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Context-aware deep learning enables high-
efficacy localization of high concentration
microbubbles for super-resolution
ultrasound localization microscopy

YiRang Shin1,2, Matthew R. Lowerison1,2, Yike Wang 1,2, Xi Chen1,2, Qi You1,3,
Zhijie Dong 1,2, Mark A. Anastasio 1,2,3,4 & Pengfei Song 1,2,3,4,5

Ultrasound localization microscopy (ULM) enables deep tissue microvascular
imaging by localizing and tracking intravenously injected microbubbles cir-
culating in the bloodstream. However, conventional localization techniques
require spatially isolated microbubbles, resulting in prolonged imaging time
to obtain detailed microvascular maps. Here, we introduce LOcalization with
Context Awareness (LOCA)-ULM, a deep learning-based microbubble simula-
tion and localization pipeline designed to enhance localization performance
in high microbubble concentrations. In silico, LOCA-ULM enhanced micro-
bubble detection accuracy to 97.8% and reduced the missing rate to 23.8%,
outperforming conventional and deep learning-based localizationmethods up
to 17.4% in accuracy and 37.6% in missing rate reduction. In in vivo rat brain
imaging, LOCA-ULM revealed dense cerebrovascular networks and spatially
adjacent microvessels undetected by conventional ULM. We further demon-
strate the superior localization performance of LOCA-ULM in functional ULM
(fULM) where LOCA-ULM significantly increased the functional imaging sen-
sitivity of fULM to hemodynamic responses invokedbywhisker stimulations in
the rat brain.

Single-molecule localization microscopy (SMLM) is an established
super-resolution optical imaging technology that uses the stochastic
blinking of fluorophore emissions within a dense sample1,2. By localizing
individual emissions and accumulating the localized positions, SMLM
reconstructs a super-resolved image, offering an order-of-magnitude
improvement in imaging spatial resolution3. The concept of localization
microscopy has been successfully adopted by the ultrasound commu-
nity to overcome the acoustic diffraction limit. As an analog to SMLM,
ultrasound localization microscopy (ULM) uses ultrasound contrast
agents (i.e., microbubbles or MBs) that flow within the blood vessels as

individual point targets to achieve super-resolution4,5. The precise
localization of each MB increases the ultrasound imaging spatial reso-
lution by an approximate factor of ten6. When combined with deep
penetration of ultrasonic waves, the accurate localization of MBs offers
the potential for reconstructing the deep vascular network withmicron-
scale spatial resolution. This key advantage renders ULMapowerful tool
for noninvasive probing of deep tissue microvasculature in numerous
preclinical and clinical applications7.

As with all imaging techniques, ULM is not without limitations. At
present, a key limitation of ULM is the long data acquisition time,
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which arises from the inherent trade-off between MB concentration
and MB localization efficiency and accuracy. To achieve precise MB
localization, ULM requires a limited number ofMBs per imaging frame
through low MB concentrations to ensure that the MB signals are
spatially separate and localizable. However, a lower MB concentration
also means a slower accumulation of adequate MB localizations to
populate the vessel lumen, which can take several to tens ofminutes8,9.
In contrast, a higher MB concentration accelerates the MB localization
filling process in theory. However, in practice, they also increase the
likelihood ofMB overlap, complicating the separation of adjacentMBs
and reducing overall localization efficiency. Therefore, a higher MB
concentration does not necessarily translate to faster ULM imaging. As
such, enhancing MB localization efficiency with high MB concentra-
tions is a challenging yet essential task to improve the imaging speed
(i.e., temporal resolution) of ULM.

Variousmethods have been proposed to improveMB localization
under high-density MB conditions. Earlier studies focused on the use
of Fourier-based filters, which separate overlapping MBs into sub-
groups by leveraging the diverse spatiotemporal flow characteristics
of MBs10. Algorithms based on sparse image recovery and compressed
sensing have also been proposed for localization and super-resolution,
assuming a sparse distribution of MBs in each imaging frame11–13.
However, these methods involve a time-consuming iterative proce-
dure and rely on the construction of an accurate PSFmodel.Moreover,
the effectiveness is limited in regions of high MB concentration where
the assumption of sparsity does not necessarily hold true.

Deep learning has emerged as a promising solution for robust
MB localization under high MB concentrations. However, the absence
of ground truth MB locations in vivo remains a major hurdle for net-
work training for localization tasks. Existing ultrasound modeling
and simulation software, such as bivariate Gaussian models14,
Field II simulations15, and SIMUS16 have been used to simulate MB
signals. However, these simulations fall short of creating complex
and spatiotemporally varying MB signals observed in vivo, which
can be attributed to numerous factors involved in the MB imaging
process. These factors include transmit and receive beamforming,
acoustic wave propagation (both linear and nonlinear propagation,
attenuation, reverberation, multi-scattering, aberration, etc.17), the
imaging system (e.g., hardware components such as transducers
and system circuitry), imaging settings (e.g., TGC), MB acoustic
responses18, tissue properties (e.g., different types of tissues and
blood flow conditions), and the postprocessing components (e.g.,
clutter filtering, denoising, etc.). To account for these effects, a simu-
lation framework was designed to model nonlinear wave propagation
and MB responses, generating single-channel RF signals19. A 1D
CNN was trained to deconvolve MB signals from raw RF data, enhan-
cing the axial resolution of beamformed images tenfold over standard
B-mode imaging. However, this technique requires precise parameter
tuning and system characterization to generate realistic training
datasets. Any mismatch between simulated and true MB signals
can introduce biases into the network’s outputs, compromising the
localization accuracy.

In this study, we introduce a deep learning-based MB localization
technique named LOcalization with Context Awareness (LOCA)-ULM,
designed to achieve high-accuracy MB localizations even at high MB
concentrations. One main contribution of LOCA-ULM is overcoming
the difficulties of generating realistic MB training data for developing
deep learning-based localization techniques for in vivo contrast-
enhanced ultrasound imaging applications. The proposed generative
adversarial network (GAN)20-based architecture was able to learn the
distribution of real MB signals acquired in vivo and generate diverse
MB templates that are essential for developing generalizable solutions
for a variety of imaging conditions with different types of biological
tissues. To furtherminimize themismatch between the simulation and
real data, we incorporated ultrasound system noise modeling and key

MB attributes (e.g., brightness levels, lifetime, andmovement velocity)
into the simulation process. Collectively, LOCA-ULM demonstrated
marked improvement in MB detection accuracy and presented a
practical solution to solving the domain discrepancy problem when
developing deep learning-based imaging techniques that involve the
use of MBs.

The second aim of LOCA-ULM is to enhance MB localization
performance at higher MB concentrations. Deep learning offers the
potential to identify MB centers under imaging conditions and MB
concentrations challenging for conventional methods. Approaches
such as Deep-ULM14 and modified subpixel neural network (mSPCN)21

employ mean-squared error-based regression to transform input
contrast-enhanced ultrasound images to super-resolved images.
Despite their advances, such image-to-image translation networks
require an additional localization step to determine MB coordinates,
often involving the detection of localmaximaor centroids. In contrast,
ULM-GAN22 circumvents the conventional localization-and-tracking
approach by using a training strategy that directly maps the temporal
average of short-accumulation ultrasound images to ULM images
accumulated from long data acquisitions. Additionally, the use of
spatiotemporal 3D-convolutional neural networks (3D-CNN) enables
the direct extraction of dense MB networks at high MB
concentrations23. However, these techniques have thus far been lim-
ited to spatial reconstructions of microvasculature, which omits
potentially critical physiological biomarkers such as blood flow
velocity.

In this work, we adopted the concept of DeepContext-Dependent
(DECODE)24 neural network, which utilizes a joint count loss and
localization loss to predict both the probability of emitter detection
and its subpixel location. Our work also expands on the application of
spatiotemporal networks, such as 3D-CNNs and long short-term
memory networks in super-resolution imaging. These networks have
been successfully utilized in ultrasound MB imaging for tasks like
phase aberration correction16, localization-free microvessel
velocimetry25, and MB track reconstruction23. The DECODE network
aims to enhance MB localization performance in a high-density MB
regime by integrating spatiotemporal information across adjacent
frames. Benchmarking of MB localization was first conducted on
simulated datasets, comparing LOCA-ULM to both conventional and
existing deep learning-based MB localization techniques. We further
assessed the performance of LOCA-ULM using various in vivo imaging
models, including different MB concentration levels and state-of-the-
art MB separation techniques10. Finally, the application of LOCA-ULM
to functional ULM (fULM) demonstrated that our method enhances
the sensitivity of detecting MB count fluctuations that are correlated
with neural activity.

