rs6025, 95% CI = 1.91–2.26, PBonferroni = 2.88 × 10−66) (Fig. 4A, Supple-
mentary Data 16). Notably, the effect sizes of rare variants were

substantially larger than those of common variants, indicating a more
pronounced impact.

Then we estimated the aggregated effect of rare and common
coding variants on VTE risk. As shown in Fig. 4B, therewas a significant
difference in incident VTE between rare coding variant carriers and
noncarriers over the entire follow-up period (HR = 1.58, 95%
CI = 1.40–1.79, P = 8.64 × 10−13). In addition, a significant difference in
incidentVTE risk alsoexisted amongcategorical lowandhigh common
variant PRS strata (HR = 1.66, 95% CI = 1.59–1.74, P = 9.14 × 10−97).

Biological function and pleiotropy of VTE-associated genes
To further elucidate the biological relevance of the WES analysis
results, we conducted gene-set analyses with hypergeometric tests
for the 18 VTE-associated genes using the GENE2FUNC function in
FUMA30.We foundmost of the gene ontology (GO)biological process
terms were significantly associated with hemostasis (P = 4.12 × 10−15),
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Fig. 3 | Single variant associations between common variants and VTE. Man-
hattan plot of results from single variant analysis for common variants in the 14,723
VTE cases and 334,315 control subjects. P values shown are two-sided and Bon-
ferroni correction was used. The red dotted horizontal line represents the

Bonferroni significance threshold (P = 1.17 × 10−6). The colors on the plots show the
delimitation of chromosomes. Each lead SNP (red dots with black border) was
annotated with its corresponding gene name. The y-axis is capped at 30. Source
data are provided in Source Data file.

Table 2 | Significant variant associations with VTE in the single-variant association analysis for common variants

rsID Chr A0 A1 A1 freq OR 95% CI P-value Gene Exonic function AAChange FinnGen
VTE OR

FinnGen VTE
P-valuea

rs142913144 1 G A 0.015 0.76 0.68–0.84 6.83 × 10−7 CGN Nonsynonymous p.R547K 1.13 0.0898

rs6016 1 G A 0.272 0.86 0.83–0.88 1.2 × 10−28 F5 Synonymous 0.87 2.41 × 10−23

rs6025 1 C T 0.023 2.38 2.25–2.52 1.99 × 10−202 F5 Nonsynonymous p.R534Q 2.35 1.47 × 10−156

rs3732209 2 A G 0.316 1.07 1.05–1.10 5.86 × 10−8 MAP3K2 Synonymous 1.06 1.83 × 10−4

rs1656922 3 C T 0.489 0.94 0.91–0.96 2.58 × 10−8 KNG1 Nonsynonymous p.M178T 0.96 0.00866

rs6050 4 T C 0.255 1.21 1.18–1.24 2.11 × 10−48 FGA Nonsynonymous p.T331A 1.2 3.38 × 10−52

rs3736455 4 G T 0.332 0.9 0.88–0.92 1.35 × 10−16 CYP4V2 Synonymous 0.89 6.38 × 10−22

rs925453 4 C T 0.313 0.92 0.90–0.94 1.59 × 10−10 KLKB1 Nonsynonymous p.W503R 0.9 5.41 × 10−17

rs8176719 9 T TC 0.338 1.31 1.28–1.34 6.94 × 10−106 ABO Frameshift
Substitution

p.T87Dfs*107 1.27 1.57 × 10−98

rs1063856 12 T C 0.376 1.07 1.04–1.10 3.02 × 10−8 VWF Nonsynonymous p.T789A 1.06 1.87 × 10−5

rs1143686 16 A G 0.320 1.07 1.04–1.10 5.87 × 10−8 PLCG2 Synonymous 1.04 0.00481

rs2288904 19 G A 0.223 0.9 0.87–0.92 6.86 × 10−14 SLC44A2 Nonsynonymous p.Q154R 0.89 2.37 × 10−14

rs867186 20 A G 0.088 1.15 1.11–1.20 1.87 × 10−12 PROCR Nonsynonymous p.S219G 1.13 1.08 × 10−13

