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Genetic control ofDNAmethylation is largely
shared across European and East Asian
populations

Alesha A. Hatton 1, Fei-Fei Cheng1,2, Tian Lin 1, Ren-Juan Shen3,4, Jie Chen4,
Zhili Zheng 1, Jia Qu4, Fan Lyu4, Sarah E. Harris 5, Simon R. Cox 5,
Zi-Bing Jin 3,4, Nicholas G. Martin 6, Dongsheng Fan7,
Grant W. Montgomery 1, Jian Yang 2,8, Naomi R. Wray 1,9,
Riccardo E. Marioni 10, Peter M. Visscher 1 & Allan F. McRae 1

DNA methylation is an ideal trait to study the extent of the shared genetic
control across ancestries, effectively providing hundreds of thousands of
model molecular traits with large QTL effect sizes. We investigate cis DNAm
QTLs in three European (n = 3701) and two East Asian (n = 2099) cohorts to
quantify the similarities and differences in the genetic architecture across
populations. We observe 80,394 associated mQTLs (62.2% of DNAm probes
with significantmQTL) to be significant in both ancestries, while 28,925mQTLs
(22.4%) are identified in only a single ancestry. mQTL effect sizes are highly
conserved across populations, with differences in mQTL discovery likely due
to differences in allele frequency of associated variants and differing linkage
disequilibrium between causal variants and assayed SNPs. This study high-
lights the overall similarity of genetic control across ancestries and the value of
ancestral diversity in increasing the power to detect associations and enhan-
cing fine mapping resolution.

Perhaps one of the most notable failures in the study of complex trait
genetics is the insufficient representation of ancestral diversity in
study participants1–4. As such, there is increasing interest in the extent
to which the genetic basis of complex human traits is shared across
different ancestries5–7. For example, Hou et al. utilised admixed indi-
viduals to examine the correlation of causal genetic effects across
ancestries, finding minimal heterogeneity8. Such studies are of parti-
cular interest as the extent of shared genetic control across ancestries
and the similarity in effect size of associated genetic variants has
implications both for the portability of polygenic scores (PGS) and for

disease gene discovery9,10. Molecular traits serve as a high throughput
way of examining causal genetic effects across ancestries. For exam-
ple, genome-wide DNA methylation (DNAm) provides hundreds of
thousands of molecular phenotypes with large genetic effects11,12, the
combination of which enables substantial insight into the genetic
control of DNAm to be obtained with relatively modest sample sizes.
DNAm can therefore be used as a model trait for understanding the
genetic control of complex traits and disease. In addition, as differ-
ential regulation of the genome underlies the majority of the variation
in complex traits13–16, DNAmmay elucidate the biological mechanisms
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underlying phenotypic variation due to its potential role in mediating
SNP-trait effects. Cumulatively, these factors implicate the ideal role of
DNAm for studying the degree of shared genetic architecture of
complex traits across ancestries.

Many associations across the genome between DNAm levels and
common genetic variants have been identified through DNAm quan-
titative trait loci (mQTL) analyses11,17,18. In fact, mQTLs have been
identified at up to 45% of measured locations19–22, with a large pro-
portion of the genetic control of DNAm located cis to the DNAm
probe18,23. As is seen in complex trait GWAS24, the majority of studies
into the genetic control of DNAm are performed in cohorts of Eur-
opean (EUR) ancestry11,12,17,18,22,25,26. Relatively few studies have been
performed in other populations27–31, most of which are limited by
sample size. This is despite evidence for population differences in
variation of DNAm28,32–35, with genetic ancestry found to explain the
majority of such variation between ancestral groups28,34. As such, the
degree to which associated genetic variants are shared between
populations is not fully understood.

To that end, we performed cis-mQTL analysis comparing dis-
covery between EUR and East Asian (EAS) populations using a unified
study protocol. This allowed us to assess the degree of shared genetic
control between these populations and elucidate differences in
genetic architecture driving ancestry-specific associations. We addi-
tionally utilise DNAm to investigate the relative improvement in fine
mapping resolution of causal variants between single and cross-
ancestry finemapping on a large-scale and to interrogate the presence
of ancestry-specific pleiotropic associations with DNAm.

Results
Identification of cis-mQTLs
Wemapped the genetic influences on DNAm in three EUR cohorts and
two EAS cohorts with total sample sizes of 3701 and 2099, respectively
(Fig. 1 and Table S1). We performed cis-mQTL analysis for each DNAm
probe by regressing against SNPs 1Mb upstream and downstream of
the target DNAm probe. This was performed individually for each
cohort using a unified study protocol. A stringent significance
threshold of p < 10−10 was used, along with a replication threshold of
p < 10−6. The most significant SNP for each DNAm probe, referred to
here as the lead SNP is considered in the subsequent analysis.

A total of 112,390 (27.8%) DNAm probes with at least one asso-
ciated SNP that satisfied the p < 10−10 significance threshold were
identified across all cohorts, of which 19,047 (4.7%) were significant in
all five cohorts (Table 1). The limited of overlap across the five cohorts,
in part, results from limited statistical power due to sample size, as
demonstrated by the relationship between sample size and number of
mQTL identified (Table 1). We estimated the correlation of mQTL
discovery between cohorts by assessing the correlation in SNP effects,
taking into account the standard error of the effect size estimate using
amethodproposedbyQi et al.36. Correlationswerecalculatedbetween
the lead SNPs from the discovery cohort and the corresponding SNP
effect in each replication cohort. While the correlation of SNP effects
was high between all cohorts (rb ranging from 0.83 to 0.97), pairwise
correlation estimates are largest between cohorts of the same ancestry
(rb >0.9 between EUR cohorts and rb >0.94 between the two EAS
cohorts; Figs. 2 and S1).

