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An integrated high-throughput robotic
platform and active learning approach for
accelerated discovery of optimal electrolyte
formulations

Juran Noh1,5, Hieu A. Doan 2,5 , Heather Job1, Lily A. Robertson3, Lu Zhang3,
Rajeev S. Assary 2, Karl Mueller 4, Vijayakumar Murugesan 4 &
Yangang Liang 1

Solubility of redox-active molecules is an important determining factor of the
energy density in redox flow batteries. However, the advancement of elec-
trolyte materials discovery has been constrained by the absence of extensive
experimental solubility datasets, which are crucial for leveraging data-driven
methodologies. In this study, we design and investigate a highly automated
workflow that synergizes a high-throughput experimentation platform with a
state-of-the-art active learning algorithm to significantly enhance the solubility
of redox-activemolecules in organic solvents. Our platform identifiesmultiple
solvents that achieve a remarkable solubility threshold exceeding 6.20M for
the archetype redox-active molecule, 2,1,3-benzothiadiazole, from a compre-
hensive library of more than 2000 potential solvents. Significantly, our inte-
grated strategy necessitates solubility assessments for fewer than 10% of these
candidates, underscoring the efficiency of our approach. Our results also show
that binary solvent mixtures, particularly those incorporating 1,4-dioxane, are
instrumental in boosting the solubility of 2,1,3-benzothiadiazole. Beyond
designing an efficient workflow for developing high-performance redox flow
batteries, our machine learning-guided high-throughput robotic platform
presents a robust and general approach for expedited discovery of functional
materials.

The ability to design materials with targeted functional properties is
critical for developing clean energy technology applications and to
achieve deep decarbonization of electricity1,2. However, the conventional
trial-and-error methods are costly and time consuming, and realizing
new materials-based technologies typically requires 10–20 years of
fundamental and applied research3,4. While data-driven methods based

on machine learning (ML) have shown the potential to significantly
accelerate the design of new materials for clean-energy technologies5–9,
their practical applications in materials research are still limited due to
the scarcity of large and high-fidelity experimental databases7,10.

Redox flow batteries (RFBs) have been shown as a leading tech-
nology to address the intermittent nature of renewable energy sources
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used for grid-scale energy storage11. Their unique design, which sepa-
rates energy storage and power generation components, positions
them competitively for long-duration storage needs12–16. Low cost
redox-active organic molecules (ROMs) comprised of earth-abundant
elements (C, N, H, O, S) are gaining attention as potential alternatives
to their inorganic counterparts in RFBs17. However, a significant chal-
lenge for these systems lies in their reduced volumetric capacity,
attributed to the low solubility of ROMs18. Hence, it is crucial to
improve the solubility of ROMs to achieve a higher energy density in
RFBs. In comparison to aqueous RFBs, nonaqueous RFBs (NRFBs) offer
distinct advantages, including a wide operating temperature range,
higher cell voltage, and the potential for increased energy density by
tuning the solubility of ROMs in various organic solvents19,20. None-
theless, developing highly soluble ROMs for NRFBs has proven to be a
daunting task due to the lack of standardized and application-relevant
experimental solubility data for organic solvent systems21. The ability
to accurately determine the solubility of a solute in its saturated
solution at equilibrium remains challenging as it depends on various
factors including solute properties, solvent composition, equilibrium
time, and temperature21–23. Such limitation impedes the success of
data-driven design of electrolytes and subsequentlyNRFB research12,24.

In general, solubility measurement is performed via ‘excess sol-
vent’ or ‘excess solute’ methods25. The ‘excess solvent’ method
involves gradual addition of the solvent to the solid until only a single
liquid phase is observed. This allows for a quick determination of
molar concentrations and enables the development of automated
solubility screening systems using computer vision25–27. However, the
‘excess solvent’method is a kinetic solubilitymeasurement andwhile it
is fast, its reliability is not always sufficient for high-fidelity data col-
lection efforts. On the other hand, in the ‘excess solute’ method,
saturated solutions are prepared and allowed to reach equilibrium
prior to sample analysis. The ‘excess solute’ method is also known as
the classical shake-flask method for thermodynamic solubility mea-
surement. While this approach offers accurate and reproducible
solubility measurement, the need for long incubation time and ex-situ
analysis tools (HPLC, UV-Vis, and NMR) presents a critical hurdle for
extensive data generation25.