Genes highlighted in bold are not previously reported. P values shown are two-sided and unadjusted unless otherwise noted.
a FinnGen VTE P-value after Bonferroni correction.
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and in terms of cellular components, PLT alpha granule lumen
(P = 5.04 × 10−9) was predominantly involved (Supplementary
Data 17). Meanwhile, we found an overrepresentation of genes that
are highly and specifically expressed in the liver, which is a key center
for synthesizing coagulation factors and regulatory proteins and
plays a key role in hemostatic and thrombotic regulation
(P = 2.35 × 10−8, Supplementary Data 18). Furthermore, leveraging the
summary data from the GWAS catalog, we revealed significant
enrichment of VTE-related genes in diseases such as thrombosis and
ischemic stroke as well as in hemostatic factors and hematological
phenotypes such as D-dimer levels and von Willebrand factor (vWF)
levels (Supplementary Data 17).

To investigate the pleiotropic effects of VTE-associated genes for
a better understanding of VTE pathogenesis, we explored the asso-
ciations between VTE-associated genes and 35 curated phenotypes,

including blood cells, immunometabolic markers, liver function indi-
cators, and coagulation factors (Supplementary Data 19). As expected,
a large proportion of these phenotypes showed significant associa-
tions with the genes we discovered. Moreover, the significant asso-
ciations mainly fell within common variant signals, in particular, ABO
(24 of 35 traits) and SLC44A2 (6 of 35 traits) (Supplementary Fig. 13,
Supplementary Data 20). Within rare variant signals, we only observed
significant associations of STAB2 with insulin-like growth factor 1
(P = 5.96 × 10−10), vWF (P = 1.69 × 10−19), and gamma-
glutamyltransferase (P = 2.96 × 10−6). Besides, SRSF6 showed a nom-
inal association with PLT count (P =0.0028) and glycated hemoglobin
(P = 0.0478). In line with previous studies10, our findings reinforce the
central role of blood cell traits and coagulation factors in VTE patho-
genesis and demonstrate the potential involvement of liver function
and immunometabolic processes in the occurrence of VTE.
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Fig. 4 | Longitudinal association between identified genes or coding lead SNPs
and incidentVTE.A Forest plot showingHRand95%CI for the associationbetween
identified genes (from gene-level collapsing analysis) or coding lead SNPs (from
single variant analysis) and incident VTE. HR and 95% CI were calculated through
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Discussion
Leveraging exome sequencing data from 349,038 participants, we
performed aWES analysis of VTE.Wediscovered 14 knownand 4 novel
genes associated with VTE risk, 16 of which were replicated in the
FinnGen cohort. Each of these significant genes exhibited the potential
to identify individuals at risk (that is, incident cases), as demonstrated
by the fact that carriers of deleterious variants were more likely to
develop VTE, particularly those with low allele frequencies. Functional
annotation supported the enrichment of these genes in pathways
related to coagulation or PLT function and highlighted the involve-
ment of the liver in the biological process of VTE. The pleiotropic
effects of these genes on coagulation factors, blood cell traits, liver
function, and immunometabolic markers were also uncovered.
Moreover, and importantly, this study provided evidence that rare
coding variants affected VTE additively to common PRSGW, suggesting
that the genetic assessment of VTE could be further improved by
combining PRSGW and rare coding variant burden.

Among the significant VTE-associated loci reported in previous
studies, our study provides clear replication for the widely known
genetic mutations, including the anticoagulant genes PROC, PROS1,
SERPINC1, and PROCR11,31,32; the procoagulant genes F5, KLKB1, and
KNG133,34; the fibrinolytic disorder-related gene FGA33,35; and the ABO,
STAB2, and VWF genes that act on von Willebrand factors and indir-
ectly influence coagulation activity10,11,32,36. The recently discovered
variations within SLC44A2, CYP4V2, and PLCG26,8,37 were also verified in
our findings, albeit their exact roles involved in VTE pathogenesis
remain ambiguous and need to be further explored. Despite this, we
found the relationship between PLCG2 and functions converging on
the coagulation cascade or PLT function, in line with recent reports
from animal studies38. Our study also extends former findings via the
discovery of four additional novel candidate genes (SRSF6, MAP3K2,
CGN, and PHPT1), whichmayprovide valuable insights into genetic loci
not previously suspected to play a role in VTE. Importantly, two of
these four genetic associations could be validated in the FinnGen
cohort. From the perspective of clinical application, each of the sig-
nificant genes we discovered exhibited the potential to predict future
VTE events. Carriers of mutations in our newly discovered genes,
SRSF6 and PHPT1, havemore than 2-fold higher risk of developing VTE
than noncarriers, which reinforces the reliability and credibility of our
analyses.

