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Genomic language model predicts protein
co-regulation and function

Yunha Hwang 1 , Andre L. Cornman2, Elizabeth H. Kellogg3,5,
Sergey Ovchinnikov 4,6 & Peter R. Girguis 1

Deciphering the relationship between a gene and its genomic context is fun-
damental to understanding and engineering biological systems. Machine
learning has shown promise in learning latent relationships underlying the
sequence-structure-function paradigm from massive protein sequence data-
sets. However, to date, limited attempts have been made in extending this
continuum to includehigher order genomic context information. Evolutionary
processes dictate the specificity of genomic contexts in which a gene is found
across phylogenetic distances, and these emergent genomic patterns can be
leveraged to uncover functional relationships between gene products. Here,
we train a genomic language model (gLM) on millions of metagenomic scaf-
folds to learn the latent functional and regulatory relationships betweengenes.
gLM learns contextualized protein embeddings that capture the genomic
context as well as the protein sequence itself, and encode biologically mean-
ingful and functionally relevant information (e.g. enzymatic function, tax-
onomy). Our analysis of the attention patterns demonstrates that gLM is
learning co-regulated functional modules (i.e. operons). Our findings illustrate
that gLM’s unsupervised deep learning of the metagenomic corpus is an
effective and promising approach to encode functional semantics and reg-
ulatory syntax of genes in their genomic contexts and uncover complex rela-
tionships between genes in a genomic region.

Evolutionary processes result in the linkage between protein sequen-
ces, structure and function. The resulting sequence-structure-function
paradigm1 has long provided the basis for interpreting vast amounts of
genomic data. Recent advances in neural network (NN)-based protein
structure prediction methods2,3, and more recently protein language
models (pLMs)4–7 suggest that data-centric approaches in unsu-
pervised learning can represent these complex relationships shaped
by evolution. Todate, thesemodels largely consider each protein as an
independent and standalone entity. However, proteins are encoded in
genomes alongside other proteins, and the specific genomic context
that a protein occurs in is determinedby evolutionary processeswhere

each gene gain, loss, duplication and transposition event is subject to
selection and drift8–10. These processes are particularly pronounced in
bacterial and archaeal genomes where frequent horizontal gene
transfers (HGT) shape genomic organization and diversity11,12. Thus,
there exists an inherent evolutionary linkage between genes, their
genomic context, and gene function13–15, which can be explored by
characterizing patterns that emerge from largemetagenomic datasets.

Recent efforts to model genomic information have shown pre-
dictive power of genomic context in gene function16 and metabolic
trait evolution17 in bacterial and archaeal genomes. However, these
methods represent genes as categorical entities, despite these genes
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existing in continuous space where multidimensional properties such
as phylogeny, structure, and function are abstracted in their sequen-
ces. On the other end of the spectrum of representations, there have
been efforts to use unsupervised learning on nucleotide sequences to
predict gene expression level18 and detect regulatory motifs19–21. These
models are largely trained and benchmarked on the human genome
and focus on predicting gene regulation rather than function. Most
recent efforts to leverage diverse microbial sequences to model
genome-scale information include GenSLMs22, which is pretrained on
codon-level representations of diverse bacterial and viral gene
sequences and later fine-tuned on SARS-CoV-2 genomes. In order to
learngeneralizable gene-to-gene-context interactions acrossbiology, a
model needs to be pretrained on 1) diverse lineages of organisms, 2)
rich and continuous representation of genes and 3) longer segments of
genomes with multiple genes. To our knowledge, there has been no
method that combines all three aspects of pretraining to learn geno-
mic information across diverse lineages of biology (see summary of
previous studies in Supplementary Table 1).

In order to close the gap between genomic-context and gene
sequence-structure-function, we develop a genomic language model
(gLM) that learns contextual representations of genes. gLM leverages
pLM embeddings as input, which encode relational properties4 and
structure information23 of the gene products. Our model is based on
the transformer24 architecture and is trained using millions of unla-
belled metagenomic sequences via the masked language modeling25

objective, with the hypothesis that its ability to attend to different
parts of a multi-gene sequence will result in the learning of gene

functional semantics and regulatory syntax (e.g. operons). Here, we
report evidence of the learned contextualized protein embeddings
and attention patterns capturing biologically relevant information. We
demonstrate gLM’s potential for predicting gene function and co-
regulation, and propose future applications and research directions,
including transfer learning capabilities of gLM.

Results
Masked language modeling of genomic sequences
Languagemodels, such as Bidirectional Encoder Representations from
Transformers (BERT25), learn the semantics and syntax of natural lan-
guages using unsupervised training of a large corpus. In masked lan-
guage modeling, the model is tasked with reconstructing corrupted
input text25, where some fraction of the words are masked. Significant
advances in language modeling performance was achieved by adopt-
ing the transformer24 neural network architecture, where each token
(i.e. word) is able to attend to other tokens. This is in contrast to Long-
Short-Term-Memory networks (LSTMs)26 that sequentially processes
tokens. To model genomic sequences, we trained a 19-layer transfor-
mer model (Fig. 1A; for a detailed figure see Supplementary Fig. 1) on
seven million metagenomic contig fragments consisting of 15 to 30
genes from theMGnify27 database. Each gene in a genomic sequence is
represented by a 1280 feature vector (context-free protein embed-
dings) generated by using ESM2 pLM23, concatenated with an orien-
tation feature (forward or backward). For each sequence, 15% of genes
are randomly masked, and the model learns to predict the masked
label using the genomic context. Based on the insight that more than
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Fig. 1 | gLM training and inference schematics. A For training, contigs (con-
tiguous genomic sequences) containing up to 30 genes are first translated into
proteins, which are subsequently embedded using a protein languagemodel (pLM)
encoder (ESM2). Masked inputs are generated by random masking at 15% prob-
ability and genomic language model (gLM; a transformer encoder) is trained to
make four predictions for each masked protein, with associated likelihoods.