By leveraging an automated high-throughput experimentation
(HTE) platform, it is possible to improve the reliability and efficiencyof
the ‘excess solute’ method and construct a solubility data library for
NRFBs. This automated HTE approach has been envisioned to

simultaneously handlemultiple samples, reducing incubation timeper
sample and minimizing chemical waste28. While generating high-
quality solubility databases for molecules in organic solvents has
become accessible thanks to recent advancements in robotics, it is still
a time-consuming and laborious task for a couple of reasons23,29. First,
the majority of existing HTE-based solubility determination methods
were developed for aqueous systems23,28,30. Transitioning these meth-
ods to non-aqueous systems is not a straightforward task due to sev-
eral hurdles, including chemical compatibility and volatility of organic
solvents. Second, organic solvents can be utilized either in their pure
form or as mixtures, offering nearly unlimited combinations. Indeed,
solvent mixtures (e.g., binary solvents) are frequently used to enhance
solubility andmodify other properties through a synergistic effect31–33.
In such cases, the solute demonstrates higher solubility in a binary
solvent compared to pure solvents31–33. However, the large diversity of
potential solvent mixtures also renders the screening process more
time-consuming and expensive, even with HTE systems33,34. A strategic
approach would be to develop anML-guided HTE system for targeted
and efficient solubility data generation for ROMs in organic solvent
systems. Active learning (AL), particularly Bayesian optimization (BO),
has been shown to be a reliable approach to accelerate the search for
the desired electrolytes for energy storage applications35. Therefore,
closed-loop experimental workflows guided by BO could be used to
minimize HTE execution36–39.

In this work, we use 2,1,3-benzothiadiazole (BTZ), a high-
performance anolyte with highly delocalized charge density and
good chemical stability40,41, as a model ROM. The focus is on investi-
gating its solubility in various organic solvents, demonstrating the
potential of an ML-guided HTE robotic platform to accelerate the
discovery of electrolytes for NRFBs. Specifically, we designed a closed-
loop solvent screening workflow that consists of two connected
modules, namely HTE and BO (Fig. 1). The HTE module carries out
sample preparation and solubility measurement via a high-throughput
robotic platform (see Experimental Methods). The BO component
consists of a surrogate model and an acquisition function, both of
which together serve as an oracle thatmakes solubility predictions and
suggests new solvents for evaluation (see Computational Methods).
Our workflow, as depicted in Fig. 1, is detailed in the following
sequence of steps: Initially, we prepare saturated solutions and ana-
lytical samples of ROMs through the HTE platform. Next, we acquire
nuclear magnetic resonance (NMR) spectra of these samples and
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Fig. 1 | Schematic of the closed-loop electrolyte screening process based on
machine learning (ML)-guided high-throughput experimentation platform.
The workflow consists of a high-throughput experimentation module (top) con-
nected with a Bayesian optimization module (bottom). The HTE components
include automated sample preparation (top left) and characterization (top right),

from which electrolyte properties such as solubility are obtained. The BO module
utilizes experimental data to train a surrogate model (bottom right) and score
potential candidates from a database using an acquisition function (bottom left).
The top-ranking electrolyte formulations are suggested for the next round of
experiments.
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employ the spectral data to calculate ROMs’ solubility. This dataset is
then used to train a surrogate model, which serves to predict the
solubility of untested samples within our search space, as part of the
BO process. Subsequently, we apply an acquisition function within the
BO framework to guide the selection of new samples, directing our
evaluation based on the balance of predicted solubility values and
associated uncertainties, i.e., fitness score, thereby streamlining the
discovery and analysis of potential solvents.

