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Global spatiotemporal synchronizing
structures of spontaneous neural activities in
different cell types

Liang Shi 1,2,4, Xiaoxi Fu1,2,4, Shen Gui1,2, Tong Wan3, Junjie Zhuo3,
Jinling Lu 1,2 & Pengcheng Li 1,2,3

Increasing evidence has revealed the large-scale nonstationary synchroniza-
tions as traveling waves in spontaneous neural activity. However, the interplay
of various cell types in fine-tuning these spatiotemporal patters remains
unclear. Here, we performed comprehensive exploration of spatiotemporal
synchronizing structures across different cell types, states (awake, anesthesia,
motion) and developmental axis in male mice. We found traveling waves in
glutamatergic neurons exhibited greater variety than those in GABAergic
neurons. Moreover, the synchronizing structures of GABAergic neurons con-
verged toward those of glutamatergic neurons during development, but the
evolution of waves exhibited varying timelines for different sub-type inter-
neurons. Functional connectivity arises from both standing and traveling
waves, and negative connections can be elucidated by the spatial propagation
of waves. In addition, some traveling waves were correlated with the spatial
distribution of gene expression. Our findings offer further insights into the
neural underpinnings of traveling waves, functional connectivity, and resting-
state networks, with cell-type specificity and developmental perspectives.

The spontaneous neural activity of the brain demonstrates self-
organized intrinsic dynamics1–7, which are closely associated with sti-
mulation, cognition, andbehavior and range fromhighly synchronized
to desynchronized8. Functional connectivity (FC) has been commonly
employed to depict the spatial organization of brain synchronization
and is recognized for its changes during development and across
pathological conditions9–14. However, mounting evidence gathered in
various states, including wakefulness, using various techniques ran-
ging from the cellular to the whole-brain large-scale has revealed the
widespread presence of nonstationary synchronization15–24. These
phenomena may encompass spatiotemporal patterns, standing/tra-
veling waves, and zero-lag/time-lag synchronies and exhibit regional
specificity at large scales15. Moreover, their regional specificitymaynot

align with brain regions or the structural connectome25,26. FC, as a
factor of stationary synchronization, is influenced by nonstationary
synchronization, suggesting that some phenomena previously inter-
preted as desynchronization might in fact be nonstationary
synchronization.

Although brain synchronization is primarily attributed to gluta-
matergic excitatory neurons, GABAergic inhibitory interneurons also
contribute to this process27–30. Several experiments and simulations
have shown that one possible mechanism for neural desynchroniza-
tion is through excitatory and inhibitory neurons sharing the same
inputs and outputs8,31,32. Fine-tuning large-scale neural activity relies on
the intricate interplay between different neuronal types, chiefly glu-
tamatergic and GABAergic neurons, although this interplay remains
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unclear. During development, the integration of these neuronal
populations remains immature, leading to distinct patterns of neural
activity at the macroscopic level in young animals. This unique phe-
nomenon offers a prime opportunity for in-depth investigation and
analysis of the large-scale synchronization dynamics between these
cell types.

In this study, we investigated the spatiotemporal structures and
deviations in neural activity within distinct genetically defined cell
types during mouse development and across diverse states. We
focused on one type of glutamatergic excitatory neuron expressing
the second vesicular glutamate transporter (VGLUT2)30 and three
types of GABAergic inhibitory interneurons expressing parvalbumin
(PV), somatostatin (SOM or SST), and vasoactive intestinal peptide
(VIP)33,34. To achieve this goal, we used calcium fluorescence imaging
with neuron type-specific Cre driver lines35 and genetically encoded
calcium indicators (GECIs)36. We collected calcium fluorescence data
from the mouse cortex at three developmental time points (P14, P28,
and P56) and three anesthesia/awake states (at rest, during sponta-
neous movement and under anesthesia). We analyzed “standing” and
“traveling” waves identified using complex principal component ana-
lysis (CPCA)15,37 and assessed their associationwith FC. These standing/
traveling waves extracted by CPCA account for much of the global
spatial structure found in human resting-state functional MRI as

previously studied15. Additionally, we utilized weighted gene coex-
pression network analysis (WGCNA)38 to analyze the gene expression
data and investigated the relationships between genes and traveling
waves. The method we employed, which combined gene analysis with
traveling waves, holds great promise for identifying the functional
roles of time-lag synchronies. Using fluorescent signals, we also com-
pared the effects of the commonly used but controversial method of
global signal regression (GSR) on processing. Our study provides
insights into the changes in neural synchronization structures in mice,
with significant implications for understanding brain function devel-
opment and organization, as well as addressing limitations that hinder
the interpretation of resting-state functional connectivity data in fMRI
studies.

Results
Zero-lag and time-lag synchronization structures of
spontaneous neural activity in VGLUT2 neurons
Weassume that the calciumsignal time series obtained from theneural
activity can be expressed as the superposition of standing/traveling
waves, which are potentially time-delayed in different regions. There-
fore, we decomposed the fluorescence signals corresponding to
neural activity and extracted a set of standing and traveling waves
(Fig. 1) from spontaneous neural activity in VGLUT2 at P56 via CPCA.

Fig. 1 | Large-scale neural activity is organized by standing and traveling waves
(VGLUT2, P56). a Fluorescent signals S tð Þ of neural activity can be decomposed
into linear superpositions of standing and traveling waves Φi tð Þ distributed
throughout the cortex; these signals are extracted from spontaneous neural
activity in VGLUT2neurons at P56. Theweightwi is the eigenvalue ofΦi,wiφi gives
the principal component “scores”, and wiρie

θi
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ntime � 1

p
gives the principal

component “loadings”. b Spatiotemporal patterns (over one cycle) of waves
Φ0,Φ1,Φ4,Φ5, showcasing only significant waves identified in the subsequent text.
c Spatial distributions of waves Φ0,Φ1,Φ4,Φ5. ρ: Intensity distribution. θ: Phase
distribution (time lag) in rad. d The power spectral density (PSD) of the fluores-
cence signal (pixel averaged, normalized to unit energy). e Spatial maps of spectral
power in 6 nonoverlapping frequencybands, with pixels normalized to unit energy.

f Waveforms φi tð Þ (first 30 s in 180 s acquisition) and autocorrelation functions of
waves Φ0,Φ1,Φ4,Φ5. g Unit-energy PSDs of φ0,φ1,φ4,φ5, with interexperimental
variability (shaded). Natural frequencies (f ) and damping ratios (ξ) of the 10
strongest waves. The error bars represent the mean ± standard error across the
experiments. 23 experiments over n= 10 male mice. h The proportion of the
10 strongest waves, measured by the variance ratio of each wave relative to the
original signal. The error bars represent the mean ± standard error across the
experiments. 23 experiments over n= 10 male mice. Source data are provided as a
Source Data file. i The spatial distribution uniformity of the 10 strongest waves,
measured by the circle variance θi. The error bars represent the mean ± standard
error across the experiments. 23 experiments over n= 10 male mice. Source data
are provided as a Source Data file.
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The waves had different proportions in the original signal
(Fig. 1a, h) and exhibited varying magnitude and time lags in different
brain regions (Fig. 1b, c). The spatial distributions of all the extracted
waves (10 waves) are presented in Supplementary Fig. 1. These waves
are widely distributed across the cortex and recur in a quasiperiodic
manner. This quasiperiodic recurrence is similar to the quasiperiodic
patterns (QPPs)39 or intrinsic oscillatory modes40 observed in fMRI
studies. The waveΦ0 constituted the largest proportion of the signal,
~35%, with an almost zero time lag across the cortex (Fig. 1c). This
suggests a global mode of oscillation with minimal spatial phase var-
iation, which is termed a “standing wave”. In contrast, other waves
exhibit substantial spatial phase variation, indicating that they are
“traveling waves” across the cortex.