Results
Figure 1a illustrates the simulation pipeline designed to generate rea-
listic MB images that are used as labeled training data. The simulation
is based on a least-squares generative adversarial network (LSGAN)26

(Fig. 1a “G”) which produces synthetic MB templates that resemble
those observed in vivo (Methods). LSGAN was initially trained on MB
signals extracted from in vivo ultrasound images using a conventional
localization algorithm based on normalized cross-correlation (NCC)27.
Once trained, the LSGAN was used to generate a diverse and realistic
set ofMB templates thatwere stored in a bank ofMBs (i.e., a collection
of MB templates later used for training the DECODE). To create the
ground truth MB positions, a list of sub-wavelength MB positions was
generated and assigned MB attributes such as MB brightness levels,
lifetime, and velocity to emulate real MB flow (Methods). The ground
truth positions were then convolved with the synthesized MB tem-
plates randomly selected from the bank of MBs, creating realistic
simulated images with known ground truths. A representative simu-
lated image using an LSGAN-generated MB signal is shown in Fig. 1b
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(LSGAN), which closely resembles real in vivo chicken embryo chor-
ioallantoic membrane (CAM) images (Fig. 1d, real image). In contrast,
conventional simulation techniques such as 2DGaussianmodeling and
Field II show a mismatch between the simulated and real ultrasound
images (Fig. 1b Gaussian and Field II). LSGAN offers the advantage of
generating a diverse set of realistic MB templates, including those not
observed during training. This extensive collection acts as a form of
data augmentation, enhancing the robustness of the network for the
task of MB localization. Finally, background ultrasound noise was
modeled (Fig. 1c) and added to the simulated MB images to create the
final training datasets for the DECODE network (Fig. 1d, simulated
image) (Methods).

To address the challenge of localizing spatially overlapping MBs
commonly observed at high MB concentrations, we adopted the prin-
ciples of DECODE and translated DECODE cost functions. The cost
function includes emitter count loss and localization loss, and the net-
work is trained for the tasks of estimating MB counts, MB detection
probability, MB positions, and MB brightness levels24. The count loss
optimizes the per-pixel detection probability map in the context of
aligning the predicted number of MBs with the true number of MBs.
This enables the network to output an MB detection probability map

that highlights the pixels where the likelihood of finding an MB is high.
The localization loss is jointly optimizedwith the count loss tomaximize
the likelihood of estimating the true coordinates and brightness levels
of each detected MB. A Gaussian distribution is modeled for each
coordinate weighted by the predicted detection probability, where the
mean represents the subpixel location of MBs (Methods). This is more
robust than directly using super-resolved images as the network’s out-
put (e.g., 1’s for the center of MBs and 0 for otherwise), which is difficult
to train due to its sparse nature14,28. The DECODE network architecture
also leverages the spatiotemporal coherence of MB signals by using MB
information across successive frames. In the inference stage (Fig. 1e), the
network estimates MB locations and brightness levels with in vivo
contrast-enhanced ultrasound images as input.

Simulation study
We first validated the proposed LOCA-ULM localization pipeline using
simulation data. We created a test dataset distinct from the training
dataset through the simulation pipeline using MB signals extracted
from an in vivo CAM experiment (Methods). Five hundred imaging
frameswith an image size of 100 pixels × 100 pixels (12.3μmpixel size)
were generated for different MB concentrations. The simulated

Fig. 1 | Overview of the proposed LOCA-ULMMB localization pipeline. LOCA-
ULM is a simulation-based supervised learning method using MB templates gen-
erated by Least-squares Generative Adversarial Network (LSGAN)26 and DECODE
localization network24 (Methods -- DECODE Architecture) a The LSGAN (G) was
trainedon a large set ofMB signals identifiedby the conventional normalizedcross-
correlation (NCC) localization algorithm. The LSGAN learns the distribution of real
MB signals and generates diverse and realistic syntheticMB templates. The LSGAN-
generated MB templates are convolved with simulated ground truth MB positions
assigned with MB-specific characteristics (e.g., brightness levels, velocity, lifetime)
to create simulated images that closely resemble real data. The simulated images
were used to train the DECODE network for localization. b Examples of simulated

MB data using differentMBmodelingmethods (Gaussian, Field II, and LSGAN). Red
dots indicate the ground truthMB location. c Examples of experimentally acquired
electrical noise from the ultrasound system, synthesized Rician noise using the
proposedmethod (Methods).d Simulated image using LSGAN-basedMB templates
with added Rician noise and realMB image extracted from the in vivo CAMdataset.
e DECODE-based ultrasound localization microscopy pipeline. Inference was per-
formed by using in vivo ultrasound data. 2D-DECODE outputs the probability of
detecting an MB near pixel k (pk), sub-wavelength spatial coordinates ðΔxk ,Δyk Þ
with respect to the center of the pixel k, MB brightness (I), and corresponding
uncertainties (σx ,σy,σI ). MB pairing and tracking were applied to predicted coor-
dinates, and the final super-resolved ULM images were generated.
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average MB concentration ranged from a low density of 0:02MBs=λ2

to a high density of 0:37MBs=λ2, increasing in steps of 0:02MBs=λ2,
where λ is the wavelength of the ultrasound pulse used for imaging
(Supplementary Table 1). Both conventional and deep learning-based
localization techniques were used to benchmark LOCA-ULM perfor-
mance. For conventional localization, we employed the NCC-based
method using a pre-defined bivariate Gaussian distribution27 (Meth-
ods). For deep learning-based methods, we compared Deep-ULM and
mSPCN (Supplementary Methods). Both Deep-ULM and mSPCN were
trained using the same MB simulation pipeline as LOCA-ULM. Unlike
LOCA-ULM,whichdirectly outputsMB locations (i.e.,MB coordinates),
Deep-ULM and mSPCN generate super-resolved MB images where
subsequent localization is still necessary.

Figure 2a presents examples of MB localization results using
conventional ULM, Deep-ULM, mSPCN, and LOCA-ULM on the simu-
lation datasets with varying MB concentrations. At a low MB con-
centration ð0:16MBs=λ2Þ, the MB centers localized by Deep-ULM,
mSCPN, and LOCA-ULM aligned well with the ground truth. However,
conventional localization had limitations in accurately localizing small
and irregularly shapedMBs (green arrows in Fig. 2a),which is likely due
to the constraints imposed by convolving a pre-defined Gaussian dis-
tribution with fixed shapes and sizes. Importantly, both conventional
localization and deep learning-based approaches struggled with

overlapping MBs, which were accurately localized by LOCA-ULM
(yellow arrow in Fig. 2a). The disparity in performance increased at
high concentration (0:35MBs=λ2), where conventional ULM, Deep-
ULM, and mSPCN all showed a marked decline in MB detection rate—
especially in clustered MB areas (blue arrows in Fig. 2a). In contrast,
LOCA-ULM maintained a low missing rate and high localization accu-
racy even for highly overlapped MBs with various shapes and bright-
ness levels.

The MB localization performance on simulation data was eval-
uated quantitatively using three metrics: MB detection accuracy, MB
missing rate, andMB localization error (Methods). Figure 2bpresents a
comparison of the performance of LOCA-ULM against conventional
localization, Deep-ULM, and mSPCN with respect to increasing MB
concentrations. LOCA-ULM consistently outperformed all competing
algorithms inMB detection accuracy andMBmissing rate, particularly
under conditionsof highMBconcentrations: the averageMBdetection
accuracy of LOCA-ULM was 97.8%, which is significantly higher than
Deep-ULM (88.2%), mSPCN (89.7%), and conventional localization
(80.4%); the averageMBmissing rate of LOCA-ULMwas 23.8%, which is
over a twofold improvement over Deep-ULM (50.3%), mSPCN (60.9%),
and conventional localization (61.4%). The enhanced performance of
MB localization provided by LOCA-ULM is essential for shortening the
data acquisition time for ULM because it allows higher concentration

Fig. 2 | Results of the simulation study and in vivo chicken embryo CAM
imaging study. a Simulation results of conventional localization, Deep-ULM14,
mSPCN21, and LOCA-ULM with low (0:16MBs=λ2) and high (0:35MBs=λ2) MB con-
centrations. Ground truth MB positions are marked by red circles, conventional
localization by yellow × , Deep-ULMby green × ,mSPCNby blue × , and LOCA-ULM
by cyan × . b Comparison between conventional localization, Deep-ULM, mSPCN,
and LOCA-ULM was performed on simulated frames at increasing MB concentra-
tions, using three performance metrics: MB detection accuracy, MB missing rate,
and localization error. The error bars indicate the standard deviation of inference
over 500 frames. c–e Comparisons among conventional localization, LOCA-
ULMExperimental, and LOCA-ULMLSGANMB localization in in vivo CAM imaging. cOptical
microscopy image of the CAM surface microvessel, along with MB localization

images reconstructed by conventional localization and LOCA-ULMLSGAN. n = 1
experiment. d The ROI selected from the optical image and the corresponding
ground truth vessel segmentation. Magnified view of the MB localization images
marked by the white ROI for conventional localization, LOCA-ULMExperimental, and
LOCA-ULMLSGAN. e The vessel filling (VF) a percentage of conventional localization,
LOCA-ULMExperimental, and LOCA-ULMLSGAN, as a function of the number of frames
(Methods). fComparisonof computational times forMB localization across varying
FOV sizes using conventional ULM, Deep-ULM, mSPCN, and LOCA-ULM. Compu-
tational times encompass the MB localization process, which includes normalized
cross-correlation and regional maximum search for conventional ULM, a network
forward pass for LOCA-ULM, and a network forward pass with centroid calculation
for both Deep-ULM and mSPCN. Source data are provided as a Source Data file.
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MBs to be administered in vivo while maintaining a robust MB locali-
zation performance with high efficacy.

