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The fluidic memristor as a collective
phenomenon in elastohydrodynamic
networks

Alejandro Martínez-Calvo 1,2,9, Matthew D. Biviano 3,9,
Anneline H. Christensen 3, Eleni Katifori 4,5, Kaare H. Jensen 3 &
Miguel Ruiz-García 6,7,8

Fluid flow networks are ubiquitous and can be found in a broad range of
contexts, from human-made systems such as water supply networks to living
systems like animal andplant vasculature. Inmany cases, the elements forming
these networks exhibit a highly non-linear pressure-flow relationship.
Although we understand how these elements work individually, their collec-
tive behavior remains poorly understood. In this work, we combine experi-
ments, theory, and numerical simulations to understand themainmechanisms
underlying the collective behavior of soft flow networks with elements that
exhibit negative differential resistance. Strikingly, our theoretical analysis and
experiments reveal that a minimal network of nonlinear resistors, which we
have termed a ‘fluidic memristor’, displays history-dependent resistance. This
new class of element can be understood as a collection of hysteresis loops that
allows this fluidic system to store information, and it can be directly used as a
tunable resistor in fluidic setups. Our results provide insights that can inform
other applications of fluid flow networks in soft materials science, biomedical
settings, and soft robotics, and may also motivate new understanding of the
flow networks involved in animal and plant physiology.

Fluid flow networks—interconnected structures of elements that
transport liquids or gasses—can be found in a wide range of both
human-made and living systems, including oil pipelines, water supply
systems, and the vasculature of animals and plants1–3. These systems
have been usually modeled as collections of linear elements, i.e.
resistors that obey Ohm’s law. This approach is simple and powerful,
allowing for easy assessment of flow and pressure distribution within
the system4. It also facilitates the study of network properties, such as
robustness, hierarchy, and phenomena like network remodeling and
tuning5–11. However, experiments have shown that natural flow

networks can contain intrinsically nonlinear elements that do not
conform to Ohm’s law, such as valves or vessels within the circulatory
systems of plants and animals that respond to changes in pressure by
varying the hydraulic resistance12–15. Flow networks containing these
nonlinear elements are not well understood, and linear models are
insufficient for capturing their behavior.

We begin by considering two biological cases in which the resis-
tance of the network element is fundamentally nonlinear (Figs. 1a, b). In
particular, Fig. 1a shows a schematic of theflownetwork corresponding
to mammalian brain vasculature. When a cerebral arteriole, a small
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artery, is isolated from the animal, connected to an external pump, and
the flow is measured, the response to the imposed pressure difference
is qualitatively similar to the nonlinear curve shown in Fig. 1c, which
exhibits a region of negative slope—also known as negative differential
resistance (NDR). This effect is controlled by the muscles surrounding
the artery that can expandor contract the vessel12,13. Figure 1bdisplays a
schematic of the Gymnosperm (e.g., conifers and cycads) plant vas-
culature. In this case, the pit pores separating the xylem tracheids have
an elastic membrane that can close depending on the flow rate14, thus
giving rise to a nonlinear flow rate response with a region of negative
differential resistance similar to Fig. 1c. In the case of the arteries, a
plausible explanation for this behavior is that they have evolved to
ensure that the blood flow going into an organ does not exceed safe
levels, actively responding to pressure16 and flow12,17,18. Similarly, pit
pores in the xylem tracheids may have evolved to ensure that the flow
of sap stays within adequate levels and that they increase resistance to
embolism (cavitation)19,20. However, in both cases, arteries and pit
pores are interconnected in a flow network comprising many of these
elements, motivating the need to understand the collective phenom-
ena emerging in systems of NDR resistors.

It has long been known that systems exhibiting negative differ-
ential resistance often display instabilities and a wide variety of com-
plex behaviors. Semiconductors that present NDR in bulk or when
forming heterostructures can display heterogeneous electric field
distributions, hysteresis loops, or self-sustained oscillations21–25. Elec-
trochemical systems are also a paradigmatic case of nonlinear phe-
nomena and can exhibit NDR and a broad range of complex nonlinear
phenomena26–29. However, while most electric systems have their flui-
dic counterparts, the study of flow networks of NDR elements has not
been explored to the same extent.

Artificial and biologically-inspired microfluidic networks are
rapidly evolving to incorporate nonlinear elements andmore complex
topologies30–42, including several examples of artificial valves, some of
which exhibit NDR14,33,35,36,42–48. Although connecting these nonlinear
valves in fluid networks could be straightforward, we will show that
complex phenomena emerges when: (i) the system is able to locally
store volume and (ii) the local volume changes are coupled to the
pressure distribution along the system. These conditions are already
present in the biological systems discussed above, in which volume
accumulation inside the vessels/cells compresses the externalmedium
surrounding the network (see Fig. 1d), but they have yet to be included
in an engineered device. Our results shed light on the fundamental
principles underlying complex phenomena in networks of nonlinear
resistors, advancing the understanding of both biological and non-
biological systems. We show that it is feasible to build these complex
systems in the laboratory andharness their collective phenomenology.
Altogether, our work helps establish a framework to predict and con-
trol emergent phenomena in networks of NDR elements, opening new
avenues for harnessing such complex phenomena in the laboratory.

