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Gene-expression memory-based prediction
of cell lineages from scRNA-seq datasets

A. S. Eisele 1,3 , M. Tarbier 2,3, A. A. Dormann1, V. Pelechano 2 &
D. M. Suter 1

Assigning single cell transcriptomes to cellular lineage trees by lineage tracing
has transformed our understanding of differentiation during development,
regeneration, and disease. However, lineage tracing is technically demanding,
often restricted in time-resolution, andmost scRNA-seq datasets are devoid of
lineage information. Here we introduce Gene Expression Memory-based
Lineage Inference (GEMLI), a computational tool allowing to robustly identify
small to medium-sized cell lineages solely from scRNA-seq datasets. GEMLI
allows to study heritable gene expression, to discriminate symmetric and
asymmetric cell fate decisions and to reconstruct individual multicellular
structures from pooled scRNA-seq datasets. In human breast cancer biopsies,
GEMLI reveals previously unknown gene expression changes at the onset of
cancer invasiveness. The universal applicability of GEMLI allows studying the
role of small cell lineages in a wide range of physiological and pathological
contexts, notably in vivo. GEMLI is available as an R package on GitHub
(https://github.com/UPSUTER/GEMLI).

In multicellular organisms, each cell belongs to a lineage tree that
determines its relatedness to other cells. Cell lineage relation-
ships are of fundamental biological relevance as they directly
impact a broad range of cellular behaviors, such as cancer resis-
tance to drugs1–7, disease onset3,8, and differentiation in devel-
opment, homeostasis, and regeneration9–15. Dissecting early gene
expression changes that occur during cell fate switches is essen-
tial to understand the mechanistic bases of these processes. This
requires to focus on small cell lineages in which cell fate decisions
occur. While cellular characterization by scRNA-seq provides rich
molecular information, it is intrinsically devoid of lineage infor-
mation. Therefore, there is considerable interest in identifying
cell lineages in scRNA-seq datasets.

The most widely used technique to assign individual tran-
scriptomes to given lineages is cellular barcoding, which involves
the introduction of heritable, expressed DNA barcodes in indivi-
dual cells that can be retrieved in scRNA-seq data7,9,12,16–19. Other
approaches involve hand-picking of related cells visualized by

microscopy or microfluidic devices to compartmentalize cell
lineages before scRNA-seq20–25. However, all these techniques
suffer from important technical limitations such as the require-
ment for dedicated devices, extensive cell handling and/or cul-
ture, or genetic engineering.

Natural genetic marks such as mitochondrial mutations, copy
number variants, and somatic mutations have been used to identify
related cells in scRNA-seq datasets, mainly after enrichment for
desired transcripts26–32. Still, the scarcity of spontaneously occurring
genetic marks restricts their application to a fraction of cells that
harbor these marks and to the identification of large cell lineages.
These approaches are therefore not suited to analyze small and mid-
sized lineages and poorly resolve branching points during divergent
cell fate decisions. In particular, identifying close lineage relationships
to study cell fate decisions in vivo and in human samples remains
challenging.

Here, we quantitatively dissect the maintenance of gene expres-
sion in cell lineages for a broad range of cell types. We leverage genes
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with particularly stable expression over time to develop Gene
Expression Memory-based Lineage Inference or GEMLI, a computa-
tional tool that allows identifying cell lineages related to several cell
divisions based solely on scRNA-seq data.

Results
Cells belonging to the same lineage tree are similar in their gene
expression profiles
We analyzed the transcriptome-wide stability of gene expression
over around 1-5 cell divisions using lineage-annotated scRNA-seq
datasets of mouse embryonic stem cells (mESCs; Fig. S1a–c), primary
mouse embryonic fibroblasts (MEF)9,33, primary mouse CD8+T-lym-
phocytes (CD8)21, lymphocytic leukemia cells (L1210)21, primary
mouse hematopoietic stem and progenitor cells (HSPC; differ-
entiating into >10 mature cell types)12,33, mouse hematopoietic stem
cells (HSC) 23, and human melanoma cells (WM989)4, grown for
2–14 days in various culture conditions (Supplementary Data File 1
and Fig. S1d, e for culture times, conditions and dataset sizes, over

120 datasets in total). Two datasets contained specifically sister cells,
in all other datasets 2-cell lineages corresponded to random samples
from larger lineages (Fig. S1f–g). For all cell types analyzed, we
observed a higher correlation (lower correlation distance) of the
whole transcriptome for related cells as compared to randomly
sampled cells (Fig. 1a, b). Related cells were also more similar in their
transcriptomic velocity34, complexity (number of expressed genes),
and cell cycle phase (Fig. S2a–g). Importantly, for differentiating
HSPC, both lineages composed of a single cell type (symmetric) and
lineages made of several cell types (asymmetric) were more similar
in their transcriptome than random cells (Fig. 1c and Fig. S2h).
To further determine the time spans of transcriptomic similarity
persistence, we analyzed lineage-annotated data of MEF cultured for
up to 30 days. Gene expression correlation of related cells remained
high for extended timespans (>20 days) (Fig. S2i), in line with recent
reports7,10,35,36. In summary, both self-renewing and differentiating
cells exhibit substantial gene expression memory over several cell
generations.

Fig. 1 | Memory genes drive the transcriptomic similarity of related cells across
cell types. a UMAP of the lineage-annotated mESC scRNA-seq dataset with 25
random colored lineages. b Boxplot of the correlation distance for related cells
(blue), and randomly sampled cells (gray; 100 repetitions) in different cell types
(n = 1 dataset for each cell type). c Boxplot as in b for lineages encompassing one
single cell type (symmetric; sym.) and lineages encompassing several cell types
(asymmetric, asym.) for one HSPC dataset. d Illustration of the temporal pattern of
expression levels and variability of quantitativememory genes, qualitativememory
genes, and non-memory genes across cell generations and lineages, respectively.
e Percentage of expressed genes (gray) that are categorized as quantitative (green)
and qualitative (blue) memory genes across cell types (n = 1 dataset for each).
f Relation of CV2 and mean gene expression in the mESC dataset. The different

memory gene categories are colored as in e. gMean gene expression for different
memory gene categories and all genes across cell types as in (b; n = 7 datasets,
qual=qualitative, quant=quantitative).h Same representation as ing for CV2 of gene
expression. iMemory genes as a percentage of expressed genes for lineages being
composed of one cell type (symmetric; sym.) and lineages encompassing several
cell types (asymmetric; asym) at day 4 of HSPC differentiation (n = 22 datasets).
jThe overlap betweenmemory genes of day 2 andday 5–30over the course ofMEF
reprogramming. Overlap is the percentage of the memory gene number at day
5–30, respectively (n = 2 dataset for each timepoint). Boxes: intervals between the
25th and 75th percentile and median (horizontal line). Error bars: 1.5-fold the
interquartile range or the closest data point when no data point is outside this
range. Source data are provided as a Source Data file.
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Gene expression memory increases gene expression variability
in large cell populations
We next asked to which extent transcriptome similarity of small cell
lineages impacts gene expression variability in the whole cell popula-
tion. To do so, we fitted a linear model to compute the total variation
for each gene from the variation across pooled lineages. We then used
this model to estimate the total variation in a control dataset with
permuted lineage labels, and compared the total variation of the real
and the control datasets. We found that transcriptomic similarity of
cell lineages had a substantial impact on gene expression variability in
all cell types, in particular for highly expressed genes (Fig. S3a), with
the median standard deviation being on average 4.2% higher (+/– S.D.
3.3) overall transcripts and 19.1% higher (+/– S.D. 15) for highly abun-
dant genes (Fig. S3b). Therefore, while gene expressionmemory limits
gene expression variability within small cell lineages, it is an important
source of gene expression variability in large cell populations.

Thousands of memory genes display stable gene expression
levels through cell division
The transcriptomic correlation of closely related cells was driven by ca
20% of expressed genes (on average 3668 +/– S.D. 1131) with particu-
larly stable gene expression levels across cell divisions, whichwe called
memory genes (Fig. 1d, e).Wedefinedmemorygenes as genes having a
significantly higher (p < =0.05) variability (coefficient of variation
squared (CV2)) in their mean expression across cell lineages compared
to random cell samples. Memory genes were only partly overlapping
but shared characteristic expression distributions across datasets.
Some memory genes were widely and highly expressed but showed
very conserved expression levels within individual cell lineages
(2286 +/– S.D. 890). Other memory genes were highly variable, and
only expressed in a small number of cell lineages (1382 +/– S.D. 413).
We named these quantitative and qualitative memory genes, respec-
tively (Fig. 1f–h; Figs. S4 and S5 and Supplementary Data file 2).
Memory genes, and in particular quantitative memory genes, were
enriched for housekeeping functions (Fig. S5 and Supplementary Data
file 3). Memory genes were also present for lineages encompassing
several cell types (Fig. 1i), highly shared across cell types within a cul-
ture condition (Fig. S4f–g), and present over longer culture time spans
(>20 days; Fig. 1j and Fig. S4h).