Three spatiotemporal patterns of fMRI data were previously
observed in resting humans15. Standing and traveling waves decom-
posed frommice seem to share some similar characteristicswith those
in humans. Specifically, the wave Φ1 that we identified resembles the
first spatiotemporal pattern in humans, which is a switch between
negative BOLD amplitudes and positive BOLD amplitudes within the
somato-motor-visual (SMLV) complex. Thus, we denoted waves such
asΦ1 asΦSensory�motor orΦSM . We posit thatΦ2 may also be related to
SMLV (Supplementary Fig. 1), so we denoted this parameter as ΦSM2.
The Φ3 and Φ5 waves of VGLUT2 at P56 (Supplementary Fig. 1) were
highly concentrated in the RSP and M2 regions, suggesting that there
may be a potential link with the DMN, as proposed in previous
studies41,42. Thus, we denote waves such as Φ5 as ΦDMN�like. A com-
parable phenomenon to the third spatiotemporal pattern in human
subjects was also identified. These similarities between spontaneous
neural activity inmice and BOLD signal fluctuations in humans suggest
the conservation of brain operations across species.

We found that the spatial frequency distributionwas uneven, with
low frequencies dominating the entire cortex (Fig. 1e). The frequency
characteristics of the standing/traveling waves were different from
those of the signals, with almost single-peaked distributions. This
contrasts with the fluorescent signals, which had a broader frequency
distribution. The natural frequency (f ) reflects the frequency of the
energy concentration in the absence of damping. The damping ratio
(ξ) measures the degree of energy concentration, with smaller values
indicating higher concentrations. It is also the reciprocal of the
Q-factor (ξ =0:5Q�1). f and ξ were estimated using autocorrelation
functions (Fig. 1f, Methods for details). The natural frequencies of each
standing/traveling wave in VGLUT2 neurons are similar. The damping
ratios ξ of these waves are small (Fig. 1g), indicating a high degree of
energy concentration within a narrow band of frequencies. Waves
extracted by CPCA were decomposed based on their correlations
without considering frequency. However, the results of the decom-
position showed frequency specificity, indicating that the organization
of long-range correlations between brain regions is frequency depen-
dent, consistent with previous research results40. However, Φ0, the
“standing” wave, is unique because it showed a greater degree of
inconsistency in frequency characteristics between different experi-
ments and mice.

Standing/traveling waves explain FC with negative connections
due to signal time lags
FC is a crucial and fundamental measure of neural activity synchroni-
zation. Due to the properties of CPCA (in which the covariance
between different components is 0), the standing and traveling waves
obtained by CPCA decomposition are also FC decompositions; that is,
FC = s0CΦ0

+ s1CΦ1
+ � � � + siCi + � � �, CΦi

are correlation matrices cal-
culated from the spatiotemporal patterns of wave Φi (reconstructed
FCmatrices), as shown in Fig. 1b. As the number ofwaves increases, the
linear superposition of CΦi

becomes closer to the original FC and
FCGSR (Fig. 2b). Because the waveforms ofΦ are the same at different
locations except for the time lag, the differences and even negative

correlations in these reconstructed FC matrices (CΦ1
~CΦ4

in Fig. 2a)
are caused by the time lag. Both FC and standing/traveling waves
capture the synchronization features of the brain; therefore, we refer
to both as synchronization structures.

Our results demonstrate that the FC matrix and FCGSR matrix are
strongly correlated (r =0:93±0:03); in other words, FC≈αFCGSR + β,
where α and β are constants. The effect of GSR is approximately
equivalent to subtracting a constant from FC in a way that essentially
does not affect the FC structure, which is more conducive to analysis.
The correlation matrices reconstructed from Φ0 are almost constant
matrices (CΦ0

in Fig. 2a and Supplementary Fig. 3), and the high
similarity between the average FC without GSR and the spatial dis-
tribution ofΦ0 further indicates thatΦ0 shares characteristicswith the
“global signal” eliminated by GSR, and removing Φ0 from the raw
signal produces similar outcomes to GSR itself. We suggest that
standing waves such as Φ0 represent zero-lag synchronizations,
denoted asΦGlobal orΦG. In contrast, travelingwaves (for example,Φ1,
Φ4 andΦ5) with positive and negative connections in their correlation
matrices represent time-lag synchronizations.

The spatial distribution of Φ1 encompasses two clusters (Fig. 2a,
CΦ1

), which are reminiscent of the FC matrix (Fig. 3a) and the spatial
distribution of the average FCGSR (Fig. 3c). Wave Φi contributes the
most to the overall trend of FC and FCGSR (Fig. 2b). Notably, the phase
difference in π between these two regions indicated a peak-to-valley
pattern (Fig. 1b, c), which suggested a negative correlation (Fig. 2a).
The distribution patternof FCGSR on the cortex canbe divided into two
internally correlatedmodules (FC post-GSR in Fig. 2a,DFCGSR

in Fig. 2c)
and aligns with the spatial distribution ofΦ1 (Fig. 2d). The distribution
of the phase of Φ1 almost completely explains the sign of FCGSR

(whether a connection is positive or negative).
Moreover, the seed connections of FCwithin the ipsilateral cortex

are typically stronger than the connections with the contralateral
cortex. This difference in functional connectivity across hemispheres
varies spatially, as demonstrated in Fig. 2c. We found that this asym-
metry phenomenon is akin toΦ4 (Fig. 2d). Thus, wedenotewaves such
as Φ4 as ΦTranshemispheric or ΦT . All the reconstructed FC maps from
waves ΦG, ΦSM , ΦT and ΦDMN�like are presented in Supplemen-
tary Fig. 3.

Similarity of synchronization structures in four types of
neurons at P56
Except for a few regions, the three types of GABAergic neurons
developed FC and FCGSR patterns similar to those of VGLUT2 at P56
(Fig. 3a, c). However, the connection strength of VGLUT2 was sig-
nificantly greater than that of GABAergic neurons (Fig. 3b). The degree
of FC similarity post-GSR between GABAergic neurons and VGLUT2 at
P56 varies spatially across the cortex, as shown in Fig. 3g, and changes
over time, increasing with mouse age (Supplementary Fig. 2a, b).