Training loss is calculated on both the prediction and likelihoods. B At inference
time, inputs are generated from a contig using ESM2 output. Contextualized pro-
tein embeddings (hidden layers of gLM) and attention patterns are used for various
downstream tasks. See Supplementary Fig. 1 for detailed schematics. Source data
are provided as a Source Data file.
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one gene can legitimately be found in a particular genomic context, we
allow the model to make four different predictions and also predict
their associated probabilities (Supplementary Fig. 1). Thus, instead of
predicting their mean value, the model can approximate the under-
lying distribution of multiple genes that can occupy a genomic niche.
We assess the model’s performance using a pseudo-accuracy metric,
where a prediction is considered correct if it is closest to the masked
protein in euclidean distance compared to the other proteins encoded
in the sequence (see Methods). We validate our model’s performance
on the Escherichia coli K-12 genome28 by excluding from training 5.1%
of MGnify subcontigs in which more than half of the proteins are
similar (>70% sequence identity) to E. coli K-12 proteins. It is important
to note that our goal was not to remove all E. coli K-12 homologs from
the training,whichwouldhave removed a vastmajority of trainingdata
asmany essential genes are shared across organisms. Instead, our goal
was to remove as many E.coli K-12-like genomic contexts (subcontigs)
from training, which is more appropriate for the training objective.
gLM achieves 71.9% in validation pseudo-accuracy and 59.2% in vali-
dation absolute accuracy (Supplementary Fig. 2). Notably, 53.0% of the
predictions made during validation are with high confidence (with
prediction likelihood > 0.75), and 75.8% of the high confidence pre-
dictions are correct, indicating gLM’s ability to learn a confidence
metric that corresponds to increased accuracy. We baseline our per-
formance with a bidirectional LSTM model trained using the same
languagemodeling task on the same training dataset, where validation
performance plateaus at 28% pseudo-accuracy and 15% absolute
accuracy (Supplementary Fig. 2 and Supplementary Table 2, note that
biLSTM is smaller because it failed to converge when scaling the
number of layers). We ablate the use of pLM representations as input
to gLM by replacing them with one-hot amino acid representations
(Supplementary Table 3) and report performance equivalent to ran-
dom predictions (3% pseudo-accuracy and 0.02% absolute accuracy).

Contextualized gene embeddings capture gene semantics
The mapping from gene to gene-function in organisms is not one-to-
one. Similar to words in natural language, a gene can confer different
functions29 depending on its context30, and many genes confer similar
functions (i.e. convergent evolution31, remote homology32). We used
gLM to generate 1280-feature contextualized protein embeddings at
inference time (Fig. 1B), and we examined the “semantic” information
captured in these embeddings. Analogous to how words are likely to
have different meanings depending on the type of text in which they
are found (Fig. 2A), we find that contextualized protein embeddings of
genes that appear across multiple environments (biomes) tend to
cluster based on biome types. We identified 31 proteins in our training
database (MGYPs) that occurred more than 100 times and distributed
with at least 20 occurrences in each “Host-associated”, “Environ-
mental”, and “Engineered” biomes according to MGnify’s designation.
We find that gLM’s contextualized protein embeddings capture biome
information for the majority (n = 21) of these multi-biome MGYPs. For
instance, a gene encoding a protein annotated “translation initiation
factor IF-1” occurs multiple times across biomes. While the input to
gLM (context-free protein embedding; ESM2 representation) is iden-
tical across all occurrences, gLM’s output (contextualized protein
embeddings) cluster with biome types (Fig. 2B; silhouette score = 0.17,
see the other 30 multi-biome MGYP visualizations in Supplementary
Fig. 3). This suggests that the diverse genomic contexts that a gene
occupies are specific for different biomes, implying biome-specific
gene semantics.

We explored an ecologically important example of genomic
“polysemy” (multiple meanings conferred by the same word; Fig. 2C)
of methyl-coenzyme M reductase (MCR) complex. The MCR complex
is able to carry out a reversible reaction (Reaction 1 in Fig. 2D),whereby
the forward reaction results in the production of methane (methano-
genesis) while the reverse results in methane oxidation