GEMLI uses shared memory gene characteristics for de novo
lineage predictions from scRNA-seq datasets
Based on the characteristic expression distributions of memory genes
across cell types, we developed GEMLI (for Gene Expression Memory-
based Lineage Inference) to predict cell lineages related over several
cell divisions denovo in scRNA-seqdatasets (Fig. 2a). First, geneswith a
high expression mean and high variability (mean-corrected CV2) are
selected. This highly enriches memory genes (Fig. 2b, for comparison
to genes used in standard scRNA-seq analysis and optimization of gene
selection see Figs. S6 and 7; and Methods). Next, a custom repetitive,
iterative hierarchical clustering allows estimating whether cells belong
to the same lineage (Fig. 2a; see Table S1 for the main conceptual
differences between GEMLI and other clustering algorithms). Briefly,
cells are clustered iteratively on random subsets of the selected genes
until being assigned to a cluster of predefined size (lineage size para-
meter; default 2–3 cells). By repeating this clustering, every cell pair is
assigned a level of confidence for belonging to the same lineage, based
on the number of times it clusters together across individual predic-
tions. Finally, a confidence level threshold is set to definemulti-cellular
lineages (Fig. 2a). Importantly, lineages are not technically restricted in
size and can be larger than the cluster size of 2–3 cells. When applying
this approach to different datasets, the precision and sensitivity of
small cell lineage predictions reached on average 80%+/– S.D. 15%, and
22% +/– S.D. 12%, respectively, at a confidence level of 50. The false
positive rate (FPR) of predictions stayed consistently under 1% with an

average of 0.07% +/– S.D. 0.08% at a confidence level of 50 (Fig. 2c–e
and Fig. S8). GEMLI performed consistently better than other gene
selection and lineage assignment strategies, including a k-nearest
neighbor (kNN) clustering and the training of a neural network
(Fig. S7c, g and Fig. S9). Crucially, as GEMLI allows to predict cell
lineages for cells in which cellular barcoding fails, the number of
lineage-annotated cells was either comparable or substantially
increased as compared to barcode-based approaches (Fig. 2f). Chan-
ging prediction parameters, such as the fraction of genes sampled for
each clustering (Fig. S10), can further optimize precision at the
expense of sensitivity or vice versa, depending on which measure is
deemed more important for the downstream analysis. GEMLI allows
the identification of both symmetric and asymmetric lineages, i.e.,
lineages in which cells belong to one or different cell types (Fig. 2g, h
and Fig. S11) and lineages of different sizes (Figs. S12 and S13).
Furthermore, lineage predictions were also possible over extended
time spans at high precision but with a decreasing recovery, in line
with a gradual decline of gene expression memory over time
(Figs. S14 and S4h; and Fig. 1j). GEMLI performed well for datasets
within the recommended size and sequencing depth ranges. Notably,
GEMLI performed well in datasets with a sequencing depth >5000
reads/cell (all but the HSPC datasets; Fig. S15)37–39. Altogether, GEMLI
allows for accurate prediction of cell lineages related over several cell
divisions solely from scRNA-seq datasets.

GEMLI identifies memory gene categories, cell fate decisions,
and associated gene expression programs
We then asked how reliably GEMLI identifies categories of genes dis-
playing gene expression memory in small lineages. To do so, we com-
pared memory genes and associated GO-terms from GEMLI predictions
and ground truth lineage annotation and found them to be highly cor-
related for all datasets (Fig. 3a; Fig. S16a–c and Supplementary Data
file 5). Next, we tested the ability of GEMLI to identify symmetric vs.
asymmetric cell fate decisions. In bothWM989melanoma cell andHSPC
datasets (total of 52 datasets, low sequencing depth for HSPCs), the
fraction of related cells among different symmetric and asymmetric cell
pairs correlated well for GEMLI and barcode lineages (Fig. 3b, c and
Fig. S16d–j). The prevalence of related cells among drug-susceptible and
-resistantmelanoma cells, as well as 10 possible hematopoietic cell types
could be distinguished. Also, differentially expressed genes (DEG)
between asymmetric and symmetric cell type pairs were recovered well
by analyzing GEMLI lineages (Fig. 3d, e and Fig. S17). In the HSPC data,
DEG called between undifferentiated cells in symmetric undifferentiated
and asymmetric undifferentiated-neutrophil cell pairs in the ground
truth and predictions correlated highly (Fig. 3d). In the WM989 cells,
DEG analysis of GEMLI lineages identified genes specifically expressed in
drug-susceptible cells being part of lineages with drug-susceptible and
drug-resistant members, i.e., lineages in which cells recently switched to
a resistant phenotype (Fig. 3e). While kNN performed similarly to GEMLI
in identifying the prevalence of cell pairs, it performed less so for the
recovery of correct DEGs (Figs. S16i, j and S17a–d). For both analyses,
GEMLI performed much better than random cell pair selections
(Figs. S16g, h and S17a–f). In line with recent reports4,12,23,40,41, a trajectory
analysis did not recover asymmetric lineage-associated DEG
(Fig. S17g–j). This highlights the utility of GEMLI for downstream ana-
lyses that are commonly restricted to barcoded datasets, even in the
case of datasets with a low sequencing depth.

GEMLI predicts lineages in lungmetastases of pancreatic cancer
Next, we tested whether GEMLI could identify small and mid-sized
lineages in vivo. We used data from mouse pancreatic cancer lung
metastases, which have been traced through evolvable CRISPR bar-
coding over a short timespan42. As barcodes here had only four weeks
to evolve, CRISPR editing frequency of barcodes is high and the lung
metastases develop late, this ground-truth data is suitable for
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Fig. 2 | GEMLI predicts cell lineages from gene expression within and across
cell types. a Schematic of the GEMLI lineage prediction pipeline. b Fraction of
memory genes selected based on variability and mean expression in the indicated
cell types (n = 1 dataset for each). c Precision-sensitivity curves of lineage predic-
tions in different cell types as in b. d Precision, sensitivity (left) and FPR (right) of
lineage predictions at confidence level 50 for datasets as in (b; n = 7 datasets).
e Correct and false (line color) predicted lineages with respect to the barcode
lineages (fill color) at different confidence levels in the mESC dataset. A random
subset of the lineage predictions is shown. f Pie chart of datasets colored according
to the presence of barcode- (left) and GEMLI- (right) lineage annotation at a

confidence level of 50 (n = 1 for each cell type). The number of recovered lineages is
indicated. g Precision-sensitivity curve for predictions of lineages composed of one
cell type (symmetric) or two cell types (asymmetric) in the HSPC (n = 44) and
WM989datasets (n = 8).Mean is represented.hPrecision (left), sensitivity (middle),
and FPR (right) of lineage predictions at confidence level 50 for symmetric (sym.)
and asymmetric (asym.) lineages in the HSPC and WM989 datasets as in g. Boxes:
intervals between the 25th and 75th percentile and median (horizontal line). Error
bars: 1.5-fold the interquartile range or the closest data point when no data point is
outside this range. Source data are provided as a Source Data file.
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comparison with GEMLI predictions. At a confidence level of 80,
GEMLI reached 100% precision while assigning more cells to lineages
than the barcoding data (Fig. 4a–c).

GEMLI assigns cells to individual in vivo-derived crypts and
organoids
Further, we tested GEMLIs ability to reconstruct in vivo and in vitro-
derived multicellular structures that originate from a single or few stem
cells using scRNA-seq data of intestinal organoids and crypts, for which
the individual structure of origin (crypt or organoid) is known for each
cell (ref. 43, Supplementary Data file 1). We ran GEMLI on the pooled

scRNA-seq datasets and analyzed whether inferred lineages fall within
individual crypts and organoids. GEMLI resulted in high percentages of
cells correctly assigned to their crypt or organoid of origin with default
lineage size parameters and parameters in the ground truth lineage size
range, allowing the recovery of mid-sized lineages (Fig. 4d–g; Figs. S12a,
d and S18 for organoids). As ground truth lineage sizes might be
unknown when applying GEMLI, we tested the stability of predictions
for different lineage size parameters. Taking the maximal ground truth
lineage size as the upper lineage size parameter value coincided with a
maximal cluster stability of predictions, allowing us to estimate the
size distribution of crypts and organoids de novo (Fig. S19). GEMLI