Results and discussion
To generate high-fidelity and large-quantity solubility data for BTZ in
organic solvents, we employed a highly automated, high-throughput
sample preparation and characterizationworkflow (Fig. 2a). Our process
starts with sample preparationwherein a robotic arm is used for powder
and liquid dispensing (Fig. 2b, c, Supplementary Fig. S1, and Supple-
mentary Video S1). Then, saturated solutions are allowed to stabilize at a
fixed temperature for 8 hours to ensure thermodynamic equilibrium
(Fig. 2d, Supplementary S2, and Supplementary Video S2). Following the
stabilization period, liquids are automatically sampled into NMR tubes
(Fig. 2e). Quantitative-NMR (qNMR) analysis is then carried out to
determine molar solubility (mol L−1) (Fig. 2f, see Methods for more
details). Among those steps, the onlymanual operation is the transfer of
NMR samples between the robotic platform and the NMR instrument.
Overall, the automated platforms could prepare solute-excess saturated
solutions and qNMR samples with minimal human intervention.

With our automated HTE workflow, the total experimental time
to finish the solubility measurement for 42 samples is ca. 27 h
(~39min/sample, less time per sample with running more samples).
As shown in Fig. 2g, this is more than 13 times faster than processing
samples one by one manually using the ‘excess solute’ approach,
which requires approximately 525min per sample (Supplementary
Table S1). While the screening speed of our HTE workflow based on
the ‘excess solute’ method is comparable to that of the automated
platformproposed by Shiri et al. (20–80min/sample)27, there are two
important distinctions. First, we measured thermodynamic solubi-
lity, whereas Shiri and co-workers used the ‘excess solvent’ method
for kinetic solubility measurements. Second, our workflow processes
42 or more samples at once, while Shiri et al.’s platform operates on
one sample at a time.

In addition to the speed enhancement provided by the HTE sys-
tem, we placed a strong emphasis on controlling experimental con-
ditions, e.g., temperature (20 °C) and stabilization time (8 h), to ensure
accurate measurements of BTZ solubility in various organic solvents.

Nevertheless, as shown in Supplementary Fig. S3a, we found slightly
lower solubility values for BTZ in certain solvents compared to existing
data40. This difference is likely attributed to variations in our metho-
dology and the specific conditions of our experiments. Indeed, the
influence of temperature on solubility highlights the need for stan-
dardized measurement techniques and comprehensive documenta-
tion of testing conditions. To ensure reproducibility,wealsoemployed
two control samples (2M and saturated BTZ solutions in ACN) in every
batch, particularly when repeat testing was not possible. The con-
sistency of solubility values in these control samples across multiple
batches, with a relative standard deviation of less than 5%, as shown in
Supplementary Fig. S3b, validates the reliability and precision of our
HTE approach, ensuring the generation of repeatable and high-
fidelity data.

Based on our literature review and consideration of solvent
properties19, we made a list of 22 potential solvent candidates for BTZ
(Table 1). Then, we further enumerated an additional 2079 binary
solvents by combining those 22 single solvents in pairs, each with 9
different volume fractions (e.g., 0.1:0.9, 0.2:0.8,…., 0.9:0.1). From this
point we adopt a naming convention for our binary solvent systems
such that S1:S2 @ f1:f2 denotes a mixture of solvent S1 and S2 at a
volume fraction of f1 and f2, respectively (f1 + f2 = 1). As the surrogate
model, i.e., Gaussian Process Regression (GPR), plays an important role
in determining the performanceof any BO approach, wefirst set out to
evaluate the feasibility of usingGPR for predicting the solubility of BTZ
in various single and binary solvent systems. To create the training
dataset, we carried out solubility measurement for all 22 single sol-
vents and 36 randomly selected binary solvents of equal volume (listed
in Supplementary Tables S2 and S3). Since each solvent sample con-
sists of BTZ and up to two solvents, we considered a total of 11 relevant
features derived from physicochemical properties and electronic
structure calculations (DFT) of both the solvent and solute (e.g.,
molecular weight and topological polar surface area of a solvent
molecule, computed maximum and minimum partial charge of a sol-
vated BTZ molecule) as features for the GPR model (see Supplemen-
tary Table S4 for the complete list of features). The selection of such
features was inspired by previous works42,43 and further assessed by
human experts.