Figure 2b also shows that LOCA-ULMconsistently reduced theMB
localization error across all concentrations when compared to con-
ventional localization, Deep-ULM, and mSPCN. The theoretical reso-
lution limit of ULM (i.e., localization error) can be estimated using the
Cramér-Rao lower bound (CRLB)29, which gives the highest resolution
of 3.29μmwith the CAM study acquisition settings (Methods). In low-
density conditions, LOCA-ULM achieved a localization resolution of
6.47μm, which is the closest to the CRLB prediction (10.78μm for
conventional localization, 11.09μm for Deep-ULM, and 8.39 μm
for mSPCN).

GAN-generated MB signals improved LOCA-ULM performance
for MB localization in the in vivo CAM imaging study
Todemonstrate the effectivenessof LSGAN-generatedMBs,we trained
the LOCA-ULM network using two distinct simulation datasets. The
first, referred to as LOCA-ULMExperimental, was trained using MB signals
directly extracted from the in vivo CAM data. The second, LOCA-
ULMLSGAN, was trained with synthetic MB templates generated by the
LSGAN network trained on the same set ofMB signals used to train the
LOCA-ULMExperimental. Figure 2e summarizes the vessel filling (VF) per-
centage for all the localization methods, which includes conventional
localization, LOCA-ULMExperimental, and LOCA-ULMLSGAN (Methods).
LOCA-ULMExperimental and LOCA-ULMLSGAN achieved consistently higher
VF percentage and a faster vessel saturation rate than conventional
localization. At 6000 frames (total 6 s of acquisition), LOCA-ULMLSGAN

reached the highest VF percentage (90.3%), followed by LOCA-
ULMExperimental (79.2%), and conventional localization (68.1%). Notably,
the VF percentage of conventional localization with respect to the
optical image started to plateau around 70%, while LOCA-ULMLSGAN did
not plateau until 90%. This result aligns with the observation of under-
filling in major vessels using conventional localization, as indicated by
the yellow arrows in Fig. 2d. Large vessels are more prone to under-
filling with ULM due to higher MB concentration from increased flow
rates8, posing a challenge for conventional methods that often lead to
incomplete reconstructions. In contrast, due to the robust perfor-
mance of LOCA-ULM in high MB densities, both LOCA-ULMLSGAN and
LOCA-ULMExperimental

filled the large vessels more completely and the
size of the vessel was closer to the reference based on optical micro-
scopy (Fig. 2d). Both LOCA-ULMLSGAN and LOCA-ULMExperimental out-
performed conventional localization in imaging small vessels as well,
with LOCA-ULMLSGAN outperforming LOCA-ULMExperimental as evidenced
by the reconstructed microvessels that were less developed in con-
ventional and LOCA-ULMExperimental (Fig. 2d, blue arrows). The findings
suggest that synthetic MB signals generated by LSGAN act as a form of
data augmentation, allowing LOCA-ULMLSGAN to learn from a broader
distribution ofMB signals-specifically, MB signals that were not part of
the LOCA-ULMExperimental training dataset, and improve the localization
performance of the DECODE network.

LOCA-ULM significantly improves the computational perfor-
mance of MB localization
The computational performance of four localization algorithms (con-
ventional ULM, Deep-ULM, mSPCN, and LOCA-ULM) was evaluated
using 100 simulated imaging frames with different sizes of field-of-
view (FOV). The FOV ranged from0.40mm2 (16 pixel × 16 pixel area) to
139.88mm2 (300 pixel × 300 pixel area), with a 4-pixel increment step
(in each dimension). The pixel resolution was fixed at 39.4μm. For
each FOV size, the number of MBs simulated in each frame also
increased from 16 to 300 in increments of 4. Figure 2f presents the
computational time results for the four different localizationmethods.
Computational times encompass the MB localization process, which
includes normalized cross-correlation and regional maximum search
for conventional ULM, a network forward pass for LOCA-ULM, and a

network forward pass with centroid calculation for both Deep-ULM
and mSPCN. Conventional localization based on normalized cross-
correlation exhibits a steep increase in computational time as the FOV
expands (i.e., the number of pixels increases). In contrast, all deep
learning-based methods demonstrate improved computational per-
formance, with LOCA-ULM consistently showing the lowest compu-
tation time across all FOVs. At an FOV of 139.88 mm2, the
computational time for LOCA-ULM was approximately 1.7 s, repre-
senting a 5.3-fold acceleration compared to the conventional locali-
zation (9.1 s). Moreover, LOCA-ULMdirectly estimates theMB centers,
therefore bypassing the process of peak identification required by
Deep-ULM and mSPCN. This efficiency translates to LOCA-ULM
achieving a twofold acceleration compared to mSPCN (3.6 s) and
deep-ULM (3.5 s) for an FOV of 139.88 mm2. All methods were eval-
uated on an NVIDIA RTX A6000 GPU.

Considerations: evaluating the impact of conventional localiza-
tion error on LOCA-ULM precision
LOCA-ULM demonstrated superior localization precision at high
MB concentrations in our experiments. However, it is important to
note that the simulation pipeline for LOCA-ULM used MB
templates extracted from in vivo data, with peaks identified by the
conventional localization method serving as the ground truth. There-
fore, any MB localization errors generated from using conventional
localization can propagate into the LOCA-ULM training dataset. To
quantify the error propagation, we trained LOCA-ULM using Field II-
simulated MB templates that included phase aberration errors (Sup-
plementary Methods 1). Supplementary Fig. 1 displays the localization
errors for both LOCA-ULM and conventional localization. The mean
lateral and axial localization errors for LOCA-ULM (μx=0.412μm,
μz = � 8:840μm) align closely with those for the conventional locali-
zationmethod (μx =0:348μm,μz = �8:388μm). These findings suggest
that the accuracy of LOCA-ULM in localizing isolatedMBs is inherently
limited by the ground truth localization estimate in the training phase.
Thus, addressing PSF distortions (e.g., by phase aberration correction
or other image-quality-enhancing beamforming methods) before
localization remains an essential step to improving localization
accuracy.

LOCA-ULM demonstrates superior in vivo ULM imaging perfor-
mance in a rat brain
We demonstrated the generalizability of LOCA-ULM using in vivo rat
imaging datasets. Figure 3c, d shows the final ULM images based on
20,000 frames (a total of 80 s of data acquisition) of accumulation
with MB injection rate of 15μL=min (Methods). As shown in the power
Doppler image in Fig. 3a, the vascular bed in the rat brain presents
large variations of vessel sizes, which indicates a broad distribution of
MB flow rates and concentrations8. As shown in Fig. 3c, conventional
localization suffered from poor localization performance in regions
with high MB concentrations, which manifest as disconnected and
missing vessels (red arrows in Fig. 3e). In contrast, LOCA-ULM revealed
thedense cerebral vascularnetworks in these regions, whichwerewell-
perfused and fully connected (red arrows in Fig. 3f).

Next, we compared LOCA-ULM with the state-of-the-art MB
localization method based on MB separation10. We used the MB
separation filter to separate the ultrasound MB data into two sub-
groups: MBs flowing away from the transducer (downward flow) and
flowing toward the transducer (upward flow), as shown in Fig. 3b.
Figure 3g, h demonstrate that MB separation facilitated more robust
MB localization and tracking in high MB density regions for both
conventional and LOCA-ULM. The improvement ismost significant for
conventional localization, which suffered from poor MB localization
performance in high-density MB regions without MB separation. The
intersecting and adjacent small vessels that were missing by conven-
tional localization now become clearly visible by using MB separation.