The fluidic memristor
In this section, we present theoretical results, realistic simulations, and
experiments of a 1D flow network of NDR elements. Our phenomen-
ological model explains the fundamental mechanisms that lead to the
emergent complex phenomena. In a nutshell, if the network was
composed of linear resistors, the pressure distribution along it would
decay homogeneously, leading to the same pressure drop at each
resistor, and a global resistance thatwould be the sumof the individual
resistors connected in series. However, when severalNDRelements are
connected in series and the spaces between them can accumulate

Fig. 1 | Negative differential resistance is ubiquitous across biological systems.
a, b Examples of systems in which the relationship between flow rate and pressure
difference exhibits a region of negative differential resistance, i.e., a region of
negative slope, as schematized in (c). Because of this nonlinear behavior, suchflow
elements are referred to as nonlinear resistors. a Schematic of mammalian brain
arteries, in which themuscles covering the blood vessels respond to flow by either
expanding or contracting. When a vessel is extracted, isolated, and connected to a
pump, the flow rate as a function of pressure difference displays a behavior qua-
litatively similar to that shown in (c)12,13. b Schematic of pit pores in xylem cells of
trees from the gymnosperm family. The flow-rate-pressure-difference relation in

c emerges from the passive mechanism of a porous membrane that responds to
pressure difference by closing the flow channel14. d Schematic of our model sys-
tem, inwhichmany nonlinear resistors are connected in series to an external pump
that controls the global pressure difference applied to the system. e displays a flow
network analogue to (d), where nodes and edges are identified with volume
reservoirs and valves, respectively. f Flow-rate versus pressure-difference rela-
tionship displayed by systems such as (d) and (e). The relationship is multivalued,
and each line can be followed depending on the pressure protocol applied. Since
the lines have different slopes, the global resistance displayed by the system has
memory.
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volume, the flow along the system in response to an externally
imposed pressure (i.e. a pump) displays complex behavior and mem-
ory effects, see Fig. 1d and f. The reason behind this behavior is that
there is a critical pressure abovewhich a homogeneous pressure decay
along the system is unstable. When that threshold is surpassed, the
system divides into two regions, low and high-pressure drop. As the
pressure keeps increasing the system displays consecutive hysteresis
loops that lead to a global resistance that depends on the history of the
protocol applied, a global resistance with memory. A feature remi-
niscent of the electric memristor49, and a possible new paradigm for
soft-matter systems that present memory effects50–52.

Phenomenological model: domain formation and nested
hysteresis loops
We analyze here the qualitative behavior of fluid networks consisting
of NDR resistors, as shown in the sketch in Fig. 1d. We use a phe-
nomenological model, which is detailed in the Methods section and
illustrated in Fig. 1e. In this model, each edge represents a NDR valve,
and each node represents the region in between valves, which can
accumulate volume due to the elasticity of the walls (as shown in
Fig. 1d). To illustrate the phenomenology of this system, we are con-
sidering a 1D network of 30 nodes and 29 edges (systems comprising
different numbers of nodes show equivalent behavior, as discussed in

following sections). We consider pressure-driven flow, and thus con-
trol the inlet pressure of the system, Pinlet, which is the pressure at the
left-hand side of the 1D network (as shown in Fig. 1d, e). The outlet
pressure is constant at Pinlet = 0. The two edges adjacent to the inlet
and outlet follow a linear (Ohmic) relationship, which mimics an
experimental setup inwhich solid tubes are connected to both ends of
the fluid network. The other 27 internal edges of the network follow a
nonlinear pressure-flow relationship with a region of negative differ-
ential resistance, as shown in Fig. 2a—the mathematical expression
corresponding to this model is provided in the supplementary infor-
mation (SI). It is important to emphasize that the behavior of an iso-
lated NDR resistor (as displayed in Fig. 2a) is completely stable,
meaning that the samecurve is followed independentlyof the pressure
protocol. However, a minimalist system containing one NDR valve
connected to regions that can accumulate volume and other linear
resistors can display bistability, see the supplementary information for
more details.

We perform time-dependent numerical simulations with our 1D
network of 27 NDR resistors by imposing the inlet pressure protocol
described in the inset of Fig. 2b, where the colors red and blue indicate
pressure ramping up and down, respectively. The inlet pressure at the
contact is varied slowly, i.e., quasi-statically, so the network quickly
adapts and does not display any dynamical behavior over time. The

Fig. 2 | Domain formation and hysteresis loops in flow networks of NDR ele-
ments. a The graph shows the flow rate Q as a function of pressure difference ΔP
for a single nonlinear resistor.b Inlet flow rateQinlet is plotted as a function of inlet
pressure Pinlet for a 1D network consisting of 30 nodes (27 nonlinear valves and 2
linear valves at the extremes of the network, see sketch in Fig. 1e). The inlet
pressure is increased and decreased linearly as shown in the inset, while the outlet
pressure is kept at zero.Nonlinear valves follow theblack curve in (a).We seth =0.1
for the linear valves, and α =0.001 (see Methods). The flow-rate versus pressure
curve exhibits a hysteresis loop in which the upper and lower flow rate branches
display 27 jumps, each jump corresponding to the position at which one nonlinear