Ancestry based mQTL meta-analysis
Cohort level results were meta-analysed within ancestry (Table 1).
There were 129,155 (31.9%) DNAm probes with a significant mQTL
identified in at least one ancestry, with 80,394 (62.2% of DNAm probe
with significant mQTL) significant at p < 10−10 in both ancestries. An
additional 18,449 DNAm probes had a significant mQTL in at least one
ancestry that previously were not significant in any cohort. There was
little difference in the median distance between lead SNPs and DNAm
probes across ancestries (6.8Kb for EUR mQTLs and 7.5Kb for EAS
mQTL; Table 1). As reported previously17, among cis-mQTLs, sig-
nificance increases as the distance between the genetic variant and
DNAm probe decreases, and this was observed to occur similarly
across ancestries (Fig. S2). DNAm probes associated with genetic var-
iationwere associatedwith amedianof 115 (IQR = 263) SNPs inEURand
102 (IQR = 214) SNPs in EAS, reflecting LD between nearby variants.

We estimated the concordance in mQTL discovery between
ancestries by assessing the correlation in effect size of the lead SNPs
from each ancestry and the corresponding SNP in the alternate
ancestry. For each ancestry, lead SNPs were ascertained by p value
separately as to minimise upwards bias and the correlation in SNP
effects estimated. There was a strong correlation between SNP effects
in mQTL discovery for each ancestry (rb_EUR = 0.85 (se 0.002) and

EUR
n = 3,701

XXX mQTLs

By cohort cis-
mQTL analysis

Ancestry based 
meta-analysis

EAS
n = 2,082

XX mQTLs

cis-mQTLs Sets

SGPD
n = 1,659

89,328 mQTLs

EUR
n = 3,701

113,976 mQTLs

EAS
n = 2,099

95,583 mQTLs

129,155 cis-mQTLs 

one ancestry

80,394 mQTLs stringently 
replicated in both 

ancestries
-10

(62.2%)

28,925 mQTLs not 
replicated across 

ancestries
−10 in one 

ancestry and not nominally 
-6) in the 

other  (22.4%)

LBC
n = 1,437

70,872 mQTLs

BSGS
n = 605*

24,147 mQTLs

CHNMND
n = 651

66,491 mQTLs

THCH
n = 1,448

73,638 mQTLs

Fig. 1 | Study overview. Shown are the number of DNAm probes with significant
mQTL detected across the five cohorts and following subsequent ancestry-based
meta-analysis. The cis-mQTL results were split into two distinct sets to identify
those mQTLs stringently replicated in both ancestry and those not replicated
across ancestries. A Bonferroni corrected, two-sided p value threshold of p < 10−10

was used to define significance at the cohort level from linear regression andmixed
linear regressionmodels, and at the ancestry level using inverse variance-weighted
meta-analysis. *BSGS cohort includes related individuals from 177 families. Created
with BioRender.com.
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rb_EAS = 0.91 (se 0.001); Fig. S3), with the pairwise correlation estimates
to be in line with those observed between cohorts of different
ancestries.

It has been previously reported in Europeans that DNAm probes
with significant mQTL are differentially distributed across genomic
features11. We investigated whether this was consistent between
ancestries using annotations from the Illumina Infinium HM450 man-
ifest file (v1.2). We observed no difference in the genic distribution of
mQTLs between ancestries, or in the distribution of CpG island

features, illustrating consistency in distributions between ancestries
(Fig. S4).

Shared mQTLs across ancestries
We assessed the degree of shared genetic control of DNAm between
EUR and EAS by constructing a set of mQTLs that were stringently
significant in both ancestries. This comprised 80,394 DNAm probes
where the lead SNPwas significant at p < 10−10 in both ancestries (62.2%
of DNAm probes with significant mQTL). We extracted the lead SNP at
each mQTL and the SNP effect in the corresponding ancestry and
found very strong agreement in SNP effects between ancestries when
accounting for the standard error of the effect size estimate
(rb_EUR = 0.92 (se 0.001), rb_EAS = 0.94 (se 0.001); Fig. 3a). We compared
the DNAm probes that met our criteria for significant mQTLs in both
ancestries with the 70,709 DNAm sites where Hawe et al. identified cis-
mQTLs that replicated in 3799 EUR and 3195 South Asian individuals31.
Of the 65,522 of the DNAm probes that were in common with our
analysis set, 46,332 (70.7%of theDNAmprobes)were also significant in
both ancestries in our study.

We assessed evidence for putative shared genetic associations for
each mQTL that was significant in both ancestries by comparing
regional LD (Table 2). In total, 9153DNAmprobes shared the same lead
SNP between ancestries (11.4% of the mQTLs significant in both
ancestries). For an additional 40,648 (50.6%) the lead SNPs were in
strong LD (r2 between lead SNPs >0.8 when assessed in individuals of
EUR or EAS ancestry from the 1000 Genomes reference panel
(1000G)37; Fig. 3b). For those DNAm probes where the lead SNPs were
not in strong LD, we quantified the proportion where the lead SNP in
each ancestry strongly tagged a common SNP. We constructed LD
blocks for each mQTL by identifying SNPs in strong LD (r2 > 0.8) with
the lead SNP and compared the overlap in LD blocks between ances-
tries, identifying 3069mQTLswithoverlapping LDblocks. Thus, a total
of 52,870 lead SNP across ancestries are either the same, are in high LD,
or strongly tag common SNPs (65.8% ofmQTLs that were significant in
both ancestries). These observations support the hypothesis of shared

Table 1 | Cis-mQTL analysis identified 112,390 unique DNAm
probes with significant mQTL across the five cohorts with
within-ancestrymeta-analysis increasing discoverymQTLs at
129,155 DNAm probes

Sample size Number of
DNAm
probes
with mQTL

Percentage of
DNAm probes
with mQTL

Median distance
between DNAm
probe and lead
SNP (Q1–Q3; Kb)

Cohort

SGPD 1659 89,328 22.1% 6.8 (1.2–23.5)