Notably, effect sizes for identified genes from collapsing analysis
are lower than expected from previous studies. Considering that HR
estimates from subsequent survival analysis were larger and more
consistent with previous reports, we hypothesize that the compara-
tively smaller effect sizes observed during the initial gene discovery
phase were primarily due to the usage of saddle point-approximation-
corrected logistic mixed-model approach implemented in the SAIGE-
GENE+ software, which might yield slightly conservative effect esti-
mates, particularly when assessing significance for binary traits with
imbalanced case-control ratios39.

Regarding the newly identified SRSF6 gene, its encoded protein
belongs to the splicing factor SR family, which is involved in mRNA
splicing and may be responsible for the determination of alternative
splicing40. The tissue factor, the initiator of the coagulation process,
may lead to thrombus growth by creating a surface that both initiates
and propagates coagulation through a variant generatedby alternative
splicing to bind to the edge of the thrombus41. This supports a possible
relationship between the SRSF6 gene and VTE formation. Moreover,
past studies lent support to the link between SRSF6 and mean PLT
volume42. Our PheWAS analyses showed a nominally significant asso-
ciation between SRSF6 and PLT count. Interestingly, both the enlarged
PLTs, as measured by mean PLT volume, and the PLT count were
reported tobe associatedwithVTE events32,43–45. Collectively, our study
provides initial insights into the biological pathways by which the
SRSF6 gene engages in VTE generation.

As for MAP3K2, its association with protein C levels has been
disclosed46. Protein C is a molecule with potent anticoagulation
properties. Once activated, it inactivates Factor Va and Factor VIIIa,
thereby inhibiting thrombin generation. The rate of VTE is three to
seven times higher in peoplewith proteinCdeficiency relative to those
with a normal range of protein C47,48, and 2–3% of VTE cases in the
population may be attributed to protein C deficiency48. The relation-
ship we found between MAP3K2 and immunometabolic measures,
white blood cell traits, and liver function has been less studied before,
so more research is needed to elucidate the underlying mechanisms.
PHPT1, a gene implicated in the modulation of phosphorylation
activity, has previously been established as an oncogene in a variety of
tumorigenic processes49. Yet, the putative role of PHPT1 in VTE
remains largely unknown. Relevant in-depth studies should be carried
out in the future. In addition, although most of the novel associations
we observed had relatively small effect sizes (ORs ranging from 1.04 to
1.08), wewere able to identify a common variant with larger estimated
effects in theCGN gene (OR =0.75). In the present study, we confirmed
multiple genetic-phenotypic associations previously described of the
CGN gene with lipid metabolism and immunity50,51, and the latter is
related to VTE risk in numerous articles52–55. Our findings suggest a
potential involvement of these novel genes in VTE, and future inde-
pendent and diverse studies will be required to verify our hypothesis.

Current therapeutic strategies are primarily targeted at the coa-
gulation cascade. While the safety of anticoagulation therapy has
improved in recent years, bleeding is still a life-threatening off-target
outcome56. Tablets that suppress PLT activation, for instance, aspirin,
may exert beneficial effects in preventing VTE, despite previous stu-
dies and trials on the use of anticoagulants in conjunction with aspirin
yielding discordant results32,57. Innovative approaches are thus
urgently needed for preventing thrombosis whilst minimizing
bleeding56. In this scenario, our newfound gene, such as SRSF6, may
have the potential to break the inexorable bond between antith-
rombotic therapy and bleeding risk and, in turn, serve as a candidate
drug target. However, there is plenty of arduous validation work to be
done before it can actuallymove into clinical implementation. Even so,
our research work offers a new direction to guide future mechanistic
investigations and constitutes a valuable resource for thrombosis
researchers and the discovery of new VTE therapeutic targets.