Traveling waves revealed marked differences in cell-to-cell syn-
chronization, and the extent of their similarity to VGLUT2waves varied
distinctly. The portions of waves in VGLUT2 neurons were usually
larger than those in GABAergic neurons (Fig. 3d). Notably, thewaves in
PV neurons were more similar to those in VGLUT2 neurons, while the
waves in SOM neurons were less similar, with VIP neurons falling
between the two (Fig. 3e). Most waves in the four types of neurons
occupied similar frequency bands and demonstrated comparable
energy concentrations within the frequency domain. However, some
waves in GABAergic neurons, particularly those in SOM neurons,
exhibited slightly greater frequencies than those in VGLUT2 neurons,
and the frequency deviation of waves in GABAergic neurons often
surpassed that of VGLUT2 neurons (Fig. 3f).

In addition, the spatial distributions of FC and FCGSR were con-
sistent across various cell types and approximately mirrored the spa-
tial distributions of waves Φ1 and Φ2, as shown in Fig. 3h. Correlation
matrices for waves Φ1 and Φ2 in these four cell types confirmed their
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identities as ΦSM and ΦSM2, respectively (low MSEs to correlation
matrices ofΦ1 andΦ2 in VGLUT2 neurons, Supplementary Fig. 3). The
presence of similar waves at comparable frequencies across diverse
neuronal types underscores their collaborative interactions and
synchronizations.

Distinct developmental trajectories of the synchronization
structures in four neuron types
Although the FC of the four neuronal types converged in similar pat-
terns, their developmental trajectories are quite different. SOM and
VGLUT2 neurons establish complete FC before P14 and undergo only
minorpruning between P14 andP56. PVneurons gradually establish FC
between P14 and P56, while VIP neurons establish FC before P14 and
between P28 and P56, with minor pruning between P14 and P28. Fig-
ure 4a shows the seed-seed FC and changes during development. The
differences in FC between P14 and P56 are shown in Supplemen-
tary Fig. 2c.

The developmental trajectories of FC also exhibited regional
specificity. Figure 4b illustrates the spatial distribution of the changes
in RSFC strength in the cortex and reveals significant differences
betweenGABAergic andVGLUT2neurons. ForGABAergic neurons, the
increase in FC strength showed a pattern similar to the spatial dis-
tribution of Φ1 and was mainly concentrated in two regions. In con-
trast, VGLUT2 neurons primarily undergo pruning in different regions,
resulting in more varied FC changes.

Figure 4c, d also shows the differences in FC between GABAergic
and VGLUT2 neurons, as well as their spatial diversity. During devel-
opment, the average FC strength in GABAergic neurons usually gra-
dually increases, while the average FC strength in VGLUT2 neurons
displays more diverse patterns, including continuous increases, minor
changes, and decreases following an initial increase. In terms of areas
of significant connection, for SOMandVIP neurons, there is generally a
gradual increase during development, but in a few cases, there is an
initial decrease followed by an increase. The areas in the PV and
VGLUT2 neurons often exhibited opposite trends at the same loca-
tions. In PV neurons, FC typically undergoes a decrease followed by an
increase, while in VGLUT2 neurons, it undergoes an initial increase
followed by a decrease.

In addition, GABAergic and VGLUT2 neurons exhibited differ-
ences in changes in short-range FC during development, with the
former increasing and the latter decreasing slightly. This change is
heterogeneous across cortical regions and varies between different
neurons, coinciding with the establishment of their respective func-
tional connectivity.

Deviation of standing/traveling waves in different cells during
development
Although FC was similar between neurons at P56, there was large
variability in waves (Fig. 3), indicating that standing/traveling waves
may capture more comprehensive information about brain synchro-

Fig. 2 | FC as a linear superposition of zero-lag and time-lag synchronization
structures. a FC matrices were calculated for the original fluorescent signals (FC),
GSR-regressed signals (FCGSR), and time courses reconstructed from Φ0 (CΦ0

),Φ1

(CΦ1
),Φ4 (CΦ4

) and Φ5 (CΦ5
). While the values differ considerably, the FC matrix

and FCGSR matrix display a remarkable correlation (r =0:93±0:03), suggesting a
shared underlying trend in their relative positioning. b Similarities of the FC and
FCGSR maps with CΦi

, including individual waves and their linear superpositions

ðPi
t =0 wtCΦt

Þ, measured by the Pearson correlation coefficient. The error bars

represent the mean ± standard error across the experiments. 23 experiments
over n= 10 male mice. Source data are provided as a Source Data file.

c Spatial distributions of pixel-averaged FCðDFC Þ and FCGSR

�� �� (DFCGSR
) with their

hemispheric differences (ΔFC , ΔFCGSR
). The hemispheric differences were calculated

by the pixel average of FCHomolateral � FCContralateral . d Similarities between the
spatial distribution of FC (DFC , DFCGSR

) and the intensity distributions of standing/

traveling waves (10 strongest waves, ρi, as shown in Fig. 1c), as measured by the
Pearson correlation coefficient; only positive correlations are shown. DFC and ρ0,
DFCGSR

and ρ1, ΔFC exhibited significantly greater pairwise similarities than those of

all the other combinations (Fisher’s z-transformed two-sided t-tests, p = 10�9,

p=6:88× 10�6 after FDR correction with a threshold of 0.05). The error bars
represent themean ± standard error across the experiments. 23 experiments over
n= 10 male mice. Source data are provided as a Source Data file.
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nization. We identified several typical waves across different neurons
and developmental stages using the MSEs between the correlation
matrix of waves in target conditions and that of VGLUT2 at P56 (Sup-
plementary Fig. 3). Figure 5a, b, and c shows the deviations of three
such waves, namely, ΦSM2, ΦT and ΦDMN�like, respectively. The pro-
portions of these components also vary with cell type and age. For
VGLUT2 and SOMneurons, the proportion of each component usually

peaked at P28. PV neurons usually exhibited the opposite pattern to
VGLUT2 neurons. The change in the proportion of VIP waves was
consistent with the change in FC, with a significant increase after P28.
For ΦDMN�like, in P56, it was more common in the PV and VGLUT2
neurons and rare in the SOM and VIP neurons.

The “content” of waves is clearly different in different cells and at
different ages. As illustrated in Fig. 5d, certain waves in SOM and PV

Article https://doi.org/10.1038/s41467-024-46975-5

Nature Communications |         (2024) 15:2884 5



neurons exhibited a lower signal-to-noise ratio and lack a discernible
spatial distribution pattern. These waves account for a relatively small
proportion of the overall waves, indicating that they may be less sig-
nificant in terms of their contribution to neural activity. These obser-
vations indicate that there are fewer waves in these two types of
neurons than in VGLUT2 neurons. However, the CPCA method is
unable to determine the number of waves. Therefore, we indicate the
“quality” of waves by calculating the peak signal-to-noise ratio (PSNR)
between the spatial distribution and itsmedian filter (seeMethods). As
shown in Fig. 5e, VGLUT2had the richest neural activity, and the PSNRs
were the highest among the four types of neurons. PSNRs are typically
smaller and decrease quickly as the wave number increases, which
indicates that the information content decreases as the proportion of
waves decreases. There are also differences in developmental stages,
with minimal alterations in the content of waves in VGLUT2 and SOM
neurons during development but a significant increase in that in PV
neurons after P14 and in VIP neurons after P28. This phenomenon is
also observed during the development of FC.