The parity plot comparing GPR-predicted molarities to experi-
mental measurements for our training set is shown in Fig. 3a. We
observed a reasonable prediction accuracy with R2 = 0.81, RMSE =
0.48M, and MAE=0.29M. To test the generalizability of our GPR
model, we picked and evaluated an additional set of 40binary solvents

Fig. 2 | Overview of the automated high-throughput experimentation (HTE)
platform. a Schematic representation of the automated HTE system for solubility
measurement. The automation process consists of powder (b) and solvent (c)
dispensing, (d) saturated sample monitoring, and nuclear magnetic resonance

(NMR) sampling (e) and analysis (f). g Evaluated experimental time per sample for
different solubilitymeasurementmethods. The data for automated ‘excess solvent’
method was estimated from the work of Shiri and co-workers27. The details on
experimental time per sample are given in the SI (Supplementary Table S1).
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(Supplementary Table S5). This test set was selected via Latin hyper-
cube sampling to maximize its diversity36. As expected, the model is
less accurate on the test set (R2 = 0.63, RMSE =0.7M,MAE =0.55M) as
compared to the training set. Regardless, given the fact that our GPR
model was trained on only ca. 3% of the entire search space (58 out of
2101 solvents), we found such performance satisfactory. In addition,
the octanol-water partition coefficient value of the solvent (logP_solv)
is identified as the most important feature of the GPRmodel based on
feature permutation analysis, and a correlation between GPR-
predicted solubility and logP_solv is indeed observed (Fig. 3b, inset).
Here, logP_solv represents the octanol-water coefficient for a solvent,
serving as ameans to assess the polarity disparity between that solvent

and water. If we consider the polarity of water as our baseline, given
that the polarity variance between BTZ and water remains constant,
then logP_solv effectively characterizes the polarity distinction
between a solvent and BTZ. Similarly, TPSA_solv, denoting the topo-
logical polar surface area of a solvent molecule, indirectly offers
insights into the localized polarity contrast between a solvent andBTZ.
These findings are consistent with the current knowledge of solubility
as a function of polarity, as in the general solubility equation proposed
by Yalkowsky et al.42.

Theobservedperformanceof theGPRmodel provides confidence
in its usage as the surrogate model in a BO workflow for identifying
solvents with the desired solubility of BTZ. Before deploying a BO

Table 1 | List of 22 organic solvent candidates and their physicochemical properties

Full name Abbr. Formula B.P.a(oC) M.P.b(oC) ρc(g mL−1) εd

Dimethoxyethane DME C4H10O2 84.5 −58 0.868 7.2

Dioxane DOX C4H8O2 101.3 11.8 1.03 2.25

Acetonitrile CAN C2H5N 81.6 −45 0.786 37.5

N,N-Dimethylformide DMF C3H7NO 153 −61 0.944 36.71

N,N-Dimethylacetamide DMA C4H9NO 166.1 −20 0.94 37.78

Propylene carbonate PC C4H6O3 240 −48.8 1.2 64

n-Butylacetate BA C6H12O2 126.1 −78 0.882 5.01

Dimethyl sulfoxide DMSO C2H6OS 189 19 1.1 46.68

Cyclohexane CH C6H12 80.7 6.47 0.779 2.02

Toluene TOL C7H8 110.6 −95 0.867 2.38

Heptane HP C7H16 98 −90.55 0.684 1.92

Octane OT C8H18 125 −57 0.703 1.95

1-Propanol PA C3H8O 97 −126 0.803 21

p-Xylene PX C8H10 138 13.2 0.861 2.35

m-Xylene MX C8H10 138 −48 0.86 2.37

o-Xylene OX C8H10 143 −24 0.88 2.57

N-Methyl pyrrolidinone NMP C5H9NO 202 −24 1.03 32.3

Cyclohexanone CHO C6H12 154 −31 0.995 16.1

Hexamethylphosphoramide HMPA C6H18N3OP 157 7.2 0.779 30.54

Butyronitrile BTN C4H7N 230 −111.9 1.03 24.83

Adiponitrile APN C6H8N2 115 1 0.794 32.73

Glutaronitrile GTN C5H6N2 295 −29.6 0.951 35.1
aBoiling point.
bMelting point.
cVolumetric density.
dDielectric constant.