Fig. 3 | GEMLI lineage predictions allow retrieving memory GO-terms and
quantifyingdiverging cell-fatedecisions. aTop 10enrichedGO-terms inmemory
genes called on barcode or predicted lineages (pred.) at confidence level 30 in
different cell types (n = 1 dataset each). All terms that are among the top 10 in any
cell type are shown. Spearman rank correlation is indicated. Proc.=process.
b SPRING graph of HSPC datasets (n = 44) annotated by cell types (top), high-
lighting ground truth undifferentiated symmetric (beige) and undifferentiated-
neutrophil asymmetric (pink) lineages (middle), or highlighting undifferentiated-
neutrophil asymmetric lineage predictions at confidence level 70 (bottom). c The
number (sum) of cell pairs in the barcode (top right) and predicted (bottom left)

cell lineages in all cell type combinations in the HSPC datasets as in b. d Average
log2 fold-change for DEG called between barcode and predicted undifferentiated
cells in symmetric and asymmetric cell lineages in one day 4 HSPC dataset. Dots
represent DEGs. Spearman rank correlation is given. The 20 highest and 10 lowest
enriched genes are named. Gray: undifferentiated, blue: neutrophil. e Average log2
fold-change for DEG called between barcode and predicted drug-susceptible cells
in symmetric and asymmetric cell lineages across WM989 datasets (n = 8). Green:
drug-resistant, blue: drug-susceptible. A confidence level of predictions in c–e is 50.
For the full spelling of abbreviated cell type names mentioned in panels b, c, see
Methods. Source data are provided as a Source Data file.
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Fig. 4 | GEMLI correctly assigns cells to individual metastases, crypts, and
mitochondrial variant-defined lineages in vivo. a Scheme of GEMLI lung
metastasis predictions. b Precision (line) and sensitivity (dotted line) as a function
of confidence level for GEMLI predictions in lung metastases of two mice tested
against the CRISPR barcode lineage information. Line: mean; Shade: S.D. c Pie chart
of the lung metastases data of two mice (M1, M2) as in b colored according to the
presence of CRISPR barcode- (left) and GEMLI- lineage annotation at a confidence
level of 50 (middle) and 80 (right). The number of recovered lineages is indicated.
Conf=confidence level. d Schematic of GEMLI crypt predictions. e Percentage of
cells predicted as individual lineages for each crypt in the crypt dataset (n = 1) at
confidence level 70. f Predictions of crypts at confidence level 70. g Precision-
sensitivity curve for predictions in the crypt dataset. h Precision-sensitivity curve

forpredictions of cell pairs composedof one cell type (symmetric) or two cell types
(asymmetric) in the crypt dataset. i The percentage of cells (size) belonging to the
indicated cell type (color) for individual crypts (top) and for predicted lineages at
confidence level 50 (bottom) aligned to their crypt of origin. j Precision-sensitivity
curves of lineage predictions in bone marrow cells using mitochondrial variants as
ground truth lineages (n = 3 datasets). Line: mean; Shade: S.D. k Precision-
sensitivity curves of lineage predictions in K562 cells (n = 1 dataset) as in j.
l Precision-sensitivity curves of lineage predictions in bone marrow cells using
mitochondrial variants as ground truth lineages as in jwith lineage size parameters
up to the maximal ground truth lineage size. Line: mean; Shades: S.D. All crypt
predictions are of 5-40 cells and were run with a lineage size parameter of 2–40.
Source data are provided as a Source Data file.
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predictions allowed highly reliable inference of the cell type composi-
tion of individual structures by identifying both symmetric and asym-
metric cell pairs (Fig. 4h, i and Fig. S20). This demonstrates that GEMLI
can recover the cellular composition of individuals in vivo and in vitro
segregated mid-sized multicellular structures from pooled datasets.

GEMLI can be combined with other lineage-tracing approaches
We next combined GEMLI with lineage inference based on mitochon-
drial variants to study lineages at broader time scales. Mitochondrial
variants allow identifying cell lineages in 3’ scRNA-seq datasets after
enrichment of mitochondrial transcripts27. The scarce occurrence of
mitochondrial mutations however restricts this approach to the
assignment of cells to large lineages, i.e., cells related over long time
spans (weeks tomonths). We tested if GEMLI could refine lineage trees
inferred from mitochondrial variants on datasets of primary human
bone marrow cells and K562 myelogenous leukemia cells27. Impor-
tantly, in these experiments only a small sample from a large popula-
tionwas sequenced, resulting in the lossof a large fractionof cells from
small lineages and thus inherently limiting their identification. Never-
theless, GEMLI recovered small cell lineages in all datasets and these
fell with high precision within the large mitochondrial-variant inferred
lineages (Fig. 4j, k). The precision stayed alsohigh for predictions up to
the maximal size of the mitochondrial-variant inferred lineages, con-
firming GEMLIs utility in refining lineage trees obtained with other
techniques (Fig. 4l).

GEMLI characterizes gene expression memory in human
breast cancer
Next, we applied GEMLI to a primary human breast cancer tissue
sample dataset44, in which other lineage tracing approaches (such as

cellular barcoding) cannot be applied or would only call large lineages
(mitochondrial-variant-based lineage inference). The dataset was
generated from formalin-fixed, paraffin-embedded breast cancer tis-
sue and encompasses scRNA-seq (31,364 expressed genes) and
Xenium in situ sequencing data (313 genes) of serial sections44. We
assigned 10 cell types identified in the Xenium data to the scRNA-seq
data using supervisedmachine learning (Fig. 5a), and applied GEMLI to
ductal carcinoma in situ (DCIS) and invasive tumor cells separately
(Fig. 5b). Prediction stability for DCIS cells suggested lineage sizes up
to 50 cells, in line with their nodule character and size in the spatial
data, and resembled the multicellular crypt or organoid profiles
(Fig. 5a and Fig. S21, size considering 2,3% recovery of DCIS cells in
scRNA-seq). In contrast, cluster stability of predicted invasive tumor
cell lineages was more similar to cultured cells without a clear spatial
organization (Fig. S21a). Memory genes called on predicted DCIS and
invasive tumor cell lineages (Fig. 5c) were characterized by distinct GO
terms, such as response to estrogen or cell-substrate adhesion,
respectively (Fig. S22a). Memory genes for which Xenium in situ data
was available showed visible patches of similar gene expression, in line
with lineage-specific expression (Fig. 5d). Crucially, the spatial dis-
tribution of highly variable, non-memory genes was characterized by a
“salt and pepper” aspect (Fig. 5e), in line with both gene groups only
partly overlapping (Fig. 5f).

GEMLI allows identifying early stages of progression to invasive
cancer in vivo
Finally, we applied GEMLI to predict lineages on the whole breast
cancer scRNA-seq dataset to study progression towards invasiveness.
While most GEMLI lineages were confined within one cell type or
shared with apoptotic cells, GEMLI also predicted lineages with both

Fig. 5 | GEMLI predictions identify lineages in breast cancer nodules. a Breast
cancer Xenium in situ sequencing map colored by cell type. b A random subset of
predicted lineages within the DCIS cells of the breast cancer scRNA-seq dataset at
confidence level 50. c Percentage of expressed genes categorized as quantitative
(quant.) and qualitative (qual.) memory genes in the breast cancer scRNA-seq
dataset as in b. d In situ map of breast cancer Xenium data for ESR1 and SCD

expression which are memory genes in DCIS and invasive tumor lineages respec-
tively. eMaps as ind for two variablegenes. fOverlapofmemoryand variablegenes
in the breast cancer scRNA-seq dataset. All predictions in b-e are with lineage size
parameters of 2–20 cells. The invasive tumor is abbreviated as the inv tumor in all
panels. In a T-cell dendr. = T-cell dendritic cell andMyoepithel. =Myoepithelial cell.
Source data are provided as a Source Data file.
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DCIS and invasive tumor cell members (Fig. 6a, b and Fig. S22b, c,
around 10% of cancer cell lineages). We hypothesized that these
asymmetric lineages contained cells that recently switched to an
invasive phenotype. We analyzed genes characterizing these lineages
by calling DEG on DCIS cells within asymmetric and symmetric linea-
ges, as well as DEG between lineage types of later stages in cancer
progression (Fig. 6c, d and Fig. S22d). Genes enriched in DCIS cells
from asymmetric lineages included known markers of cancer inva-
siveness such as CDH245, but also genes with unknown roles in cancer

progression, such asDCAF7 and LINC01999 (Fig. 6d).While, e.g.,DCAF7
and CDH2 displayed continuous changes across lineage types occur-
ring during cancer progression, others such as TCIM or BRIP1 were
expressed transiently at higher levels in asymmetric or only in sym-
metric (i.e., only invasive tumor cell) lineages, respectively (Fig. 6e and
Fig. S22e). This demonstrates the unique ability of GEMLI in dissecting
lineage identities and gene expression changes in specific lineage
types occurring during the progression of human tumors towards
invasiveness.