resistor has swapped its state. Arrows in (b) indicate which side of the hysteresis
loop can be followed in one or two directions, and dashed lines show three
examples of other inner hysteresis loops. c The pressure P is plotted as a function
of position in the 1D network at different points along the hysteresis loop, indi-
cated with dots in (b). Different slopes correspond to low and high-pressure drop
domains, corresponding to regions in which nonlinear resistors are at the first or
second positive differential resistance branch in (a). The colors follow the criteria
displayed in the inset to (b). For a detailed explanation of the phenomenon please
refer to the SI.
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inlet and outlet flow rates are identical and plotted as a function of the
pressure drop in Fig. 2b. The curve in Fig. 2b displays a clear hysteresis
loop, in which the upper and lower branches of the loop display small
jumps. Each jump corresponds to another inner hysteresis loop, as
shown by the three dashed lines. Indeed, there are 26 inner stable
branches in this system. Single- and double-arrow lines indicate the
branches that can be followed in one or both directions by varying the
global pressure drop, respectively. In particular, the upper and lower
branches can only be followed by increasing and decreasing Pinlet,
respectively, while left, right, and inner branches can be followed in
both directions. For instance, if the system is in the upper red branch
and we start decreasing Pinlet, the network will descend the closest
inner stable branch. Fig. 2c displays thepressure distribution inside the
system at different positions along the hysteresis loop, denoted with
black dots in Fig. 2b. Note thatwhen two domains are formed in Fig. 2c
(low and high-pressure drop), the system can display one of two
symmetric configurations: low-pressure drop first or high-pressure
dropfirst. In Fig. 2cwe showa simulationwhere the systemfindsoneof
the solutions going up and the complementary going down. In this
work, we do not explore how boundary conditions, history of the
protocol or other factors affect the appearance of one or the other
solution.

We find that the network behaves as a tunable resistor, in which
the global resistance depends on the history of the protocol applied.
This leads to two fascinating phenomena: (i) The upper and bottom
branches of the hysteresis loop present an approximately constant
flow independently of the pressure applied to the system, equivalent
to a zero differential resistance. (ii) The same pressure difference
applied to the network, Pinlet, leads to multiple possible flow config-
urations, corresponding to the different branches that are selected
depending on the protocol followed. Moreover, the inner branches
have different slopes corresponding to different differential resis-
tance. Thus, this memory effect controls the effective resistance of the

system, which led us to term the system a fluidic memristor. A more
detailed explanation of the intricacies of this phenomenon is provided
in theMethods section. Our goal now is to prove the existence of these
effects in realistic fluid dynamical systems, opening a new avenue to
harness such emergent phenomena in experimental setups.

Numerical simulations of realistic elastohydrodynamic net-
works with NDR valves
To test whether our minimal phenomenological 1D model can predict
the behavior of realistic systems, we first perform full-time-dependent
numerical simulations of a 1D network consisting of two-dimensional
(2D) valves (see the schematic in Fig. 3a andMaterials andMethods). In
particular, we consider two elastic and nearly incompressible blocks
clamped at their outer boundaries, creating a channel through which
fluid can flow due to an applied pressure difference ΔP between the
inlet and outlet. The valves inside this channel are connected in series
and are composed of two elastic rods clamped at the elastic blocks,
which exhibit similar steady-state behavior to the curve in Fig. 2a, i.e.,
they exhibit a region of negative differential resistance (see Supple-
mentary Information for more details). The deformation of the
clamped elastic blocks allows the space between the valves to swell or
shrink, and it couples volumeaccumulationwith the pressurefield. For
simplicity, we also assume that inertia is negligible, implying that vis-
cous effects are dominant. Such an approximation is valid if the Rey-
nolds number comparing inertial and viscous effects is small, which
can be achieved in small systems conveying small flow rates of viscous
fluids. Under this approximation, the elastic rods and blocks deform
quasi-statically due to pressure and viscous stresses.

We perform time-dependent numerical simulations of an array of
8 nonlinear valves. Both sides of the channel are connected to nar-
rower channels that act as linear resistors, equivalent to the two linear
resistors used in our phenomenological 1D model. We control the
pressure at the inlet, Pinlet, i.e. at the left narrow channel, and impose a

Fig. 3 | Numerical simulations of a realistic flow network with NDR elements.
a Schematic of a 2D realistic systemwith 8 valves. The systemconsists of twoelastic
blocks clamped at their outer boundaries, which form a channel where the fluid
flow passes through. The valves are located inside this channel and are composed
of two elastic rods clamped at the elastic blocks. The contact interface between the
fluid and the elastic rods andblocks is a free deformable surface. Two long rigid and
narrow channels are positioned at the inlet and outlet of the channel, where we
apply a pressure difference ΔP. b Displays color plots of the flow pressure field
p(x, t), and the elastic blocks and rods displacement field ∣um(x, t)∣ and ∣ur(x, t)∣,
respectively, at a dimensionless time of t = 12 × 106. c and d depict the midplane
pressure Pmid as a function of x position at different times, when the pressure is