Fig. 3 | Gaussian Process Regression (GPR). a Parity plot of GPR-predicted solu-
bility versus measured values from experiment. The error bars represent one
standard deviation. b List of the most important features obtained from feature
permutation analysis of the GPR model. HOMO_sol, TPSA_solv, and logP_solv
represent the computed energy of the highest occupied molecular orbital of the

solute molecule, the calculated topological polar surface area of the solvent
molecule, and octanol-water partition coefficient value of the solvent, respectively.
The inset shows the correlation between GPR predictions and the most important
feature (logP_solv). The black dashed line indicates the linear fit of predicted
solubility with respect to logP_solv. Source data are provided as a Source Data file.
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model for the remaining candidate library of 2003 binary solvents, we
first performed a benchmarking experiment using the current known
dataset of 98 solvents. The goal of this experiment was to evaluate the
effectiveness ofBO in identifying the solventwith the highest solubility
of BTZ, namely DOX:DMF @ 0.6:0.4, out of all 98 solvents in the
dataset. A schematic representation of our BO algorithm is shown in
Fig. 4a. Initially, a set of 5 randomly selected solvents were evaluated
and their corresponding solubilities of BTZ were used to train a GPR
surrogate model for solubility prediction. This model was then
employed to predict the solubility of BTZ, with quantified uncertainty,
for the remaining 93 solvents. Based on the predicted values, an
acquisition function, namely expected improvement (EI), was used to
rank 93 solvents for their potential to maximize solubility. The solvent
with the highest EI-score is then evaluated, and subsequently added to
the training set. This completes the first loop of BO, and the second
loop begins with six training datapoints and 92 remaining candidates.
The iterative process is continued until DOX:DMF @ 0.6:0.4, the sol-
vent with the highest BTZ molarity of 6.25M, is found. To generate
reasonable statistics for the performance of BO, we repeated our
experiment 100 times with different initial sets of five randomly
selected solvents. Our results indicate that on average BO identifies
DOX:DMF@0.6:04 after suggesting a total of 17 ± 11 out of 98 solvents
for solubility evaluation (Fig. 4b). For comparison, random selection
requires approximately 50± 27 solubility measurements to find the
same solvent. We also performed t-test on the two distributions and
obtained a p-value of 1.17 × 10−20, indicating that the performance
improvement of BO over random selection is statistically significant.
Furthermore, different acquisition functions such as Thompson sam-
pling, upper confidence bound, and probability of improvement can
also be used with BO to identify the optimal solvent more quickly than
random selection; however, EI is shown to have the best performance
among them (Supplementary Fig. S4). Overall, we found BO to be a
robust and efficient approach for accelerating the identification of
solvent candidates with the desired solubility of BTZ.

For the final screening that aims at identifying the binary solvent
systems with highest solubility of BTZ among the remaining 2003
candidates, all 98 labeled samples were used to initialize the BOmodel.
By employing a similar workflow as shown in Fig. 4a, we carried out a
total of three BO cycles, wherein 40 solvent samples were suggested