Article https://doi.org/10.1038/s41467-024-47154-2

Nature Communications |         (2024) 15:2932 5



For LOCA-ULM, the improvement was moderate because LOCA-ULM
was already efficientwith localizingMBs inhigh-density regions. This is
shownby comparing Fig. 3d, h, wheremost of the cerebral vasculature
was consistent before and after applyingMB separation for LOCA-ULM
(indicated by yellow arrows). When comparing Fig. 3d, g, it becomes
clear that even with MB separation, conventional localization still
could not achieve a similarMB localization performance as LOCA-ULM

without MB separation. This is a notable finding because it suggests
that LOCA-ULM alone can already outperform the state-of-the-art MB
localization technique and does not require the assistance of post-
processing methods such as MB separation.

Finally, the spatial resolution of the ULM reconstructions was
measured by the Fourier Ring Correlation (FRC) method, which uses
the track-splitting strategy and a 2-σ threshold curve as proposed by
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ref. 30. Our results showed that both LOCA-ULM and conventional
localization produced a spatial resolution that is below a half wave-
length at the imaging frequency of 15.625MHz (that is, 49.28 μm)
regardless of the application ofMB separation (Supplementary Fig. 2).

MB-specific characteristics improve the localization
performance
An ablation studywas conducted to evaluate the impact ofMB-specific
characteristics on MB localization performance within the LOCA-ULM
simulation framework. Each MB characteristic used in this study,
including MB brightness levels, MB movement and lifetime, and
background ultrasound noise, was individually excluded from the
framework to determine their impact on MB localization. As shown in
Supplementary Fig. 3b, the absence of MB brightness variations
resulted in a marked reduction in MB detection rate (Supplementary
Fig. 3b green arrows), resulting in an incomplete ULM reconstruction.
On the other hand, the exclusion ofMBmovement and lifetimemostly
impacted the larger vessel regions with higher MB densities (Supple-
mentary Fig. 3c, yellow and blue arrows). Finally, the absence of
background noise led to an increase in false-positive MB localizations
because a network trained without noise tends to misclassify back-
ground noise as MBs (Supplementary Fig. 3d, red arrows). These
results underscore the importance of integrating MB characteristics
into the training pipeline to introduce context-dependent features to
the network, thereby mitigating the domain mismatch between train-
ing and testing datasets to facilitate high-fidelity ULM reconstructions.

LOCA-ULM-based MB localization automatically adapts to dif-
ferent MB concentrations
In this study, we evaluated the performance of LOCA-ULM in vivo
across differentMB concentrations by increasing theMB injection rate
from 20μL=min to 40μL=min (Methods). Figure 4 presents ULM
images reconstructed for 20μL=min and 40μL=min injection rates
using conventional ULM and LOCA-ULM in a rat brain, utilizing 25,000
frames (a total of 100 s of acquisition). Compared to conventional
ULM, LOCA-ULM provided a superior reconstruction of the cerebral
vasculature. At regions with high MB concentrations, such as large
vessels, conventional ULM failed to reconstruct vessel structures due
to a high MB missing rate (red arrows in Fig. 4a, c). LOCA-ULM, how-
ever, successfully revealed these large vessels missed by the conven-
tional ULM (red arrows in Fig. 4b, d). Moreover, conventional ULM
showed a decrease in the intensity of the reconstructed vessel with
increased MB injection rates, leading to degraded vessel delineation.
For example, two adjacent vessels separable at anMB injection rate of
20μL=min (yellow arrows in Fig. 4a) became indistinguishable at an
MB injection rate of 40μL=min (yellow arrows in Fig. 4c). In contrast,
LOCA-ULM maintained a clear separation of these vessels at both
injection rates (yellow arrows in Fig. 4b, d). LOCA-ULM also delineated
small vessels near the cortical surface that could not be clearly
reconstructed by conventional ULM (green arrows in Fig. 4a–d). When
comparing LOCA-ULMwith the conventional ULMwith state-of-the-art
MB separation, LOCA-ULM provides improved separation of adjacent
vessels with enhanced contrast in both 20μL=min and 40μL=min
injection rates (green arrows in Fig. 4e–h). LOCA-ULM also improved
the visualization of the vascular networks by more accurately

reconstructing the connected vessel structures branching from the
main vessels (red arrow in Fig. 4e–h). Further comparison of LOCA-
ULM with MB separation at 90μL=min injection rate (Supplementary
Fig. 4) shows that LOCA-ULM achieves robust reconstruction even in
challenging conditions where conventional ULM with MB separa-
tion fails.

The efficacy of LOCA-ULM localization was further evaluated by a
quantitative analysis that used the average Power Doppler (PD)
intensity as the reference. As shown in Fig. 4i, the MB count of LOCA-
ULM closely followed the trend of increasing PD intensity, while con-
ventional localization did not. This indicates that conventional locali-
zation has already become saturated even at the lowest MB injection
rate (20 μL=min). With the addition of MB separation (Fig. 4j), con-
ventional localization showed improved localization efficacy. How-
ever, the number of MB localized plateaued at a low injection rate of
20 μL=min. In contrast, LOCA-ULM demonstrated superior localiza-
tion performance, localizing approximately 1.5 times more MBs at low
concentration (20 μL=min) compared to conventional localization,
and showing a progressive increase in the number of localized MBs as
the concentration increased. The quantitative results provide a good
agreement with the ULM images, where LOCA-ULM reconstructed
ULM images show increased microvessel intensity and contrast with
increased MB injection rate (white dashed ROIs in Fig. 4f, h), while
conventional ULM shows constant microvessel intensity despite the
increased MB injection rate (white dashed ROIs in Fig. 4e, g).

In Fig. 5a,wecompared theMB localizationperformanceof LOCA-
ULM with two other deep learning-based MB localization methods,
Deep-ULMandmSPCN, on the highMBconcentration rat braindataset
(40 μL=min) from the previous section. Both Deep-ULM and mSPCN
reconstructed continuous vessel structures and revealed large vessels
missed by conventional ULM (red arrows in Fig. 5a). However, Deep-
ULM and mSPCN missed certain vessels that are clearly visible with
LOCA-ULM (e.g., green arrows in Fig. 5a). Figure 5b shows the intensity
profiles of vessels near the cortical surface (along the white line indi-
cated in Fig. 5a), where LOCA-ULM successfully identified three vessels
with distinct peaks, two of which were not discernible using other
localization methods (marked by * in Fig. 5b). Moreover, with an
equivalent number of imaging frames, Deep-ULM and mSPCN dis-
played less perfused vessels compared to LOCA-ULM, where LOCA-
ULM demonstrated more than a twofold increase in vessel intensity
(Fig. 5c), implying a higher MB detection rate.

LOCA-ULM increases sensitivity for functional ultrasound loca-
lization microscopy (fULM)
Functional ULM (fULM) is a technique that combines ULM with func-
tional ultrasound (fUS) to image brain-wide neurovascular activities on
a microscopic scale31,32. fULM is a challenging technique because
higher MB concentrations in the bloodstream are needed to provide
higher sensitivity to hemodynamic responses, whileMB concentration
must also be kept low to facilitate robustMB localization and generate
better ULM images. When a lower MB concentration is used, repeated
stimulations and data acquisitions are typically needed to accumulate
adequateMB signals and neural responsemeasurements. This process
elongates the data acquisition time and undermines the temporal
resolution of fULM.

Fig. 3 | Comparison of LOCA-ULM and conventional localization to in vivo rat
brain ultrasound data. a Power Doppler image generated by accumulating 2500
frames (a total of 10 s of acquisition, bregma: −4.4mm)of rat brainultrasound data.
b In vivo rat brain localizationworkflow. The IQdata after tissue clutterfilteringwas
processed with and without Fourier-based MB separation. For MB separation, the
high-concentration MB dataset was divided into subsets of upward and downward
flow towards the transducer using a directional filter10. Angle-based flow direction
wasused for the dataset withoutMB separation. For each dataset,MB locations was
determined by performing normalized cross-correlation with an empirically

determined PSF function (i.e., conventional localization) or LOCA-ULM. The uTrack
algorithmwas used to pair the localizedMB centers and estimate their trajectories.
c–j Each ULM directional flow maps were generated by accumulating 20,000
frames (a total of 80 s of acquisition), c, d without MB separation and g,hwith MB
separation. e, f, i, j Improvement of vessel structures with respect to the increasing
number of frames is displayed on the bottom, shown for the areamarkedwith a red
rectangle. n = 1 experiment. F indicates the number of frames used for ULM
reconstruction, and FRC indicates Fourier ring correlation.
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Fig. 4 | Effect of different MB injection rates (20, 30, 40μL/min) on LOCA-ULM
and conventional localization for rat brain ULM imaging. a–h Each ULM image
was generated by accumulating 25,000 frames of ultrasound data (a total of 100 s
of acquisition, bregma: −5.6mm). a–d ULM reconstruction without MB separation
and e–h, with MB separation. i, j Comparison of total MB count per acquisition

