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Chest computed tomography is one of the most common diagnostic tests,
with 15million scans performed annually in the United States. Coronary cal-
cium can be visualized on these scans, but other measures of cardiac risk such
as atrial and ventricular volumes have classically required administration of
contrast. Here we show that a fully automated pipeline, incorporating two
artificial intelligence models, automatically quantifies coronary calcium, left
atrial volume, left ventricular mass, and other cardiac chamber volumes in
29,687 patients from three cohorts. The model processes chamber volumes
and coronary artery calcium with an end-to-end time of ~18 s, while failing to
segment only 0.1% of cases. Coronary calcium, left atrial volume, and left
ventricular mass index are independently associated with all-cause and car-
diovascularmortality and significantly improve risk classification compared to
identification of abnormalities by a radiologist. This automated approach can
be integrated into clinicalworkflows to improve identificationof abnormalities
and risk stratification, allowing physicians to improve clinical decision-making.

Coronary artery disease (CAD) is a leading cause of morbidity and
mortality1,2. Coronary artery calcium (CAC) scores obtained from non-
contrast ECG-gated computed tomography (CT) has emerged as a
method for evaluation of asymptomatic patients1,2. CAC scores are a
robust marker of cardiovascular risk3–10, and may even help improve
patient compliance with medical therapies and lifestyle
interventions11,12. Contrast-enhanced cardiac CT also provides infor-
mation regarding cardiac chamber volumes and left ventricular (LV)
mass which are predictive of mortality13, and cardiovascular events14.
Importantly, CAC is not routinely evaluated on non-cardiac CT.

Additionally, cardiac chamber volumes and left ventricular mass clas-
sically could not be evaluated on non-contrast CT, since contrast is
required to differentiate myocardium from blood pool and to identify
the valve planes which separate cardiac chambers. However, these
non-cardiac, non-contrast CT scans make up the vast majority of the
over 15million chest CT scans performed annually in the United States
alone15.

Recent advancements in artificial intelligence (AI) have potentially
enabled quantification of these measures from non-gated CT imaging.
CAC can be manually measured from non-gated CT imaging16, with
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excellent correlations CAC scores from gated examinations17. How-
ever,manual annotation of CAC is time consuming, particularly for the
lower radiation dose scans, which are used for cancer screening. AI has
been applied to automate quantification of CAC from lung cancer
screening CT scans18,19, and was associated with cardiovascular mor-
tality in a selected cohort of patients from theNational Lung Screening
Trial (NLST)20. A recently developed AI model may also facilitate
quantification of left and right atrial and ventricular volumes and LV
mass from non-contrast CT21, but these estimates from ungated, non-
contrast CT have never been validated as markers of risk.

We integrated our convolutional AI model which automatically
measures CAC22–24, with another AI model (TotalSegmentator) which
automatically segments cardiac chamber volumes21. The aim of our
study was to evaluate the clinical potential of a fully automated AI
pipeline that estimates CAC, cardiac chamber volumes, LV mass, and
shape index when applied to low-dose (non-contrast and ungated)
lung CT with respect to predicting clinical outcomes in three external
populations.

Results
Population characteristics—NLST
We included a total of 24354 patients with median age 61 (IQR 57–65),
of whom and 14441 (59.3%) were males. The overall study design is
shown in Fig. 1. The model was able to process chamber volumes and
coronary artery calcium with an end-to-end processing time of ~18 s,
while failing to segment only 0.1% of cases. In total, 4618 (19.0%) had
CAC 0, 9006 (37.0%) had CAC 1–100, 4816 (19.8%) had CAC 101–400,
and 5914 (24.3%) had CAC> 400. Population characteristics in patients
categorized by extent of CAC are presented in Table 1.

Histograms outlining the distribution of CAC, LV, left atrial (LA),
right ventricular (RV), and right atrial (RA) volumes and LVmass index
are shown in Supplemental Fig. 1 and the correlation between values as
shown in Supplemental Fig. 2. Correlation between gated CT mea-
surements and ungatedCT estimates are summarized in Supplemental
Fig. 3. All Spearman correlations were excellent (LV myocardium

r =0.947, LA volume r = 0.926, RA volume r = 0.893, LV volume
r =0.793, and RV volume r =0.922). Comparisons between baseline CT
estimates and one-year CT estimates in 22292 patients are shown in
Fig. 2. Correlations were excellent (LV myocardium r =0.917, LA
volume r =0.866, RA volume r =0.864, LV volume r =0.892, and RV
volume r = 0.899) with no significant bias.