LBC 1437 70,872 17.5% 5.2 (0.7–19.8)

BSGS* 605* 24,147 6.0% 4.9 (0.7–17.9)

CHNMND 651 66,491 16.4% 4.3 (0.7–16.4)

THCH 1448 73,638 18.2% 9.1 (2.4–28.1)

Ancestry

EUR 3701 113,976 28.2% 6.8 (1.2–24.8)

EAS 2099 95,583 23.6% 7.5 (1.7–24.7)

Shownare thenumber of DNAmprobeswith significantmQTLdetected in each cohort and each
meta-analysedancestry, alongside themediandistancebetween theDNAmprobe and leadSNP.
Q1 and Q3 denote the first and third quartiles. A Bonferroni corrected, two-sided p value
threshold of p < 10−10 was used to define significance at the cohort level from linear regression
and mixed linear regression models, and at the ancestry level using inverse variance-weighted
meta-analysis. *BSGS cohort includes related individuals from 177 families.
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Fig. 2 | The correlation (rb) of cis-mQTL SNP effects across cohorts. Correlations
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sponding SNP effect in the replication cohort. Shown are the estimates of rb with

corresponding standard errors in parentheses. Cohorts of the same ancestry,
boxed in red (EUR cohorts) andpurple (EAScohorts), have a stronger correlation of
effect sizes than observed across ancestries.
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signals across ancestries. For the remaining DNAm probes with a sig-
nificant mQTL in both ancestries, we investigated the presence of
multiple independent SNPs within the mQTL window by performing a
conditional mQTL analysis. We identified a median of three indepen-
dently associated SNPs at each DNAm probe in EUR, with the EAS lead

SNP identified as a conditionally independent EUR mQTL at the same
DNAm probe for 1031 mQTLs (1.3% of mQTLs that were stringently
significant in both ancestries). A further 3999 (5.0%) were found to
have overlapping LD blocks between the EAS lead SNP and at least one
of the conditionally independent EUR mQTLs. Therefore, in
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Fig. 3 | Evidence for shared genetic association at cis-mQTLs identified in both
populations. a The correlation (rb) of cis-mQTL SNP effects between ancestries for
80,394 DNAmprobes with significant mQTL identified in both populations. Shown
are effect sizes of the lead SNPs from each ancestry and the corresponding SNP
effect in other ancestry. Correlations are presented with corresponding standard

errors in parentheses. b LD between lead SNPs for DNAm probes with significant
mQTL identified in both populations. Shown are the r-squared values between lead
SNPs calculated using the 1000 Genomes reference panel for the subset of EUR
samples (79,391 SNP pairs; left) and EAS individuals (78,108 SNP pairs; right).

Table 2 | Relationships between EUR and EAS lead SNPs for the 80,394 DNAm probes where the lead SNP was significant in
both ancestries

Relationship between lead SNPs Number of mQTLs Percentage of DNAm probes with mQTL

Same lead SNP with matching effect direction 9153 11.4%

Lead SNPs in strong LD 40,648 50.6%

Overlap in LD blocks of lead SNPs 3069 3.8%

EAS lead SNP identified as a conditionally independent EUR mQTL 1031 1.3%

Overlap in LD block between EAS lead SNP and conditionally independent EUR mQTL 3999 5.0%

Total mQTLs with evidence of a putative shared genetic association 57,900 72.0%

mQTLswhich satisfymore stringent (higher) criteria are not carried through to the subsequent (lower) categories. A Bonferroni corrected, two-sided p value threshold of p < 10−10 was used to define
significance from the inverse variance-weightedmeta-analysis. Strong LD is defined as r2 between lead SNPs >0.8. LD blocks were constructed for each lead SNP by identifying all other SNPs these
were in strong LDwith andcompared the overlap in LD blocks between lead SNPs for the sameDNAmprobe.%DNAmprobeswithmQTL is givenwith respect to the 80,394DNAmprobeswhere the
lead associated SNP obtained significance at p < 10−10 in both ancestries.
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combination there was evidence of a putative shared genetic associa-
tion at mQTLs for 57,900 of the 80,394 DNAm probes (72.0%) which
were significant in both ancestries (Table 2).

Cross-ancestry fine mapping of shared mQTLs
By leveraging the differences in LD structures across ancestries, we
aimed to quantify the gain in resolution for cross-ancestry fine map-
ping. We did this by contrasting 95% credible set sizes calculated from
single and cross-ancestry fine mapping of mQTL summary statistics.
For single ancestry fine mapping, to generate credible sets of putative
causal variants we employed the Sum of Single Effects (SuSiE) in both
EUR and EAS populations38. For cross-ancestry fine mapping we used
SuSiEx39 which builds on SuSiE by integrating both EUR and EASmQTL
summary statistics and explicitly modelling population-specific allele
frequencies (AF) and LD patterns. For both methods we utilised LD
information from 1000G EUR and EAS reference populations for each
of the respective ancestries. Fine mapping was performed for mQTLs
in the stringent set with the same lead SNP in both ancestries,
excluding those in the MHC region. Where multiple mQTLs had the
same lead SNP, only those with the smallest p value was included
leaving 6385 mQTLs. The mean 95% credible set size when fine map-
ping using SuSiE in a single ancestry was 3.0 and 3.2 for mQTLs iden-
tified from EUR and EAS samples respectively (both with median of 2
SNPs). Cross-ancestry fine mapping using SuSiEx yielded a 24.7% and
28.9% reduction in mean credible set size relative to single ancestry

fine mapping in EUR and EAS samples at the same loci respectively
(mean cross-ancestry credible set size of 1.5 SNPs, median of 1 SNP;
Fig. 4a). As an example, we demonstrate the improvement in fine
mapping resolution for DNAm probe cg09192572, where single
ancestry fine mapping yielded a credible set of 5 SNPs in EUR and 3 in
EAS. In contrast, 1 SNPs was identified in the cross-ancestry credible
set (Fig. 4b).