The frequency of waves in the PV, SOM and VIP neurons of young
mice was greater than that in the VGLUT2 neurons of adult mice, and
the waves were relatively chaotic, varying between the different
experiments (Fig. 3f, Fig. 5f, g). VGLUT2 neurons are relatively more
consistent with those of adults. This finding suggested that the fre-
quency response characteristics of GABAergic neurons adjust during
development to match those of excitatory neurons.

We analyzed neural activity in mice during movement when the
micewere spontaneously running on a rotating plate. If we continue to
apply the assumptions of CPCA, which states that each brain function
corresponds to a specific waveform, it is interesting to decompose
waves associated with behaviors such as running. Figure 6a shows that
two components (ΦG and ΦSM , identified by the MSEs between the
correlationmatrix of thesewaves and those in VGLUT2neurons at P56;
Supplementary Fig. 3) were decomposed during movement. During
movement, several components were similar to those observed at rest
(Supplementary Fig. 1), but the waves were severely deformed. As
shown in Fig. 6c, the correlation matrix of Φ4 during movement
appeared to be a combination ofΦT andΦDMN�like at rest (Fig. 2), with
MSEs of 0.756 and 0.831, respectively (Supplementary Fig. 3), which
suggested that the lack of correlation between these waves dis-
appeared. The changes in the waves in the four types of neurons
during movement differed, and deterioration of “quality” was a com-
mon phenomenon. PV and VGLUT2 neurons were the most affected,
SOM neurons were the least affected, and VIP neurons were between
the two (Fig. 6b). This differencemay be due to differences in the roles
of different cells during spontaneous movement.

In the anesthetized state, the spatial distributions and character-
istics of waves undergo noticeable changes. ΦG, ΦSM , ΦSM2, ΦT and
ΦDMN�like were identified using the MSEs between the correlation

matrix of waves under target conditions and those in VGLUT2 neurons
at P56 (Supplementary Fig. 3). As depicted in Fig. 7a, b, and c, therewas
a significant reduction in both the proportions and qualities of the
waves with an increase in the burst suppression ratio (BSR). The BSR
serves as a measure of anesthesia depth, offering an advantage over
the anesthetic concentration by reducing the impact of individual
animal variations. Notably, the proportion of ΦDMN�like waves gradu-
ally increased with stronger anesthesia (increased BSR). During anes-
thesia, the frequency characteristics of the waves were greater than
those in the awake state, and the waves exhibited a relatively chaotic
nature, varying between different experiments, as shown in Fig. 8c–e.

Coactivation patterns (CAPs) under anesthesia are predominantly
characterized by alternating activations between central and periph-
eral cortical regions, as illustrated in Fig. 8b. Correspondingly, the
standing wave ΦG under anesthesia (Fig. 8a) shows not only overall
changes but also detailed variations. Notably, a wave propagated from
the retrosplenial area (RSP) to the lateral cortex or vice versa under
anesthesia that varies with different anesthetics, as shown in the
Supplementary Movie 1. The spatial pattern of ΦG closely resembled
the main CAPs. Moreover, the global signal also contained traveling
components that were not addressed by GSR, potentially highlighting
a limitation of GSR.

Gene expression is associated with traveling waves
To understand the molecular mechanisms underlying the structure of
large-scale neural activity, we compared the spatial patterns of the
traveling waves with the expression patterns of 215 specific genes
(Fig. 9). Notably, we found that the spatial distribution patterns of
cortical gene expression were similar to those of traveling waves,
suggesting that gene expression might be the basis for the formation
of these waves.

Our results showed that the spatial distribution of ΦSM was
strongly correlated with 186 genes, with an absolute correlation
coefficient greater than 0.3. The genes with the strongest correlation
were Wdr5 (r =0:76) and E2f6 (r = � 0:85). Interestingly, ΦSM was the
most prominent component afterGSR andwasalsocorrelatedwith the
expression of most genes analyzed in our study. We also found that
spatial patterns of gene expression positively or negatively correlated
with ΦSM were usually located in different gene coexpression trees.

Although the number of genes related to the other three waves
was low, these genes still hold potential physiological significance. The
numbers of genes ðr >0:3Þ correlated with ϕSM2, ϕT , and ϕDMN�like

were 10, 11, and 16, respectively, and the genes with the highest cor-
relation with each wave were Neto2, Stk32c, and Man1a, respectively.
We analyzed genes correlated with these three waves (r >0:3) and
genes correlated with theΦSM (r >0:75, 16 genes), as shown in Fig. 9c.
Our results showed that these genes can be roughly divided into two
categories. The genes in the first category are related to cell

Fig. 3 | The four types of neurons exhibit similar FCpatterns at P56. a FC matrix
and FCGSR matrix and FC and FCGSR maps from seed point SSP-tr 3 of four types of
neurons (VGLUT2, SOM, VIP, and PV). b The average of FC and FCGSR

�� �� in the
VGLUT2 neurons are significantly larger than those in the GABAergic neurons
(Fisher’s z-transformed two-sided t-tests, FC : p =4:8× 10�4, FCGSR : p= 5:3 × 10�7,
after FDR correctionwith a thresholdof 0.05). The error bars represent themean ±
standard error across the experiments. (23 experiments over n= 10 VGLUT2 male
mice. 17 experiments over n= 13 PV male mice. 20 experiments over n= 10 SOM
male mice. 24 experiments over n= 10 VIP male mice.) c Violin plot of similarities
between the FC of GABAergic neurons and that of VGLUT2 neurons at P56,
measured by the Pearson correlation coefficient Si =Pearson CVGLUT2 i, jð Þf or j =��
1,2 . . .�, CGABAergic i, jð Þf or j = 1,2, . . .

h i
Þ, where C i, jð Þ is the Pearson correlation coef-

ficient between the signals of pixels i and j. The similarities during development are
shown in Supplementary Fig. 2b. d Variance explained by the top 10 waves in
GABAergic and VGLUT2 neurons at P56. The error bars represent the mean ±
standard error across the experiments. (23 experiments over n= 10 VGLUT2 male

mice. 17 experiments over n= 13 PV male mice. 20 experiments over n= 10 SOM
male mice. 24 experiments over n= 10 VIP male mice.) e Degree of similarity
between waves from VGLUT2 and GABAergic neurons at P56, quantified by the
minimum mean squared error (MSE) of the correlation matrices from a specific
wave to all waves in VGLUT2. A lower MSE indicates greater similarity. f Natural
frequencies (f ) and damping ratios (ξ) of the 10 strongest waves from four types of
neurons. The error bars represent the mean ± standard error across the experi-
ments. (23 experiments over n= 10 VGLUT2 male mice. 17 experiments over n= 13
PV male mice. 20 experiments over n= 10 SOM male mice. 24 experiments over
n= 10 VIP male mice.) Source data are provided as a Source Data file. g The spatial
distribution of FC similarities between VGLUT2 and GABAergic neurons at P56 was
measured by the Pearson correlation coefficient, as shown in Fig. 3c. The spatial
distributions of FC similarities during development are shown in Supplementary
Fig. 2a. h The similarity between FC similarity to VGLUT2 and spatial distributions
(ρi) of waves measured by Pearson correlation coefficients. The black circles
denote negative correlations.
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differentiation, cellular component organization, and the establish-
ment of localization; these genes may be involved in the development
of structures in the brain, which may be related to the structural basis
of FCand travelingwaves. Thegenes in the secondcategoryare related
to the response to stimuli, protein metabolic processes and signaling,
which may be related to the interaction of information in the neural
network and crucial for proper functioning of FC and traveling waves.