(methanotrophy). We first examine the McrA (methyl-coenzyme M
reductase subunit alpha) protein in diverse lineages of ANME (ANae-
robic MEthane oxidizing) andmethanogenic archaeal genomes. These
archaea are polyphyletic and occupy specific ecological niches. Nota-
bly, similar to how a semantic meaning of a word exists on a spectrum
and a word can have multiple semantically appropriate meanings in a
context (Fig. 2C), the MCR complex can confer different functions
depending on the context. Previous reports demonstrate the capa-
cities of ANME (ANME-2 in particular) carrying out methanogenesis33

and methanogens conducting methane oxidation in specific growth
conditions34. The context-free ESM2 embedding of these proteins
(Fig. 2E) shows little organization, with little separation between
ANME-1 and ANME-2 McrA proteins. However, contextualized gLM
embeddings (Fig. 2F) of the McrA proteins show distinct organization
where ANME-1 McrA proteins form a tight cluster, while ANME-2 McrA
proteins form a cluster with methanogens (silhouette score after
contextualization: 0.24; before contextualization: 0.027). This orga-
nization reflects thephylogenetic relationships between theorganisms
that McrAs are found in, as well as the distinct operonic and structural
divergence of MCR complexes in ANME-1 compared to those found in
ANME-2 and methanogens35. As proposed by Shao et al.35., the pre-
ferred directionality in Reaction 1 (Fig. 2D) in ANME-2 and some
methanogens may be more dependent on thermodynamics.

We also demonstrate that contextualized gLM embeddings are
more suitable for determining the functional relationship between
gene classes. Analogous to how the words “dog” and “cat” are closer in
meaning relative to “dog” and “train” (Fig. 2G), we see a pattern where
Cas1- and Cas2-encoding genes appear diffuse in multiple subclusters
in context-free protein embedding space (Fig. 2H) cluster in con-
textualized embedding space (Fig. 2I). This reflects their similarity in
function (e.g. phage defense). This is also demonstrated in biosyn-
thetic genes, where genes encoding lipopolysaccharide synthase (LPS)
and polyketide synthase (PKS) cluster closer together in con-
textualized embedding space distinct from the Cas proteins (Fig. 2I).
We quantitate this pattern with a higher silhouette score measuring
phage defense and biosynthetic gene separation (gLM representation:
0.123 ± 0.021, pLM representation: 0.085 ± 0.007; paired t-test, t-sta-
tistic: 5.30, two-sided, p value = 0.0005, n = 10). Contextualized pro-
tein embeddings are therefore able to capture relational properties
akin to semantic information36, where genes encoding proteins that
are more similar in their function are found in similar genomic
contexts.

In order to quantify the information gain as a result of training a
transformer on genomic contexts,we compare clustering results in 2B,
F, and I with clustering conducted on (sub)contig-averaged pLM
embeddings (Supplementary Fig. 4). By mean-pooling pLM embed-
dings across a given subcontig, we can summarize the context infor-
mation as a naive baseline. We report a most consistent clustering
(higher silhouette scores) of gLM embeddings compared to contig-
averaged pLM for all three analyses (see Supplementary Fig. 4 figure
captions for values). We demonstrate that the gLM transformermodel
learns representations that correlate with biological function, which
are not captured by the naive baseline.

Characterizing the unknown
Metagenomic sequences featuremany genes with unknown or generic
functions, and some are so divergent that they do not contain suffi-
cient sequence similarity to the annotated fraction of the database37. In
our dataset, of the 30.8M protein sequences, 19.8% could not be
associated with any known annotation (seeMethods), and 27.5% could
not be associated with any known Pfam domains using a recent deep
learning approach (ProtENN38). Understanding the functional role of
theseproteins in their organismal andenvironmental contexts remains
a major challenge because most of the organisms that house such
proteins are difficult to culture and laboratory validation is often low-
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mapped to embedding space. For many words, the semantic meaning varies in
different types of literature, and therefore their contextualized embeddings cluster
with source text type. Figure was created for qualitative visualization. B The input
protein embedding (output of ESM2 and context-free protein embedding) is the
same across all occurrences of the protein in the database. Upon contextualization
with gLM, contextualized protein embeddings of the same protein (last hidden
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text type innatural language (A). Contextualization of 30othermulti-biomeMGYPs
can be found in Supplementary Fig. 3. C A word’s meaning upon contextualization
varies across a continuous spectrum and can be ambiguous even with con-
textualization (e.g. double entendre). D Reaction 1, carried out by the MCR com-
plex, either backward (Methanotrophy) or forward (Methanogenesis). E Principal

Component Analysis (PCA) of context-free protein embeddings ofMcrA sequences
in genomes (total explained variances = 0.56), colored by metabolic classification
of the organism (ANME, methanogen) based on previous studies and labeled by
class-level taxonomy. F PCA of contextualized McrA embeddings (total explained
variance = 0.68), where gLM embeddings cluster with the direction of Reaction 1
that the MCR complex is likely to carry out. G Geometric relationship between
contextualized protein embeddings based on the semantic closeness of words.
H Input (context-free) protein embeddings of Cas1, Cas2, lipopolysaccharide syn-
thases (LPS) and polyketide synthases (PKS) showing clustering based on structural
and sequence similarity. I Clustering of contextualized protein embeddings where
phage defense proteins cluster (Cas1 and Cas2) and biosynthetic gene products
cluster (lipopolysaccharide synthases [LPS] and polyketide synthases [PKS]).
Source data are provided as a Source Data file.
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throughput. In microbial genomes, proteins conferring similar func-
tions are found in similar genomic contexts due to selective pressures
bestowed by functional relationships (e.g. protein-protein interac-
tions, co-regulations) between genes. Based on this observation, we
posited that contextualization would provide richer information that
pushes thedistributionofunannotatedgenes closer to thedistribution
of annotated genes. We compared the distributions of unannotated
and annotated fractions of proteins in our dataset using context-free
pLM embeddings and contextualized gLM embeddings. We found a
statistically significant lower divergence between distributions of
unannotated and annotated genes in gLM embeddings compared to
pLM embeddings (paired t-test of Kullback-Leibler divergences, t-test
statistic = 7.61, two-sided, p-value < 1e-4, n = 10; see Methods for sam-
pling and metric calculation). This suggests a greater potential for
using gLM embeddings to transfer validated knowledge in cultivable
and well-studied strains (e.g. E. coli K-12) to the vastly uncultivated
metagenomic sequence space. Genomic context, alongwithmolecular
structure and phylogeny, appear to be important information to
abstract in order to effectively represent sequences such that we can
uncover hidden associations between the known and the unknown
fractions of biology.