Fig. 6 | GEMLI identifies breast cancer cells in lineages switching to an invasive
phenotype. aA subset of predicted lineageswith respect to cell type annotation at
confidence level 50 in the breast cancer scRNA-seq dataset. Gray and red lines
indicate lineage relationships within one or across several cell types, respectively.
b Number of DCIS and invasive tumor lineages with members belonging to other
cell types for lineage predictions as in a. c Scheme of lineage cell type identities
occurring during breast cancer progression towards invasiveness (green: DCIS,
blue: invasive tumor). d Volcano plots for DEG called between DCIS and invasive
tumor cells predicted to be part of symmetric and asymmetric (asym.) cell lineages
in the breast cancer scRNA-seq dataset as indicated. The top 9 highest and lowest

enrichedgenes arenamed.Predictions at confidence level 50. Thep-value indicated
wasgeneratedbySeurats FindMarker functionbasedonaWilcoxonRankSumTest.
e Expression of selected DEG as in d across DCIS and invasive tumor cells part of
symmetric and asymmetric (asym.) lineages as indicated. All predictions are with
lineage sizeparametersof 2–20cells. Invasive tumor is abbreviated as ‘inv tumor’or
‘inv tu’ in all panels. Arb. units = arbitrary units. Boxes: intervals between the 25th
and 75th percentile and median (horizontal line). Error bars: 1.5-fold the inter-
quartile range or the closest data point when no data point is outside this range.
Source data are provided as a Source Data file.
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Discussion
GEMLI allows predicting small to medium-sized cell lineages related
over several generations solely from scRNA-seq datasets, based on
genes thatmaintain their expression level through cell divisions. This is
a shift away from experimental lineage tracing techniques based on
genetic marks or physical cell lineage separation and extends lineage
annotations of small and medium-sized lineages to in vivo settings.

GEMLI is applicable to any scRNA-seq dataset and requires only
exonic reads. This alleviates the need for experimental lineage
assignment procedures implemented prior to sequencing and thereby
expands lineage annotation to contexts where cellular barcoding or
other lineage assignment approaches are challenging or prohibitive,
such as primary cells or human biopsies. It also avoids cellular stress
caused by cell picking or genetic engineering required for manual and
cellular-barcoding-based lineage tracing, respectively. GEMLI is parti-
cularly promising for its ability to identify small lineages in which cells
are related over about 1-5 cell divisions. However, GEMLI will generally
perform less robustly in cell populations that contain only distantly
related cells. Some systems might allow for a longer gene-expression
memory-based lineage tracing9,10,36. While GEMLI performed well on
intestinal organoids that are highly variable in size, we cannot exclude
that large variability in growth rates between lineagesmay decrease its
performance.

We show that in line with individual reports7,10,35,36, gene expres-
sion memory is present in various cell types and populations in both
self-renewal and differentiation conditions. GEMLI is therefore
applicable to all cells of a scRNA-seq dataset, in contrast to cellular
barcoding-based approaches which are limited to cells that (i) express
the barcode and (ii) for which the barcode is recovered. GEMLI thus
allows to recovery of a comparable or higher number of lineages than
in public cellular barcoding scRNA-seq datasets. GEMLI also compares
favorably to cell-picking approaches,which are difficult to scale up and
therefore mostly encompass small cell numbers21,23,25.

Lineage inference approaches based on naturally occurring
genetic marks can identify lineages over time spans of weeks or
months but require high coverage and sequencing depths or the
enrichment of specific transcripts26–32. Trajectory inference algorithms
can predict gene expression changes on the order of hours but do not
predict lineages34,41,46,47. GEMLI thusfills amethodological gapand shall
become a powerful tool to refine lineage trees in combination with
other lineage tracing approaches.

With its resolution at the scale of several cell divisions, GEMLI is
ideally suited to assess cell fate decisions during differentiation,
response to stimulus, homeostasis, and regeneration, and allows cor-
rectly assigning a broad diversity of cell types to individual complex
structures such as intestinal crypts and organoids. In these cases, the
physical proximity of lineage-related cells allows the sharing of a
similar microenvironment, which may further increase GEMLIs per-
formance. GEMLI is therefore promising to reconstruct other struc-
tures emerging from a common ancestor or a small pool of stem cells,
such as glands or spatially restricted areas of the skin. In the context of
human breast cancer, we illustrate GEMLIs applications by identifying
DCIS nodules, as well as determining previously unknown gene
expression changes in lineages encompassing cells at the transition
towards an invasive phenotype. Altogether, GEMLI opens new per-
spectives in interrogating the impact of close lineage relationships in a
broad range of biological contexts in vivo.

Methods
Cell culture
CGR8 ES cells (Sigma, Cat307032901-1VL) were routinely cultured at
37 °C and 5% CO2 on 10 cm dishes coated with 0.1% gelatin type B
(Sigma, Cat#G9391-100G) in 10ml GMEM (Sigma, Cat#G5154‐500ML)
supplemented with 10% ES cell‐qualified fetal bovine serum (Gibco,
Cat#16141‐079), 1% nonessential amino acids (Gibco, Cat#11140‐050),

2mM l‐glutamine (Gibco, Cat#25030‐024) and sodium pyruvate
(Sigma, Cat#S8636‐100ML), 100μM 2‐mercaptoethanol (Sigma,
Cat#63689‐25ML‐F), 1% penicillin and streptomycin (Pen/Strep) (Bio-
Concept, Cat#4‐01F00‐H), homemade leukemia inhibitory factor (LIF),
CHIR99021 (Merck, Cat#361559‐5MG) at 3μM and PD184352 (Sigma,
Cat#PZ0181‐25MG) at 0.8μM. Cells were passaged by trypsinization
(2ml of trypsin, Sigma, Cat#T4049‐100ML) every 2–3 days at a ratio
of 1:10. For scRNA-seq experiments, cells were switched to N2B27 + 2i/
LIF medium 2 passages beforehand. N2B27 + 2i/LIF medium was
composed of a 1:1 mix of DMEM/F12 (Gibco, Cat#11320‐033) and
Neurobasal medium (Gibco, Cat#21103‐049), supplemented with N2
(Gibco, Cat#17502‐001), B27 (Gibco, Cat#17504‐001), 1% Pen/Strep
(BioConcept, Cat#4‐01F00‐H), 2 mM L-glutamine (Gibco, Cat#25030‐
024), 100μM 2-mercaptoethanol (Sigma, Cat#63689‐25ML‐F), LIF,
CHIR99021 (Merck, Cat#361559‐5MG) at 3μM and PD184352 (Sigma,
Cat# PZ0181‐25MG) at 0.8μM. Cells were split every 2–3 days at a ratio
of 1:10, using 2ml of accutase (Innovative Cell Technologies,
Cat#31195) and centrifugation. HEK293T cells were routinely cultured
at 37 °C and 5% CO2 on dishes in DMEM high glucose medium (Gibco,
Cat#41966) supplemented with 10% Fetal bovine serum (Life Tech-
nologies, Cat#10270-106) and 1% Pen/Strep (BioConcept, Cat#4‐
01F00‐H).

Lentiviral barcoding library production
The LARRY lentiviral barcoding library12 was purchased from Addgene
(https://www.addgene.org/pooled-library/camargo-plarry-egfp-
barcoding-v1/). The barcodes of the library are composed of 40 base
pairs (bp) with 28 randombp separated by 6 fixed bp doublets and are
located in the 3’ untranslated region of EGFP expressed from the EF-1ɑ
promoter. The library was amplified and the lentiviral vector
was produced according to the associated protocol with small mod-
ifications. Briefly, plasmids were introduced into ElectroMAX Stbl4
Competent Cells (Life technologies, Cat#11635018) using MicroPulser
Electroporator (Bio-Rad, Cat#1652100) EcoRI program. Cells were
incubated for 1 h at 37 °C and spreadover 20 large (24.5 × 14.5 cm)Agar
+Ampicillin plates (Ampicillin at 100 ug/ml, AppliChem, Cat#
A08390025). After 24 h, colonies were harvested through scraping
using pre-warmed LB medium supplemented with 100 ug/ml Ampi-
cillin. The resulting 1.5 L bacterial culture was incubated at 37 °C for 2 h
and a Maxiprep was performed using a Qiagen MaxiPlus kit (Qiagen,
Cat#12963) to a resulting 1mg of plasmid DNA. A lentiviral vector was
produced by transforming the produced LARRY plasmid into
HEK293T cells using the Trans-IT 293 transfection reagent (Mirus,
Cat#MIR2700). For each of eighteen 10 cm dishes of HEK293T cells,
1.5ml Opti-MEM (Gibco, Cat#51935), 16μg plasmid (8μg LARRY plas-
mid, 6μg psPAX2 (Addgene, PRID: Addgene_12260), 2μg pMD2.G
(Addgene, PRID: Addgene_12259)) were mixed with 45μl TransIT 293
transfection reagent, incubated for 15-30min at RT, and added to the
cells dropwise. Lentiviral vector particles were harvested 48 h and 72 h
after transfection. Medium was collected and filtered through a
0.45μm PVDF filter (Millipore, Cat#SLHV033RS), and centrifuged in a
Beckman Optima XL-80K Ultracentrifuge (Beckman, Cat#8043-30-
1211) at 140,000 × g for 1h 30min at 4 °C. The supernatant was
removed, and pellets were resuspended with 100μl of GMEM with
serum and all additives as above but without 2i/LIF. The lentiviral
vector preparation was incubated on ice for 30min, aliquoted, and
stored at –80 °C. Titration of the lentiviral barcoding library was per-
formed on CGR8 cells cultured in GMEM+2i/LIF, with a read-out 5 days
after infection.