monotonically increased in (c), and when it is monotonically decreased in (d),
following the protocol for the inlet pressure Pinlet shown in the inset to (e). For low
Pinlet, the pressure drop along the system is homogeneous until there is sponta-
neous pattern formation, in which the system divides into low and high pressure
drop domains. e shows the flow rate Q as a function of the pressure difference ΔP
following the inlet pressure protocol displayed by the inset. The flow-rate-pressure
curve displays a large hysteresis loop. Dots of different colors correspond to the
pressure profiles at the times shown in (c, d). Each jump exhibited by the hysteresis
loop corresponds to one valve swapping its configuration as explained by the
phenomenological model.
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zero pressure at the outlet, as in the 1D model. Fig. 3e shows the inlet
flow rate Qinlet as a function of the applied pressure difference,
ΔP = Pinlet, for the protocol described in the inset, equivalent to that of
the 1D model. As the pressure is varied quasi-statically, the inlet and
outlet flow rates are identical, i.e. Qinlet =Qinlet =Q. Fig. 3c and d show
the pressure field along the midplane of the system at different times,
corresponding to the dots in Fig. 3e. As predicted by our 1Dmodel, the
hysteresis cycle is connected to the creationof twodomains of low and
high-pressure drop, corresponding to the two slopes present in the
lines shown in Fig. 3c and d. These two domains are produced by two
groups of valves, each one operating in a different positive differential
resistance branch. The upper line in Fig. 3d represents the pressure
along the middle line of Fig. 3b, where the two domains are distinctly
visible: the four valves which are closer to the inlet present almost no
deformation (low-pressuredrop),while theother four valves are highly
deformed (high-pressure drop). As we found with the 1D model, the
upper and lower branches of the hysteresis loop present small jumps
that correspond to each of the valves swapping its configuration,
thereby changing the size of the domains in Fig. 3c, d. In the 2D
simulation protocol, we decrease the inlet pressure before all the
valves swap to the second possitive differential resistance branch, as
observed in the high-pressure curves of Fig. 3c, d. Thus, the ramping-
down path of the hysteresis loop corresponds to one of the stable
inner branches predicted by the phenomenological model.

Although we find a reasonable agreement between the numerical
simulations and our phenomenological model, there is one quantita-
tive difference: the upper and lower branches of the hysteresis loop do
not correspond to a constant flow rate with superimposed jumps, but
rather exhibit a monotonic increase in flow rate as the value of Pinlet
increases. To visualize this difference quantitatively, we include the
prediction of the 1D model for a system of 8 valves. This difference
stems from the fact that the 2D valves are composed of two com-
pressible elastic rods that change their geometry due to the absolute

pressure, thereby affecting their response to ΔP. To allow the phe-
nomenological model to capture this behavior, we can use nonlinear
resistors inwhich the flownot only depends on the pressuredifference
but also on the absolute pressure. Including this effect greatly
improves the quantitative match between the phenomenological
model and the realistic simulations, as presented in section 5 of the
supplementary information.

Building the fluidic memristor in the laboratory
To demonstrate the feasibility of constructing the fluidic memristor
and employing it in real fluidic systems, we build an experimental
platform based on the physical principles described in the previous
sections. Specifically, we employ valves that exhibit a region of nega-
tive differential resistance, whose design draws inspiration from the
operating principle of pit pore valves that arepresent in the xylemcells
of many gymnosperm trees53,54. The behavior of pit-pore valves has
been studied extensively in the past14,55–57. As illustrated in Fig. 4a, our
valves consist of an elastic membrane stretched over a narrow gap of
thickness ~ 0.3 mm, with a pore in the center that enables fluid flow
through the valve. As the pressure difference across the valve increa-
ses, the elastic membrane deforms, eventually blocking the pore. We
connect this valve in parallel with a short tube of polytetra-
fluoroethylene (PTFE) with a very small inner diameter, which acts as a
high-resistancebypass for the valve (see Fig. 4a). This structure enables
complete control of the flow response to the pressure difference. We
design the valves to close at a pressure of 40 mBar, approximately.
Therefore, this system exhibits the flow versus pressure-difference
relationship shown in Fig. 4c.

To replicate the behavior observed in our theoretical model and
numerical simulations, we constructed an experimental flow network
consisting of an array of 8 valves, which is contained in a flexible PDMS
tube constrained from the outside by a rigid acrylic tube (see details in
Methods section), as shown in Fig. 4a. The PDMS tube acts as the

Fig. 4 | Experiments on a flow network of NDR elements. a Experimental setup.
At the top, there is a schematic of the setup, while the bottom left shows a sche-
matic of a single valve used to construct the experimental 1D flow network. The
bottom right shows a schematic of the experimental network containing NDR
valves in series inside an elastic tube with a rigid external layer. b depicts the
protocol for the inlet pressure Pinlet, in which the pressure is monotonically
increased and then decreased over time, as in the 1D model and full numerical

simulations. c Flow rate as a function of the pressure difference for one valve.
d Flow rate as a function of the pressure difference for the 8-valve experimental
network. The network exhibits hysteretic behavior as predicted by the theoretical
model and full numerical simulations. The jumps are a consequence of the valves
swapping from one PDR branch to another. The dashed curve corresponds to the
solution obtained from the phenomenological model.
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elasticmediumwith clamped boundary conditions used in the realistic
simulations. In our experiments, we gradually increase the inlet pres-
sure from 0 to 800 mBar and then decrease it back to 0 mBar over a
period of 8 hours, as depicted in Fig. 4b.Wemeasure the resulting flow
rate Q and find a clear hysteresis loop, displaying jumps that indicate
valves swapping from one positive differential resistance branch to
another, similar to our phenomenological model and 2D numerical
simulations (see Methods).