Contextualization improves enzyme function prediction
To test the hypothesis that the genomic context of proteins can be
used to aid function prediction, we evaluated how contextualization
can improve the expressiveness of protein representations for enzyme
function prediction. First, we generated a custom MGYP-EC dataset
where the train and test data were split at 30% sequence identity for
each EC class (see Methods). Second, we apply a linear probe (LP) to
compare the expressiveness of representations at each gLM layer, with
and without masking the queried protein (Supplementary Fig. 5). By
masking the queried protein, we can assess gLM’s ability to learn
functional information of a given protein, only from its genomic con-
text, without the propagation of information from the protein’s pLM
embeddings. We observed that a large fraction of contextual infor-
mation pertaining to enzymatic function is learned in thefirst six layers
of gLM. We also demonstrate that context information alone can be
predictive of protein function, reaching up to 24.4 ± 0.8% accuracy. In
contrast, without masking, gLM can incorporate information present
in the context with the original pLM information for each queried
protein. We observed an increase in expressivity of gLM embeddings
also in the shallower layers, with accuracy reaching up to 51.6 ± 0.5% in
the first hidden layer. This marks a 4.6 ± 0.5% increase from context-
free pLM prediction accuracy (Fig. 3A) and 5.5 ± 1.0% increase in mean
averageprecision (Fig. 3C) Thus, wedemonstrate that information that
gLM learns from the context is orthogonal to information captured in
pLMembedding.We alsoobserveddiminishing expressivity in enzyme
function information with deeper layers of gLM; this is consistent with
previous examinations of LLMs, where deeper layers are specialized to
the pretraining task (masked token prediction), and is consistent with
previous examinations of LLMs, where the best-performing layer
depends on the specific downstream tasks39. Finally, to further exam-
ine the expressiveness of these representations, we compared per-
class F1 score gains (Fig. 3B). We observe statistically significant dif-
ferences in F1 scores (t-test, two-sided, Benjamini/Hochberg corrected
p value < 0.05,n = 5) between the twomodels in 36 out of 73 EC classes
withmore than ten samples in the test set.Majority (27out of 36) of the
statistical differences resulted in improved F1 score in LP trained on
gLM representations.

Horizontal transfer frequency corresponds to genomic context
embedding variance
A key process that shapes microbial genome organization and evolu-
tion is horizontal gene transfer (HGT). The taxonomic range in which
genes are distributed across the tree of life depends on their function

and the selective advantage they incur in different environments.
Relatively little is known about the specificity in the genomic region
into which a gene gets transferred across phylogenetic distances. We
examined the variance of gLM embeddings for proteins that occur at
least one hundred times in the database. Variance of gLM-learned
genomic contexts are calculated by taking a random sample of 100
occurrences and then calculating themeanpairwisedistances between
the hundred gLMembeddings.We conduct such independent random
sampling and distance calculation ten times per gene and then calcu-
late the mean value. As a baseline, we calculate variance of subcontig-
averaged pLM embeddings using the same sampling method, to
compare the information learned from training gLM. Our results show
that gLM-learned genomic context variances have a longer right-hand
tail (kurtosis = 1.02, skew= 1.08) compared to the contig-averagedpLM
baseline that is more peaked (kurtosis = 2.2, skew = 1.05) (Fig. 3D).
Notably, themost context-variant genes in the right tail of gLM-learned
context variance distribution (orange) included phage genes and
transposases, reflecting their ability to self-mobilize. Interestingly, we
did not find any phage genes in the right-most tail of contig-averaged
pLM embedding variance distribution (blue), although we did find
genes involved in transposition (Supplementary Table 4). gLM-learned
genomic context variances can be used as a proxy for horizontal
transfer frequencies and can be used to compare the fitness effects of
the genomic context on the evolutionary trajectory (e.g. gene flow) of
genes, as well as to identify undercharacterized and functional trans-
posable elements.