Although an array of common variants has been uncovered by
prior well-powered VTE GWAS6–10, they may not fully capture the
heritable risk for this complicated illness. Our study demonstrated this
by revealing that rare coding variants affected VTE additively to
common variant-based PRS. While the interaction between rare var-
iants and PRSGW has been reported in other common phenotypes58–60,
it is, to our best knowledge, the first time that such an interplay has
been unveiled in VTE. Considering PRSGW and carrier status jointly, the
absolute risk is consistently lower for noncarriers than for carriers in
the same PRSGW quintile, which indicates that the genetic assessment
of VTE can be further improved by combining PRSGW and rare coding
variant burden. This has great clinical implications, for example, to
inform decisions on VTE screening, where rare variant holders with
high PRSGW may gain benefit from earlier and more frequent screen-
ing. Our data suggest that extending the current PRSGW panel to
include testing for rare variantsmay contribute to amore accurate and
comprehensive estimate of the genetic risk for VTE and may be
warranted.

The main advantage of this genetic discovery effort lies in the
large sample size. Compared to previous GWAS and WES analyses on
VTE, this study enhanced statistical power and strengthened the ability
to uncover novel genes. The estimation of burden heritability and the
interplay between rare variants and known PRSGW further refine the
understanding of genetic architecture. Our findings should be inter-
preted within the context of the limitations. First, this study was
focused on coding variants, and we did not pay much attention to the
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contribution of non-coding variants. Second, as non-White British
populations were under-represented in UKB, future studies with even
larger sample sizes should be warranted in other ancestries. Third, we
were unable to identify whether VTE cases were provoked or unpro-
voked due to insufficient information in UKB. Furthermore, GWAS
summary data from FinnGen is not ideal enough for perfectly repli-
cating our results from exome-sequencing data. However, it can still
provide evidence to support our results. This may limit the power to
analyze diseases and may lead to decreased burden heritability esti-
mates to some extent27.

In conclusion, large-scale sequencing has enabled a comprehen-
sive dissection of the genetic factors predisposing to VTE. We have
both confirmedmany known gene–disease associations and identified
novel genetic variants. Some of the new genes may contribute to VTE
via well-characterized coagulation pathways or by influencing hema-
tological traits, particularly PLT function, while others provide new
evidence beyond established or currently hypothesized pathways to
thrombosis. Furthermore, integrating genetic information on the rare
variant burden with known genome-wide PRS may facilitate the dif-
ferentiation between low- and high-risk patients.

Methods
Study population
UKB is a large prospective cohort of ~500,000 individuals aged 40–69
years at baseline between 2006 and 201020. Only ~450,000 partici-
pants who were self-reported as White British ethnicity with complete
exome sequencing and VTE diagnostic information were included.
Ethical approval was obtained from the National Health Service
National Research Ethics Service and all participants gave informed
consent through electronic signatures. This study was performed
based on application number 19542.

The VTE diagnosis in this project was based on self-report at
baseline or electronic health records (EHR). We used the International
Classification of Diseases system codes 10th revision (ICD-10) codes
(I80.1, I80.2, I82.2, I26.0, and I26.9) and Office of Population and
Censuses and Survey 4th Revision Procedures Codes (OPCS-4, L79.1
and L90.2) to identify VTE cases, which presented as a primary or
secondary diagnosis in the hospital inpatient records or an underlying
cause of death in the death register (Supplementary Data 1). Further-
more, we excluded individuals with a diagnosis of superficial or
unclear site of thrombophlebitis (I80.0, I80.3, I80.8, I80.9), portal vein
thrombosis (I81), BuddChiari syndrome (I82.0), and known coagula-
tion defects (D68) to minimize heterogeneity and bias9,61.