(a total of 250 frames per acquisition) for LOCA-ULM and conventional localization
at different MB injection rates (20μL=min ,30μL=min, and 40μL=min). Two data-
sets, i without MB separation and j with MB separation. n = 1 experiment. Source
data are provided as a Source Data file.
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fULM provides an ideal testing scenario for LOCA-ULM because
LOCA-ULM allows better ULM image reconstruction under high MB
concentrations, which is essential for fULM. Here we used a similar
experiment setup as ref. 31, where whisker stimulations on rats were
used for fULM (details provided in Methods, Fig. 6a, b). For the fULM
experiment, we used anMB injection rate of 60μL/min to increase the
MBconcentration in the cerebrovasculature of the ratbrain to increase
fULM sensitivity. LOCA-ULM produced a superior ULM image under
high MB concentration, showing enhanced contrast and finer vascular
details compared to conventional ULM (white arrows in Supplemen-
tary Fig. 5). Figure 6d displays the MB count from pixel i and ii, which
indicates significantly higher MB detection rate by LOCA-ULM. For
pixel i in Fig. 6d, e, which was located within vessels close to the
cortical surface, conventional localizationproduced sparseMBcounts,
ranging from 0 to 5MBs/s. For smaller vessels that have a lower MB
flow rate, such as pixel ii in Fig. 6d, e, the MB counts are also reduced,
ranging from 0 to 3MBs/s. On the other hand, LOCA-ULM produced a
twofold increase in MB count, ranging from 0 to 11 per second for
vessel i and 0 to 6 per second for vessel ii in Fig. 6d, e.

Figure 6e presents the fULM activation maps derived from both
LOCA-ULMandconventional localization (detailed inMethods). LOCA-
ULM presents strong activation in the vessels within the barrel field of
the primary somatosensory cortex (S1BF) and the ventral posterior
medial nucleus (VPM)–regions corresponding to whisker stimulation.
As illustrated in Fig. 6c, functional ultrasound (fUS) demonstrates
enhanced sensitivity in identifying the increased blood flow, detecting
more extensive areas of activation compared to fULM using conven-
tional localization. In contrast, the activated regions detected by fULM
with LOCA-ULM corresponds closely with the areas identified by the
fUS, while also offering a significant improvement in spatial resolution.
When compared to conventional MB localization, LOCA-ULM
demonstrated a 1.85-fold increase in activated pixel count in the
S1BF and VPM regions (red ROIs in Fig. 6e). As shown by the blue
arrows in Fig. 6e, conventional MB localization was unable to recon-
struct the complete vasculature under high MB concentrations
and failed to display vascular responses that are clearly visualized in

LOCA-ULM. Furthermore, LOCA-ULM revealed strong activation in
smaller vessels (approximately 30-μm diameter), as indicated by red
arrows in Fig. 6e. In contrast, these vessels did not show strong
responses using conventional MB localization, likely due to missing
MB localizations.

Figure 6f illustrates the evolution of activation maps with an
increasing number of stimulation cycles, which is a typical method of
increasing fULM sensitivity to hemodynamic responses31. It can be
observed that the combination of high-concentration MBs and robust
MB localization provided by LOCA-ULM can reduce the number of
stimulation cycles required for fULM. For example, Fig. 6f shows that
the activation maps produced by LOCA-ULM after six cycles of repe-
tition exhibit strong and consistent responses in the S1BF and VPM
regions, which are comparable to the response detected by accumu-
lating 15 cycles of repetition by LOCA-ULM. In contrast, a high number
of stimulation cycles was necessary for conventional localization-
based fULM because of the lower MB detection efficacy that results in
reduced sensitivity to neural responses. When comparing activation
maps from conventional ULM and LOCA-ULM with an increasing
number of repetitions, LOCA-ULM consistently outperformed con-
ventional ULM (Fig. 6f). Notably, even with 15 cycles of repetition,
conventional ULM still could not produce similar quality activation
maps to LOCA-ULM with only six cycles. These results demonstrate
that the enhanced MB localization performance provided by LOCA-
ULM is beneficial for improving fULM sensitivity to hemodynamic
responses evoked by neural activities.

Discussion
In this study, we presented a context-aware deep learning-based MB
localization method (LOCA-ULM) along with an LSGAN-based MB
simulation pipeline to facilitate high-quality ULM imaging under high
MB concentrations. We designed a contrast-enhanced ultrasound
simulation workflow to produce in vivo-like simulation data with
ground truth for training, accounting for various factors, includingMB
shape and brightness, background ultrasound noise, and temporal
movement of MBs acrossmultiple imaging frames. Our study adopted

Fig. 5 | Comparison among LOCA-ULM, conventional ULM, Deep-ULM14, and
mSPCN21 in in vivo rat brain ultrasound data under high MB concentration
(injection rate 40 μL/min). a Each ULM image was generated by accumulating
25,000 frames of ultrasound data (a total of 100 s of acquisition, bregma: −5.6mm)

forMB injection rate of 40μL=min.b Intensity profile of vessels indicatedbyawhite
line in (a). c Accumulated intensity of reconstructed vessel with respect to an
increased number of frames indicated by the white box in (a). n = 1 experiment.
Source data are provided as a Source Data file.
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the concept of DECODE designed for SMLM as the MB localization
network for ULM.

The LOCA-ULM simulation pipeline effectively mitigates the
domain discrepancy commonly encountered with supervised deep
learning-based MB localization techniques by using LSGAN-generated
MB templates. In practice, the inherent complexity of modeling
ultrasound MB PSFs in vivo makes it challenging to construct theore-
tical PSF models that resemble real MB signals. When trained with
Gaussian MB templates, all the deep learning-based MB localization
methods (Deep-ULM, mSPCN, and LOCA-ULM) exhibited suboptimal
localization performance, which manifested as the presence of gridd-
ing artifacts and poor vessel reconstructions (Supplementary Fig. 6).
However, when LOCA-ULM was trained with MB templates generated
by LSGAN, it demonstrated enhanced ULM reconstruction over those
trained by Gaussian and Field II MB templates. This improvement is
characterized by enhanced contrast, reduced gridding artifacts,
and more comprehensive reconstruction of vascular structures for
the chicken embryo chorioallantoic membrane (CAM) and rat
brain (Supplementary Fig. 7). Moreover, LOCA-ULM trained with

LSGAN-generated MBs presented higher vessel filling (VF) percentage
and faster vessel saturation rate over LOCA-ULMExperimental and con-
ventional localization (Fig. 2e). However, it is important to consider the
spatial variations of MB signals and their potential impact on locali-
zation accuracy. As illustrated in Supplementary Fig. 8c, our brain-
tissue mimicking phantom experiment indicates that MB signals do
present depth-dependent variations (Supplementary Methods 4).
However, the MB templates generated by LSGANs follow a similar
distribution as experimental MB signals across the entire FOV (Sup-
plementary Fig. 8d). Therefore, the training data using LSGAN-
generated MBs does include a complete MB distribution from differ-
ent imaging depths, facilitating a robust MB localization performance
for LOCA-ULM. It should be noted that the performance of other
transducer arrangements (e.g., curvilinear) was not investigated in
this study.

LOCA-ULM further enhances MB localization performance by
integrating MB-specific characteristics into the simulation framework
(Supplementary Fig. 3). Trained with our comprehensive simulation
pipeline that mimics the ultrasound imaging process, LOCA-ULM

Fig. 6 | LOCA-ULM increases MB signal sensitivity to blood flow during brain
activation. a, b Schematic of the experimental setup for functional ultrasound
(fUS) and functional ULM (fULM) brain imaging conducted in the coronal plane
(bregma: −3.3mm). The fUS and fULM experiment involved whisker stimulation in
an anesthetized rat with continuous intravenous injection of MBs (Methods). c fUS
activation map calculated as the Pearson correlation coefficient between Power
Doppler signals over time and the stimulation pattern. dMB count over time for a
pixel in selected vessels (i and ii in e) comparing conventional ULMand LOCA-ULM.

e fULM activation map calculated as the Pearson correlation coefficient between
the MB count (after tracking) over time and the stimulation pattern for both con-
ventional ULM and LOCA-ULM. Zoomed-in views of the ULM image and activation
map in the barrel cortex (S1BF) and the ventral posteromedial nucleus (VPM) are
shown, marked by a red rectangle. f Progressive enhancement of the fULM acti-
vation maps with an increasing number of stimulation cycle repetitions. n = 1
experiment. Source data are provided as a Source Data file.
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improved the localization efficacy and reducedMBmissing rate across
all tested concentrations for both simulation and in vivo data. As a
result, LOCA-ULM provided clear delineation of densely populated
large vessels and adjacent microvessels that were missed by conven-
tional ULM and reconstructed complex vascular networks with con-
nected structures (Figs. 3, 4). Notably, LOCA-ULM maintained robust
localization efficiency even at high concentrations (40μL/min of MB
injection rate), achieving up to a threefold increase in localized MBs
over conventional localization without compromising spatial resolu-
tion (Fig. 4i).