To compare the experimental results with the theoretical model,
we use the functional form of the experimental valve shown in Fig. 4a
to simulate the phenomenological 1D model (see SI). The results
obtained from the 1Dmodel are shownwith dashed lines in Fig. 4d. The
1D model captures the order of magnitude of the resulting flow rate
and the size of the hysteresis loop in pressure difference. Moreover,
the experimental shape of the flow-rate-pressure-difference curve also
qualitatively agrees with themodel. However, the experimental data is
tilted upwards, as observed in the 2D simulations. We attribute this
behavior to valves changing their response to the pressure difference
depending on the absolute pressure, which is not included in the
phenomenological model. Additionally, we find that the experimental
flow network exhibits a smaller number of jumps than the total num-
ber of valves. We suspect that imperfections in the valves cause them
to not swap one by one but in groups, resulting in a smaller number
of jumps.

Similar behavior in other systems and impact on
our work
Despite the relevance of fluid flow networks of nonlinear resistors in
nature, the physics and emergent phenomena of such systems have
remained poorly understood. To address this knowledge gap, we have
combined experiments, theory, and numerical simulations to unravel
the main mechanisms underlying the collective behavior of soft flow
networks with NDR elements. Strikingly, our work reveals that a
minimal network of NDR elements in series, whichwe have termed as a
‘fluidic memristor’, exhibits history-dependent resistance, allowing
this minimal system to store information. Additionally, we demon-
strate that it is feasible to build such a system in the laboratory and
harness its collective phenomenology.

Similar hysteretic behaviors to the one described in this work can
be found inother systemsof strikingly different nature. For instance, in
Lithium batteries, the relationship between chemical potential and ion
concentration in each of the particles forming the electrode displays a
non-monotonic behavior, leading to a hysteresis curve when con-
sidering a system of many particles58,59. Within soft matter physics,
instabilities in rubber balloons and soft actuators have practical
applications in the development of soft robotics60–64. In general, rub-
ber balloons present a non-monotonic pressure-volume
relationship65–67. In the context of cylindrical balloons, the non-
monotonic relationship results in phase coexistence, where instabil-
ity leads to the formation of two distinct regions, each having a dif-
ferent radius. TheMaxwell construction canbe applied to this process,
which is characterized by the absence of hysteresis68. However, when
multiple spherical balloons are connected to a common source, they
exhibit an instability that causes them to transition individually
between twoequilibrium states. This results in nested hysteresis loops,
which are strikingly similar to those observed in our case59,69. However,
there are key differences with our system. In our case, the variables are
flow and pressure difference instead of chemical potential (pressure)
and ion concentration (volume) for batteries (and balloons). Addi-
tionally, in the semiconductor and electrochemical realms24–26,29 or in
some biological systems70–75, other examples also present non-
monotonic relations that lead to complex collective phenomena.
Until now, this phenomenology had not been carefully analyzed in the
fluidic realm. Here we have shown that a fluid flow network of NDR
resistors displays nontrivial phenomena, such as pattern formation

and hysteretic behavior. These features make the system suitable for
its use as a resistor with a global resistance that depends on the
memory of the applied protocol. Moreover, we have also shown how
to build fluid flow networks of nonlinear resistors and how to harness
their emergent phenomena in the laboratory.

Thefluidicmemristor is ready to beused influidic setups,where it
can work as a tunable resistor whose resistance is controlled by the
history of the pressure difference applied to it. We hope that our work
will inspire further exploration of the complex phenomena that net-
works of nonlinear resistors can offer and pave the way for the
development of new devices in the fluidic realm. Additionally, we
believe that our work can motivate experimental studies in biological
systems to investigate the role of these collective effects in networks of
nonlinear resistors, such as animal and plant vasculature. Taken
together, our experimental approach, theoretical framework, and
findings provide a foundation for these promising future avenues for
research.

Methods
Phenomenological model
To explore the response of flow networks of nonlinear resistors, we
build upon previouswork and use themathematicalmodel introduced
in ref. 76. This previous work focused on the emergent dynamical
behavior (self-sustained oscillations) present in this model and was
purely theoretical, it did not explore the phenomenology explored
here: multiple hysteresis loops and memory effects, neither it tried to
build or simulate realistic examples of this type of networks. This
model is constituted by phenomenological expressions that approx-
imate the behavior of viscous fluid (~0 Reynolds number) flowing
within a channel of flexible walls and going through several nonlinear
valves. The model uses a flow network, a set of N nodes and connec-
tions—the edges—between them, see Fig. 1e. Pressure, Pi, and accu-
mulated volume, Vi, are defined at each node i and can be time
dependent. The volumetric current Qij is defined as the current from
node i to node j on edge ij. To establish the input and output of the
network, in this work, we choose the two nodes at the extremes of the
network and externally control the pressure, analogous to connecting
a battery or pump to a resistor network.