Case examples showing segmentation of CAC and chamber
volumes are shown in Fig. 3. The current clinical standard, radiologist
identified cardiovascular abnormalities, were noted in a minority of
scans, with reported abnormalities on 62 (1.3%) patients with CAC 0,
311 (3.5%) patients with CAC 1–100, 360 (7.5%) patients with CAC
101–400, and 828 (14.0%) patients with CAC> 400 and in only 303
(9.3%) of patients with abnormal LV mass index.

Associations with all-cause mortality—NLST
During median follow-up of 6.7 years (IQR 6.3–7.0), 1795 (7.4%)
patients died. Of those deaths, 459 (25.6%) were adjudicated as car-
diovascular deaths. Kaplan-Meier curves for all-cause mortality strati-
fied byCAC categories are displayed in Supplemental Fig. 4. Increasing
CAC category was associated with an increasing risk of all-cause mor-
tality as shown in Supplemental Table 1. Identification of cardiovas-
cular abnormality by the radiologist was associated with less risk
(unadjusted HR 1.84, 95%CI 1.58–2.13) than the presence of CAC> 100.
Quartiles of LV, LA, RV, and RV volume provided risk stratification for
all-causemortality as shown in Supplemental Fig. 5. Abnormal LVmass
index was also associated with an increased risk of mortality (unad-
justed HR 1.76, 95% CI 1.57–1.97).

Associations with all-cause mortality in the multivariable model
are presented in Supplemental Table 2. Patients with CAC 1–100
(adjusted HR 1.24, 95% CI 1.04 –1.47), CAC 101–400 (adjusted HR 1.56,
95% CI 1.30–1.87), and CAC> 400 (adjusted HR 1.88, 95% CI 1.57–2.24)
were at increased risk of all-cause mortality. Increasing LA volume
(adjusted HR 1.11, 95% CI 1.06–1.16), LV mass index (adjusted HR 1.34,
95% CI 1.22–1.47), and shape index (adjusted HR 1.31, 95%CI 1.02–1.66)
were also associated with increased risk of death.

Fig. 1 | Overall study design.We utilized a convolutional long short-termmemory
(ConvLSTM) model (light gray) which uses computed tomography slices as inputs
(blue arrows) to segment coronary artery calcium (CAC). TotalSegmentator (dark
gray), which uses a no new-net UNet (nnUNet) architecture was used to segment
cardiac chamber volumes and left ventricular (LV) myocardium. We applied these

models to patients in the external populations (dark blue) to quantify CAC and
cardiac chamber volumes, where we evaluated correlations betweenmeasures and
associations with outcomes (light blue). CT computed tomography, CV cardio-
vascular, ECG electrocardiogram, LA left atrium, RA right atrium, RV right ventricle.
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Associations with Cardiovascular Mortality - NLST
Kaplan-Meier curves for cardiovascular mortality stratified by CAC are
shown in Fig. 4, and further detailed in Supplemental Table 1. Quartiles
of LV, LA, RV, and RA volume provided risk stratification for cardio-
vascular mortality as shown in Supplemental Fig. 6. Incidences of
cardiovascular mortality in patients with normal compared to abnor-
mal chamber volumes are shown in Supplemental Fig. 7.

Associations with cardiovascular mortality in the multivariable
model are shown in Table 2. Patients with CAC 101–400 (adjusted

subHR 2.59, 95% CI 1.67–4.03, p <0.001) and CAC> 400 (adjusted
subHR 3.57, 95% CI 2.31–5.54, p <0.001) were at significantly increased
risk of cardiovascular mortality. Increasing LA volume (adjusted HR
1.14, 95% CI 1.05–1.24, p =0.001), and LVmass index (adjusted HR 1.26,
95% CI 1.05–1.51, p =0.012) were also associated with increased risk of
cardiovascular death.

Adjusted associations with cardiovascular mortality were similar
when limited to patients without a history of heart disease (Supple-
mental Table 3). In patients with a history of heart disease CACwas not

Table 1 | Population characteristics stratified by extent of coronary artery calcification (CAC)