Genotyping, QC, and variant annotation
All participants’ exome sequencing was conducted in the Regeneron
Genetics Center (RGC), with detailed methods described in Supple-
mentary Note 121. We used the OQFE WES pVCF files provided by the
UKB (https://biobank.ctsu.ox.ac.uk/showcase/label.cgi?id=170),
aligned to the human reference genome GRCh3862, and performed
similar extensive QC as in previous study63. After splitting multi-allelic
sites into bi-allelic sites, low-quality and extreme outlier genotypes
were removed using Hail. Moreover, variants in low-complexity
regions, with call rates < 90% and departure from the
Hardy–Weinberg equilibrium (p < 1 × 10−15), were excluded. For chro-
mosome X, pseudoautosomal (PAR1 and PAR2) regions were further
excluded in both sexes, and heterozygous genotypes inmales were set
tomissing21. For sampleQC, we excluded participants withdrawn from
the UKB, duplicates, gender-mismatched, high-related samples (sec-
ond-degree or closer relatives, kinship coefficient threshold at 0.0884,
see Supplementary Note 2), andwhose Ti/Tv, Het/Hom, SNV/indel and
number of singletons deviating from mean± 8 SD. Finally, we restric-
ted our main analysis to White British (filed 21000) with ‘Caucasian’
genetic ethnic grouping64, and used high-quality variants to calculate
the principal components (PCs) within ancestry. Of 349,038 unrelated

participants, we identified 14,723 VTE cases and 334,315 controls
according to the definition by Klarin et al.61.

We used the SnpEff tool65 to annotate variants and ascertained the
most severe consequence for eachgene transcript. For the analysis, we
considered only LOF (stop gained, start lost, splice acceptor, splice
donor, stop lost or frameshift) and Dmis variants (predicted to be
deleterious by all five in silico algorithms, namely SIFT22, LRT23, Poly-
Phen2 HDIV, PolyPhen2 HVAR24, and MutationTaster25).

Rare variants collapsing analysis
For rare variants with MAF <0.01, a gene-level collapsing analysis was
performed.We included 12models to qualify variant criteria for 20,629
genes, which vary in terms of MAF (<10−5, <10−4, <10−3, and <10−2), and
predicted consequence (LOF, Dmis, and LOF-plus-Dmis).

We fitted a logistic mixed-effects model to identify genes relevant
to VTE in unrelatedWhite British individuals. Covariates, including sex,
age, and top 10 PCs, were adjusted as fixed effects in all association
analyses to minimize confounding and potential population stratifi-
cation. The sparse genetic relationship matrix constructed using the
high-quality variants with the recommended relative coefficient cutoff
of 0.05 was included as a random effect for the variance ratio esti-
mation. The effect sizes and P values were calculated for each collap-
sing association using tests such as SKAT-O66, burden67, and SKAT68

implemented in SAIGE-GENE+69, with SKAT-O reported in the main
article. We also performed subgroup analysis stratified by sex (female
and male) to investigate the sex heterogeneity of the identified genes.
All performed tests were two-sided, and the statistical significance
threshold was determined to be 2.42 × 10−6 by using a Bonferroni
correction for 20,629 genes.

Upon identifying the significant risk genes for VTE, carriers of QVs
included in themost significant models per gene were denoted as rare
damaging coding variant carriers. We further calculated the disease
prevalence of the susceptibility genes for VTE, which represents the
percentage of VTE cases among carriers with these rare variants.

Burden heritability estimation
To estimate the phenotypic variance (burden heritability) explainedby
the gene-wise burden of rare coding variants, we used BHR27. A single
variant association test for VTE was performed to get variant-level
association summary statistics, which employed Firth’s bias-reduced
logistic regression utilizing SAIGE-GENE+ with the same covariates set
up as in collapsing analysis.

After inputting variant-level association summary statistics and
allele frequencies, burden heritability could be quantified from the
slope of burden test statistics regressed on burden scores27. Following
the default settings of BHR with the provided baseline model, we
focused primarily on LOF and Dmis variants and estimated burden
heritability separately for three different MAF categories: [0, 10−5),
[10−5, 10−3), and [10−3, 0.01).

LOVO analysis
LOVO analyses were performed using our significant gene-level find-
ings to identify individual variants contributing to aggregated test
statistics. We iteratively excluded each variant at a time from themost
significant models and reran the association test to examine how this
affected statistical significance. The most important variant within
each gene was defined as the variant that was removed to achieve a
maximum association test P-value.