and evaluated per cycle (Supplementary Tables S6–S8). As shown in
Fig. 5a, after the first cycle (1st batch), we discovered a new binary
composition, namely DOX:DMSO@ 0.8:0.2, with a higher solubility of
BTZ than that of the best solvent (DOX:DMF@0.6:0.4) in the initial set
of 98 solvents (6.50M vs 6.25M). In addition, the solubility distribution
is more concentrated at higher values for solvents in the first batch
compared to those in the initialization set, and the trend continues as
more cycles were carried out. However, the median and maximum
molarities that peak in the first cycle slightly decrease in the sub-
sequent cycles (from 5.98M to 5.88M to 5.69M for median molarity
and from 6.50M to 6.45M to 6.25M for maximum molarity). We
hypothesize that, since the best binary solvent composition which is
DOX:DMSO @ 0.8:0.2 had already been identified in first cycle, only
solvent candidates with lower solubility (<6.50M) were found in sub-
sequent cycles. More importantly, we were able to identify 18 new
binary solvent systems with solubilities of BTZ greater than 6.20M,
after conducting only 218 measurements from over 2,000 potential
candidates. The solubility values of the top five binary solvents,
depicted in Fig. 5b, are quite similar, ranging from 6.40 to 6.50M. It is
also noted that this list is biased towards DOX-containing mixtures,
which is reasonable as DOX possesses the highest solubility of BTZ
(5.47M) among all single solvents. We believe that the value of our BO
model lies in its ability to exploit the synergistic effects in solvent
mixing that cannot be easily perceived by chemical intuition. As it is
shown in Fig. 5b, all binary solvents yield markedly higher solubility for
BTZ compared to that of their constituents. Notably, the combination
of DOX with GTN, a low solvating solvent (1.86M), leads to an unex-
pectedly and highly soluble system for BTZ at 6.48M.While the current
model is robust for solubility prediction of BTZ in binary solvents, we
recognize it is necessary to further extend its application toward more
complex systems of more than two components, as practical NRFB
electrolytes also include supporting salts and other organic species. In
addition, since solubility is not the only property that affects the elec-
trochemical performance of electrolytes in NRFBs, future generations
of the ML-guided HTE platform should account for other important
factors such as viscosity, ionic conductivity, and chemical stability.

In summary, we have showcased an ML-guided HTE platform for
electrolyte screening wherein ML predictions and automated experi-
ments work in unison to efficiently screen for binary organic solvents

Fig. 4 | Identification of desired electrolytes via Bayesian optimization (BO).
a Schematic representation of Bayesian optimization algorithm for accelerated
screening of binary solvents with desired solubility of BTZ. The algorithm starts
with training a surrogatemodel using an initial datasetofmeasured solubilities. The
resultingmodel is then employed to predict solubilities of solvent candidates from
a database. Based on these predictions and their uncertainties, unknown candi-
dates are ranked according to their potentials to improve over their known

counterparts. The top-ranking solvents are suggested for experimental evaluations,
from which new data are obtained and used for re-training a new surrogate model
in the next round of BO. b Comparison between BO and random selection for the
number of required evaluated solvents before identifying the one with highest
solubility of BTZ from the 98 solvent dataset. The height of the color bar and black
error bar represent the mean and standard deviation of 100 trials. Source data are
provided as a Source Data file.
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with optimal solubility for BTZ. With this platform, we successfully
identified 18 binary solvent systems with BTZ solubility surpassing
6.20M after conducting measurements for only 218 out of 2101 can-
didates. In the process,we constructed a highly standardized solubility
database encompassing diverse organic solvents, allowing for further
development of ML methods for solubility prediction. Our work not
only serves to connect the fields of data science and traditional
experimental science but also lays the groundwork for the future
development of an autonomous platform dedicated to battery elec-
trolyte screening.

Methods
Materials
2,1,3-benzothiadiazole (>99.0%) and 1,4-dinitrobenzene (>99.0%) were
purchased from TCI America. p-xylene, m-xylene, o-xylene, hexam-
ethylphosphoramide and butyronitrile were purchased from Sigma
Aldrich. Cyclohexanone was purchased from TCI America. Other sol-
vents (>99.0% with extra dried condition) were purchased from Acros
Organics and used without any pretreatment.

Preparation of saturated solutions using a high-throughput
automated platform
The saturated solutions were prepared by a robotic platform (Big
Kahuna, Unchained Labs) as shown in Supplementary Fig. S1. Experi-
ment designswere programmedusing the software, Library Studio Ver
9.2 (Unchained Lab). BTZ (TCI America, >99.0%) was first dispensed
into 2ml vials following with prime solvent and secondary solvent as
shown in the experimental design (Supplementary Fig. S5). Sample
solutions in 40 various formulations and two control sample solutions
(2.0M and saturated of BTZ in ACN) (42 solutions total) were prepared
in one 48-vial microplate (Supplementary Fig. S5, top).