In this study, LOCA-ULM was benchmarked against current deep-
learning MB localization methods, demonstrating improved localiza-
tion efficiency. Unlike Deep-ULM and mSPCN, which apply loss func-
tions based on least-squares regression under the l1 regularization

14,21,
LOCA-ULM uses a joint loss function optimizing both MB count loss
and localization loss to achieve MB localization in an end-to-end
manner. The count loss encourages thenetwork to output a sparse and
high-probability detection map, providing complementary informa-
tion about the position of each MBs. In turn, the localization loss
directly predicts the MB locations by fitting a sum of Gaussian dis-
tributions weighted by the detection probability. It was shown in the
simulation study that LOCA-ULM reduced the average missing rate by
twofold when benchmarked against Deep-ULM and mSPCN (Fig. 2b).
The improvement was consistent in in vivo imaging where LOCA-ULM
reconstructed well-perfused vascular networks compared to other
deep learning-based techniques (Fig. 5a, b) and achieved more than
twofold enhancement in vessel intensity (Fig. 5c).

We have also demonstrated the effectiveness of LOCA-ULM in
achieving both high-speed processing (Fig. 2f) and accelerated data
acquisition for ULM. In theory, higher MB concentration facilitates
faster ULM imaging by accelerating the MB filling rate of smaller ves-
sels,which translates to shorter data acquisition time8. Our experiment
across various in vivo datasets has shown LOCA-ULMmaintains robust
performance even at extreme MB concentrations, enhancing the
achievable localization concentration (Fig. 4i, j and Supplementary
Fig. 4). This robust performance reduces the need for additional
techniques that increase the computational load, such as MB separa-
tion, typically required by conventional methods (Figs. 3, 4).

The enhanced localization performance at high MB concentra-
tions makes LOCA-ULM a promising tool for fULM, a technique that
demands high efficacy in localizing MBs within dense distributions.
LOCA-ULM increased the sampling of the temporal MB count signals,
resulting in increased fULM sensitivity to neural responses (Fig. 6d)
and a higher level of activation detected from smaller vessels with
slower blood flow (Fig. 6e). Importantly, the increased fULM sensitivity
from LOCA-ULM reduces the number of stimulation cycles for fULM
(Fig. 6f), crucial for the practical applications and especially in studies
involving moving animals where repeated stimulations are challen-
ging. Furthermore, LOCA-ULM could potentially improve dynamic
ULM (DULM)33 by increasing the number of localized and trackedMBs,
offering more velocity measurements over time, and potentially
decreasing the total acquisition time by relaxing the need for data
acquisitions from multiple cardiac cycles.

The concept of using LSGANs to generate realistic MB signals can
be extended to a broad range of ultrasound imaging applications
associated with MBs. Our proposed simulation pipeline does not
require any prior knowledge of the MB PSF model or ultrasound
imaging settings to create the training dataset. Our method can be
easily used to create simulated data, which can aid in robust training
and reduce the challenge of generalizing deep learning-based locali-
zation to in vivo ultrasound data. However, the DECODE network and
LSGAN do need to be retrained when the ultrasound imaging settings
are altered. In addition, a stable training of LSGAN requires a large
collection of spatially isolatedMB signals extracted from experimental
data, which can be pragmatically challenging. Furthermore, errors in

single MB localization from conventional methods could potentially
propagate during the training of the LOCA-ULM network (Supple-
mentary Fig. 1). Also, the performance of LOCA-ULM may be under-
mined by inaccurate simulation parameters (e.g., MB brightness levels,
background noise, etc.), resulting in suboptimal MB localization per-
formance. Nevertheless, because LOCA-ULM outputs uncertainties of
localizations, one can use the predicted uncertainties to reject unre-
liable localizations.

Methods
Simulation pipeline
The simulated datasets for training are generated during the network
training, creating 10,000 frames per epoch, and using each frame only
once for training. Because LOCA-ULM is trained purely on simulated
data, it may fail to generalize to real ultrasound data if there is a dis-
crepancy between the two datasets. To address this issue, we created a
realistic model for the ultrasound image formation process that
incorporates LSGAN-generated MB signals and data-informed ultra-
sound background noise (Fig. 1a). Compared with the generic GAN,
LSGAN replaces the sigmoid cross entropy loss in the discriminator
with a least-squares loss, facilitating the generator to create more
realistic images and learn the distribution of the training data
more robustly26. LSGAN has been applied in medical imaging to
improve spatial resolution and prevent mode collapse (i.e., generator
creating limited ranges of outputs)34–36. The training problem for the
LSGAN can be formulated as:

min
D

L Dð Þ= 1
2
Ex∼pdata xð Þ D xð Þ � 1ð Þ2

h i
+
1
2
Ez∼pz zð Þ ðD G zð Þð Þ2

h i
min
G

L Gð Þ= 1
2
Ez∼pz zð Þ DðG zð ÞÞ � 1ð Þ2

h i ð1Þ

where D denotes the discriminator, G represents the generator, z
represents the input signal, which was randomly sampled from a
normal distribution, and x represents the MB templates extracted
from real ultrasound images.

To collect the LSGAN training data, the in vivo ultrasound images
were first interpolated by a factor of 5 (5× ) in the axial dimension and
10× in the lateral dimension. This corresponds to a 0.064 λ pixel size
for the CAM images and 0.1 λ pixel size for rat brain images (Supple-
mentary Table I, MB template pixel resolution). Square patches
(65pixel × 65pixel) were extracted from the in vivo ultrasound images
and used to create the simulated images for training. Each patch
contains a single MB signal that takes the peak location identified by
the normalized cross-correlation (NCC) localization algorithm as the
true MB location27. A total of 3000 patches were manually selected
from the in vivo ultrasound images to train the LSGAN and the mean
ðμImax

Þ and standard deviation (σImax
) of the maximum intensity were

calculated. After training, the synthetic MB templates generated from
the LSGANwere saved into abankofMBs. Togenerate training data for
the network, a list of ground truth MB positions was sampled in sub-
wavelength pixel resolution (Supplementary Table I, DECODE output
pixel resolution) and convolved with randomly selected MB template
retrieved from the bank of MBs.

In our simulation pipeline, we modeled MB flow within vessels
using a motion model that accounts for random changes in MB
movement. The initial positions ofMBswere randomly sampled froma
uniform distribution within the dimensions of the imaging FOV. The
lifetime of each MB ranged from 1 to 20 frames, randomly sampled
from a uniform distribution. EachMB is assigned an initial speed and a
two-dimensional (2D) unit vector that represents the initial direction.
The speed was randomly sampled from a uniform distribution
between 5mm=s and 25mm=s. To simulate stochastic MBmotion, the
direction of the MBs was perturbed at every time step by adding a
small random vector. The components of this random vector were
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sampled from a normal distribution with a standard deviation of 0.2.
After the random direction perturbation, the direction vector and the
speed are multiplied to obtain the velocity. The MB position was
updated according to the velocity, and the position at each time frame
was stored as the ground truth. The brightness level of the MB was
determined from a Gaussian distribution NðμImax

,σImax
Þ and remained

constant for the duration of theMB’s lifetime. 80 pixel × 80 pixel sized
simulated frames were created and the images are down-sampled by a
factor of 2 to create the final 40 pixel × 40 pixel sized training dataset
(Fig. 2b, LSGAN).

Background noise modeling
To add realistic electronic noise to the simulation, we used Rician
distribution as the noise model in this study. Assuming an additive
Gaussian noise in both real and imaginary parts of the in-phase
quadrature (IQ) data, the B-mode signal Ix,z (i.e., magnitude of IQ at
pixel (x,z)) satisfies the distribution:

P Ix,z jνx,z ,σ̂x,z

� �
=

Ix,z
σ̂x,z

exp
� I2x,z + ν

2
x,z

� �
2σ̂2

x,z

0
@

1
AIo

Ix,zνx,z
σ̂2
x,z

 !
, ð2Þ

where νx,z is the magnitude of the B-mode signal at pixel (x,z) without
noise, σ̂x,z is the standard deviation of the additive noise, and Io is the
modified Bessel function of the first kindwith order zero. In this study,
the σ̂x,z was estimated experimentally by taking the temporal mean of
the acquired electronic noise data Eðx,z,tÞ as,

σ̂xz =

ffiffiffiffi
2
π

r
1
N

XN
t = 1

E x,z,tð Þ, ð3Þ

where N is the number of samples considered for estimation. Elec-
tronic noise in ultrasound images were obtained by performing the
same ultrasound acquisition as the in vivo experiment without any
imaging target (e.g., in air) (Fig. 1c).