CAC 0
N = 4618

CAC 1–100
N = 9006

CAC 101–400
N = 4816

CAC >400
N = 5914

p-value

Age 59 (56–62) 60 (57–63) 61 (58 –66) 63 (59–68) <0.001

Male 1681 (36.4%) 4786 (53.1%) 3233 (67.1%) 4741 (80.2%) <0.001

Pack years smoking 44 (37.5–60) 46 (38–63) 50 (40–70) 54 (42–75) <0.001

Past Medical History

Hypertension 1145 (24.8%) 2811 (31.2%) 1817 (37.7%) 2770 (46.8%) <0.001

Diabetes 234 (5.1%) 675 (7.5%) 499 (10.4%) 949 (16.0%) <0.001

Heart disease 176 (3.8%) 475 (5.3%) 575 (11.9%) 1931 (32.7%) <0.001

COPD 221 (4.8%) 422 (4.7%) 268 (5.6%) 336 (5.7%) 0.016

Stroke 84 (1.8%) 189 (2.1%) 145 (3.0%) 263 (4.4%) <0.001

LV volume (mL) 92 (79–106) 99 (84–115) 104 (89–120) 110 (95−128) <0.001

LA volume (mL) 56 (48–65) 61 (51–71) 64 (55–76) 68 (58–80) <0.001

RV volume (mL) 120 (102–142) 131 (109–156) 139 (115–163) 145 (124–168) <0.001

RA volume (mL) 73 (63–86) 79 (67–92) 83 (71–97) 88 (75–102) <0.001

LV mass (g) 97 (84–114) 107 (89–127) 115 (96–134) 122 (104–142) <0.001

Shape Index 0.593 (0.561–0.626) 0.596 (0.563–0.629) 0.595 (0.563–0.631) 0.603 (0.569–0.641) <0.001

Eccentricity Index 0.835 (0.815–0.853) 0.833 (0.812–0.851) 0.833 (0.812–0.851) 0.828 (0.807–0.848) <0.001

Categorical variables presented as number(frequency), continuous variables as median (interquartile range).
Categorical variables are compared using Pearson’s χ2 test and continuous variables were compared Kruskal–Wallis test, with all tests being two-sided. No adjustment was made for multiple
comparisons. COPD chronic obstructive pulmonary disease, LA left atrial, LV left ventricle, RA right atrial, RV right ventricle.

Fig. 2 | Correlation between baseline and follow-up values. Correlation between
estimates of cardiac volumes and left ventricular mass estimated from computed
tomography scans performed at baseline compared to estimated values fromscans

performed at 1 year in 22292 patients. Each patient shown as a blue dot with limits
of agreement as orange dashed lines.
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associated with cardiovascular death, but LVmass index was (adjusted
subHR 1.37 per 10 g/m2, 95%CI 1.04–1.80, p =0.025). Associations with
cardiovascular mortality in patients without reported cardiovascular
abnormalities were similar to the primary analysis (Supplemental
Table 4). Results stratified by tube voltage and slice thickness are
shown in Supplemental Tables 5 and 6.

Categorical NRI results for cardiovascular mortality are shown in
Supplemental Tables 7-8. Compared to radiologist identified

cardiovascular abnormalities, all groups of imaging variables sig-
nificantly improved categorical risk classification, with overall
improvement 2.8%−20.3%. However, the combination of all imaging
variables led to the greatest improvement, with overall categorical
reclassification improvement of 25.9% (95% CI 20.6%–31.2%). Similar
results were seen when assessing improvement in classification com-
pared to a multivariable model incorporating age, sex, smoking his-
tory, and past medical history.

ROCs for all-cause mortality and cardiovascular mortality are
shown in Fig. 5. The AUC for all-cause mortality of the combination of
all quantitative imaging variables (AUC 0.657, 95% CI 0.644 – 0.671)
was higher than for CAC (AUC 0.638, 95% CI 0.625–0.652), LV mass
index (AUC0.586, 95%CI 0.572–0.600), LA volume (AUC0.574, 95%CI
0.560–0.588), shape index (AUC0.538, 95%CI 0.524–0.553, p < 0.001),
or radiologist identification of abnormalities (AUC 0.523, 95% CI
0.516–0.531, p <0.001). Similarly, AUC for cardiovascular mortality of
the combination of all imaging variables (AUC 0.752, 95% CI
0.729–0.775) was higher than for CAC (AUC 0.706, 95% CI
0.683–0.729), LV mass index (AUC 0.674, 95% CI 0.649–0.700), LA
volume (AUC 0.633, 95% CI 0.606–0.660), shape index (AUC 0.572,
95% CI 0.544–0.600, p < 0.001), or radiologist identification of
abnormalities (AUC0.530, 95%CI 0.514–0.545, p < 0.001). Comparison
of prediction performance for clinical, imaging, and combinedmodels
are shown in Fig. 6.

EISNER population
We included 2014 patients who underwent CAC scanning as part of the
Early Identification of Subclinical Atherosclerosis by Noninvasive
Imaging Research (EISNER) trial to provide external validation in a
healthier population. During median follow-up 14.6 years (IQR
1.9–17.4) cardiac death orMI occurred in 74 (3.7%) patients. Population
characteristics stratified by occurrence of cardiac death or MI are

Fig. 4 | Kaplan-Meier survival curves for cardiovascularmortality.Kaplan-Meier
survival curves for cardiovascular mortality stratified by coronary artery calcium
(CAC) scores. The points represent subdistribution hazard ratio (subHR) point
estimate, with 95% confidence intervals (CI) shown as whisker plots. Colors reflect
CAC score groups as defined in the figure. Source data is available.