Transformer’s attention captures operons
The transformer attention mechanism24 models pairwise interaction
between different tokens in the input sequence. Previous examina-
tions of the attention patterns of transformer models in natural lan-
guage processing (NLP)39 have suggested that different heads appear
to specialize in syntactic functions. Subsequently, different attention
heads in pLMs40 have been shown to correlate to specific structural
elements and functional sites in a protein. For our gLM, we hypothe-
sized that specific attention heads focus on learning operons, a “syn-
tactic” feature pronounced in microbial genomes where multiple
genes of related function are expressed as single polycistronic tran-
scripts. Operons are prevalent in bacterial, archaeal and their viral
genomes, while rare in eukaryotic genomes. We used the E.coli K-12
operon database41 consisting of 817 operons for validation. gLM con-
tains 190 attention heads across 19 layers. We found that heads in
shallower layers correlated more with operons (Fig. 4A, Supplemen-
tary Fig. 6, with raw attention scores in the 7th head of the 2nd layer
[L2-H7] linearly correlating with operons with 0.44 correlation coeffi-
cient (Pearson’s rho, Bonferroni adjusted p value < 1E-5) (Fig. 4B). We
further trained a logistic regression classifier (operon predictor) using
all attention patterns across all heads. Our classifier predicts the pre-
sence of an operonic relationship between a pair of neighboring pro-
teins in a sequence with high precision (mean average precision =
0.775 ± 0.028, five-fold cross-validation) (Fig. 4C). We baseline this
performance by training an operon predictor on the one-hot amino
acid representation-based gLM ablation (mean average precision =
0.426 ±0.015, five-fold cross-validation; Supplementary Table 3), that
learns from the orientation and co-occurrence information but cannot
fully leverage rich representation of genes.

Context dependency of AAA+ regulator functions in complex
genetic systems
Understanding the functional role of a regulatory protein in an
organism remains a challenging task because the same protein fold
may carry out different functions depending on the context. For
instance, AAA+ proteins (ATPases associated with diverse cellular
activities) utilize the chemical energy from ATP hydrolysis to confer
diversemechanical cellular functions42. However, AAA+ regulators can
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also play very different, broad functional roles depending on their
cellular interacting partners from protein degradation and DNA repli-
cation to DNA transposition. One particularly interesting example is
the TnsC protein, which regulates DNA insertion activity43 in Tn7-like
transposon systems. Multiple bioinformatic efforts focused on dis-
covery of previously uncharacterized transposons through metagen-
ome search44 and sequence searches of assembled genomes45 aimed at
identifying suitable homologs for genome-editing applications46. In
order to test whether the methods developed here could identify Tn7-
like transposition systems as well as distinguish these from other
functional contexts, we explored the contextualized semantics of
TnsC’s structural homologs in the MGnify database. Without con-
textualization, there appearsno clusteringwith associated transposase
activity (KL divergence ratio = 1.03; seeMethods for calculation of this
metric, Fig. 4E). However, with added contextualization, previously
identified TnsC (orange) and manually inspected TnsC-like structural
homolog (red, labeled “TnsC-like”) cluster together (KL divergence

ratio = 0.38; Fig. 4F; see Supplementary Fig. 7B, C for comparison with
gLM-only and contig-averaged pLMbaselines).We further validate this
visualization using embedding distance-based clustering (Supple-
mentary Fig. 8). Many structural homologs of TnsC were not involved
in transposition and this is reflected in distinct clusters of gray data
points away from known TnsC (oranges) and TnsC-like structural
homologs (red) in Fig. 4F. These clusters represent diverse and
context-dependent AAA+ regulation activity that cannot be predicted
from neither structure nor raw sequence alone. We predicted an
operonic relationship between these AAA+ regulators and their
neighboring genes and found many to be in operonic relationships
with gene modules of diverse function, including pilus assembly and
viral host-nuclease inhibition (Fig. 4D, Supplementary Fig. 7A). In some
cases, queried AAA+ proteins did not appear to be in an operonic
association with the neighboring proteins, suggesting some AAA+
proteins are less likely to be functionally associated with their neigh-
bors than others (Supplementary Fig. 7A, example 6). Using this

Fig. 3 | Contextualization of gene function. A Linear probe enzyme commission
(EC) number classification accuracy for pLM (ESM2) representations and gLM (1st
hidden layer) representations. Data are presented as mean values +/- standard
deviation over five technical replicates. B F1-score comparisons of statistically
significant (t-test, two-sided, Benjamini/Hochberg corrected p value < 0.05, tech-
nical replicates = 5) differences in performance of pLM- and gLM-based EC number
linear probes. EC classes are orderedwith the largest gainwith contextualization on
the left to the largest loss with contextualization on the right. Data are presented as
mean values +/- standard deviation. Adjusted p-value (with two significant figures)

for each class is specified above the bars. C Precision-Recall curves of pLM- and
gLM-based EC number linear probes. D Histogram of variance (# bins = 100) cal-
culated using contextualized embeddings (gLM; orange) and contig-averaged pLM
(blue) embeddings of MGYPs that occur at least 100 times in the database. Histo-
grams for unannotated and annotated fraction of theMGYPs are plotted separately
and bars are not stacked. Annotated examples in the long right tail include phage
proteins and transposases, reflecting their ability to self-mobilize (see annotations
of top tensmost variant genes in Supplementary Table 4). Source data are provided
as a Source Data file.
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example of AAA+ regulators, we illustrate that combining the con-
textualized protein embeddings and attention-based operon interac-
tion may provide an important avenue for exploring and
characterizing the functional diversity of regulatory proteins.