DECODE architecture
Accurate and robust MB localization under a wide range of vessel
sizes and MB concentrations is essential for successful ULM. Inspired
by the previous studyby ref. 24, we implemented theDECODEnetwork
that enables simultaneous detection and localization of MBs in a
probabilistic framework. Several key aspects allow DECODE to out-
perform conventional localization methods. First, DECODE can
improve detection and localization accuracy by capturing the tem-
poral context of the MB flow. The architecture is divided into two
networks: a frame analysis network that comprises three separate U-
Nets, where features of three consecutive frames are extracted in each
U-net. The frame analysis network is followed by a temporal context
network, where the final outputs of the three U-Nets are combined to
capture the temporal context information between neighboring
frames (Fig. 1e).

Moreover, the DECODE network was trained tominimize the total
loss that consists of three parts: an MB count loss ðLcountÞ, MB locali-
zation loss ðLlocÞ and a background loss ðLbgÞ24. The MB count loss is
represented by a Bernoulli distribution pk that indicates the prob-
ability of detecting a microbubble near pixel k. Given that the prob-
ability pk varies among the pixels, the mean ðμcountÞ and variance
ðσ2

countÞ of the Poisson-binomial distribution is given as
μcount =

PK
k = 1 pk ,σ

2
count =

PK
k = 1 pk 1� pk

� �
, where K is the total number

of pixels. When K is sufficiently large, the Poisson-binomial distribu-
tion approximates the Gaussian distribution defined as,
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where E is the true number of simulated MBs. The log probability of E
is maximized when the μcount approximates to E, equivalent to mini-
mizing,

Lcount =
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E � μcount
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The localization loss is designed jointly to optimize the output
variables of the Gaussian mixture model (GMM) to approximate the
true posterior with respect toMB locations and brightness. A Gaussian
distribution for each pixel k, weighted by the detection probability is
used to approximate the true posterior. The four-dimensional Gaus-
sian Pðuk jμk ,ΣkÞ is modeled as a distribution over the coordinates and
brightness of the MB u= ½x,y,z,I�:

P ujμkk ,Σk
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where μk = ½xk +Δxk ,yk +Δyk ,zk +Δzk ,Ik � and Σk =diagðσ2
x,k ,σ

2
y,k ,

σ2
z,k ,σ

2
I,kÞ. The ðxk ,yk ,zkÞ coordinate represents the center of pixel k, and

ðΔxk ,Δyk ,ΔzkÞ is the sub-wavelength coordinates of theMBwith respect
to the center of pixel k. Thedistance between the inferredposterior and
the true posterior is minimized (i.e., by minimizing the forward KL
divergence) by optimizing the log-likelihood of the weighted Gaussian
distributions over the ground truth (GT) MBs,
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where e represents each ground truth MB present in the image. The
localization loss maximizes the likelihood of the ground truth posi-
tions and brightness uGT

e over all predicted detections. The DECODE
network was designed to output the nine parameters of the weighted
Gaussian distribution with respect to the center frame of the three
consecutive imaging frames: (1) probability pk that a MB was detected
near pixel k, (2) the relative coordinates of the localized center
Δxk ,Δyk ,Δzk respect to the pixel center (xk ,yk ,zk), (3) estimated
brightness of the MB (I), (4) the uncertainties σx,k ,σy,k ,σz,k ,σI,k , and (5)
the background intensity (B). In this study, we used a 2D variant of
DECODE to process the 2D ultrasound data. Also, the background loss
ðLbgÞ in DECODE was set to 0 since the background in ultrasound
images was modeled separately using the noise model.

The DECODE network In Fig. 1e reveals the detailed architecture,
where the U-Nets in the frame analysis and temporal context networks
consist of two downsampling and upsampling layers. The convolution
blocks in both networks adopted a kernel of 3 × 3 size followed by an
Exponential Linear Unit (ELU) as an activation layer. The number of
filters increases from 48, 96, and 192 for each downsampling layer,
with the featuremap size halved. The number of filters decreases from
192, 96, and 48 for each upsampling layer, with the feature map size
doubled. The input of the DECODE network were ultrasound images
upsampled to 2:5 × in axial dimension and 5 × in lateral dimension
(Supplementary Table I, DECODE network input pixel resolution). At
the inference stage, to enhance the precision of LOCA-ULM, localiza-
tions with the highest inferred uncertainties were eliminated.

Evaluation metrics
We compared three evaluationmetrics tomeasure theMB localization
performance of LOCA-ULM and conventional localization in the
simulation study. MB detection accuracy measures the fraction of
correct localizations (within 5 pixels or 0:32λ the ground truth
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position) among all localized MBs:

MB Detection Accuracy =
TP

TP+FP
, ð8Þ

where TP is true positives and FP is false positives. The MB miss rate
measures the fraction of missed localizations among all ground truth
positions:

MB Miss Rate =
FN

TP+FN
, ð9Þ

where FN is false negative. The localization error (L) computes the
averaged root mean-squared distance between the correctly localized
MBs (i.e., TP) and the corresponding ground truth MB positions.

L =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
TP

XTP

i2TP
x̂i � xi

� �2 + ŷi � yi
� �2

2

s
, ð10Þ

where xi,yi are the ground truth coordinates and x̂i,ŷi are the predicted
coordinates.

For quantitative assessment of the localization performance in
in vivo CAM imaging, we calculated the vessel filling (VF) percentage
using the method described by ref. 37. First, a region of interest (ROI)
was carefully selected to include matching vascular structures in both
imaging modalities. For optical microscopy images, vascular struc-
tures were manually segmented and used as the reference. This man-
ual segmentation was executed using the GNU Image Manipulation
Program (GIMP). The resulting optical binary map was then spatially
registered with the reconstructed ULM image, which involved addi-
tional resizing and cropping to achieve proper alignment. The vessel
filling (VF) percentage was calculated as,

VF %ð Þ= NGT\ULM
NGT

× 100, ð11Þ

where NGT is the total number of pixels classified as the ground truth
vessels in the optical image. NGT

T
ULM is the total number of pixels

correctly classified by ULM with respect to the ground truth NGT.

ULM implementations
For each ULM dataset, an SVD-based clutter filter was applied to
extract the MB signal from the surrounding tissue38,39. To reduce the
intensity variations of the MB signal, all frames were normalized to a
scale of 0 to 1 with respect to the minimum and maximum intensity
within each acquisition (1600 frames for the CAM study, 250 frames
for the ratbrain study, 800 frames for the fULMstudy). Also, due to the
hyperechogenicity of MBs, thresholding between the values of 0:1�
0:2 was selected empirically to remove low-intensity background and
noise. After imageprocessing, the imageswereupsampled to avoid the
quantization artifacts associatedwithDECODE localization24. Then, the
network was trained to output super-resolved locations with sub-
wavelength resolution (Supplementary Table I, DECODE network
output pixel resolution). For conventional ULM, NCC-based MB loca-
lization was employed using a pre-defined bivariate Gaussian
distribution27. The centroid coordinates obtained by different locali-
zation methods were input into the uTrack algorithm40. uTrack solves
tracking as a two-step linear assignment problem. The first step
involves establishing frame-to-frame MB linking to generate initial
track segments. In the second step, uTrack connects these track seg-
ments across the entire time-lapse sequence to form complete tra-
jectories. The MB tracks were generated with a minimum persistence
of ten frames. Furthermore, links between track segments with a
linking angle exceeding 45° were considered unreliable and rejected.

In vivo ULM data acquisition
All animal experimentswere approved by the Institutional Animal Care
and Use Committee (IACUC) at the University of Illinois Urbana-
Champaign (IACUC Protocol number 22165). A total of four eight to
twelve-week-old female Sprague Dawley rats (Charles River Labora-
tories, Inc.) were used in the rat brain and functional ULM study. The
Chicken Embryo Chorioallantoic Membrane (CAM) study adhered to
our institute’s guidelines and was consistent with the NIH PHS policy
on avian embryos and live vertebrate animals.