Discussion
Complex global synchronization structures in various cell types, ages,
and physiological states. These structures, present in the spontaneous
activity of the brain, show a certain level of conservation across dif-
ferent cell types, ages, and even species (humans and mice)24,43.
Although state-dependent FC has been identified in various contexts,
the synchronization of global neural activities extends beyond the
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Fig. 4 | The developmental processes of FC are cell type and region specific.
a Significant seed-seed FC post-GSR and changes in four types of neurons across
three developmental stages, with diagonal entries representing the short-range FC
and changes (p <0.05, Fisher’s z-transformed two-sided t-tests, after FDR correc-
tion with a threshold of 0.05). Changes between P14 and P56 are shown in Sup-
plementary Fig. 2a.bThe spatial distribution of changes in the average FCpost-GSR
during development, measured by the difference in pixel averages of correlation
coefficients. The contour shows the spatial distribution of Φ1. c Trends in the
average FC at 5 seed points during development. The positive connections and
negative connections are averaged separately and are shown in the top and bottom

panels, respectively. The error bars represent themean ± standarderror across the
experiments. (P14: 13 experiments over n=6 VGLUT2 male mice. 17 experiments
overn=6 PVmalemice. 16 experiments overn= 16 SOMmalemice. 23 experiments
over n= 5 VIP male mice. P28: 8 experiments over n=4 VGLUT2 male mice. 32
experiments over n= 7 PVmale mice. 19 experiments over n=6 SOMmalemice. 17
experiments over n= 7 VIP male mice. P56: 23 experiments over n= 10 VGLUT2
male mice. 17 experiments over n= 13 PV male mice. 20 experiments over n= 10
SOMmale mice. 24 experiments over n= 10 VIP male mice.) d Area of regions with
significant connections at 5 seed points.

Fig. 5 | Spatial variations inwavesduringdevelopment. a–cChanges inΦSM2,ΦT

and ΦDMN�like in the four neuron types at three developmental stages (relative to
post-GSR). The dashed lines show the changes in the corresponding wave pro-
portions during development, and the images show the changes in the corre-
sponding wave spatial distributions. d Spatial distributions and waveforms (first
30 s in 180 s acquisition) of “low-quality” waves. e Changes in wave quality during
development, measured by the PSNR between the spatial distribution and its
median filtering. The qualities of the 20 strongest waves are presented. f-g Natural
frequencies (f ) and damping ratios (ξ) of the 10 strongest waves from four types of

neurons at P14 and P28. The error bars represent themean ± standard error across
the experiments. (P14: 13 experiments over n=6 VGLUT2 male mice. 17 experi-
ments over n=6 PV male mice. 16 experiments over n= 16 SOM male mice. 23
experiments over n= 5 VIP male mice. P28: 8 experiments over n=4 VGLUT2 male
mice. 32 experiments over n= 7 PVmalemice. 19 experiments over n=6 SOMmale
mice. 17 experiments over n= 7 VIP male mice. P56: 23 experiments over n= 10
VGLUT2male mice. 17 experiments over n= 13 PV male mice. 20 experiments over
n= 10 SOMmale mice. 24 experiments over n= 10 VIP male mice.) Source data are
provided as a Source Data file.
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simple superposition of synchronized or desynchronized states8–14. FC
encompasses a more intricate picture as a highly multidimensional
continuum of synchronizations, including a time lag (or traveling
waves, which may be initially interpreted as a desynchronized state)
and differences between cells8.

While the synchronized structures of the three GABAergic neu-
rons exhibited similarities to those of VGLUT2 neurons, the traveling
waves revealed marked differences in cell-to-cell synchronization. The
glutamatergic neurons exhibited greater proportions and greater
diversity of wave patterns than did the GABAergic neurons. Among the
three GABAergic neuron types, the waves observed in PV neurons
exhibited the closest resemblance to those in VGLUT2 neurons, while
those inSOMneurons exhibited the least resemblance. Theproportion
ofΦDMN�like waves in PV and VGLUT2 neuronswas greater, indicating a
potential role of PV in DMN function, consistent with previous
studies44.

A negative correlation is a characteristic of time-lag synchroni-
zation. Global signal regression (GSR) is a controversial method com-
monly employed in fMRI studies45. Previous studies have suggested
that global signal regression (GSR) can introduce a more pronounced
negative correlation in FC46. Compared to fMRI and ultrafast fMRI40,
our method offers finer spatiotemporal resolution and enables almost
direct imaging of intracellular signals, unaffected by HRF, potentially
capturing more characteristics of neural activity. Using fluorescent
signals, we investigated the impact ofGSR onFC. Our analysis revealed
that while GSR eliminates zero-lag synchronization, it preserves FC
structures, which reflect time-lag synchronization. Our analysis
revealed negative correlations in spontaneous neural activity arising
from the propagation of specific wave patterns. These interferences
can lead to near-zero correlation coefficients between activity in dif-
ferent brain regions, some of which may be interpreted as desyn-
chronization. These findings address a gap in understanding resting-
state FC (rsFC) data, particularly in human fMRI studies.

A complex picture of brain synchronization under anesthesia.
Anesthesia can induce the brain to enter a more synchronized state, a
slow-wave state similar to sleep8. In this state, pancortical synchro-
nized activity is dominant, as evidenced by our results for Φ0. How-
ever, we observed the presence of traveling waves other than these

slow oscillations, suggesting a more complex synchronization struc-
ture, which is consistent with the findings of previous studies8. Fur-
thermore, although all slow oscillations (all Φ0 under anesthesia)
exhibit almost zero-lag synchronized activity, slow waves induced by
different anesthetics display distinct characteristics in terms of spatial
movement on a small scale. As anesthetics typically affect the
GABAergic system47, this might be a comprehensive outcome related
to themechanisms of synchronization, including interactions between
GABAergic and glutamatergic neurons. This phenomenon warrants
further investigation.

Cell-to-cell differences inmovement impact spontaneous activity,
although the main components are consistent with those at rest. We
found that, compared with FC, traveling waves capture more detail
about changes in neural activity and are consistent with subtype spe-
cificity found in previous studies48. All four types of neurons exhibited
a decrease in wave quality; PV and VGLUT2 neurons were the most
affected, SOM neurons were the least affected, and VIP neurons were
between the two. Previous studies have shown that PV neurons split
into distinct populations during movement: an excitatory group and a
suppressed group49. This functional dichotomy likely explains the
dramatic decrease in wave quality we observed in PV neurons.