Table 2 | Associations with cardiovascular mortality

Adjusted subHR
(95% CI)

p-value

CAC 0 Reference Reference

CAC 1–100 1.53 (0.99–2.36) 0.053

CAC 101–400 2.59 (1.67–4.03) <0.001

CAC > 400 3.57 (2.31–5.54) <0.001

Left ventricular volume
(per 10mL)

1.12 (1.01–1.24) 0.040

Right ventricular volume
(per 10mL)

0.91 (0.85–0.98) 0.008

Left atrial volume (per 10mL) 1.14 (1.05–1.24) 0.001

Right atrial volume
(per 10mL)

0.88 (0.81–0.96) 0.004

LV mass index (per 10g/m2) 1.26 (1.05–1.51) 0.012

Shape index (per 0.1) 1.45 (0.84–2.51) 0.179

Eccentricity index (per 0.1) 1.54 (0.59–4.00) 0.373

Age (per 10 years) 1.42 (1.17–1.73) <0.001

Male 1.07 (0.82–1.39) 0.627

Pack years smoking (per
10 years)

1.04 (1.01–1.07) 0.021

Hypertension 1.10 (0.90 –1.34) 0.369

Diabetes 1.37 (1.07–1.77) 0.013

Heart disease 1.12 (0.89–1.41) 0.325

COPD 1.66 (1.18–2.33) 0.004

Stroke 1.89 (1.33–2.67) <0.001

Non-cardiac mortality was modeled as a competing risk. CAC coronary artery calcification, CI
confidence interval, COPD chronic obstructive pulmonary disease, subHR subdistribution
hazard ratio.

Fig. 3 | Case examples. Representative non-contrast computed tomography slices
for two patients (left), with super-imposed segmentations (right). One artificial
intelligence (AI) model was used to segment a cardiac mask (magenta line) and
coronary artery calcium (red). A second AI model segmented left ventricular
myocardium (purple), left atrial (green), left ventricle (light red), right ventricle
(blue) and right atrial (yellow) volumes.
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shown in Supplemental Table 9.Median LA volumewashigher (67.9ml
vs 60.6ml, p < 0.001) and prevalence of CAC > 400 was higher (27.0%
vs 6.4%, p <0.001) in patients who experienced cardiac death or MI.
Associations with cardiac death or MI are shown in Supplemental
Table 10.Models combining clinical and imaging data (AUC0.804, 95%
CI 0.759–0.849, p <0.001) and imaging data alone (AUC 0.792, 95% CI
0.746–0.838, p =0.012) had higher AUC for cardiac death or MI com-
pared to a clinical model incorporating age, sex, and medical history
(AUC 0.715, 95% CI 0.653–0.776) as shown in Supplemental Fig. 8.

Including DL-imaging features also significantly improved categorical
and continuous NRI (Supplemental Table 11). Risk stratification for
cardiac death or MI in young (age <60 years) non-smokers is shown in
Supplemental Table 12.

Low-dose CT population
We included 3319 patients referred for myocardial perfusion imaging
who underwent low-dose, ungated CT for attenuation correction of
the perfusion scan to provide further external validation. During

Fig. 6 | Receiver operating characteristic curves for all-cause mortality and
cardiovascular mortality using models. Receiver operating characteristic curves
for all-cause mortality and cardiovascular mortality for clinical (age, sex, medical
history - gray), deep learning (DL) derived imaging variables (coronary artery cal-
cium, cardiac volumes, shape index, eccentricity index, and left ventricular mass
index – red), and a combined model incorporating all variables (DL derived and

clinical variables - blue). Variables in the combined model were integrated using
logistic regression analyses. The center of the bar represents area under the
receiver operating characteristic curve (AUC), with 95% confidence intervals (CI)
shown with whisker plots. AUC is compared using DeLong’s test. Source data is
available.

Fig. 5 | Receiver operating characteristic curves for all-cause mortality and
cardiovascularmortalityusing features.Receiver operating characteristic curves
for all-cause mortality and cardiovascular mortality for coronary artery calcium
(CAC) (red), left ventricular (LV)mass index (purple), left atrial (LA) volume (green),
shape index (gray) and a combination of all imaging variables (blue). Radiologist

identification of abnormality shown in orange. Variables in the combined model
were included as continuous variables and integrated using logistic regression
analyses. The center of the bar represents area under the receiver operating
characteristic curve (AUC), with 95% confidence intervals (CI) shown with whisker
plots. AUC is compared using DeLong’s test. Source data is available.
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median follow-up 2.9 years (IQR 1.6–5.0) death or MI occurred in 177
(5.3%) patients. Population characteristics stratified by occurrence of
cardiac death or MI are shown in Supplemental Table 13. Median LA
volume (85.0ml vs 76.4ml, p <0.001) andmedian LV volume (129.4ml
vs 118.4ml, p <0.001) were higher in patients who experienced death
or MI. Associations with death or MI are shown in Supplemental
Table 14. Receiver operating characteristic curves for deathorMI using
clinical, imaging, and combined models are shown in Supplemental
Fig. 9. Including DL-imaging features also significantly improved
categorical and continuous NRI (Supplemental Table 15).