Barcode reference library generation
A reference librarywasmade through the sequencing of PCR-amplified
barcodes from the LARRY plasmid library in triplicates. 500 ng of
LARRY plasmids were taken as input for a two-step PCR using Phusion
high-fidelity DNA polymerase (Thermo Fisher, Cat#F-5305) adapted
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for LARRY from ref. 48. The first step amplifies the barcodes and adds
Illumina Read1 and Read2 sequences (5’ACACTCTTTCCCTACACG
ACGCTCTTCCGATCTTGTGACGTCACAGGTCGACACCAGTCTCATT3′
and 5’GTGACTGGAGTTCAG ACGTGTGCTCTTCCGATCGAGTAACCGT
TGCTAGGAGAGACCATA3′). The second step adds the P5 and P7 flow
cell attachment sequences and a sample index of 7 bp (P5 5’AATGATA
CGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG
ATCT3′ and P7 5’CAAGCAGA

AGACGGCATACGAGANNNNNNNGTGACTGGAGTTCAGACGTGC
TCTTCCGATC3′). 200ng of PCR1 productwas taken as input for PCR2.
(PCR programs: 98 °C 2min, 15 cycles of 98 °C 10 s, 67.2 °C (PCR1),
72 °C (PCR2) 30 s, 72 °C 30 s, followed by final elongation 72 °C 5min
and 4 °C indefinitely). In between PCR1 and PCR2 and after PCR2, PCR
purification was performed using the QIAquick PCR purification kit
(Qiagen, Cat#28106). Themixof the three sampleswas sequencedon a
MiSeq instrument (Illumina) at the Gene Expression Core Facility of
EPFL. Sequencing results were first filtered for a perfect match to the
plate index pattern using XCALIBR (https://github.com/NKI-GCF/
xcalibr). The resulting read files were filtered for a perfect match to
the barcode pattern using customized R scripts. The resulting list and
the LARRY “barcode_list” available on Addgene (https://www.addgene.
org/pooled-library/camargo-plarry-egfp-barcoding-v1/) were merged
and used as a reference list.

mESCs scRNA-seq memory experiment run
CGR8 cells were transduced with 3 ul of the lentiviral LARRY barcoding
library per 10 cm dish with 10ml medium to obtain roughly 1% of GFP+

cells. 72 h after infection, live GFP+ cells (Fig. S1a; live stain 1:500 pro-
pidium iodide solution (BioLegend, Cat#421301)) were sorted on an
FACSAria III (BD) at the Flow Cytometry Core Facility of EPFL into
Cellcarrier 96-Ultra 96-well plates (PerkinElmer, Cat#6055308). Plates
were coated with recombinant human E-cadherin-Fc chimera (BioLe-
gend, Cat#BLG-779904-25ug) to reduce colony formation and thereby
limit the potential impact of paracrine and direct cell signaling in reg-
ulating gene expression of related cells49. Coating was performed at
10μg/ml for 1 h at 37 °C. After washing the plates with PBS, 1,200 cells
were sorted into two wells and both were collected after 48h for
sequencing. Before collection, cells were imaged on an IN Cell analyzer
2200 (GE Healthcare) at the Biomolecular Screening facility of EPFL.
ScRNA-seq library preparation was performed on a 10X Genomics
Chromium platform of the Gene Expression Core Facility of EPFL using
the SingleCell 3’ Reagent Kit v3.1. The sample was sequenced on a
Hiseq4000 instrument (Illumina). The experiment was performed once.

mESC scRNA-seq data processing and cell lineage inference
ScRNA-seq datawas analyzed using 10XGenomics Cell Ranger (v. 5.0.1),
Seurat (v. 4.1.0), customized R (v. 4.0.2), and Python (v. 3.9.7) scripts.
Raw sequencing reads were processed using 10X Genomics Cell Ranger
(v. 5.0.1) using default parameters and refdata-gex-mm10-2020-A as
reference genome, with or without the include-introns option. Cell
Ranger outputs a unique molecular identifier (UMI) corrected read
count matrix. Cells with a percentage of mitochondrial reads between
1.75 and 7.5 and with more than 10,000 reads were further analyzed.
Data was normalized to 40,000 reads per cell (similar to RPM, one
normalized count equals one read on median). Lineage barcodes were
extracted from the data using the CellTag pipeline9 available for
download at (https://github.com/morris-lab/BiddyetalWorkflow) and
adapted to the LARRY barcode design. Briefly, the CellTag pipeline
extracts reads containing a CellTag motif from the processed, filtered,
and unmapped reads BAM files produced in intermediate steps of the
10X Genomics Cell Ranger pipeline. To extract LARRY barcodes, the
CellTag motif was changed to “([ACTG]{4}TG[ACTG]{4}CA[ACTG]{4}
AC[ACTG]{4}GA[ACTG]{4}GT [ACTG]{4}

AG[ACTG] {4})” in all scripts. Barcodes with reads from only one
UMI, and without perfect match to the reference library were filtered

out. A Jaccard similarity score of >0.7was used to identify cell lineages.
No filtering on the number of barcodes expressed per cell was per-
formed. Lineages were called on unfiltered data. For themESC dataset,
6 lineages had sizes above 5 cells, which is larger than expected based
on cell cluster sizes after 48 h of culture and the expected loss of cell
lineage members in the preparation for scRNA-seq. They were there-
fore excluded from further analysis.

Processing of public scRNA-seq data
Data from Biddy et al.9 was extracted as a BAM file from SRA links
specified under GSE99915. BAM files were converted back to fastq
format using 10X Genomics’ bamtofastq (v. 1.3.2) and Cell Ranger (v.
5.0.1) was run on the resulting data as described above with or without
the include-introns option. Cells were filtered on the percentage of
mitochondrial reads and the number of reads as indicated in Table S2.
Data was normalized to 40,000 reads per cell. Cell lineages were
assigned using theCellTagpipeline as specified abovewith the original
CellTag motif of “(GGT([ACTG]{8})GAATTC)”(V1), “(GTGATG([ACTG]
{8})GAATTC)”(V2) or “(TGTACG([ACTG]{8})GAATTC)”(V3) and the
respective whitelists and sample-specific cell barcodes available at
(https://github.com/morris-lab/BiddyetalWorkflow). As in the original
publication, cells with >20 or <2 CellTags expressed were not con-
sidered for lineage assignment. Lineageswere called on unfiltered data
using a Jaccard similarity score of >0.7. Cell lineages were called on
individual datasets for all analyses of a single time point. Data from
Kimmerling et al.21 is GSE74923_L1210_CD8_processed_data.txt from
GEO. Ground truth cell lineage information was extracted from the
GSE74923_series_matrix.txt file. Data from Weinreb et al.12 was down-
loaded from (https://github.com/AllonKleinLab/paper-data/blob/
master/Lineage_tracing_on_transcriptional_landscapes_links_state_to_
fate_during_differentiation/README.md). Data from Jindal et al. was
directly obtained from the authors in the form of Seurat objects
including the unnormalized but filtered count matrix and a metadata
file comprising the lineage information. All datasets were RPM
normalized to 40,000 reads/cell. Data from Wehling et al.23 was
directly obtained from the authors in the form of an unnormalized
count matrix and the metadata file (available on GEO GSE167317 asG-
SE167317_CountMatrix_Seq5.csv, GSE167317_CountMatrix_Seq4.csv,
GSE167317_Metadata_Seq5.csv, GSE167317_Metadata_Seq4.csv). Cells
with under 100,000 reads were removed and data was normalized to
40,000 reads per cell. Lineage information was extracted from the
metadatafile. Data fromHarmange et al.was downloaded fromhttps://
drive.google.com/drive/folders/1-C78090Z43w5kGb1ZW8pXgysjha
35jlU?usp=sharing (accessed begin July 2022) in the form of 10×1_Fil-
terd_BatchCor_unnorm_sctrans.rds from experiment one. Lineages
were assigned using the corresponding script section in the file
10×1_r1_r2_Analysis_unorm_sctrans.Rmd. During filtering, cells with
<3%ofmitochondrial reads, and cells with <4000 readswere removed.
Data was normalized to 40,000 reads/cell. Data fromSimeonov et al.42