To determine if the improved resolution for the cross-ancestry
case was greater than would be obtained from the increased sample
size in the EUR ancestry alone, we assessed the expected relationship
between increase in sample size and reduction in fine mapping cred-
ible set size. We simulated DNAm phenotypes from the above mQTLs
using different sample sizes for a subset of EUR samples from the
United Kingdom Biobank (UKB) cohort40. A single DNAm phenotype
was simulated for eachmQTL assuming the lead EURSNP as causal and
mQTL analysis performedbetween the simulatedphenotypes andUKB
subsets. Fine mapping of the mQTLs using SuSiE was performed using
the simulatedmQTL summary statistics and the resulting 95% credible
set sizes were recorded across DNAm probes and UKB subsets. The
simulated mQTLs fine mapped to a similar resolution as the EUR
mQTLs for the given sample size. We found a 2-fold increase in the
number of a EUR samples resulted in a smaller percentage reduction in
credible set size compared to the addition of 2099 EAS samples
(Table S2). That is, relative to the baseline of 3701 samples, an increase
in sample size of 4099 EUR samples still did not yield the same

Fig. 4 | Cross-ancestry fine mapping improves resolution between cohorts of
EUR and EAS ancestry. a Box plot of size of 95% credible set presented for 6385
mQTL associations in EUR, EAS and cross-ancestry populations. Single ancestryfine
mapping was performed using SuSiE and cross-ancestry using SuSiEx. The cross-
ancestry fine mapping resulted in decreased mean credible set size compared to
single ancestry finemapping performed in samples of EUR and EAS ancestry due to
leveraged differences in LD structures across ancestries. Median values are shown
in each boxplot, the box denotes the interquartile range and whiskers denote the

rest of the data distribution. b Fine mapping of DNAm probe cg09192572
demonstrates improved resolution by incorporating cross-ancestry information.
Single ancestry fine mapping using SuSiE generated credible sets of 5 SNPs in EUR
shown in red (left) and 3 SNPs in EAS shown in purple (right). The cross-ancestry
credible set calculatedusing SuSiEx resulted ina refined setof 1 SNPs shown inblue.
p values are from an inverse variance-weightedmeta-analysis and are not corrected
for multiple testing.
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percentage reduction in mean credible set size as achieved by the
addition of 2099 EAS samples. This demonstrates that across all loci,
the improved fine mapping resolution is partly due to cross-ancestry
differences in LD structure rather than purely the result of increased
sample size.

Ancestry-specific mQTLs
To identify mQTLs that were ancestry-specific, we constructed a set of
DNAmprobes where the lead SNPwas stringently significant (p < 10−10)
in one ancestry andwasnotnominally significant (p > 10−6) in theother.
Such ancestry-specific mQTLs were classified as either EUR-mQTL or
EAS-mQTL based on the significant ancestry. This set encompassed a
total 28,925 DNAm probes with ancestry-specific mQTL (22.4% of all
DNAm probes with significant mQTL), of which 21,084 were EUR-
mQTL (72.9%) and 7841 were EAS-mQTL (27.1%). We excluded mQTLs
at 416DNAmprobeswhich had the same lead SNP in both ancestries as
well as 149 mQTLs which were significant in one of the alternate
ancestry cohorts as these were potentially due to a lack of statistical
power as opposed to being unique to the ancestral group. To deter-
mine the proportion of mQTLs driven by only a single cohort within
each ancestry, overlap in significance between mQTLs from the
ancestrymeta-analysis and individual cohorts of the sameancestrywas
assessed (Table S3 and Fig. S5). Significance was obtained in at least
two individual cohorts of the sameancestry for 29.5% ofmQTLs (29.8%
for EUR- and 28.7% for EAS-mQTLs).

We investigated the sources of heterogeneity underlying the
ancestry-specific mQTLs including heterogeneity attributable to dif-
ferences in the allele frequency and LD of lead variants across ances-
tries and differences in biological causal effects through examination
of effect sizes. We observed considerable heterogeneity when asses-
sing the AF of each lead SNP in the alternate ancestry using 1000G
reference panel. For 11,621 (55.1%) EUR- and 3607 (46.0%) EAS-mQTLs,
the lead SNP was observed at an extremely rare frequency in the
alternate ancestry (minor AF < 0.01; Fig. 5). In comparison, for those
mQTLs which were shared across ancestries we observed the lead
SNP at an extremely rare frequency in the alternate ancestry for 2.0%
and 1.9% of EUR and EAS lead SNPs respectively. We also investigated

the LD between the lead SNP in the ancestry with significant mQTL
and the most associated SNP in the region for the alternate ancestry
to assess whether there were potential shared mQTLs being missed
due to power considerations. Due to lead SNPs being monomorphic
in the other ancestry, we were unable to calculate LD between lead
SNPs for 4.3% of mQTLs. Of those we were able to calculate, 16,489
(78.2%) of EUR-mQTLs and 6053 (77.2%) of EAS-mQTL were found to
have weak or no LD between lead SNPs (r2 < 0.2 using either EUR or
EAS 1000G). There were very few mQTLs with strong LD between
lead SNPs (3243 with r2 > 0.8 in either EUR or EAS 1000G; 11.2%). We
assessed the effect of the lead SNP in the alternate ancestry, noting
that 48.0% of lead SNPs were not evaluated in the alternate ancestry
during mQTL association testing due to AF filtering in QC. Of those
that were evaluated, we observed lack of replication for most mQTLs
however somewere observed with effects of similarmagnitude in the
same direction, indicating a small proportion of these “ancestry
specific” mQTLs would likely replicate across ancestry with larger
sample sizes (Fig. S6). This suggests that while differences in biolo-
gical causal effects play a role, the observed heterogeneity in mQTLs
across ancestries is largely driven by differences in the allele
frequencies.