The current between nodes Qij depends on the pressure differ-
enceΔPij = Pi − Pj. In a simpleOhmic resistor, this relationshipwould be
linear, but here we consider the following general pressure-flow rela-
tion:

Qij =
1
2V

β
i ΓðΔPijÞ, if Pi > Pj,

1
2V

β
j ΓðΔPijÞ, if Pi < Pj,

8
<

:
ð1Þ

where Γ(ΔP) is a function that can be either linear in the pressure drop,
ΓL(ΔP) = 1/R0ΔP (where R0 is a dimensionless parameter), or nonlinear,
ΓNL(ΔP). Specific functional forms of ΓNL are detailed in the SI. The
current also depends on the accumulated volume at the node from
where it flows, where the exponent β determines its functional
dependence. In the extreme case where Pi > Pj and Vi = 0, Qij should be
zero, because node i is “empty” and there is no volume to flow from
node i to j. For semiconductor networks, β = 124,25, whereas for the fluid
networks we consider here, the scaling of viscous flow leads us to
choose β = 2. We note that for β∈ [0.5, 2], the dynamics are relatively
insensitive to the choice of β, see76.

Proceeding with our analysis, we consider mass conservation
which determines the temporal variation of the accumulated volume
at every node,

dVi

dt
=
X

j

�Qij : ð2Þ
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Our sign convention assigns a positive sign to the current that leaves
node i when ΔPij >0. Finally, we assume that the walls of the channel
are deformable and volume can change in the space between the
valves (the nodes), see Figs. 1d and e. To include this effect in the
model we add a phenomenological constitutive relationship between
the excess volume from a baseline (V0), and the pressure field:

Vi � V0 =α
X

j

LijPj , ð3Þ

where Lij is the ij element of the graph Laplacian L =D −A, D being the
degree matrix defined as Dij= diδij, with di the degree of node i, A the
adjacency matrix, and δij the Kronecker delta77. Without loss of gen-
erality, we set V0 = 1. In semiconductors, Eq. (3) corresponds to the
network Poisson’s equation,which couples charge accumulation to the
electric field. In a fluid network, it models the effect of a channel sur-
rounded by elastic walls (Fig. 1d). If an elastic medium surrounds the
flow network, volume accumulation inside a network node will be
coupled to the pressure field via the deformation of the external
medium. The numerical value of the coupling constant α depends on
material properties and the detailed geometry. It is, in principle, pos-
sible to predict the value of α from analytical theories78–80, or from
direct numerical simulations. As shown in the main text, however, the
qualitative behavior shown in this work is relatively insensitive to the
value of α, we therefore focus on the basic properties of themodel and
treat α as a fitting parameter. For the simulations of the phenomen-
ological model we use α = 0.001 to be in the stationary and small
volume accumulation regime76. The final step in the model develop-
ment involves combining the mass conservation and volume accu-
mulation equations (2) and (3) into a single expression:

α
X

j

Lij
dPj

dt
= �

X

j

Qij , ð4Þ

which is the system of time-dependent ordinary nonlinear differential
equations that we solve numerically, together with boundary condi-
tions imposing the overall pressure drop.

Understanding the intricacies of the nested hysteresis loops
To understand the mechanisms underlying the phenomena that leads
to the nested hysteresis loops, let us divide the domain of the non-
linear function in Fig. 2a into three parts that we will denote as: first
positive differential resistance (PDR) branch (from ΔP =0 to the local
maximum), NDR branch (negative slope region), and second PDR
branch (from the local minimum onward).

In the protocol displayed by the inset of Fig. 2b, we start by
increasing Pinlet from zero, represented by the red dots at the bottom
of panel c (where each point indicates the pressure at each node of the
network). As we increase Pinlet, all the nonlinear resistors of the net-
work follow the black solid curve in Fig. 5, represented by the red dots
on the first PDR branch of the curve, until now the pressure distribu-
tion is homogeneous inside the network. However, once all the resis-
tors reach the local maximum of Fig. 5, if Pinlet keeps increasing, a
homogeneous pressure drop along the network becomes unstable
(see SI). Beyond this pressure, the system finds a different stable
solution by swapping one resistor to the second PDR branch of Fig. 5.
Through this mechanism, as Pinlet increases, one by one the nonlinear
resistors jump to the second PDR branch, and the system divides into
two distinct domains characterized by a high and a low pressure drop,
as shownby Fig. 2c (red curves). Once all the resistors have swapped to
the second PDR branch, the system displays an internal pressure drop
that is homogeneous, as shown by the blue upper line in Fig. 2c. When
the inlet pressure Pinlet is decreased following the ramping-down
protocol in the inset to Fig. 2b, representedbyblue dots in Fig. 5, all the
resistors stay on the second PDR branch until they reach the local

minimum. Below such Pinlet, now one by one resistors jump to the first
PDR branch, as shown in Fig. 5, again forming two pressure drop
domains (bottom blue curve in Fig. 2c).