was obtained in the form of CellRanger output files for the lung
metastasis scRNA-seq data of mouse 1 and 2 from GEO (GSE173958;
GSM5283486 and GSM5283491). scRNA-seq data was normalized to
40,000 reads/cell. Lineage annotation was obtained from Mendeley
data (DOI: 10.17632/t98pjcd7t6.1) in the form of “Barcodes-of-bar-
codes” files for all clones. This metadata was then filtered for the
annotations of clones present in the scRNA-seq datasets of the lung
metastases of mouse 1 and 2. Data from Bues et al.,43 was directly
obtained from the authors in the form of a Seurat Object including a
normalized count matrix with crypt and organoid annotation. Briefly,
organoids were generated by sorting single Lgr5+ intestinal stem cells
from dissociated organoids into a Matrigel matrix. After culture for 3,
4, 5, or 6 days, single organoids were hand-picked and dissociated
individually before loading for scRNA-seq. Organoids are derived from
3 batches. Lgr5+ intestinal stem cells seeded can be derived from the
same organoid. Crypts were collected over 5 batches of 3 pooled mice
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from 10mmsections of the ileum. Crypts within the samebatch can be
derived from the samemouse but were several mm apart in the ileum.
Data and scripts from Miller et al.27 were downloaded from https://
github.com/vangalenlab/MAESTER-2021 and https://vangalenlab.bwh.
harvard.edu/resources/maester-2021/ as TenX_CellLineMix_cells.rds,
TenX_CellLineMix_All_mr3_maegatk.rds, TenX_CellLineMix_Seurat_
Keep.rds (for the K562 dataset) and BPDCN712_Maegatk_Final.rds,
BPDCN712_Seurat_Final.rds, 4.2_vois.txt (for the primary human bone
marrow cells). Lineage assignment was performed as in the scripts
3.4_TenX_K562_clones.R and 4.3_variants_Of_Interest.R for K562 and
bone marrow cells respectively. “GroupIDs” were then unlisted to
extract the cell-barcode lineage correspondence. The count-matrix for
the K562 dataset was extracted from the TenX_CellLine_Mix Seurat
object by filtering for K562 cells. For the primary bone marrow cells,
the BPDCN712 Seurat object was split out by replicate to generate the
GEMLI input count matrices. For both cell types, lineages were filtered
to be defined by a single informative mitochondrial variant. Data from
Janesick et al.44 was downloaded from https://www.10xgenomics.com/
products/xenium-in-situ/preview-dataset-human-breast. The scRNA-
seq dataset was filtered to a > 1000 reads/cell and a mitochondrial
fraction of 1-50%. Cell types were annotated through supervised
machine learning. In brief, a UMAPwas built upon a linear discriminant
analysis (LDA; R package ‘MASS’ (v. 7.3-58.3) performed on log mole-
cule numbers) which in turn was based on provided cluster annota-
tions for Xenium data in situ sequencing data. Single-cell RNA-seq
Chromium data was then projected onto this LDA-UMAP to assign cell
types. Assignments were specific and unique. Finally, each cluster was
assigned its cell type annotation through the assessment of marker
genes provided in Janesick et al.44.

ScRNA-seq data representation
ScRNA-seq data is represented as tSNE, UMAP, or SPRING graph. tSNE
embeddings were generated using a custom function based on the
tSNE R package (v. 0.1-3.1) on exonic, or both intronic and exonic
reads. PCA was calculated on the 3,000 top variable expressed genes.
Subsequently, a tSNE was computed on the PCAs top 10 components.
SPRING graphs were generated from precalculated values in public
datasets (HSPC data was represented as SPRING graph)). UMAPS
(mESC, crypts, and organoid datasets) were generated in a standard
Seurat analysis. Briefly, variable features were called using the Find-
VariableFeatures function (parameters selection.method =”vst”, and
number of features = 2000), data was scaled using the ScaleData
function on all genes, and a PCAwas run using the RunPCA function on
variable features. Subsequently, a UMAPwas built using the RunUMAP
function on the top 14 components.

Assessment of gene expression similarity
Gene expression correlation within cell lineages or random samples
for the whole transcriptome was calculated as Pearson correlation.
Correlation distance is calculated as 1- the correlation value. To assess
the similarity of related cells with respect to cell cycle, genes were
classified as cell cycle-dependent or independent using a cell cycle
assignment by the cyclone function within scran (v. 1.18.7). Depen-
dence of gene expression on the cyclone assigned cell cycle phases
(numerized)was tested usingHoeffding’s D statistics. Gene expression
correlation was then calculated using only genes classified as cell-cycle
dependent. To assess the similarity in the velocity of related cells,
velocity analysis was performed using the velocyto package (v. 0.6).
Velocity momenti were extracted for each cell, and their Pearson
correlation was calculated. Complexity was defined as the number of
genes expressed in a cell and the complexity range within cell lineages
was calculated for analysis. For all metrics (transcriptomic similarity in
all genes, in cell-cycle dependent genes, similarity in velocitymomenti,
and in complexity) values between related cells (all lineage sizes) and
repeated (100x) random samples of cells of the same size were

compared. For the scoring of transcriptomic similarity in symmetric
and asymmetric lineages, symmetric and asymmetric lineages were
defined based on entire lineages.

Estimation of variation mediated by cell lineages
Assuming that the variation (here CV2) within each lineage is inde-
pendent of cross-lineage effects, we built a linearmodel using the stats
package (v. 3.6.2) to capture the relationship of the variation across
lineages (variation of means of each lineage) and total variation (var-
iation across all cells). We then generated mock lineages through the
permutation of ground truth lineages and used our model to estimate
the total variation in these control sets. Lineages of sizes 3–5 formESCs
andWM989 cells, of size 4 for CD8 and L1210, and of size 2 for all other
cell types were considered. This ensured to inclusion of around 90%of
the cells in each dataset.

Memory-gene identification and categorization
Wedefinedmemory genes as genes with high variability (coefficient of
variability squared; CV2) in mean gene expression in different cell
lineages. We compared the lineage value to the distribution of values
from repeated (20x) randomsize-matched samples of cells to calculate
a p-value. Memory genes were defined as genes with a significantly
(p < =0.05) higher variability between lineages as compared to random
samples. To categorizememorygenes into quantitative andqualitative
memory genes, we used the skewness function of the R package
moments (v. 0.14.1). We defined a quantitative memory gene as a gene
with a skewness in expression level of under 3, and a qualitative
memory gene, as a gene with a skewness in expression level equal or
above 3. Memory genes were called on cell lineages of 3–5 (mESCs), 2
members (invasive tumor), or 2–5 members (all other cell types). All
predicted cell lineageswere usedwhen callingmemorygenes on these.
Other criteria to call memory genes resulted in highly overlapping
gene sets (Fig. S6a, b). These additionalmemorygene selection criteria
included a high correlation in gene expression within cell lineages and
a lowvariability (CV2) in gene expression between cells of the same cell
lineage (intra-lineage CV2; intraCV2). Furthermore, we analyzedmarker
genes of cell lineages using the Seurat FindMarker function with a
range of test.use parameters (bimod, roc, t (T-test), negbinom, poisson,
LR, MAST). We then considered as memory genes the markers with a
high sharing across cell lineages, using thresholds defined indepen-
dently for each FindMarker run to optimize the Pearson correlation
in gene expression within cell lineages. Finally, to identify memory
genes using machine learning, we used common dimension reduction
methods, mutual information maximizer (MIM), and ANOVA F-test
feature selection (ANOVA). Other feature selection techniques fre-
quently used in the literature were also investigated, but MIM and
ANOVA outperformed all the other methods. For both, each gene was
attributed a memory score either by computing the mutual informa-
tion or ANOVA F-test of the gene expression across cells. To determine
the ideal number of genes N to include in the final gene set, we pre-
dicted cell lineages using the top N genes with the highest memory
score. Each of the resulting clusters was evaluated and the number of
genes N with the best precision was chosen as the optimal number of
memory genes. For the comparison of memory genes and variable
genes in the Janesick et al.44 dataset, memory genes were called on
lineages predicted at confidence level 50with a lineage size parameter
of 2–20 in each cell type independently. Genes were considered to be
variable when having a residual to a least total square fit on mean
expression and CV² above zero.

GO-term enrichment analysis
GO-term enrichment analysis was performed onmemory genes called
using the lineage ground truth (derived from cellular barcoding,
microfluidics, or sister cell picking), and onmemory genes called using
predicted cell lineages. The topGO R package (v. 2.42.0) was used with
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the GO category “biological process”. Memory genes and background
(all genes detected) were considered to be binary. The top 10, 20, 100,
or 500 enriched GOs from each set were visualized as indicated.
Spearman rank correlation between GO-term enrichment values was
calculated formemorygenes called on-ground truth andpredicted cell
lineages. For GO-term enrichment of memory genes called based on
predicted lineages in the Janesick data, GO-terms were further com-
pared to expression-matched random gene sets. Enriched terms were
significant (Fisher’s exact test, p <0.001) and enriched over 100
expression-matched random gene sets (estimated p < 0.05). A selec-
tion of terms is shown in Fig. S22a and the full list can be found in
Supplementary Data file 5.