We demonstrate the utility of these ancestry-specific mQTLs by
identifying pleiotropic associations with common genetic variation
associated with 220 traits from Sakaue et al.41 (Supplemental Data 1).
Using SMR42, we tested if the SNP effects on the traits were mediated
by DNAm at 28,925 ancestry-specific mQTLs. Across 57 of these traits,
we identified 163 ancestry-specific associations with DNAm
(pSMR < 10−6), of which 147 were unique in EUR and 16 in EAS, with non-
significant heterogeneity (pHEIDI > 0.01; Supplementary Data 2 and
Supplementary Fig. 7). We note that a potential driver of these dif-
ference would be low AF in the alternate ancestry which is likely the
case for 115 (70.6%) of the associations (108 identified in EUR and 7 in
EAS), however the remaining 48 pleotropic associations occur at SNPs
with commonAF in both ancestries (minor AF >0.05). For example, we
identified a unique pleiotropic association in individuals of EUR
ancestry with probe cg19197236 in chromosome2with Glucocorticoid
use (R03BA) (Fig. 6), with no association for either DNAm or R03BA in
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individuals of EAS ancestry (minor AF of SNP rs7608524 of 0.37 in EUR
and 0.41 in EAS).

Discussion
Whilst multiple studies have previously examined the genetic influ-
ences of DNAm, there is limited literature comparing mQTLs between
populations of different ancestries27,28,30,31. We present a cis-mQTL
study comparing discovery between EUR and EAS populations using a
unified studyprotocol to quantify empirically the degreeof shared and
heterogenous genetic control between ancestries. Within ancestry
meta-analysis increased discovery to 129,155 mQTLs (31.9% of the
404,503 DNAm probes analysed) identified in at least one ancestry, an
increase of 18,449 (4.6%) which were previously not significant in any
cohort.

Our study is primarily focused on the identification and char-
acterisation of mQTLs which were shared across ancestries and those
which were unique to a single ancestry to elucidate differences in the
genetic architecture of associations across populations. We observed
80,394 associated mQTLs (62.2% of DNAm probes with significant
mQTL) to be significant inboth ancestries, pointing to a shared genetic
basis of DNAm, while 28,925 mQTLs (22.4%) were unique to a single
ancestry. Discovery of shared mQTLs was compared with Hawe et al.31

which identified cis-mQTLs at 70,709 DNAm sites that replicated in
3799 EUR and 3195 South Asian individuals and of the 65,522 of the
DNAm probes which were in common with our analysis set, 46,332
(70.7% of the DNAm probes) were similarly stringently significant in
both ancestries. Our study demonstrated mQTLs effect sizes to be
highly conserved across populations, with large, positive correlations
observed between all cohorts, indicating the genetic underpinning of
DNAm operates consistently across EUR and EAS ancestries. Despite

this, pairwise correlation estimates were largest between cohorts of
the same ancestry. This is consistent with results observed from Kas-
sam et al., which found correlation estimates of cis-mQTLs SNP effects
to be larger in samples that are more genetically similar, and smaller
for those of ancestries that are more genetically distant when con-
trasting populations of Indian, Chinese, Malay, Bangladesh and EUR
ancestry30.

We show that differences in mQTL discovery are likely due to
differences in AF of associated variants between populations and dif-
fering LD between causal variants and assayed SNPs across popula-
tions. For mQTLs that were identified in only a single population, the
discovery was skewed toward associated variants that had lower AF in
the other population. As a consequence, we noted stark differences in
the LD spectrum between unique mQTL and those mQTLs shared
between ancestries, with a lack of LD between lead SNPs for 77.9% of
ancestry-specific mQTL. Such evidence of heterogeneity in associa-
tions between the two ancestries likely results from both population-
specific variants and shared variants that were undetected in the sec-
ond population due to AF and LD profiles. Further, this study allowed
us to demonstrate the utility of ancestry-specific mQTLs by evaluating
the presence of associations similarly identified across 220 traits and
subsequent pleotropic relationships.

We note that an undetermined proportion of the absence of
replication between ancestries may be attributed to study power. We
sought to quantify this by comparing mQTLs identified in EAS and not
replicated in EUR with the largest mQTL study to date (GoDMC), a
meta-analysis of 27,750 EUR participants22. Of the 4903 EAS-mQTLs
that were in common, 4032 (82.2%) were similarly significant in
GoDMC using their significance threshold of p < 10−8. For comparison,
of the 97,510 mQTL probes significant in our EUR discovery that were
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in common with GoDMC, 97,382 (99.9%) were similarly significant in
GoDMC (regardless of replication in EAS). This suggests that our
identification of ancestry-specific mQTLs is limited by power although
despite this there indeed appear to be some mQTLs which are unique
and are not replicated in EUR samples even in the presence of large
sample sizes.

The utility of cross-ancestry fine-mapping in reducing the number
of putative causal variants has been previously demonstrated formany
complex traits2,7,43–47 including schizophrenia46, type 2 diabetes48,49,
BMI50, RA51 and height7. The success of such methods is supported by
evidence that that association signals are driven by variants shared
across populations2,7,52, despite observed heterogeneity in effect
sies7,46,52. By utilising DNAm as a model complex trait, we identified a
mean reduction in putative causal set size of 24.7% between EUR and
cross-ancestry fine mapping across all loci. By simulating mQTLs from
the UKB using differing sample sizes, we demonstrated more than a
2-fold increase in the number of EUR samples would be required to
achieve the same percentage reduction in causal set relative to the
addition of 2099 EAS samples. This suggests that the improved fine-
mapping resolution across these mQTL loci is more likely the result of
differences in LD structure between populations than the result of
increased sample size alone.