gLM predicts paralogy in protein-protein interactions
Proteins in an organismare found in complexes and interact physically
with each other. Recent advances in protein-protein interaction (PPI)
prediction and structural complex research has largely been guided by
identifying interologs (conserved PPI across organisms) and co-
evolutionary signals between residues47. However, distinguishing
paralogs from orthologs (otherwise known as the “Paralog matching”
problem) in the expanding sequence dataset remains a computational
challenge requiring queries across the entire database and/or phylo-
genetic profiling. In cases where multiple interacting pairs are found
within anorganism (e.g. histidine kinases (HK) and response regulators
(RR)), prediction of interacting pairs is particularly difficult48. We

reasoned that gLM, although not directly trained for this task, may
have learned the relationships between paralogs versus orthologs. In
order to test this capability, we used a well-studied example of inter-
acting paralogs (ModC and ModA, Fig. 5A) which form an ABC trans-
porter complex. We queried gLM to predict the embedding of an
interacting pair given no context except the protein sequenceof either
ModA or ModC. We find that without any fine-tuning gLM performs at
least an order of magnitude better than what is expected by random
chance (see Methods). Specifically, for 398 out of 2700 interacting
pairs, gLM makes predictions that belong to the same cluster (50%
sequence identity, n = 2100 clusters) as the true label, and in 73 pairs,
the gLM predicts a label that is closest to the exact interacting pair
(simulated random chance expectedmatch=1.6 ± 1.01, n = 10) (Fig. 5B).
Importantly, when considering only very high confidence predictions
(prediction likelihood > 0.9, n = 466), gLM is able to match paralogs
with an increased accuracy of 25.1%. When paralogs are correctly
paired, gLM is more confident about the prediction (average

Fig. 4 | Attention analysis. A Correlation coefficients (Pearson’s rho) between
attention heads across layers and operons. Darker color corresponds to stronger
correlation with previously identified operons. Attention patterns of the second
layer-seventh head [L2-H7] is most strongly correlated with the operons. B Three
random examples of contigs and predicted operonic relationship between neigh-
boring proteins. Proteins are listed in the order they are encoded in the contig.
Ground truth E.coli K-12 operons (top row), raw attention scores in the attention
head [L2-H7] most correlated with operons (middle row) and logistic regression
prediction using all attention heads (last row) where false positive predictions (or
possibly misannotated ground truths in the case of flagellar proteins in the first
example) are marked in red. C Five-fold cross-validation precision-recall curves of
logistic regression trained using all operons and attention heads.D AAA+ regulator
associations characterized using attention-based prediction of operons (Extended
Fig. 11A) corresponding to labeled examples in panels E and F. E ESM2 generated
input protein embeddings of AAA+ regulator proteins that are structural homologs

to TnsC (grey and red; using Foldseek60). Structural homologs of TnsC with con-
firmed involvement in Tn7-like transposons upon manual inspection were desig-
nated “TnsC-like AAA+ (manually inspected)” and are colored red. Other MGYP
proteins annotated as “TnsC” against the UniRef90 database (orange) were added
as positive controls for TnsC function. NuoA (NADH-quinone oxidoreductase
subunitA; purple) were added as structural and functional negative controls. DnaB
helicases (blues)were added as functional negative controls, as these proteins have
similar folds to TnsC but are not associated with transposition. F Combined input
protein and context embeddings of genes in panel E. These embeddings are gen-
erated through concatenationof pLM (ESM2) embeddings and context (last layerof
gLM) embeddings. Negative controls (NuoA and DnaB helicases) form distinct
clusters in both E and F. Numbered labels in grey boxes indicate the AAA+ proteins
with various functional associationpredictions listed inpanelD andSupplementary
Fig. 7. Raw distance based clustering of the embeddings are shown in Supple-
mentary Fig. 8. Source data are provided as a Source Data file.
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confidence for correct prediction = 0.79, average confidence across all
predictions = 0.53), while less certain predictions are either out of
distribution, or closer to themean of labels (Fig. 5C).We attribute part
of the inaccuracies in prediction due to the fact that gLM was not
trained on the task of predicting a masked gene given only a single
gene as genomic context, though we expect the performance to
improve with expanding the training sequence length range and fine-
tuning the model specifically for the “paralog matching” problem.

Contextualized contig embeddings and potential for transfer
learning
Contextualized protein embeddings encode the relationship between
a specific protein and its genomic context, retaining the sequential
information within a contig. We hypothesized that this contextualiza-
tion adds biologically meaningful information that can be utilized for
further characterization of the multi-gene genomic contigs. Here, we
define a contextualized contig embedding as a mean-pooled hidden
layer across all proteins in the subcontig, and a context-free contig
embedding as mean-pooled ESM2 protein embeddings across the
sequence (see methods). Both embeddings consist of 1280 features.
We test our hypothesis by examining eachof these embeddings’ ability
to linearly distinguish viral sequences from bacterial and archaeal

subcontigs. In metagenomic datasets, the taxonomic identity of
assembled sequences must be inferred post-hoc, therefore the iden-
tification of viral sequences is conducted based on the presence of
viral genes and viral genomic signatures49. However, such classification
task remains a challenge particularly for smaller contig fragments and
less characterized viral sequences. Here, we sampled random 30-
protein subcontigs from the representative bacterial and archaeal
genome database and reference viral genomes in the NCBI and
visualized their context-free contig embeddings (Fig. 5D) and con-
textualized contig embeddings (Fig. 5E).Weobservedmore separation
and taxonomic clusters at both domain- and class-levels (Supplemen-
tary Fig. 9), suggesting that taxonomic signature is enhanced by
encoding the latent relationships between proteins. This is further
validated by training a logistic regression classifier on context-free and
contextualized contig embeddings for class-level taxonomy (Supple-
mentary Fig. 9A, B), where we see a statistically significant improve-
ment in average precision (Fig. 5F, see Supplementary Fig. 7C, D for
confusion matrices). This emphasizes the biological importance of a
protein’s relative position in the genome and its relationship with the
genomic context, and further indicates that this information can be
effectively encoded using gLM. Contextualized contig embeddings
present opportunities for transfer learning beyond viral sequence