Interplay of genome-wide PRS and rare variants on VTE risk
Combined effect analyses focused on the carrier status of rare dama-
ging coding variants and PRSGW constructed using recently published
GWAS10 (see PRSGW derivation details in Supplementary Note 3). The
PRSGW was subsequently quintiled as categorical variables using cut-
offs determined by its distributions in controls60.
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First, we established an indicator variable based onPRSGWquintile
and rare variants carrier status, with noncarriers in the 40–60% PRSGW
category as the reference. Logistic regression models, added covari-
ates including age, sex, and 10 PCs,were used to calculateORs for each
of these categories. Second, stratified analyses by PRSGW quintiles
were undertaken. We compared the prevalence of VTE between rare
variants carriers and noncarriers within each quintile. Statistical dif-
ference was tested using logistic regression models with the same
covariates adjusted, and the ORs, corresponding 95% CIs, and P values
for each quintile were reported (Supplementary Data 12).

We further explored the interaction manner between PRSGW and
rare variants carrier status for eachgene and all six rare variant genes in
aggregate. Additive effects were measured as the RERI, S, and AP due
to interaction using epiR package, with dichotomous categories for
standardized PRSGW employed: low (<0) and high (>0) risk. Multi-
plicative interactions were measured by adding an interaction term of
continuous PRSGW and rare variants carrier status, and then statistical
tests for significant interaction effects were performed. The two-sided
P <0.05 were considered statistically significant.

Single variant analysis for common variants
A single variant analysis was performed among unrelatedWhite British
population using PLINK229 for common exonic SNPs (MAF ≥ 1%), with
an additive genetic model employed in logistic regression. Age, sex,
and the first 10 PCs were adjusted, and the significance threshold was
set to 1.17 × 10−6 (Bonferroni correction for 42,911 exonic coding SNPs).
After that, significant SNPs were selected to identify the lead SNPs
within each risk locus, which were denoted as the SNPs with the lowest
p-value when multiple SNPs were observed to be in strong LD
(r2 > 0.01) within a 5000-kb window. Risk loci were defined as regions
of ±1Mb around each lead SNP. Sex-stratified sensitivity analyses were
conducted to investigate the sex heterogeneity of the identified loci.
Furthermore, we also conducted a single variant analysis using com-
mon SNPs in both exonic and non-exonic regions to test whether the
identified coding variants were still independently significant after LD-
clumping.

Multi-ancestry analysis
In order to improve the generalizability of our results, we further
performed a gene-level collapsing analysis in non-British White
(25,671 samples, 936 VTE cases), Asian (8558 samples, 194 VTE cases),
Black (6628 samples, 251VTE cases), andMixed (5961 samples, 188VTE
cases) population, separately. These ethnicities were defined using the
self-reported ethnic background (Field 21000 in UKB). After that, the
summary statistics of five ethnic groups (British White, non-British
White, Asian, Black, and Mixed) were meta-analyzed together using
METAL70. Similarly, we conducted a single-variant association analysis
in each ethnic group, respectively, and the summary statistics were
meta-analyzed using METAL70. We compared the effect sizes and sig-
nificances of the results between cross-ancestry and White British
population using Pearson correlations.

Time-to-event validation
To compare the incidence rate of VTE in different carrier statuses of
each gene, Cox proportional hazards (CPH) regression with the same
covariates described above was performed, and HRs were reported.
Time zero was the date of recruitment to UKB, and follow-up time was
subsequently calculated as years from it to the date of first diagnosis,
death, or the final date with accessible information from hospital
admission, whichever came first. We excluded 48,515 participants with
a VTE diagnosis before recruitment or without follow-up, and the
remaining 300,523 participants were included in the longitudinal
analysis.

Within each significant gene in collapsing analysis, QVs contained
in the model of strongest association with VTE were aggregated into a

single variable to represent that gene. We also collapsed all significant
genes, distinguishing carriers fromnoncarriers, to study the combined
effects of rare coding variants. For significant common variants, in
addition to variant-level analysis, we calculated a PRS constructed
using the LD-clumped lead SNPs by PLINK2 and divided the partici-
pants into 2 groups: low (standardized PRS <0) andhigh (standardized
PRS >0) risk to represent combined effects of common coding var-
iants. Then Kaplan–Meier analyses and the CPH regression were con-
ducted to investigate whether the survival probability of incident VTE
differs substantially.