Chicken embryo chorioallantoic membrane (CAM) study. For our
study, we used the CAM microvessel model and optical imaging to
provide the reference ground truth for validating different MB locali-
zation methods. The ex ovo CAM microvessels present a dense and
diverse network of blood vessels with diameters ranging from 10 to
155 μm 41. The optical transparency of CAM allows for robust regis-
tration between ultrasound and optical images and is therefore widely
used as a benchmark for assessing microvasculature with contrast-
enhanced ultrasound10,42–44. In this study, fertile chicken eggs were
obtainedby theUniversity of Illinois Poultry ResearchFarmand kept in
tilting incubators (Digital Sportsman Cabinet Incubator 1502, GQF
Manufacturing Inc., Savannah, Georgia). After four days, the eggshells
were removed, and the CAM embryos were mounted into a plastic
holder in a position suitable for imaging. Then, the embryos were
incubated for an additional 13 days in a humidified incubator (Darwin
Chambers HH09-DA) until the desired developmental stage. A bor-
osilicate glass tube (B120-69-10, Sutter Instruments, Novato, CA, USA)
was pulled at high temperature and cut using a PC-100 glass puller
(Narishige, Setagaya, Japan) to create a fine glass capillary needle for
MB injection. 50μL boluses of Definity® solution (Lantheus, Bedford,
MA) were injected into the surface bloodstream of the CAM via the
glass needle.

CAM ultrasound imaging was performed using the Vantage
256 system (Verasonics Inc., Kirkland, WA, USA) system with a high-
frequency linear array transducer (L35-16vX, Verasonics Inc.,
Kirkland, WA). The transducer was placed at the side of the plastic
holder to image the CAM surface through a lateral acoustic window.
Optical microscopy was conducted simultaneously using a Nikon
SMZ800 stereomicroscope (Nikon, Tokyo, Japan) with a DS-Fi3 digital
microscope camera (5.9-Mpixel CMOS image sensor, Nikon).
The optical microscope was positioned above the weigh-boat and
aligned to register the optical image with the ultrasound imaging
plane. The initial positioning of the ultrasound-optical plane was
determined using real-time B-mode imaging of native red blood cell
scattering at a high transmit voltage (30 V). Following this, the
voltage was reduced to 6 V, and the chicken embryo was injected
with microbubbles in preparation for contrast-enhanced imaging.
Ultrasounddatawereobtainedbyusing a 9-angle compoundingplane-
wave imaging sequence (step size of 1°) with a center frequency of
20MHz, pulse repetition frequency (PRF) of 40 kHz, and a post-
compounding frame rate of 1000Hz. IQ data of 1600 frames per
acquisition with a total of 20 acquisitions were generated (total 32 s of
acquisition).

Rat brain study. Animals were anesthetized with isoflurane (5%
induction, 1.5% maintenance) throughout the experiment. Before cra-
niotomy, the jugular vein was catheterized, and then the animal was
fixed on a stereotaxic frame. The scalpwas removed, and the skull was
thinned using a rotary micromotor with a 0.5mm drill bit (Foredom
K.1070, Bethel, CT). The skull was removed with the size of the cranial
window of 12mm (left-right) by 6mm (rostral-caudal) below the
bregma. To image the rat brain, Definity® MBs were diluted with
saline to yield an initial concentration of 1.44× 109 bubbles perml. The
dilutedMBswere continuously infused using a syringe pump (NE-300,
New Era Pump Systems Inc., Farmingdale, NY).
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In the rat brain study (illustrated in Fig. 3), we used an injection
rate of 15 μL/min. For the study of comparing the performance
of different localization methods in different MB concentrations
(illustrated in Figs. 4, 5), we varied the injection rate to 20, 30, and
40 μL/minwith a 3-minwaiting period after changing the injection rate
to stabilize the systemic MB concentration. All rat brain data were
acquired using a high-frequency linear array transducer (L22-14vX
Verasonics Inc., Kirkland, WA) connected to a Vantage 256 system.
Ultrasounddatawereobtained by using a 5-angle compounding plane-
wave imaging sequence (step size of 1°) with a center frequency of
15.625MHz, PRF of 28.57 kHz, and post-compounding frame rate of
1000Hz. IQ data of 250 frames per acquisition with a total of 100
acquisitions were generated (total 100 s of acquisition). In the high-
concentration rat brain study (illustrated in Supplementary Fig. 4), we
used an injection rate of 90 μL/min. IQ data of 800 frames per acqui-
sition were acquired per second.

Functional ultrasound localizationmicroscopy (fULM). For the fULM
imaging study, ketamine (Zoetis) and xylazine (AnaSed) anesthesiawas
employed during the imaging session to mitigate the vasodilation
effect induced by isoflurane and the decrease of neurovascular cou-
pling associated with isoflurane anesthesia45–47. Following the cra-
niotomy, the target imaging plane, including both S1BF and VPM at the
bregma coordinate of −3.3mm,was identified using 2DPowerDoppler
ultrasound imaging. After identifying the imaging plane, the rats were
administered a mixed solution of ketamine (40mg/kg body weight)
and xylazine (3mg/kg body weight) in saline through intraperitoneal
injection. Then, fUS data acquisition was performed using an L22-14vX
high-frequency transducer connected to a Vantage 256 ultrasound
system. fUS data were acquired using a 9-angle compounding plane-
wave imaging sequence (step size of 1°) with a 40V transmit voltage.
The transmit frequency was set to 15.625MHz with a transmitting PRF
of 28.57 kHz and a post-compounding frame rate of 1000Hz. 250
frames of post-compounding IQ data were acquired per second, and a
total of 180 acquisitions were acquired (a total of 3min of acquisition).
SVD-based spatiotemporal clutter filtering was used to suppress tissue
clutter following the methods described in our previous fUS imaging
study48. Power Doppler images were generated by integrating 250
frames. The fUS activationmaps were then created based on Pearson’s
product-moment correlation coefficient between the stimulation pat-
tern and the Power Doppler signals for each pixel, as described by
ref. 32. For the whisker stimulation, facial whiskers were manually sti-
mulated using a cotton swab. The stimulation pattern consisted of a
total of three cycles, each of which included 30 s of stimulation and
30 s of rest.

After fUS imaging, fULM imaging of whisker stimulation was
performed. Definity® MBs were diluted with saline and were infused in
a continuous manner using a syringe pump with an injection rate of
60 μL/min. A magnet was placed within the syringe to mix the MB
solution during the acquisition. The fULM data acquisition was per-
formed using the same transducer and ultrasound system as the fUS
experiment. Ultrasound data were obtained by using a 5-angle com-
pounding plane-wave imaging sequence (step size of 2°) with a 6 V
transmit voltage, center frequency of 15.625MHz, PRF of 28.57 kHz,
and post-compounding frame rate of 1000Hz. IQ data of 800 frames
per acquisition were acquired per second, and a total of 1050 acqui-
sitions were generated (a total of 17.5min of acquisition). Details of the
in vivo data acquisition specifications and image resolution are sum-
marized in Supplementary Table I.

Subpixel localizations were obtained using conventional locali-
zation or LOCA-ULM, and the localized centers were rounded to the
chosen pixel size (9.856μm×9:856μm). Tracking of the localized
centers was performed using uTrack, and the ULM images were
reconstructedwith a pixel size of 19.712 μm× 19:712μm (λ=5 pixel size).

MBcountmapwascomputed as the total number ofMBs for eachpixel
throughout the data acquisition period. fULM activation maps were
generated based on Pearson’s product-moment correlation coefficient
r between the stimulation pattern A tð Þ and the MB count signal sMB tð Þ
for each pixel described by ref. 32,

r =

PNt
i= 1 sMB ti

� �� ŝMB tð Þ� �
A ti
� �� Â

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNt

i = 1 sMB ti
� �� ŝMB tð Þ� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNt

i= 1 A ti
� �� Â

� �2r , ð12Þ

For calculating the activated pixel count, a correlation coefficient
value above 0.2 was considered as activated pixels. The stimulation
pattern consisted of a total of 15 cycles. Each cycle consisted of a 30-s
stimulation period followed by a 40-second rest period. Specifically,
thefirst 10 s of the rest periodwere a transitionphase from stimulation
to rest, and the subsequent 30 s were a stable rest phase (as illustrated
in Fig. 6b). The fULM analysis focused on the stimulation periods (0 to
30 s within each cycle) and the stable rest periods (40 to 70 s within
each cycle).

Statistics and reproducibility
The study was designed to encompass a wide range of microbubble
concentrations across both simulations and in vivo experiments. Pre-
liminary pilot experiments (n = 2) for rat brain imaging were con-
ducted for functional ULM protocol optimization purposes, beyond
which no data were excluded. The experiments were not randomized.
Data analysis was conducted and evaluated by computer algorithms,
independent of human intervention. In this study, no grouping was
applied, and the investigators were not blinded to allocation during
experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data for Figs. 3, 4, and 5 used in this study are available at Zenodo
(DOI: 10.5281/zenodo.10711806)49. Data for Fig. 6 is available from the
corresponding author upon request. Source data are provided with
this paper.

Code availability
The code to generate LSGAN-based microbubble signals and micro-
bubble simulation pipeline is available at https://github.com/illyrs2/
LOCA-ULM50.
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