Different developmental trajectories in FC and travelingwaves are
observed for GABAergic interneurons and glutamatergic neurons. FCs
of SOM and glutamatergic neurons are established at an early stage,
while the FC of PV neurons establishes connections throughoutmouse
development, and rapid expression of PV and establishment of
synapses are among themost critical changes in theGABAergic system
from P14–P5650. The FC of VIP neurons is established after adoles-
cence. Despite VIP expression being abundant during embryonic and
early life stages51, it has not been determined why the FC of these
neurons ismainly established between P28 and P56. VGLUT2 and SOM
neurons establish relatively complete synchronizing structures at early
stages. While VGLUT2 neurons exhibit nearly perfect time-lag syn-
chronization even at early stages, GABAergic neurons, except SOM
neurons, lack this type of synchronization. Studies indicate that neural
desynchronization may stem from shared input/output among exci-
tatory and inhibitory neurons1,2. The robustness of traveling waves in
VGLUT2 neurons at an early age presents a challenge for determining

Fig. 6 |Waves duringmovement extractedbyCPCA. a Spatial distributions of the
waves ΦG and ΦSM during movement (running on plate) in four types of neurons.
b Changes in wave quality during movement, measured by the PSNR between the

spatial distribution and its median filtering. The qualities of the 10 strongest waves
are presented. c Spatial distribution and correlation matrix of Φ4 during
movement.
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the mechanisms underlying time-lag synchronization due to the
immaturity of GABAergic neurons.

The synchronization of spontaneous activity is consistentwith the
changes in gene expression levels52. Gene transcripts have been linked
to resting-state FC and networks in fMRI studies53–57, which is con-
sistent with our findings. Our approach, which combines gene analysis
with spontaneous activity, holds great promise for identifying the
functional roles of resting-state activities. However, how this similarity
arises remains unclear. By investigating the correlation between genes
and traveling waves, we can identify genes that warrant further
investigation and subsequently delve into their functions. This
approach may help to decipher the role of synchronizations in the
brain. For example, the expression pattern of the gene Epha6 is similar
to the spatial distribution of time-lag synchronizationΦ5, and Epha6 is
related to memory function58, which suggests thatΦ5 may play a role
inmemory formation. Since brain synchronizations exhibit similarities
across different species43, the insights gained from thismethod inmice
could be extrapolated to other species. Thus, this methodology has

significant potential for elucidating the relationships between genetic
pathways and the interplay between brain structure and function.

Interactions between different types of neurons. We observed
opposite developmental trajectories between PV and VGLUT2 neurons
in termsof travelingwaves. PVexpression and rapid synapse formation
occur during development50 and PV inhibits glutamatergic neurons
directly48. The changes in VGLUT2 travelingwaves fromP14 to P56may
be associated with the establishment of PV synchronization. PV neu-
rons inhibit the cell bodies and proximal dendrites of pyramidal cells,
while SOMneurons target distal dendrites59–61. Horizontal propagation
in layer 5 pyramidal cellsduring theup statemainly occurs among their
cell bodies62; thus, inhibition by PV neurons at the cell bodies is likely
the primary inhibitory system, with SOM neurons inhibition of distal
dendrites acting as a secondary system62. However, the impact of cell
type on time-lag synchronization has not been determined. Notably,
the timing of the maturation of synchronization structures differs
across cell types. After P28, VIP synchronizationmatures rapidly, while
VGLUT2 synchronization exhibits a pattern seemingly opposite to that

Fig. 7 | Traveling waves in VGLUT2 neurons vary under anesthesia. a Changes in
theΦSM ,ΦSM2,ΦT andΦDMN�like waves of four cell types (post-GSR, relative) under
anesthesia are illustrated, with different waves represented by different colors. The
dashed lines show how the proportions of these waves change as the burst sup-
pression ratio (BSR) increases, while the images depict the corresponding changes
in their spatial distributions.bChanges in wave quality under anesthesia,measured

by the PSNRbetween the spatial distribution andmedianfiltering.ΦSM disappeared
under Propofol anesthesia under 90% BSR (red line). c Spatial distributions and
waveforms (first 30 s in 180 s acquisition) ofΦ1 andΦ8 (propofol, 90%BSR).Φ8 is a
low-quality wave. d Proportions of prominent coactivation patterns (CAPs) across
different BSRs.
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Fig. 8 | Standingwavesand frequency characteristics of VGLUT2neuronsunder
anesthesia. a Spatiotemporal patterns of theΦG wave under anesthesia at a BSR of
90%. b Prominent coactivation patterns in the anesthetized state (90% BSR).
c–e Natural frequencies (f ) and damping ratios (ξ) of the 10 strongest waves from

VGLUT2 neurons at BSR levels of 50%, 70% and 90%. The error bars represent the
mean ± standard error across the experiments. n= 7 male mice examined over 9
independent experiments; Source data are provided as a Source Data file.
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Fig. 9 | Gene expression associatedwith travelingwaves. a Spatial distributionof
gene expression in the cortex that shows patterns similar to those of waves. The
colors indicate the intensity of gene expression on the cortex surface. b Similarity
between the spatial distribution of gene expression and the spatial distribution of

the ΦSM , ΦSM2, ΦT and ΦDMN�like waves illustrated by a gene coexpression tree,
measured by the correlation coefficient. The colors in the heatmap show the cor-
relation coefficients. Source data are provided as a Source Data file. c Biological
processes associated with genes that are correlated with traveling waves.
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observed before P28. Before P28, the decrease in VGLUT2-related
traveling waves coincided with the increase in these waves in PV neu-
rons. However, after P28, the traveling waves of VGLUT2 align with
those of both PV and VIP neurons, coinciding withmodifications in the
presynaptic terminal during this period63 and resulting in a more
complex picture. SOM neurons exhibit early development of stable
synchronizing structures. In neural systems, excitatory activity typi-
cally triggers balanced inhibition for stability64. VGLUT2 neurons
rapidly mature during the early stages of eye opening65, and SOM
neurons form synaptic connections with excitatory neurons before
P1466, possibly leading to early and relatively complete synchroniza-
tions similar to those observed in VGLUT2 neurons.

Methods
Our experimental setup and data processing method are described in
Supplement Fig. 4. We monitored cortical activity in four mouse lines
using fluorescence imaging. Each pixel in the imaging results repre-
sents a time series of changes. Toobtain an FCmap for each time series,
we calculated its correlation with the other time series and subse-
quently clustered these FC maps to aid in the selection of seed points.

Animals
We bred RCL-GCaMP6s mice67 (Ai96; B6.129S6-Gt(ROSA)
26Sortm96(CAG-GCaMP6s)Hze/J, Jax #024106) with VGLUT2-IRES-Cre mice
(STOCK Slc17a6tm2(cre)Lowl/J, Jax #016963), Pvalb-IRES-Cremice (B6;129P2-
Pvalbtm1(cre)Arbr/J, Jax #008069), SOM-IRES-Cremice (STOCKSsttm2.1(cre)Zjh/J,
Jax #013044) and VIP-IRES-Cremice (STOCK VIPtm1(cre)Zjh/J, Jax #010908),
generating “VGLUT2-GCaMP6s”, “PV-GCaMP6s”, “SOM-GCaMP6s”, and
“VIP-GCaMP6s” mice, respectively68. We imaged 6 VGLUT2 mice, 6 PV
mice, 6 SOMmice, and 5 VIP mice at P14. At P28, we imaged 4 VGLUT2
mice, 7 PV mice, 6 SOM mice, and 7 VIP mice. At P56, we imaged 10
VGLUT2 mice, 13 PV mice, 10 SOMmice, and 10 VIP mice. All mice were
maintained on a standard 12 h light-dark cycle in a roomwith controlled
temperature (22 ± 1 °C) and humidity (50 ± 5%) and had free access to
food and water. All animal procedures were approved by the Hubei
Provincial Animal Care and Use Committee and adhered to the experi-
mental guidelines of the Animal Experimentation Ethics Committee of
Huazhong University of Science and Technology in China.