The whole powder and liquid dispensing process was performed
in the argon filled glove box. Immediately after solvent dispensing, the
vials were capped to prevent undesired evaporation. The capped vials
were vortexed at 1,000 RPM and stirred at 500 RPM for 1–3 h to pre-
pare the ‘excess solute’ solutions,with confirmationof anyundissolved
solid solute achieved by an on-line vision system (Supplementary Fig.
S6a). Subsequently, the vials were placed on the deck setting at 20 °C
for 8 h to reach equilibrium (Supplementary Table S9). Once the BTZ

solutions reached equilibrium, some BTZ crystals precipitated at the
bottom (Supplementary Fig. S2), and the supernatant (top clear solu-
tion) was used for qNMR analysis.

Solubility measurement via quantitative H-NMR spectroscopy
Quantitative 1H NMR spectroscopy, utilizing 1,4-dinitrobenzene (DNB)
as an internal standard (referred to as INSD), was employed tomeasure
the concentration. The NMR sampling process was done automatically
on the robotic platform. Firstly, DNB was dissolved in deuterated
dimethyl sulfoxide (DMSO-d6, Acros Organics) to prepare an
8.00mgmL−1 INSD bulk solution and placed on the source deck. The
capped sample vials were uncapped while transferring 30 µL of each
saturated solution from liquid phase to NMR tubes (Wilmad-Labglass,
USA) (Supplementary Fig. S6c, d). During the transfer process, aspira-
tion was slowly conducted to avoid undesired suction of BTZ solid
precipitates. After transferring the samples, 600 µL of the INSD solution
was dispensed into each NMR tube, and the tubes were capped. Before
1H NMR measurement, the NMR tubes were shaken thoroughly to
ensure the homogeneous mixing. The 1H NMR spectra were obtained
using a Bruker 400MHz Avance III NMR equipped with SampleCase
(Autosampler). The molar concentrations of BTZ were calculated by
comparing the integrated area ratio with the INSD using Eq. (1):

CBTZ ,sat solution =
VNMR sample

V sat:sol:
� IBTZ
IINSD

�NINSD

NBTZ
�CINSD,NMR ð1Þ

where NBTZ ( = 4) and NINSD ( = 4) are the number of hydrogen atoms in
BTZ and DNB (INSD), respectively. As shown in Supplementary Fig. S7,
the hydrogen atoms in DNB are labeled as ‘a’, whereas those in BTZ are
distinguished as ‘b’ and ‘c’. Subsequently, IINSD is the integrated area of
peak ‘a’ and IBTZ is summation of integrated areas of peak ‘b’ and ‘c’.
CINSD,NMR is themolar concentration of INSD in the NMR solution, which
consists of 30 µL of BTZ sample solution (Vsat.sol.) and 600 µL of INSD
bulk solution, totaling 630 µL (VNMR sample). Prior to the production runs,
we prepared two reference samples in acetonitrile (ACN) with target
BTZ concentrations of 1.0M and 2.0M to evaluate the accuracy of our
automated workflow and qNMR analytical method. The solubilities of
BTZ calculated from NMR spectra were found to be 0.98M and 1.98M
(Supplementary Fig. S7), indicating the accuracy of our approach.