Whilst there is evidence of many mQTL in trans11,18,21,26, we did not
consider trans regions due to their much smaller effects that would
amplify issues of power when comparing across ancestries. Addition-
ally, variation in DNAm has been associated with multiple environ-
mental exposures such as smoking53, sun exposure54 and exercise55,56,
with some also sharing a genetic component57,58. The relationship
between DNAm, genetic variation and environmental exposures may
explain some of the ancestral heterogeneity observed which could be
further explored using gene–environment (G× E) analysis. Lastly, we
note that genetically determined ancestry may not reflect an indivi-
dual’s self-reported ethnicity, and that we are examining a limited
spectrum of the ancestral diversity.

In summary, mapping the genetic factors associated with DNAm
allowed us to gain insight into the large degree of shared genetic
control between EUR and EAS populations and enhanced our under-
standing of the underlying differences in genetic architecture driving
ancestry-specific associations. This study highlights the importance of
incorporating ancestral diversity into genomic studies, both to identify
causal variants through increased power to detect associations as well
enhanced fine mapping resolution.

Methods
Study cohorts
Study cohorts are summarised in Table S1. All study cohorts are of
either EUR or EAS genetic ancestry and contain DNAm derived from
whole blood samples.

SystemsGenomics of Parkinson’s Disease (SGPD). The SGPD cohort
comprises genotype, phenotype and DNAm data for 2333 participants
(1292 PD cases and 1041 controls)59. Participants were recruited as part
of three different studies across Australia and New Zealand. Controls
consist of healthy community-based, age-matched volunteers residing
in the same area and from the same ethnic background as the PD
patients, together with patients’ spouses and siblings. DNAm and
genotyping was performed as reported in Vallerga et al.59. The SGPD
DNAm data are available from the Gene Expression Omnibus (GEO)
under accession code GSE145361.

Lothian Birth Cohorts of 1921 and 1936 (LBC). The LBCs are long-
itudinal studies of aging focusing on lifetime cognitive change60,61,
containing biomarker, genetic, DNAm and cognitive phenotype data
(https://www.ed.ac.uk/lothian-birth-cohorts). The LBC1921 and 1936
cohorts are follow-up studies of the Scottish Mental Health Surveys of

1932 and 1947, with subjects at an average age of 79 years and 70 years,
respectively. An overview of the data collected can be found in the
cohorts’ profile article60,62 and has been described extensively
elsewhere12,63. In the analysis we included the first wave of LBC data.
The LBC DNAm data is available at the European Genome-phenome
Archive under accession number EGAS00001000910.

Brisbane Systems Genomics Study (BSGS). The BSGS is a family-
based study, consisting of adolescent monozygotic and dizygotic
twins, their siblings and parents12. DNAm was measured on 614 indi-
viduals from 177 families of EUR descent. Children have a mean age of
14 years (range 9–23) and parents 47 year (range 33–75). A full
description of the BSGS cohort has been previously provided12,63,64.
DNAm data for the BSGS is available from the Gene Expression
Omnibus under accession code GSE56105.

Chinese Motor Neuron Disease Cohort (CHNMND). The CHNMND is
an Amyotrophic Lateral Sclerosis (ALS) case-control cohort. Partici-
pant recruitment has been described previously65,66. DNAm data was
available for 453 cases and 198 controls, excluding those with familial
Motor Neuron Disease (MND). Deposit of DNAm data in a repository
does not comply with the consent process and ethics approval, but
sharing data is possible by emailing the corresponding author of the
above cohort publications.

Tibetan-Han Chinese high-altitude (THCH). The THCH cohort is a
study on high-altitude adaptation comprised of three groups of EAS
ancestry: 918 NHs (highland Tibetan Chinese), 348 AN (highland Han
Chinese), and 488 NLs (lowland Han Chinese). Tibetan Chinese sub-
jects were recruited from two sites in the Tibetan Plateau (TP), both at
~4100m above sea level, while Han Chinese subjects were collected
from TP andWenzhou (Wz), as previously described67. Primary data of
the Tibetan and Han Chinese subjects are available through applica-
tion at https://www.wmubiobank.org. The median age across all sam-
ples was 38 years old (ranging from 11 to 90) with 74.6% of sample
being female. After standard quality control (QC), 1448 unrelated
individuals were retained.

Genotype imputation and quality control (QC)
Genotyping methods for each cohort are displayed in Table S1. SNP
genotype QC was performed individually for each cohort following
standard protocols68. Genotype data were restricted to autosomes and
SNPs were excluded for missing genotype call rate (>5%), marked
departure from Hardy–Weinberg equilibrium (HWE; p < 10−6) and low
minor allele frequency (AF < 1%) using PLINK (v2.0)69. In order to
classify cohorts into genetically similar groups we inferred ancestry
based on principle component analysis using genetic data. We note
that genetically determined ancestry may not reflect an individual’s
self-reported ethnicity and that we are examining a limited spectrum
of the ancestral diversity. Using the GCTA software (v1.93.2beta)70,
principal components were projected against the 1000 Genomes
reference panel (1000G)37. A threshold of six standard deviations from
the mean of each population cluster was used to remove outlying
individuals. SNPs were excluded based on deviance in minor AF from
1000G by comparingminor AF between each cohort and the ancestry-
matched reference panel. Observations deviant from the threshold
curveof 3 times the standarddeviationwere determined tobeoutliers.
For the THCH cohort SNPs identified from a GWAS between TP Han
and Wz Han subjects were excluded to limit confounding from
population stratification. Further QC exclusionary measures for sub-
jects were:missing genotype call rate (>5%); suspected sample error or
contamination indicated by high heterozygosity or indeterminate
genetic sex.