Surgical preparation
To enable repeated head-fixed imaging, a chronic through-bone win-
dow was fitted on each mouse, as previously described69,70. After the
skullwas exposed, clear-drying dental cementwas applied to the intact
skull, followed by fixation of an awake imaging fixator and a glass
coverslip to create a partially transparent imaging surface ~8mm in
diameter located 3mmanterior to the bregma. The clear-drying dental
cement used was a mixture of C&BMetabond (Parkell, Edgewood, NY,
USA), C&B Metabond powder (product: S399), C&B Metabond Quick
Base (product: S398), and C&B Universal catalyst (product: S371).
During surgery, the mouse was placed in a stereotactic apparatus
(Riverward, Shenzhen, China) under inhalational anesthesia with iso-
flurane (2% for induction, 1.5% for maintenance), while body tem-
perature was maintained at 37 ± 0.5 °C using a heating pad
(RightTemp!, Kent Scientific, USA).

Imaging
We fixed the brains of awake mice and imaged them in a calcium
fluorescence imaging system (see Supplement Fig. 1) as previously
described71. We used a frame rate of 30Hz and a resolution of 512 × 512
with 4 × 4 binning. Illumination was provided by a high-power mercury
lamp (UHGLGPS, Olympus; 130W) through a liquid light guide
(ULLG150/300, Olympus). The excitation beam, ~488 nm for GCaMP
fluorescence, was created by an excitation filter (FF01-480/40-25,
Semrock) and reflected onto the cortical surface with a dichroic mirror
(FF495-Di0325 × 36, Semrock). Video was captured using an sCMOS

camera (16 bits, 65 × 6.5μm, Flash4.0V2C11440-22CU, Hamamatsu,
Japan),with adichroicmirrorfilteringoutGCaMP6f excitation light. The
objective lens was defocused down by ~400μm to minimize vascular
artifacts. Fluorescence imaging was performed in a darkened, sound-
proof chamber after 15min of acclimation.Wemonitored themice via a
body camera throughout the imaging process. The fluorescent signals
showed obvious changes, as demonstrated in Supplementary Fig. 1.
Under anesthesia, electroencephalogram (EEG) data were monitored
using two stainless steel screws implanted into the prefrontal cortex.

Preprocessing
We selected fluorescent calcium signals on the recordings from the
body camera, excluding periods with obvious body movement. The
signals were bandpass filtered from 0.1 to 14.5 Hz (Chebyshev type II
digital filter). We registered the fluorescent calcium signals using both
the Allen Mouse Common Coordinate Framework v2 (CCF v2) anato-
mical template72 and the Allen Developing Mouse Brain Atlas73 as
references, as shown in Supplementary Fig. 4e. We selected data from
mice with fluorescent signals that were significantly greater than those
of wild-type mice (Supplementary Fig. 4g). The BSR under anesthesia
was calculated by segmenting the EEG data into bursts and suppres-
sions using voltage- and duration-based thresholds.

FC
The strength of the connection was indicated by the Pearson correla-
tion coefficient of the preprocessed fluorescent calcium signals with/
without GSR. The correlation coefficients were subjected to Fisher Z
transformation before being hypothetically tested. One-sample tweo-
sided t-tests were used to evaluate the null hypothesis that the corre-
lation means equal zero for all correlation coefficient groups. Addi-
tionally, Welch’s unequal variances t-test was used to compare all
pairwise correlations between two developmental timepoints. To
account formultiple testing and control the false discovery rate (FDR),
we corrected the p-values using the Benjamini–Hochberg algorithm74.
We considered p-values <0.05 to indicate statistical significance.

The absolute average FC was determined by taking the average
of the absolute values of all the jFCj

ij at each pixel. This process was
executed by selecting each pixel i and computing the FC map
FCj

i, f or j = 1,2, . . .. The FC map illustrated the strength of the con-
nections between the seed point and all other voxels in the cortex.
The absolute average FC was then determined by averaging the
absolute values of the FC map, �jFCt j=Aveð FCj

t

���
���, j = 1,2, . . .Þ. The

hemispheric differences in FC were estimated by subtracting the
average absolute FC of the ipsilateral hemisphere and
�jFCpj=Aveð FCj

p

���
���, j = ipsilateral pixels of pÞ from that of the con-

tralateral hemisphere �jFCcj=Aveð FCj
c

���
���, j = contralateral pixels of pÞ

as follows: ( �jFCpj � �FCc

�� ��). The FC similarity between pixels i and j
was measured by Pearson’s correlation coefficient between the FC

maps, Pearsonð½FCt
i ,f or t = 1,2, . . .�, ½FCt

j , f or t = 1,2, . . .�Þ.
The seed points were selected by clustering. The pixels were

grouped into several classes by the k-means algorithm based on their
connection maps. The number of means ranged from 2–25 and were
selected according to the intragroup similarity and the distribution of
groups in the cortex. We selected seed points based on the cluster
results and CCF, attempting to ensure at least one point in each group.
The connections between seed points were represented by Pearson’s
correlation coefficients. The short-range functional connectivity was
calculated between the seed point and its adjacent region of 8 pixels.
Figure 4f shows all the selected seed points.

Gene expression
Our study employed in situ hybridization (ISH) data for 2,080 genes
from the Allen Mouse Brain Atlas, which included 4,345 coronal
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sections with masked resolution resampled to 200 microns72. To
analyze the gene expression data, we employed weighted gene coex-
pressionnetwork analysis (WGCNA) andobtaineddistinctmodules38,53.
From these modules, we selected 214 genes based on the similarities
between their spatial distribution of expression and the distribution of
traveling waves. For each module, we visualized the gene expression
data in a heatmap to identify genes that exhibited similar expression
patterns to our coactivation pattern. We then compared the expres-
sion similarity of each gene with the spatial pattern of the traveling
waves. The coefficient of correlation (r) was used to determine the
similarity between the spatial distribution of gene expression patterns
and the spatial patterns of traveling waves. Typically, a correlation
coefficient (r) less than0.3 is considered to be negligible75, indicating a
weak relationship between two variables64. On the other hand, a cor-
relation value (r) above 0.75 is indicative of a high degree of
correlation76, suggesting a strong association between the spatial
patterns of gene expression and traveling waves. Thus, we chose 0.3
and0.75 as thresholds for analyzing the correlations between traveling
waves and genes.

Standing/traveling waves
We utilized complex principal component analysis (CPCA) to extract
temporospatial waves from preprocessed fluorescent calcium signals.
CPCA identifies zero-lag and time-lag spatial structures as several tra-
veling and standing waves15,37, and we examined 10 components for all
obvious spatial structures. We also analyzed data collected under
anesthesia and during movement and compared them to the results
obtained using data at rest.