All the intricacies of themultiple hysteresis loops present in panel
Fig. 2b can be understood using similar arguments to the ones used
here. The jumps in the upper branch of the hysteresis loop are present
because an infinitesimal increase in Pinlet leads to a resistor jumping
from the first to the second PDR branch. Since the pressure drop is e
xternally controlled for the complete system (Pinlet), the pressure drop
across the other NDR valves has to decrease to accommodate this
sudden change, leading to the jumps present in Fig. 2b every time one
NDR valve changes branch. A similarmechanism explains the different
slopes for the stable branches in the nested hysteresis loops.Wehave a
system of multiple valves connected in series, and since the valves are
always in one of their two PDR branches, the effective resistance of the
complete system is the sum of the individual resistances. With the
peculiarity that now the valves canbe in one of their two PDRbranches
(that have different resistances). Following this idea, the slopes of the
left and right sides of the loop in Fig. 2b aredirectlyproportional to the
slopes of both PDR branches in Fig. 2a. However, the slope of the inner
hysteresis branches (dashed lines in Fig. 2b) have slopes that inter-
polate between both limit values, depending on how many resistors
are in each PDR branch. Finally, it is important to mention that
the shape and properties of the multiple hysteresis loops shown in
Fig. 2b can be directly controlled changing the shape of the nonlinear
curve in Fig. 2a, and also by changing the number of resistors in the
network.

Continuum modeling and numerical simulations
To test whether our minimal network 1D model is able to capture the
dynamics of a realistic system, we consider the fluid-elastic network
schematized in Fig. 3. The system is comprised of two elastic materials
with several elastic leaflets clamped at their inner boundaries, sand-
wiching a 2D Newtonian flow. We perform time-dependent numerical
simulations coupling Stokes flow of an incompressible Newtonian

Fig. 5 | Flow rate Q as a function of pressure difference ΔP for a single NDR
resistor. Points and arrows explain the process that leads to the nested hysteresis
loops presented in Fig. 2 for a 1D network of NDR resistors. NDR resistors swap one
byone fromonePDRbranch to another as the total pressure imposed to the system
(Pinlet) increases and then decreases.
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fluid, and linear elasticity for the elastic domains. To reduce the
number of parameters, we non-dimensionalize the set of equations
upon choosing the following spatial, displacement, velocity, pressure,
time, and flow rate characteristic scales, respectively

‘c = uc =hg, vc =
hgGr

μ
, pc =Gr,

tc =
μ
Gr

, Qc =
Grh

3
g

μ
, ð5Þ

where hg is the gap of the fluid region sandwiched between the two
outer elastic media, μ is the viscosity of the liquid, and Gr is the shear
elasticmodulus of the elastic rods. Hence, the fluid velocity field v(x, t)
and pressure p(x, t) are governed by the dimensionless continuity and
momentum equations, which read:

∇ � v=0, and 0=∇ � T , ð6Þ

where we have assumed that fluid inertia is negligible, thus
Re=ρhgvc=μ=ρh2

gGr=μ
2 ≪ 1, Re being the Reynolds number and ρ the

density of the fluid. HereT = − pI +∇v +∇vT is the fluid stress tensor. At
the inlet, we impose the value of the pressure, and zero stress, which in
dimensionless variables read

p=β and T � ex =0 at x =0, ð7Þ

where β =ΔP/Gr is a compliance parameter measuring the ratio
between the inlet pressure ΔP and the rod’s elastic shear modulus Gr,
and ex is the stream-wise unit vector. As displayed in Fig. 3, the inlet
pressure can be varied temporally, thus in that case β = β(t) as
ΔP =ΔP(t). At the outlet we impose zero stress andwe set the reference
pressure to zero,

p=0 and T � ex =0 at x = L: ð8Þ

At the contact surface between the liquid and the elastic media we
impose continuity of velocities,

v=∂tu, ð9Þ

where u(x, t) is the displacement field of the elastic materials. The
elastic media satisfy the Cauchy equation of motion under the small-
displacement approximation,

0=∇ � σi, ð10Þ

where we have also neglected elastic inertial effects, and the subscript
i = {r, m} denotes the rods and the outer elastic matrix, respectively.
Here σ i = 2εi + λi=GitrðεiÞI is the solid stress tensor of a Hookean elastic
material, ε is the strain tensor, and Gi = Ei/[2(1 + νi)] and λi = Eiνi/[(1 + νi)
(1 − 2νi)] are the two Lamé constants, expressed in terms of the Young
modulus Ei and Poisson ratio νi. We also consider the complete non-
linear expression of the strain tensor,

εi =
1
2
ð∇u+∇uT +∇u � ∇uTÞ, ð11Þ

to accurately capture the deflection of the thin rods under the linear
stress–strain relationship approximation, where ∣∂jui∣≪ 1. Never-
theless, the results reported here are not significantly dependent on
this geometric nonlinearity.

At the contact between the rigid shaft and the elastic material we
impose clamping conditions, u =0. At the fluid–solid interfaces the

continuity of stresses must be fulfilled,

σ i � n= � T � n, ð12Þ

where n is the unit normal vector to the liquid-solid interfaces.
The dimensionless parameters that govern the problem are the

compliance parameter β =ΔP/Gr, λi/Gi, the dimensionless rod’s length
Lr/hg and thickness dr/hg, the total dimensionless length of the system
Lm/hg, the thickness of the outer elastic medium, dm/hg, the medium-
to-rod shearmodulus ratioGm/Gr, and the angle of the rodwith respect
to the vertical, θ.