Discussion
Weevaluatedwhether quantifyingCAC, cardiac volumes, LVmass, and
ventricular morphology using two previously validated AI models
could improve risk stratification of patients undergoing non-cardiac
lung CT scans in a large external population from the NLST trial. We
demonstrated that LV mass index and LA volume from non-contrast,
ungated CT scans are associated with all-cause and cardiovascular
mortality. We also found that higher deep learning (DL)-derived CAC
was associated with an increased risk of both all-cause mortality and
cardiovascular mortality. Importantly, we also demonstrated that a
combined model incorporating CAC, cardiac volumes, LV mass index,
and ventricular morphology had higher prediction performance than
anymeasure in isolation. Furthermore, the combinedmodel improved
categorical risk classification of over 25% of patients compared to the
current clinical standard, radiologist identification of cardiovascular
abnormality. We went on to show associations between CAC, cardiac
volumes, LV mass index and clinical outcomes in two additional
external populations with different risk profiles. Given that in the
United States, 428CT scans are performedper 1000 adults each year25,
this approach could be used to improve identification of cardiovas-
cular abnormalities and estimation of cardiovascular risk for a sub-
stantial number of patients.

Chest imaging is one of the most frequently performed CT
examinations15, with dedicated cardiac imaging representing a small
fraction of those. While incidental cardiac findings may be seen on
over half of those studies, it is only reported on 3-31% of studies26. It is
possible that Radiologists could identify additional abnormalities if
specifically focused on cardiac incidentals, but this is not the case in
typical clinical practice. This is consistent with our finding that only
14% of patients with CAC> 400 and less than 10% of patients with
abnormal LV mass index had abnormalities reported. This care gap
exists despite guidelines suggesting that CAC be routinely assessed on
all non-cardiac chest CT scans16. The proposed approach could
potentially simplify this process by providing automated estimates of
chamber volumes, LV mass index, and CAC for radiologists to incor-
porate during reporting, leading to substantially improved prediction
of cardiovascular mortality and improved risk categorization in over
25% of patients. For example, AI-based identification of CAC (with
radiologist oversight) improves adoption of medical therapy when
coupled with automated notifications27. The CAC model is computa-
tionally efficient, providing results in ~6 s (faster than a standard U-Net
model)28. We paired this model with a recently developed AImodel for
automated segmentation of structures from CT, with all results avail-
able in ~18 s. The combined workflow is fully automated and therefore
could be readily incorporated into most clinical workflows without
significant disruptions.

Our study demonstrates that cardiac chambers and LV myo-
cardium can be estimated from non-contrast chest CT to improve risk
classification. Patients with higher atrial or ventricular volumes and
abnormal LV mass index were more likely to experience all-cause or
cardiovascular mortality. Additionally, left atrial volume and LV mass
index were associated with increased risk of both all-cause and cardi-
ovascular mortality after adjusting for relevant confounding factors
and all other imaging variables. We applied thresholds for abnormal

cardiac volumes, which were based on a study of healthy individuals
undergoing cardiac CT. While we did identify significant associations
with cardiac outcomes, our results highlight the need for age and sex-
specific normal values. While previous studies have demonstrated that
CT-derived left ventricular volumes13 and left ventricular
hypertrophy29 are associatedwith adverse cardiovascular events, these
studies were performed using contrast-enhanced studies. It may be
possible for radiologists to provide chamber volume estimates from
non-contrast scans, but this is not currently routinely performed and
would likely have high inter-reader variability and be too time-
consuming for routine clinical use. Lastly, we evaluated shape index
and eccentricity index, which aremeasures of ventricularmorphology.
We demonstrated that higher shape index, representing a more
spherical LV cavity, was independently associated with both all-cause
and cardiovascular mortality. Similar volume measurements (but not
CAC) can also be performed using cardiovascular magnetic
resonance30, but capacity is limited at most centers and our proposed
DL-based estimates can be performed on any non-contrast CT.
Importantly, associations were similar in patients without reported
cardiac abnormalities. Left atrial volume and LV mass index were
associated with cardiovascular mortality in patients with a history of
cardiac disease (but not CAC, potentially due to inclusion of patients
with previous stents or bypass grafts), providing a valuablemethod for
risk stratification in this population. Similar results were demonstrated
in a younger population of patients undergoing CAC scanning as part
of the EISNER trial as well as in a third external cohort of patients
undergoing low-dose, ungated CT with myocardial perfusion imaging.
Lastly, we demonstrated that incorporating all of the imaging variables
had the highest prediction performance for all-cause and cardiovas-
cular mortality while also leading to the greatest improvement in
categorical risk classification compared to radiologist identification of
abnormalities.