The CPCA method involves applying a Hilbert transform to the
original signal, followed by principal component analysis (PCA). Our
fluorescent signal Sp tð Þ at the pixel (p) is a time (t) series. Each Sp is first

z scored (Np =
Sp�Mean Spð Þffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Spð Þ
p ) and then subjected to a Hilbert transform,

Cp =Hilbert Np

� �
. The outcome of the Hilbert transform is a complex

number that forms a matrix:

M =

Cp0
t0
� � � � � CpN

t0
� �

..

. . .
. ..

.

Cp0
tM
� � � � � CpN

tM
� �

0
BB@

1
CCA ð1Þ

Principal component decomposition of M yields scores (tk tð Þ for
the k-th component, l2-normalized as φk tð Þ), eigenvalues (dk for the
k-th component) and loadings (lk pð Þ for the k-th component, l2-nor-
malized as ρke

θk ). lk represents the spatial distribution of standing/
traveling waves (complex numbers, including the amplitude ρk and
phase eθk distributions). The real part of tk represents the waveforms
of standing/traveling waves, while d2

k=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ntime � 1

p
represents the var-

iances of each wave. Combining scores and loadings or projecting the
original signal with loadings yields the spatiotemporal pattern of each
standing/traveling wave (Supplementary Movie 1).

For group-level analysis, we normalized the signals obtained from
each experiment N1p,N2p, . . . and concatenated them over time to

form a longer signal (NGp = ½N1p t0
� �

, . . . ,N1p tn
� �

,N2p t0
� �

, . . . ,

N2p tn
� �

, . . .�); then, the same steps were repeated as in a single
experiment. The effectiveness of CPCA depends on the length of the
signal; generally, the longer the signal is, the greater the signal-to-
noise ratio.

There is no direct method for comparing different waves from
CPCA results. To identify corresponding waves, we examined the
connectivity matrices of the waves (CΦi

). We started with the spatio-
temporal pattern of each wave and computed its connectivity matrix,
the correlation coefficients between pixels (CΦi

ð j, kÞ= Pearsonð½S� jRðtÞ,

t = 1,2, . . . ,½S�kRðtÞ,t = 1,2, . . .Þ, where S j
R tð Þ is the signal of pixel j recon-

structed fromwaveΦi at time t).We then compared these connectivity
matrices based on themean square error (MSE), considering thewaves
with the lowest MSE as being the same type. The mean square error is
shown in Supplementary Fig. 3.

The quality of the traveling waves was measured by the PSNR
between the spatial distribution and its median filtering. The median
filtering had a kernel size of 10×10, and the real and imaginary parts
were computed separately and then summed. The formula was as
follows:

SNRtotal = PSNR Real ρeθ
� �� �

+ PSNR Imag ρeθ
� �� �

ð2Þ

PSNR xð Þ= 10× log10
xmax

var x � xf iltered

� �
0
@

1
A ð3Þ

We normalized each pixel prior to conducting CPCA. This nor-
malization allowed for comparability of signal magnitudes across dif-
ferent experiments and locations. However, the effectiveness of this
method needs to be demonstrated. To investigate the differences in
the spatial distribution and efficiency of fluorescent protein expres-
sion, we conducted simulation experiments (Supplementary Fig. 5).
We generated three sets of unrelated signals and created three groups
of spatial amplitude and time delay distributions, also adding zero-
mean Gaussian noise. To mimic variations in fluorescent protein
expression and spatial distribution, we produced several spatial dis-
tribution patterns (simulated efficiency in Supplementary Fig. 5). The
generated signals were linearly superimposed and coupled with zero-
mean Gaussian noise and simulated fluorescent protein expression
spatial distributions to create simulated neural activity signals, which
were subsequently subjected to CPCA. We conducted three sets of
simulations with different sizes and spatial distributions of simulated
efficiency. The results indicated that the differences in expression
patterns or efficiencies of each marker did not significantly affect the
outcomes of CPCA.

Frequency
The power spectral density (PSD) of the fluorescence in Fig. 1d was
obtained by fast Fourier transformation (FFT) of the pixel-averaged
signal after performing Hann smoothing (with Hann as a window
function to reduce spectral leakage) and normalization to the unit
energy. The natural frequencies (f ) and damping ratios (ξ) were esti-
mated by fitting autocorrelation functions of waveforms using the
following equation77:

R τð Þ= πGf ne
�2πf nξ τj j

4ξk2
s

cos 2πf dτ
� �

+
ξffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ξ2
q sin 2πf d τj j� �

0
B@

1
CA ð4Þ

where R is the autocorrelation function, f n is the undamped natural
frequency, f d is the damped natural frequency, ξ is the damping ratio,
and G is the input PSD amplitude.

Methodological considerations
We employed k-means clustering to assist in seed point selection, but
its efficacy is limited because it uses the Euclidean distance to evaluate
functional connections and may not adequately address situations
where FC patterns are comparable but exhibit varying strengths.
Future research should focus on developing clustering algorithms
more suitable for functional connectivity analysis. The areas of sig-
nificant connectivity were calculated based on the t-test results using a
p-value threshold of p<0:05. However, the t-test is dependent on
sample size and may exhibit variability, potentially introducing
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inaccuracies in the areas of significant connectivity. The imaging
method has certain limitations that need to be acknowledged. One
limitation is that the employed chronic through-bone windows have
inherent challenges in long-term usage, which restricts the ability to
conduct longitudinal observations from infancy to adulthood on the
same experimental animals. Our findings were confirmed by statistical
analysis, which yielded consistent results. Additionally, the imaging
methoddoes not allow for precise identification of the specific cortical
layer from which the observed fluorescence originates. Continued
improvements in imaging techniques and animal preparation
approaches will be necessary to overcome these limitations and fur-
ther enhance our understanding of the intricate dynamics of the brain.

Statistics and reproducibility
The animals are random selected. No data were excluded from the
analyses. No statistical methods were used to pre-determine sample
sizes. We imaged 6 VGLUT2 mice, 6 PV mice, 6 SOM mice, and 5 VIP
mice at P14. At P28, we imaged 4 VGLUT2mice, 7 PVmice, 6 SOMmice,
and 7VIPmice. At P56,we imaged 10VGLUT2mice, 13 PVmice, 10 SOM
mice, and 10 VIP mice. We imaged 7 VGLUT2 mice at anesthesia state.
Our sample sizes are similar to those reported inpreviouspublications.
Ages and anesthesia states cannot be concealed from the experi-
menters due to the evident differences in mouse size and condition.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw fluorescent images used in this study are available for down-
load as NumPy files (.npy) without restrictions from: http://eai.
brainsmatics.org/datasharing/shi2402. Source data are provided with
this paper.

Code availability
The code can be obtained with demo data at https://github.com/shih-
liang/gssidnaim. All of our code used for this project is written in
Python v3.10, making extensive use of Python packages, including
NumPy v1.26.2, SciPy v1.9.1, statsmodels v0.13.5, matplotlib v3.8.2, and
seaborn v0.12.2.
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