Fig. 5 | Potential for transfer learning. A ModA and ModC interaction (protein
data bank structure 2ONK)47 B UMAP projection of predictions (orange) and labels
(blues) of paralogs (ModAC shown in A), where correct predictions are colored in
green.CPredicted embeddings are coloredbasedon the predicted confidence.Out
of distribution predictions and predictions closer to the mean are generally of
lower confidence, while correct predictions are of higher confidence.D, E Random
30-gene contigs from representative bacterial (“bac”) and archaeal (“arch”) gen-
omes and reference viral (“vir”) genomes were embedded by mean-pooling ESM2
protein embeddings (context-free contig embeddings,D) and bymean-pooling the

last hidden layer of gLM (contextualized contig embeddings, E). FMicro-averaged
precision-recall curves and average precisions for logistic regression classifiers
trained using context-free contig embeddings (grey lines) and contextualized
contig embeddings (colored lines) for class-level taxonomy classification task. Each
line represents a fold in stratified k-fold cross-validation (k = 5). Class-level tax-
onomy for each contig is shown in Supplementary Fig. 9A, B and the confusion
matrices for logistic regression classifiers are shown in Supplementary Fig. 9C, D.
Source data are provided as a Source Data file.
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prediction, such as improved metagenomically-assembled genome
(MAG) binning and assembly correction.

Discussion
The unprecedented amount and diversity of metagenomic data, cou-
pled with advances in deep learning, presents exciting opportunities
for building models that can learn hidden patterns and structures of
biological systems. Such models build upon the conceptual and sta-
tistical frameworks that evolutionary biologists have developed for the
past century. With capabilities of abstracting much larger amounts of
data, these models can disentangle the extraordinary complexity of
organismal genomes and their encoded functions; this is a key step in
furthering our understanding of biological processes. The work pre-
sented here demonstrates and validates the concept of genomic lan-
guage modeling. Our implementation of the masked genomic
language modeling illustrates the feasibility of training such a model,
and provides evidence that biologically meaningful information is
being captured in learned contextualized embeddings and yielding
meaningful interpretations of the attention patterns. We show that
gLM can be used for diverse downstream tasks, including enzyme
function prediction, operon prediction, paralog matching and contig
taxonomy prediction. Furthermore, we demonstrate gLM’s ability to
illuminate context dependency in functions across structural and
sequence homology through the example of AAA+ regulators. Taken
together, gLM presents a highly promising direction for interpreting
biology and we propose key areas for further development: First, the
transformer architecture has shown to be successful in efficient scal-
ing; in both natural language50 and protein language processing23,
increasing the number of parameters in the model along with the
training dataset size have been shown to lead to vastly improved
performance and generalizability. Our model consists of ~1B para-
meters which is at least a magnitude smaller compared to state-of-the-
art pLMs. With further hyperparameter tuning and scaling, we expect
better performance of the model. Second, our model currently uses
pLM embeddings to represent proteins in the input. These embed-
dings are generated by mean-pooling the amino acid residue-level
hidden states across the protein sequence, and therefore the residue-
specific information and synonymous mutation effects are likely
obscured. Future iterations of themodel could use raw residue-level or
codon-level embeddings as input to allow modeling of residue-to-
residue co-evolutionary interactions between proteins and synon-
ymous mutation effects on gene function. Third, the task of recon-
structing masked protein embeddings requires modeling a
distribution over possible embeddings; ourmethod approximates this
distribution using a fixed number of predictions. Future work could
improve upon this by using a generative approach, such as a diffusion
or GAN model. This may allow for better prediction accuracy and
greater generalizability for unseen datasets. Fourth, adding non-
protein modalities (e.g. non-coding regulatory elements) as input to
gLM may also greatly improve gLM’s representation of biological
sequence data, and can learn protein function and regulation condi-
tioned upon other modalities51. Finally, our model was trained largely
on bacterial, archaeal and viral genomes, therefore, how this method
can be adapted for eukaryotic genomes, especially those with exten-
sive intergenic regions, remains to be further explored.

One of the most powerful aspects of the transformer-based lan-
guage models is their potential for transfer learning and fine-tuning.
We tested some of the capabilities of gLM and successfully showed
that higher-order biological information, including gene function and
regulation can be learned using genomic sequences. Our results
highlight the importance of contextualization of biological data, par-
ticularly as we scale our modeling efforts from biomolecules to whole
organisms. We propose the following promising future directions for
applying gLM for advancing biological research. 1) Feature-based

transfer learning for predicting protein function (e.g. Gene Ontology
[GO] term), particularly those with limited sequence and structural
homology. 2) Fine-tuning gLM for the protein-protein-interactome
prediction task. 3) Using gLM features to encode genomic contexts as
additional input for improved and contextualized protein structure
predictions. In conclusion, genomic language modeling is a powerful
tool to unbiasedly condense important biological information from
full metagenomic sequences. Coupled with the advances in long-read
sequencing, we expect a drastic increase in the input data quality,
quantity and diversity. Genomic language modeling presents an ave-
nue to bridge the gap between atomic structure and organismal
function, and thereby brings us closer tomodeling biological systems,
and ultimately, manipulating biology with precision (e.g. genome
editing, synthetic biology).