Functional mapping and annotation
To functionally annotate the biological relevance in our WES findings
across the allele frequency spectrum, gene-based analysis was per-
formed using MAGMA71 to query biological annotation and pathway
databases (including GO72, KEGG73, Reactome74, and GWAS catalog)
through functional mapping and annotation of genetic associations
(FUMA) platform30. Additionally, FUMA was also used to perform tis-
sue enrichment analysis in 30 broad tissue types based on data from
the GTEx database (version 8)75. P values were adjusted for multiple
testing by the Bonferroni approach.

External replication in FinnGen
For external replication of our identified signals in an independent
sample cohort, we used summary statistics from the FinnGen Con-
sortium online results (version 8)26, which included 17,048 VTE cases
and 325,451 controls.

FinnGen study contained genotype and national health registry
data of Finland citizens, which was collected from different Finnish
biobanks and digital health care data since 2017. Genotyping was done
using various Illumina and Affymetrix GWAS arrays and further
imputed to 20 million variants by the Beagle software (v.4.1) based on
population-specific SISu v4.0 imputation reference panel, whole gen-
ome sequences of 8554 Finnish individuals. We focused on the disease
endpoint, “Venous thromboembolism”. The genetic association tests
were applied using Regenie for variants with aminimumallele count of
5, with the Firth test for variants with an initial P-value of <0.01. The
summary statisticswerepublicly available online (see data availability).
For gene-level collapsing analysis validation, we searched for variants
with the strongest FinnGen VTE associations mapped to significant
genes we found. We further performed a gene-based association
analysis using the summary statistics as input in GCTA software, with
“mBAT-combo” command combining multi-SNP statistics effectively
through a Cauchy combination method76. For single variant associa-
tion validation, we searched for our lead SNPs directly. Both approa-
ches used Bonferroni correction for the number of significant genes or
lead SNPs in that particular analysis.

Phenome-wide association analysis (PheWAS)
To further elucidate the potential pathophysiological mechanisms by
which risk genes contribute to VTE, we conducted PheWAS. This
analysis focused on a curated list of 35 blood traits under five cate-
gories in UKB, which encompassed six coagulation factors (from UKB
plasma proteins data measured using the Olink Explore 1536 platform
in a subset of ~50,000 individuals), 11 immunometabolic markers, 6
liver function indicators, 4 red blood cell traits, and 8 white blood cell
traits. Blood trait values outside four standard deviations from the
mean were considered outliers and excluded from the analyses.
Detailed information about these traits was listed in Supplementary
Data 19. Associations of PheWAS traits with rare variant genes were
analyzed using gene-level linear mixed models in SAIGE-GENE+, while
linear models were applied for common lead SNPs. All models were
adjusted for age, sex, and the first 10 PCs. The significance threshold
was set at P = 7.51 × 10−5 (Bonferroni correction for 6 risk genes, 13
associated lead SNPs, and 35 traits).
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Individual-level data from the UKB samples are available through UKB
under application number 19542. FinnGen GWAS summary statistics
are publicly accessible (http://r8.FinnGen.fi). The gene-level and single
variant association summary statistics generated in this study have
been made accessible through https://doi.org/10.6084/m9.figshare.
25433899.

Code availability
The following software and packages were used for data analysis:
FUMA v.1.3.8 (https://fuma.ctglab.nl/), SnpEff v.5.1 (https://pcingola.
github.io/SnpEff/), SAIGE-GENE+ v.1.1.6.2 (https://github.com/saigegit/
SAIGE), BHR v.0.1.0 (https://github.com/ajaynadig/bhr), PLINK v.2.0
(https://www.cog-genomics.org/plink/), mBAT-combo in GCTA
v.1.94.1 (https://yanglab.westlake.edu.cn/software/gcta/#mBAT-
combo), METAL v.2011-03-25 (http://csg.sph.umich.edu/abecasis/
Metal/), and R v.4.2.0 (https://www.r-project.org/).
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