For each cohort, SNPs were phased using EAGLE2
(v2.0.5) + PBWT71 and imputed against 1000G Phase 3 reference panel
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using Sanger Imputation Service72. The 1000G imputation panel was
specifically selectedover larger referencepanels such as theHaplotype
Reference Consortium, as it was collected from26 populations in AFR,
EAS, Europe, SouthAsia, and theAmericas. This increase in coverageof
non-EUR individuals increase the likelihood of even imputation accu-
racy across ancestries. A GRMwas calculated usingGCTA to determine
the relatedness between individuals based on genotyped SNPs. Rela-
ted individuals were removed using a 5% threshold or controlled for in
downstreamanalysis for familial data. Imputed SNPswere then filtered
based on info score (<0.8), HWE (p < 10−6) and minor AF (<1%). Only
samples with available DNAm data were brought forward for analysis
with the number of SNPs, post imputation and QC, are provided in
Table S1.

DNAm QC and normalisation
For each of the cohorts, all individuals had DNAm assayed on the
Illumina Infinium HumanMethylation450 BeadChip. DNAm levels for
each probe were obtained as the ratio of the methylated probe
intensity to the overall intensity and expressed as Beta-values ranging
between 0 and 100%, representing the proportion of cells methylated
at each site. Normalisation and QC of the DNAm data were performed
independently for each cohort using the R package meffil73. Standard
QC threshold parameters were used to remove individuals with out-
lyingmethylated/un-methylated ratios, highmissing calls, discordance
between reported and estimated sex, and probes with excess miss-
ingness. Predicted cell counts (Bcell, CD4T, CD8T, Mono, Neu and NK)
were calculated using the Houseman algorithm implemented in
meffil74. Probes on the sex chromosomes or those annotated as bind-
ing to multiple sites across the genome were excluded75. After clean-
ing, 404,503 DNAm probes which were common across all cohorts
remained for association analysis.

DNAm adjustment
Within each cohort, individual probes were pre-corrected using a lin-
ear mixed model (R package lme476), adjusted for sex, age, age2 and
estimated cell proportions to account for differences in DNAm
between samples. Random variation was accounted for from array
slide and row effects. Cohort effects were also pre-corrected including
case-control status for SGPD and CHNMND cohorts, and sample origin
(Han/Tibetan) and altitude for THCH cohort. A rank based inverse
normal transformation was performed on the residuals to counteract
departures from normality to reduce the false positive rate.

Cis-mQTL analysis
An overview of the cis-mQTL analysis pipeline is provided in Fig. 1. To
map genetic influences onDNAm,we performed cis-mQTL analysis for
eachDNAmprobe by regressing against SNPswithin a 1Mbwindowon
either side of the target DNAm probe. Analysis was restricted to
measured probes which passedQC in all five cohorts. Association tests
for the LBC, SGPD and CHNMND cohorts were performed using –glm
in PLINK2.077, while –eqtl in OSCA78 was used to analyse the THCH
cohort, with the difference in methodology due to external data cus-
todianship. The BSGS cohort was analysed using the fastGWA in
GCTA70,79 which controls for familial relatedness using a sparse GRM
with a threshold of 0.0580. This has been shown to capture nearly
identical proportions of phenotypic variance as the full GRM. A strin-
gent p = 0.05 Bonferroni correction of p < 10−10 was applied to account
for multiple testing based on the number of probes analysed and the
approximate number of independent SNPs in the 2Mb window (1000
SNPs per 1Mb). The replication threshold was set at p < 10-6 which is
Bonferroni corrected for the approximate number of independent
mQTLs. The most significant SNP for each DNAm probe was retained
and is referred to here as the lead SNP.

Within-ancestry meta-analysis
We performed meta-analysis (fixed effects, standard inverse-variance
weighted) to combine mQTL associations from cohorts of the same
ancestry (see Table S1). This was performed using –meta in OSCA
(v0.46)78.

The mQTL results were split into two distinct sets: Stringent set—
DNAm probes where the lead SNP was stringently significant in both
EUR and EAS ancestries (p < 10−10). This set aimed to determine mQTL
that were shared across ancestries; Not replicated set—DNAm probes
where the lead SNP was stringently significant in one ancestry
(p < 10−10) and was not nominally significant in the other (p > 10−6). This
set aimed to determine mQTL which were unique to a single ancestry
(while acknowledging differences in power). For ease of explanation,
DNAm probes with mQTL that were stringently significant in one
ancestry and not replicated in the second are denoted by the ancestry
with the stringently significant mQTL (EUR-mQTL or EAS-mQTL).

LD patterns for cis-mQTLs between ancestries
The pairwise-correlation between alleles of the lead SNP for mQTLs in
eachancestrywas calculated to determine ifmQTLswere in LD. LDwas
calculated using 1000G as an external reference panel, individually for
the subset of 503 EUR (EUR-1000G) and 504 EAS individuals (EAS-
1000G). In addition, LD blocks were constructed for lead SNPs using
the corresponding ancestry-specific subset of 1000G, with LD blocks
defined as SNPs with r2 > 0.8.

Conditional analysis
To identify DNAm probes with multiple independent genetic associa-
tions, we conducted a conditional and joint analysis (COJO)81 using
GCTA70. We accounted for the correlation structure between SNPs
within a 10Mb window using Health and Retirement Study (HRS;
n = 8652)82 imputed to 1000G as an external LD reference panel. This
was performed for each mQTL using meta-analysed EUR summary
statistics. Similar analysis was not performed using EASmeta-analysed
summary statistics due to the lack of appropriately large reference
panel (recommended minimum sample size of 4000). We retained
SNPs that had conditional p < 10−10.