In three large, external cohorts we demonstrated that CAC scores
obtained in a fully automated manner using DL were associated with
all-cause and cardiovascular mortality. Chiles et al. demonstrated that
expert physician evaluation of CAC, with formal scoring or estimates,
were associated with cardiovascular death with HRs of 6.10 – 6.95 for
the highest CAC groups in a group of 1575 patients31. These risks are
similar to that seen for CAC> 400 in our analysis in a much larger
sample. Zeleznik et al. developed a U-net based DL model which
automatically quantified CAC and showed that in a subset of 14959
patients from the NLST, subjects with CAC> 400 had an unadjusted
HR 5.98 compared to CAC0 for cardiovascular death20. The higher risk
demonstrated in our study (unadjusted subHR 7.07) could be
explained by improved classification of patients with CAC 0 which are
used as the reference risk group. We previously demonstrated favor-
able results for the cLSTMmodel compared to a U-net based model28.
Additionally, it is notable that the associations in our study were also
present between CAC and all-causemortality, suggesting that targeted
interventions could potentially influence overall survival.

Our study has a few important limitations. We evaluated asso-
ciations with cardiovascular death, but it is possible the cause of death
is misclassified in some patients. However, results were similar when
looking at associations with all-cause death. We have limited infor-
mation regarding the exact nature of cardiovascular abnormalities
which were identified. Therefore, we are not able to determine how
frequently the identified abnormality was significant coronary calcifi-
cation compared to other identifiable abnormalities, such as chamber
enlargement or valve calcification. Similarly, we do not have further
classification of history of heart disease. Additionally, we do not know
if physicians initiated medical therapy in response to CT findings,
which may decrease the associations between imaging findings and
outcomes. While we did not assess the correlation between DL mea-
surements and expert segmentations of CAC, we have previously
demonstrated excellent intraclass correlation between the DL and
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expert CAC measurements22,28. We performed several analyses in all
three populations and some associations may be related to chance
alone. However, the associations with DL-based imaging features were
consistent across analyses and the likelihood ofmakingmultiple type 1
errors for the same variable would be minimal and applying correc-
tions formultiple testing can increase the rate of type 2 error32. We did
not incorporate race or ethnicity into our analyses. The majority of
patients in the NLST trial were white (91% in our cohort); future studies
should evaluate methods to incorporate more diverse populations.
Lastly, we utilized DL models to extract known anatomic features;
using DL to directly predict outcomes may lead to identification of
latent features associated with outcomes. However, explanatory
mechanisms would need to be implemented and validated in such an
approach to warrant clinical use.

Imaging biomarkers—CAC, cardiac chamber volumes, LV mass,
and shape index—can be automatically and rapidly quantified using DL
from non-cardiac CT scans. These estimates were predictive of all-
cause and cardiovascular mortality. DL-derived CAC scores improved
classification of patients compared to expert identification of cardio-
vascular abnormalities. Routinemeasurements of all these parameters
can potentially enhance risk stratification and improve clinical
decision-making in the management of patients at risk of cardiovas-
cular disease.

Methods
Study populations
The overall design of this retrospective study is shown in Fig. 1. This
study utilized de-identified images from 3 separate external testing
cohorts including patients from the NLST (NCT00047385), a multi-
center randomized controlled trial of patients randomized to low-dose
chest CT for lung cancer screening33, asymptomatic patients from the
EISNER trial (NCT00927693) who underwent CAC scanning34, and
patients from two centers who underwent myocardial perfusion ima-
ging with low-dose, ungated, chest CT for attenuation correction. The
NLST trial included current or former heavy smokers between the ages
of 55 and 74. Patients were randomly assigned to non-contrast, non-
ECG-gated chest CT imaging between 2002 and 2007. We included
24805 subjects from this external cohort (previously unseen by the DL
models) with available baseline CT imaging and follow-up for mortal-
ity. Of those, we excluded cases where image files were corrupt
(n = 133, 0.5%), the scan length was less than 12 cm or did not include
the heart (n = 292, 1.2%), and cases where segmentation failed (n = 26,
0.1%), leaving 24354 subjects. In cases where segmentation failed,
neither the CAC nor the cardiac volumemodel was able to process the
scan. The baseline CT was used to assess associations with outcomes.
We also compared estimates from baseline CT scans with estimates
from CT scans performed at 1 year in 22292 patients as a measure of
stability. Lastly, we compared cardiac volumes and left ventricular
mass in a cohort of 80 patients from a clinical trial. These patients
underwent low-dose, ungated CT and contrast-enhanced, ECG-gated,
cardiac CT angiography on the same day, during a single imaging
session, minimizing potential differences between scans
(NCT02110303). Cardiac volumes andmass from ECG-gated, contrast-
enhancedCTwere annotatedmanually by experienced clinicians using
dedicated software (Syngo.Via, Siemens Healthineers, Erlangen, Ger-
many). The study protocol complied with the Declaration of Helsinki
and was approved by the institutional review boards at participating
institutions. The study used de-identified image sets and did not col-
lect new data, therefore the research is considered non-human subject
research.