Values of the dimensionless parameters used in simulations
To obtain the results displayed by Fig. 3, the values of the

dimensionless parameters for the leaflets are, λr/Gr = 1/3, Lr/hg = 0.48,
dr/hg = 0.1, θ = 20.75o, and Pinlet = β(t), where β(t) is the Gaussian func-
tion shown in the inset to Fig. 3e. The values of the dimensionless
parameters for the outer elastic medium are, λm/Gm= 103 (nearly
incompressible material), Gm/Gr = 10, dm/hg = 1.5, Lm/hg = 9. The thick-
ness and length of the solid inlet and outlet are set to 0.1 and 7,
respectively, and the spacing between clamped leaflets is set to one.

Valve Manufacturing and Multi-Valve Assembly
The valves were 3D printed in resin in ABS-like Photoresin (Elegoo,
China) with an MSLA 3D printer (Sonic Mini 4K, Phrozen, Taiwan).
Once printed, these valves were twice submerged in isopropyl alcohol
(99%, Borup, Denmark) and sonicated for 10minutes to remove excess
resin.Once clean, these are thenUVcuredonboth sides for 20minutes
in a UV chamber (CL-508-BL, Uvitec, UK). The rubber inserts were
produced by the casting of a silicone based polymer (Elite Double 22,
Zhermack, Italy). The molds for these castings are produced by the
samemethodas used for the valves, but the curing is done for 1hon the
mold side while submerged in 60C water. To assemble the singular
valves the hole for the 1.59mmOD, 0.394mm ID PTFE tubing (IDEX, IL,
USA) was drilled out with a handheld drill to 1.5mm and the tubing
pressed into the resulting hole. The PTFE tubing is then cut to size with
a razor blade. A diagram of these valves and their dimensions can be
found in the supplementary information.

The experiment is housed in a two part tube, with an outer clear
acrylic tube and an internal clear silicone tube (Sylgard 184, Dow
Corning). The internal tube is made by first casting a sacrificial wax
cylinder from the silicone mold (Elite Double 22, Zhermack, Italy) of a
12.5 mm diameter acrylic rod. The wax used was from a candle pur-
chased at the local supermarket and heated till fully melted before
pouring into a 50C preheated silicone mold. This wax rod is then
placed inside a jig which concentrically centres both the wax rod and
outer acrylic tube and the clear silicone is poured in and allowed to set
for 2 days. Once fully cured, the wax is thenmelted out of the cylinder
at 80C for 2–3h in anoven and the cylinder is thenwashed in hot soapy
water to remove any residual wax.

The end caps are produced by FDM 3D printing. They have been
printed in black PLA (Ultimaker, Netherlands) on an Ultimaker 3+
(Ultimaker, Netherlands). They have been printed with 100% infill and
also been a leak and fit checked before use.

To assemble the components, the valves are placed in the tube
one by one and rotationally aligned for easy removal of bubbles. Once
all the valves are in place, the end caps are added. All componentswere
designed in Fusion 360 (Autodesk).

Valve testing
The liquid used for all experiments is sucrose solution. The sucrose
solution is producedby the dissolution of sugar (Dansukker, Denmark)
in de-ionized water on a hotplate to achieve a 60% sucrose solution.
This solution is then checked for viscosity on a desktop viscometer
(NDJ-95, Vevor), and water is added to achieve the desired 22 mPa.s.
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Solutions areused for 2 days before being remade and checkeddaily to
ensure that they are compliant with the desired viscosity.

To construct the flow circuit we have a symmetrical flow system
before and after the valves with a pressure sensor and flow sensor on
both sides of valves. The pressure sensors used are 26PCCFG5G
(Honeywell, NC, USA) that are connected to a HX711 based load cell
amplifier (M5stack, China). These sensors are individually calibrated
from a pressure sweep generated by a MFCS-EZ (Fluigent, France)
across its working range (0-1Bar). The flow sensors used are SLF3S-
1300F (Sensiron, Switzerland), and these are calibrated directly using a
flow of our sucrose solutions originating from tank held 1 m above the
tubing exit, where the mass is quantified over a period of a minute.
These sensors are connected to an Arduino nano which prints the
flowrate and pressure to an attached computer running a python
script. To generate the pressure in the experiments, we have used the
MFCS-EZ across a range of 0-0.85 Bar, to generate and control the
pressure in the system. We use 4mm OD polyurethane tubing (Festo,
Denmark) along with barbed luer lock connectors (Master-
Flex,PA,USA) to join the sensors and valves. For the fluid reservoir, we
have connected a pressure-pot type system where we use 4, 0.5L
conical schott glass containers (212834454, Schott, Duran, Germany)
with a draw tube to the bottom of the containers.

For the experiments we first gently fill the system and ensure the
removal of all thebubbles from the system, typically by tilting the valve
tube. Once removed, we run the full pressure sweep quickly (1h, 0-0.8-
0 bar) to fully seat the valves, and then we run our long-term sweep.
Typical long-term sweeps will run for 8 h from 0-0.8-0 bar in a
triangular wave.

Data availability
The data that support the findings of this study are available from the
corresponding author upon request. Source data are provided with
this paper.

Code availability
Code reproducing the results of the phenomenological model is
publicly available here: https://github.com/miguel-rg/fluidic_
memristor.
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