Fine mapping
We aimed to quantify the gain in fine mapping resolution that results
from leveraging differences in LD structures across ancestries. This
was performed by contrasting credible set sizes calculated from
single and cross-ancestry fine mapping of mQTL summary statistics.
For single ancestry fine mapping, to generate credible sets of puta-
tive causal variants we employed the Sum of Single Effects (SuSiE)38

in each ancestry. This model uses a Bayesian modification of simple
forward selection to generate credible sets which are designed to
have high probability to contain a variable with non-zero effect, while
at the same time being as small as possible. For cross-ancestry fine
mapping we used SuSiEx39 which builds on SuSiE by integrating both
EUR and EAS mQTL summary statistics and explicitly models
population-specific AF and LD patterns. For bothmethods we utilised
LD information from 1000G for the respective ancestries and set the
number of putative causal signals to be one, with credible sets
comprised of SNPs with a cumulative 95% posterior probability of
being causal. Fine mapping was performed for each of the mQTLs in
the stringent set with the same lead SNP in both ancestries. Where
multiple mQTLs had the same lead SNP, only the mQTL with the
smallest p value was included and those mQTLs in the MHC region
were excluded, resulting in 7416 mQTLs for fine mapping. mQTLs
were excluded where the putative number of causal SNPs, in at least
one ancestry, was more than three IQR from the mean, resulting in
6385 mQTLs remaining.
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Fine-mapping simulation
Simulations were performed to determine the expected relationship
between the increase in sample size and the reduction in finemapping
credible set size. The above mQTLs were brought forward for simu-
lation. Data from the UK Biobank (UKB) was utilised for simulations.
The full release of the UKB data consisted of genotype and phenotype
data for ~500,000 participants across the United Kingdom40. A subset
of individuals of European ancestry (n = 456,422) was identified by
projecting the UKB PCs onto those of the 1000 Genome Project with
related individuals removed using GCTA (GRM>0.05). Subsets of the
UKB were selected to match the EUR and cross-ancestry sample sizes
(n = 3701 and 5800) with subsequent increases of 1000 sample incre-
ments (n = 6800, 7800, 8800, 9800). A single DNAm phenotype was
simulated for each mQTL assuming the lead EUR SNP as causal using
GCTA, using the EUR lead SNP effect estimate. Simulated DNAm levels
were rank normalised and mQTL analysis performed between the
simulated phenotypes and UKB subsets using PLINK2.0. The resulting
cis-mQTL summary statistics were fine-mapped using SuSiE and 95%
credible set sizes were recorded across DNAm probes and UKB sub-
sets, filtering outliers using the same criteria as above resulting in
putative credible sets for 4528 simulated mQTLs.

Summary-based Mendelian randomisation (SMR)
To demonstrate the utility of ancestry-specificmQTLs, we investigated
the presence of pleiotropic associations betweenDNAm and 220 traits
as reported in Sakaue et al.41. Summary statistics of analysis performed
in individuals of EUR ancestry were obtained frommeta-analyses with
the UK Biobank and FinnGen while EAS was from BioBank Japan
(Supplementary Data 1). We utilised the SMR software (v1.03) to test if
the effect size of a SNP on the phenotype is mediated by DNAm that
can subsequently be used to prioritise genes underlying GWAS hits for
follow-up functional studies42. A key assumption of this approach is
that the same set of underlying causal variants determines both DNAm
and the trait. We utilised 28,925 ancestry-specific mQTLs, of which
21,084were EUR-mQTLs and 7841 EAS-mQTLs and applied these to the
220 traits. To ensure the pleiotropic signals were ancestry-specific,
mQTLswere excludedwhere a GWAS signal was present within the cis-
window in the alternate ancestry. SMRsignificant resultsweredeclared
at pSMR < 10−7, which is Bonferroni corrected for the approximate
number of DNAm probes tested. While significant SMR test results
implicate a role for the mQTL, SNPs passing the SMR heterogeneity in
dependent instruments (HEIDI) test (pHEIDI > 0.01) have robust support
for the direct causal or pleiotropic relationships of the trait-associated
SNPs influencing DNAm.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The mQTL summary data from the meta-analysis of samples of each
European (n = 3071) and East Asian (n = 2099) ancestry generated in
this study are available at https://yanglab.westlake.edu.cn/software/
smr/#mQTLsummarydata. These results have been provided in SMR
BESD format (see https://yanglab.westlake.edu.cn/software/smr/#
BESDformat). Access to individual level data for each of the cohorts
is as follows: The SGPD DNAm data are available from the Gene
Expression Omnibus (GEO) under accession code GSE145361. The LBC
DNAm data are available at the European Genome-phenome Archive
under accession number EGAS00001000910. DNAm data for the
BSGS are available from the Gene Expression Omnibus under acces-
sion code GSE56105. Deposit of CHNMND DNAm data in a repository
does not comply with the consent process and ethics approval, but
sharing data is possible by emailing the corresponding author of the

cohort publication. Primary data of the Tibetan and Han Chinese
subjects are available through application at https://www.
wmubiobank.org. Analysis of the UK Biobank resource was con-
ducted under the application number 12505. The genotype and phe-
notype data are available upon application to the UKB (http://www.
ukbiobank.ac.uk/). Health and Retirement Study data were accessed
from dbGaP (accessions: phs000428). The web links for the publicly
available datasets used in the study are as follows: The 1000 Genomes
Phase 3 data available at https://ftp.1000genomes.ebi.ac.uk/vol1/ftp/
phase3/; mQTL data from Hawe et al.31: https://zenodo.org/record/
5196216#.YRZ3TfJxeUk; mQTL data from Min et al.83 data: http://
mqtldb.godmc.org.uk; GWAS summary statistics for 220 traits used for
SMR from Sakaue et al.41: https://pheweb.jp/downloads; Annotation of
Infinium DNA Methylation BeadChip probes: https://zwdzwd.github.
io/InfiniumAnnotation.

Code availability
The publicly available software tools used for data analysis are
described in the “Methods” with the web links as follows: plink (v2.0):
https://www.cog-genomics.org/plink/2.0; OSCA (v0.46): https://
yanglab.westlake.edu.cn/software/osca; GCTA (v1.93.2beta): https://
yanglab.westlake.edu.cn/software/gcta/#Overview; susieR: https://
stephenslab.github.io/susieR; susieX: https://github.com/getian107/
SuSiEx; SMR (v1.03): https://yanglab.westlake.edu.cn/software/smr/.
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