Fig. 5 | Results of the closed-loop solvent screening workflow. a Distribution of
measured solubilities of 2,1,3-benzothiadiazole (BTZ) among all investigated sol-
vents in thiswork. In the inset, thebottomand topwhiskers represent theminimum
andmaximumvalues, respectively. The length of thebox indicates the interquartile
range from the first (lower side) to the third (upper side) quartile. The median and

mean are the horizonal line and square inside the box. b Five binary solvent for-
mulations with the highest solubilities of BTZ (green bar). Solubility values of their
respective pure components are shown as blue dashed lines. Source data are
provided as a Source Data file.
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High-throughput viscosity measurement
We developed a high-throughput viscosity measurement workflow by
integrating automated sampling on our robotic platform (100 µL
saturated solution into a 2ml vial) with a high-throughput viscometer
(VROC® initium one plus, RheoSense) (Supplementary Fig. S8b).
According to our analysis, viscosity displays minimal sensitivity to the
concentration of BTZ, resulting in an increase of less than 2 cP in
solutions. Notably, the majority of saturated solutions exhibits visc-
osity values below 2.5 cP, as illustrated in Supplementary Fig. S8a.

Machine learning
Feature generation. To create an accurate model to predict solubi-
lities of BTZ for unary and binary solvents, we employed several rele-
vant physicochemical descriptors including molecular weight,
topological polar surface area, number of heavy (non-hydrogen)
atoms, and octanol-water partition coefficients of the solvent mole-
cules (logP_solv). In addition, we carried out first-principles simula-
tions of solvated BTZ molecules in different solvents to compute
solute-related descriptors such as solvation free energies, dipole
moments, polarizability, HOMO and LUMO energies, maximum and
minimum partial charges. A total of 11 features were tabulated in
Supplementary Table S4. For simplicity, descriptor values of a binary
solvent are calculated by combining those of its constituents weighted
by their corresponding mol fractions.

Gaussian process regression. A Gaussian Process (GP) is a collection
of random variables, any finite number of which have a joint Gaussian
distribution44. A GP is completely specified by its mean function m(x)
and covariance function (or kernel) k(x,x’), and can be written as:

f xð Þ∼GP m xð Þ, kðx, x0Þð Þ ð2Þ
If x and x’ represent the feature vectors, then their covariance

based on the Matérn kernel (ν = 1.5) is expressed as follows:

k x, x0ð Þ= 1 +

ffiffiffi

3
p

jx � x0j
σl

 !

� exp �
ffiffiffi

3
p

jx � x0j
σl

 !

+ σ2
n ð3Þ

Here, σl andσn are the length scale and the expected noise level in
the data set, respectively. Each parameter was determined using the
maximum likelihood estimate during model training.

Expected improvement (EI) acquisition function. The EI acquisition
function was given by the following equation36,45:

EI xð Þ= μ xð Þ � f x +ð Þ � εð ÞΦ Zð Þ+σ xð Þϕ Zð Þσ xð Þ>0
0σ xð Þ=0

�

ð4Þ

Z =
μ xð Þ � f x +ð Þ � ε

σ xð Þ ð5Þ

where μ(x) and σ(x) are the predicted mean and standard deviation
from the GPR model, f(x). Φ(Z) is the cumulative density function
(CDF), and ϕ(Z) is the probability density function (PDF). f(x+) is the
predicted property of the current best material, and x+ is the feature
vector of thatmaterial. In Eqs. (4) and (5), a constant ε value of 10−2 was
used to balance the trade-off between exploitation (pursuing the trend
of the current best estimates) and exploration (diversifying the search
to avoid local optima).

Density Functional Theory (DFT)
All DFT simulations were performed using Gaussian 16 software46 at
the b3lyp/6-31 +G(d,p)44 level of theory. Numerical integrations were
carried out using the ultrafine grid. To compute the properties of BTZ
in 22 unary solvents, self-consistent reaction-field (SCRF) calculations

using the Polarizable Continuum Model (PCM) were employed (See
Table 1 for the list of dielectric constants). The Gibbs free energies of
BTZ (at 298K) in the gas phase (GBTZ,gas) and in the solvent (GBTZ,solvent)
were used to calculate the solvation free energy (Gsolv) in each of the
solvents via the following equation:

Gsolv =GBTZ,solvent � GBTZ,gas ð6Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this study are provided in the Supplementary
Information SourceData file. Source data are providedwith this paper.

Code availability
Code is available on Zenodo47 and Github repository: https://github.
com/MolecularMaterials/AL-HTE-Electrolyte.
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