Gene selection for GEMLI predictions
Genes for cell lineage predictions were selected to enrich memory
genes based on the quantiles of the mean and variability of gene
expression. The variability of gene expression was defined as mean-
corrected CV2 calculated in the form of the residual of the CV2 to a
linear fit of CV2 and mean expression. The genes selected for lineage
predictions are the 2% highest expressed genes, the 60%most variable
among the 10% highest expressed genes, and the 10% most variable
among the 40% highest expressed genes: (mean quantile >= 98) or
(mean quantile >= 90 and variability quantile >= 40) or (mean quantile
>= 60 & and variability quantile >= 90)). The selected genes are taken
as input for the repetitive iterative clustering algorithm. The selected
genes do only partly overlap with highly variable genes and cell type
markers called during a standard Seurat-based scRNA-seq analysis
(Figs. S4f and S7f). For this comparison, highly variable genes were
called as top 2000 variable genes with standard Seurat parameters.
Cell type markers were called using Seurat’s FindMarkers function for
each cell type present with at least 5 cells. Also usingmachine learning
to select genes based on variability and mean gene expression did not
further enrich memory genes (Fig. S7c). Briefly, different models were
trained including logistic regression with L2 regularization (LR),
support-vector machine (SVM) with the radial basis function (RBF)
kernel, and a neural network. The mESC and Biddy et al. MEF datasets
of 48 h and 72 h culture time (n = 1 and n = 6, respectively) were used
for model training, the datasets of CD8, L1210 (n = 1 each), and HSPC
(48 h; n = 22) were used for model validation. The mean expression
outliers in each dataset were removed using the inter-quartile range
(IQR) method. All the outliers were considered to be memory genes
and were added in the final gene selection. Then, the data was nor-
malized to a range between 0 and 1. Each dataset was preprocessed
individually. The LR and SVM models were trained using their sklearn
(v. 1.1.1) implementation. The neural network was optimized using the
Pytorch framework (v. 1.11.0). To optimize the model, a balanced ver-
sion of the binary cross entropy loss and accuracy was used to account
for the fact that the proportion of memory genes is low in all datasets
while most machine learning models assume that the data has
approximately the same number of samples of both classes. To take
this into account, a biggerweightwas given to amisclassificationof the
minority class, the memory genes. To find the optimal hyperpara-
meters for the LR and SVM a grid search and cross-validation were
performed. Basedon this, the L2 regularizationwas adjusted to 103 and
105 for LR and SVM respectively. For the neural network, cross-
validation was deemed too computationally expensive, and the
Optuna Python package (v. 2.10.0) was used to perform a random
search for the optimal hyperparameters on training and validation set
(SupplementaryDatafile 6). Thebest performingmodelwas theneural
network and its results are show in the Supplementary Figs.

GEMLI cell lineage prediction algorithm
The GEMLI algorithm is a repetitive iterative clustering approach to
predict cell lineages (Scheme in Fig. 2a, see Table S1 for a comparison
to other clustering algorithms), taking a gene set as input. For de novo

cell lineage predictions on scRNA-seq data without lineage annotation
the gene set is selected based onmean gene expression and variability
(see previous section). Also other gene sets can be used as input,
notably memory genes when a ground truth lineage annotation is
available (see below). During each iterative clustering, the input gene
set is randomly subsampled to 75% (sampling value parameter; see
section on GEMLI parameters below). This gene set subsample is then
used to cluster the cells of the dataset iteratively as follows. During the
first iteration, two clusters (cluster cut parameter; see below) are
generated using cutree function from the dendextend (v.1.16.0) R
package and the hclust hierarchical clustering function of the R pack-
age stats (v.4.0.2) on the gene expression correlation distance using
the agglomeration method ward.D2. In every subsequent iteration
round, the cells of each previously defined cluster are clustered again
into two clusters using the same procedure. The iteration is ended for
clusters meeting a predetermined size of 2–3 cells (lineage size para-
meter, see below). This results in a cell-by-cell matrix indicating for
each cell-pair if it did cluster together in the final cluster of 2–3 cells.
This iterative hierarchical clustering represents one-cell lineage pre-
diction. It is repeated 100 times (repetition number parameter, see
below) to generate a confidence level for the lineage predictions.More
in detail, the cell-by-cell matrices generated in the 100 repetitions of
the iterative hierarchical clustering are summed into a confidence level
cell-by-cell matrix. Two cells ending up in the same cluster in 30 of the
100 predictions will here for example receive the value of 30. Setting a
threshold on the confidence level can then be used for lineage
assignment. Cell lineages are assigned as cell groups of which mem-
bers are clustering together above a confidence level threshold. Line-
age assignments are scored against the ground truth lineages
(barcode, microfluidic, or sister-cell picking) on precision (true posi-
tives (TP)/(TP+ false positives (FP))), sensitivity (TP/(TP+ false nega-
tives (FN))) and false positive rate (FPR; FP/(FP+ true negatives (TN))).
All are calculated for each confidence level X by comparing the pre-
dictions with a confidence level >=X to the ground truth cell lineage
relationships. Thereby precision, sensitivity and FPR are calculated on
cell pairs. For themajority of datasets, also AUC values were calculated
using the R package Metrics (v. 0.1.4) by the confidence level of pre-
dictions as a probability value.

Comparison of GEMLI to other lineage assignment approaches
To test the performance of GEMLI predictions, characteristics-based
gene selection was compared to other starting gene sets, as all genes
andmemory genes called using the lineage ground truth (from cellular
barcoding, microfluidics, or sister cell picking). Further, different
memory gene definitions (see above) and Seurat’s highly variable
genes (see above) were tested as input gene sets. Finally,memorygene
enriched gene sets selected based on mean expression and variability
using a neural network (see above) were tested in predictions. GEMLI
predictions had a slightly lower precision and sensitivity than predic-
tions using memory genes, but performed better than all genes
(Fig. S8). FPR was comparable between all three genesets (GEMLI,
memory genes, all genes) and consistently very low (<1%) at confidence
levels >=50. Other memory gene definitions did not improve predic-
tion performance (Fig. S6c–h). Also, gene selection based on a neural
network did not improve lineage predictions as compared to GEMLI
(Fig. S9d). Seurat’s highly variable genes likewise performed worse
than the GEMLI gene selection (Fig. S9f). Furthermore, the use of a
memory gene set called using the ground truth lineage information in
one dataset, did also not allow for improved predictions in other
datasets of the same or related/other starting cell type and culture
condition (Fig. S9e). Finally, GEMLI performancewas also compared to
other lineage assignment approaches, namely random cell pair
assignment and kNN-clustering-based lineage assignments. GEMLI
predictions on randomly lineage-assigned cells had as expected a very
low precision and sensitivity and a high FPR (Fig. S9a). Furthermore,

Article https://doi.org/10.1038/s41467-024-47158-y

Nature Communications |         (2024) 15:2744 12



cell pairs generated using kNN-clustering with different inputs (Seurat
top 2000 variable genes, top 14 components of a PCA on these genes,
UMAP on this PCA) resulted in a very low precision, comparable sen-
sitivity, and higher FPR than GEMLI predictions (Fig. S9b, c).

GEMLI predictions for symmetric and asymmetric lineages and
different lineage sizes
Scoring predictions for symmetric (one cell type) and asymmetric
(several cell types) lineages were performed in three ways. First, only
two-cell lineages were scored, which can be unequivocally defined as
symmetric (both members of one cell type) and asymmetric (each
member of another cell type). Second, lineages of all sizes were scored
for which symmetry was defined considering all cell members. Linea-
ges with allmembers in one cell type were here considered symmetric.
Lineages in which any members were part of two different cell types
were considered to be asymmetric. Third, cell pairs were scored on the
entire prediction matrix by taking pairs where both cells are of the
same cell type as symmetric lineage, and pairswhere both cells are of a
different cell type as asymmetric lineage, respectively. For lineage size
analyses the prediction matrix was stratified to only score pairs in
which one or both cells are members of a lineage of the indicated
ground truth lineage size.

KNN-clustering-based lineage assignments for comparison to
GEMLI predictions
For kNN analysis a standard Seurat pipeline was used. Data was
normalized and the 2000 most variable features were extracted
using default parameters. The data was then scaled, a PCA was per-
formed on previously defined variable genes and a UMAP was con-
ducted on the first 14 principal components. The kNN analysis was
then performed using the dbscan package (v. 1.1-11) with k = 1 or 2 as
indicated, on either the scaled data for variable features, the 14 first
principal components or the UMAP embedding. Pairs of nearest
neighbors were used as the lineage for comparison with GEMLI
predictions.