Clinical data
For the NLST population, past medical history and smoking history
were collected during the course of the trial33. Additionally, clinical
interpretation from each scan was recorded as part of the NLST trial

including the presence or absence of clinically relevant cardiovascular
abnormalities such as CAC or cardiomegaly. Patients had follow-up for
all-cause mortality and information from death certificates regarding
underlying cause. Cardiovascular mortality was determined for the
ICD-10 codes using established definitions for cardiovascular
mortality35, and validated ICD-10 codes36. For the EISNER population,
medical historywas determined at baseline andpatientswere followed
prospectively for occurrence of cardiovascular death or myocardial
infarction34. For the third external population, demographics and
medical history were determined at the time of CT scanning and
incidence of all-cause mortality of myocardial infarction was deter-
mined from administrative databases.

CT image acquisition and reconstruction
Images were acquired at each participating site with site-specific pro-
tocols. Anonymized image datasets were used for the present analysis.
In the NLST population, CT scans were acquired using 17 different
camera systems, including systems manufactured by GE Healthcare,
Philips, Siemens, and Toshiba. Most patients were imaged with tube
voltageof 120 kVp (n = 21287, 87.5%) followedby 140 kVp (2313, 10.5%),
and a small number of patients were imaged with other tube voltages
(80 kVp n = 377, 90 kVp n = 141, 100 kVp n = 21, 130 kVp n = 4, 135 kVp
n = 211). Median tube current was 60mA (interquartile range 45–72).
Mean pixel size was 0.67mm and ranged from 0.44–0.98mm.
Reconstruction thickness ranged from 1–6mm, with most patients
having slice thickness of 2.5mm (46.9%) or 2mm (30.1%). For the
EISNER population, patients underwent standard CAC scans including
a single scan of ~30–40 slices which were 3mmor 2.5mm in thickness.
For the remaining external cohort, CT scans were performed with a
helical acquisition with a tube voltage of 120 kVp and slice thickness of
3.0mm (n = 1878) or 5.0mm (n = 1441).

Model architectures and training
Weutilizedour previously validatedDLmodel forCAC segmentation28.
In brief, the system consists of two networks, the first of which is
trained for segmentation of the heart silhouette and the second net-
work was trained to segment the CAC. A supervised learning regimen
was used for both segmentation networks. The heartmaskwas applied
to the final CAC prediction to reduce bone overcalling or calcification
in non-cardiac regions. For training, internal validation, and internal
testing, we used data from 3 centers that included 9543 scans (1827
ECG-gated CAC scans and 7716 CT attenuation scans)22,23. The model
includes a correction factor for slice thickness, ensuring consistent
scoring in spite of differences in slice thickness. CAC scores are auto-
matically obtained from the DL segmentations using established
methods3.

Cardiac chamber volumes and LV myocardium were segmented
using TotalSegmentator21. The model utilizes the no new-net UNet
(nnU-Net) architecture37 to automatically segment a variety of ana-
tomic structures from images. Expert annotations from contrast ima-
geswere transferred to registerednon-contrast images sets to train the
model to segment the same structures on non-contrast image sets.
During model validation, the Dice score for LV myocardium, LV, left
atrium (LA), right ventricle (RV) and right atrium (RA) ranged from
0.95–0.9721. Three-dimensional segmentations for one patient are
shown in Supplemental Figure 10. LV myocardial volume was used to
calculate LV mass, using a density factor of 1.05538. Abnormal LV mass
was defined as volume >97.5th percentile using sex-specific normal
limits indexed to body surface area (>80 g/m2 for men, >65 g/m2 for
women)39. Similarly, we defined abnormal cardiac volumes for women
(LV volume> 147mL, RV volume > 180mL, LA volume > 99mL and RA
volume >126mL) and men (LV volume> 195mL, RV volume> 240mL,
LA volume > 121mL and RA volume> 162mL) based on >97.5th per-
centile of normal volumes using sex-specific normal limits39. A com-
parison of patient classifications at baseline compared to follow-up
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imaging at 1 year is shown in Supplemental Table 16. Lastly, we quan-
tified themajor axis (length) and the twominor axismeasurements for
the LV volume segmentations. Shape index was calculated as the ratio
of the maximal minor axis dimension to the major axis dimension,
similar to the method applied in myocardial perfusion imaging40.
Eccentricity index was calculated as: 1-(minor axis*minor axis/length2).
Lower values for shape index signify relative elongation of the LV,
while higher values are seen in more spherical remodeling patterns.