GEMLI prediction algorithm parameters
Several parameters can be set during GEMLI predictions: (1) the
sampling value (which fraction of genes is selected for each repeti-
tion of the iterative hierarchical clustering), (2) the number of repe-
titions of the iterative clustering (based on which the confidence
level is calculated), (3) the number of clusters in which clusters are
split during each iteration (“cluster cut”) and (4) the size of clusters at
which clustering iterations are stopped (“lineage size parameter”).
The default values used throughout the main figures are a sampling
value of 75%, 100 repetitions, splitting clusters into 2 during each
iteration, and lineage size parameter of 2–3 cell members unless
otherwise indicated. The influence of changes in single parameters
on predictions was tested on the unique mESC, CD8, L1210, and one
HSPC,WM989, andHSCdataset (Figs. S10 and S12). A lower sampling
value increased precision while decreasing sensitivity (Fig. S10a, b).
When the number of clusters into which each cluster is split is higher
than the maximal lineage size to be predicted, precision values
increase and sensitivity decreases (Fig. S10c, d). The number of
repetitions did only had a small effect on precision and sensitivity
values, with higher repetition numbers increasing precision and
decreasing sensitivity of the predictions (Fig. S12e, f). Also, the line-
age size parameter, meaning the size of clusters at which clustering
iterations are stopped influences both precision and sensitivity.
Precision will be high for predictions with a lineage size parameter of
2–3 until the average size of ground truth lineages is present
(Fig. S12). FPR stayed low throughout. Only a size parameter greatly
exceeding the average ground truth lineage size (Fig. S12c–e) can
increase FPR to values > 1%, but still <5%. For predictions of multi-
cellular structures (intestinal crypts and organoids) for which related

cells are in spatial proximity to each other, the cluster stability of
lineages predicted at increasing lineage size parameters, (cluster
stability calculated using the sc3 package within the R package
clustree (v.0.5.0)), reflected well the ground truth lineage size and
plateaued when reaching the maximal ground truth lineage size
present. In contrast, for predictions in datasets with primarily small
lineages without a spatial proximity or confinement, sc3 cluster sta-
bility of predictions increased gradually with increasing lineage size
parameter and did not plateau. This allowed for a de novo estimation
of the lineage size until which prediction could be performed with
high precision in datasets with multicellular structures (fig. S19).
Depending on the aim of cell lineage predictions and the dataset
characteristics (see next section), parameters and confidence level
threshold can thereby be adjusted to increase precision or sensitivity
respectively.

Influence of sequencing depth and cell number on GEMLI
predictions
To estimate the influence of sequencing depth and dataset size on
lineage predictions, GEMLI predictions were performed after down-
sampling the number of reads or cells in the mESC dataset, and one
MEF and HSPC dataset (Fig. S15 and Supplementary Data file 1). For
read downsampling, all reads of a given cell were vectorized, and
subsequently, a fraction (66%, 50%, 33%, 10%) of these reads were
sampled. Cells were subsampled separately to 66%, 50%, 33%, and 10%
of the initial cell numbers. Cells without lineage assignment or being
the only member of a cell lineage were subsampled directly to the
desired fraction. Cells that were members of cell lineages with several
members were subsampled together with their respective cell lineage
members. Sensitivity of lineage predictions decreased with decreasing
sequencing depth but the precision of lineage predictions stayed high
above values of 5000–8000 reads/cell as commonly recommended
for available scRNA-seq technologies37–39 (Fig. S15a, b). Subsamples
with fewer cells generally had a slightly better precision and sensitivity,
especially for very low read counts (Fig. S15c, d). FPR stayed <1% for all
conditions.

Cell fate decision analysis
To assess howwell GEMLI can recapitulate theprevalence of different
types of cell fate decisions, the HSPC (N = 44) and WM989 (N = 8)
datasets were analyzed. HSPCs datasets are derived from cells cul-
tured in myeloid differentiation conditions and are annotated
according to their cell type as basophil (Baso), eosinophil (Eosino),
erythroid, lymphoid (Lymph), megakaryocyte (Meg), monocyte
(Mono), neutrophil (Neutro), mast cell, plasmacytoid dendritic cell
(pDC (1/2)), migratory dendritic cell (Ccr7+), classic dendritic cell
(cDC) or undifferentiated (Undiff) cells (published metadata12). Only
certain cell type combinations of related cells exist and all have a
different prevalence, meaning that HSPCs are restricted in their fate
decisions. For each possible cell type combination (for example,
erythroid-eosinophil or undifferentiated-mast cell) the number of
cell pairs in barcode and GEMLI lineages was determined and sum-
med for all datasets. WM989 cells are annotated as drug-susceptible
or drug-resistant (published metadata4). Members of each cell line-
age are either entirely in one of these two states (symmetric cell
pairs) or distributed between these two states (asymmetric cell
pairs), with the latter implying that cells recently switched fate. We
compared the number of barcodes- and GEMLI-predicted related cell
pairs being entirely drug-susceptible, primed, or distributed between
the two states. Both for HSPC andWM989 datasets, also DEGs called
between different related asymmetric and symmetric cell pairs
were compared in barcode and GEMLI lineages. DEG was called
using the FindMarkers function of Seurat with parameters
min.pct=0.05 (HSPC) or 0.25 (WM989) and logfc.threshold=0.1.
For HSPCs, not all comparisons of cell type pairs allowed DEG
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identification. To compare GEMLI and barcode lineages, the Spear-
man rank correlation between enrichment scoreswas calculated. The
performance of GEMLI in recapitulating the prevalence of lineages
and encompassing different cell types (HSPC) of states (WM989) was
also compared to random cell lineage assignments for HSPC and
WM989 datasets. For theHSPC datasets, it was further compared to a
kNN-clustering based lineage assignment. Likewise, the performance
of GEMLI in recovering DEG specific to cells in lineages composed of
specific cell types or states was also compared to random cell type
and kNN-based lineage assignments as follows. For the DEG analysis
in Fig. 3e–d the correlationbetween the enrichment ofDEG in ground
truth lineages and predicted lineages for which members were
exchanged against random cells of the same cell type was calculated
(Fig. S17e, f). For the HSPC datasets, DEG analysis was also performed
for random cell samples and kNN-based lineage assignments in all
datasets (Fig. S17a, d). Cell-type combinations predicted by GEMLI
were scored and compared. Trajectory analyses were performed
using the scran (v. 1.28.2) and slingshot (2.8.0) packages. Analyses
were performed on the 200 (HSPC) or 2000 (WM989) most variable
genes on a UMAP with cluster annotation based on a nearest-
neighbor graph. Cells in transition was identified based on pseudo-
time as those cells of each type that are located close to the transition
point between undifferentiated cells and neutrophil cells (HSPC) or
drug-susceptible and primed cells (drug-resistant; WM989) respec-
tively. To analyze cell fate decisions in the human breast cancer cell
subsets of the Janesick et al.44 dataset, DEG were called as described
above for all cell pairs being members of lineages predicted with
lineage size parameter 2–20 cells at confidence level 50 annotated as
encompassing onlyDCIS or invasive tumor cells (symmetricDCIS and
symmetric invasive tumor lineages respectively) or being members
of lineages encompassing both cell types (asymmetric lineages). For
the latter category, onlyDCIS or invasive tumor cells were considered
when indicated.

Datasets considered for analysis
For datasets considered in each figure and analysis see Supplementary
Data file 1. For all figures in which one dataset of seven cell types is
represented the unique mESC, CD8, L1210, as well as the MEF dataset
BIDDY_D0_2, the WM989 dataset WM989_well1, the HSC dataset
HSC_seq2, and the HSPC dataset LK_D2_exp1_library_d2_2 are repre-
sented. To show a dataset encompassing a large number of asym-
metric lineages, the dataset LK_D4_well1_exp1_library_d4_1_2 is used in
Fig. 3e. For other panels see Supplementary Data file 1.

Statistics and reproducibility
A two-sided Mann–Whitney U-test, which does not require normally
distributed data, was used to test statistical significance when indi-
cated. No statistical method was used to predetermine sample sizes.
No data were excluded from the analyses. The experiments were not
randomized. The investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All relevant data supporting the key findings of this study are avail-
able within the article and its Supplementary Information files. CGR8
mESC scRNA-seq data generated in this study has been deposited on
GEO under accession code GSE226169. TheMEF datasets used in this
paper are available at GEOunder accession codesGSE99915, TheCD8
and L1210 cell datasets used in this paper are available at GEO under
accession code GSE74923. The HSC datasets used in this paper are
available at GEO under accession code GSE167317. The WM989 cell

datasets used in this paper are available at GEO under accession code
GSE237228. The pancreatic cancer datasets used in this paper are
available at GEO under accession code GSE173958. The intestinal
crypt and organoid datasets used in this paper are available at GEO
under accession code GSE148093. The HSPC datasets used in this
paper are available at GEO under accession code GSE140802. The
human bone marrow and K562 cell datasets used in this paper are
available at GEO under accession codeGSE182685. The human breast
cancer datasets used in this paper are available at GEO under
accession code GSE243280. Source data are provided with this
paper50.

Code availability
TheGEMLIRpackage and its documentation are available onGitHub at
https://github.com/UPSUTER/GEMLI. A Zenodo repository has been
created for the GitHub GEMLI package v1.0.0 under doi:10.5281/
zenodo.1067333451. The code to produce all main figures of the paper
is available on Zenodo doi: 10.5281/zenodo.1058173752.
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