Statistical analysis
Continuous variables were summarized as mean (standard deviation
[SD]) if normally distributed and compared using a Student’s t-test.
Continuous variables that were not normally distributed were sum-
marized as median (interquartile range [IQR]) and compared using a
Mann-Whitney U-test or Kruskal–Wallis test. Agreement between
estimates from low-dose, ungated CT and measurements from con-
trast-enhanced, ECG-gated, cardiac CT scans, and agreement between
estimates from baseline and 1 year CT scans was assessed with Spear-
man’s correlation and visualized with Bland-Altman plots.

Associations with all-cause mortality were assessed with uni-
variable and multivariable Cox proportional hazards analyses. The
multivariable model included the variables of interest (LA, LV, RA,
andRV volume, LVmass, shape index, eccentricity index, andCAC) as
well as potential confounders including age41, sex41, history of
COPD42, diabetes43, hypertension44, heart disease45, and stroke46 as
well as smoking history47. The suspected relationships between these
variables are outlined in Supplemental Figure 11. Associations with
cardiovascular mortality were evaluated with Fine-Gray competing
risk analyses, with non-cardiovascular mortality as a competing risk.
For the EISNER and low-dose CT populations there were insufficient
events to simultaneously evaluate all variables, so multivariable
models were created using stepwise backward elimination. In the
NLST population, associations were separately assessed in patients
with and without a history of heart disease as well as in patients
without radiologist identified cardiovascular abnormalities. Lastly,
we evaluated for differences in the associations with clinical out-
comes according to tube voltage and slice thickness. These analyses
were limited to unadjusted analyses due to a low number of events in
some groups, resulting in wide confidence intervals. However, we
also assessed for differences in associations between tube voltage
and slice thickness categories using interaction analyses. The pro-
portional hazards assumption was evaluated with Schoenfeld
residuals48, and found to be valid in all analyses.

In the NLST population, we evaluated prediction performance,
using area under the receiver operating characteristic curve (AUC), for
all-cause mortality and cardiovascular mortality of CAC, cardiac
volume, shape index and a combination of the three measures (from
regression models including log CAC as a continuous measure,
abnormal cardiac volume as a categorical variable, and shape index as
a continuous variable). We also evaluated AUC for a clinical model
(age, sex, smoking history and medical history [hypertension, dia-
betes, heart disease, COPD, stroke]), an imaging model with DL-
derived variables (CAC, cardiac volumes, shape and eccentricity index,
and LV mass), and a combined model incorporating all variables.
Variables were combined using logistic regression. Categorical net
reclassification index (NRI) was used to assess the additive prognostic
utility of DL CAC, cardiac volumes, shape index, and the combined
model49. NRI was calculated when added to either radiologist identi-
fication of cardiovascular abnormality or all other components of the
multivariable model including age, sex, smoking history, and past
medical history.

All statistical tests were two-sided, and a p-value < 0.05 was con-
sidered statistically significant. All analyses were performed using
Stata/IC version 13.1 (StataCorp, College Station, Texas, USA) and R
(version 4.1.2) including the “DAGitty” package50.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All derived data supporting the findings of this study are available
within the paper, in the supplementary information file, and in the
source data file. Original data from theNLST can be requested through
the National Cancer Institute. Restricted access for the deidentified
EISNER, and low-dose CT populations can be obtained via requests to
the corresponding author Dr. Piotr Slomka (Piotr.Slomka@cshs.org).
Requests should include the name and contact details of the person
requesting the data, which data and clinical variables are requested
and the purpose of requesting the data. Requests will be subject to
consideration by the steering committees of the cohorts and the
investigational review board of Cedars-Sinai Medical Center and
investigational review boards from other centers if applicable. Time
frame for a response will be within 3months. Data requests under
agreement will be considered for the purpose of reproducing the data
and subject to appropriate confidentiality obligations and restric-
tions. Source data are provided with this paper.

Code availability
The TotalSegmentator code is publicly available21 at https://github.
com/wasserth/TotalSegmentator, and the cLSTM code is available at
https://doi.org/10.5281/zenodo.1063228851.
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