Methods
Sequence database
The genomic corpus was generated using the MGnify27 dataset
(released 2022-05-06 and downloaded 2022-06-07). First, genomic
contigs with greater than 30 genes were divided into 30 gene non-
overlapping subcontigs resulting in a total of 7,324,684 subcontigs
with lengths between 15 and 30 genes (subcontigs <15 genes in length
were removed from the dataset). We chose 30 as maximum context
length because while longer context results in higher modeling per-
formance (Supplementary Fig. 10A), 67% of the raw MGnify contigs
with > 15 geneswere of =<30 genes in length (Supplementary Fig. 10B),
and therefore increasing the context length beyond 30 would have
resulted in many examples with padding (reduced computational
efficiency). Each gene in the subcontigwasmapped to a representative
protein sequence (representativeMGYP) usingmmseqs/linclust52, with
coverage and sequence identity thresholds set at 90% (pre-computed
in the MGnify database), resulting in a total of 30,800,563 repre-
sentative MGYPs. Each representative MGYP was represented by a
1280-feature protein embedding, generated by mean-pooling the last
hidden layer of the ESM223 “esm2_t33_650M_UR50D”model. Due to the
memory limitation in computing embeddings for very long sequences,
116 of the MGYP sequences longer than 12290 amino acids were
truncated to 12290 amino acids. ESM2 embeddings were normalized
(by subtracting the mean of each feature and dividing by its standard
deviation) and clipped such that all features range from −10 to 10, to
improve training stability. A small fraction (0.4%) of the genes could
not be mapped to a representative MGYP and therefore the corre-
sponding sequence information could not be retrieved from the
MGnify server; these sequences were assigned a 1280 feature vector of
ones. For each gene in the sub-sequence, we added a gene orientation
feature to the standardized MGYP protein embedding, where 0.5
denotes “forward” orientation relative to the direction of sequencing,
and −0.5 denotes “reverse” orientation. Thus, each gene was repre-
sented by a 1281 feature vector in our corpus.

gLM architecture and training
gLM was built on the huggingface implementation of the RoBERTa53

transformer architecture. gLM consisted of 19 layers with hidden size
1280 and ten attention heads per layer, with relative position embed-
ding (“relative_key_query”)54. For training, 15% of the tokens (genes) in
the sequence (subcontig) were randomly masked to a value of −1. We
then tasked the model with the objective of predicting the label of the
masked token, where the label consists of a 100-feature vector that
consists of the PCA whitened 99 principal components (explained
variance = 89.7%. Supplementary Fig. 11) of the corresponding ESM2
protein embedding concatenatedwith its orientation feature. Reduced
dimensionality of labels using PCA increased the stability of training.
Specifically, gLM projects the last hidden state of the model into four
100-feature vectors and four corresponding likelihood values using a
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linear layer. Total loss is calculated using the following Eq. (1).

MSEðclosest prediction,labelÞ
+α � CrossEntropyLoss likelihoods,closest prediction indexð Þ ð1Þ

The closest prediction is defined as the prediction that is closest to the
label, computed by L2 distance. We set α = 1e-4. gLM was trained in
half-precision with batch size 3000 with distributed data paralleliza-
tion on four NVIDIA A100 GPUs over 1,296,960 steps (560 epochs),
including 5000 warm-up steps to reach a learning rate of 1e-4 with
AdamW55 optimizer.

Performance metric and validation
In order to evaluate the model quality and its generalizability beyond
the training dataset, we use a pseudo-accuracymetric, where we deem
a prediction to be “correct” if it is closest in Euclidean distance to the
label of the masked gene relative to the other genes in the subcontig.
Pseudo-accuracy calculation is described in Eq. (2).

pseudo accuracy

=
#countðargminðdistðprediction,labels in subcontigÞÞ= = indexðmasked geneÞÞ

#masked genes

ð2Þ

We chose to validate our metric and subsequent analyses on the
best-annotated genome to date: E.coli K-1256. In order to remove as
many E.coli K-12 like subcontigs from the training dataset, we removed
5.2% of the subcontigs in whichmore than half of the genes were > 70%
similar (calculated usingmmseqs2 search52) in amino acid sequence to
E.coli K-12 genes. We validate our pseudo accuracy metric by calcu-
lating the absolute accuracy on the E.coli K-12 genome for which each
gene was masked sequentially (Eq. (3))

absolute accuracy

=
#countðargminðdistðprediction,all genes in E:coli K� 12ÞÞ= = indexðmasked geneÞÞ

#genes in E:coli K� 12

ð3Þ

Contextualized embedding calculation and visualization
Contextualized protein embedding of a gene is calculated by first
inputting a 15-30 gene subcontig containing the gene of interest, and
then running inference on the subcontig using the trained gLM with-
out masking. We then use the last hidden layer of the model corre-
sponding to the gene as the embedding consisting of 1280 features.

Gene annotation
Genes were annotated using Diamond v2.0.7.14557 against the Uni-
Ref90 database58 with an e-value cut-off 1E-5. Genes were labeled as
“unannotated” if either 1) no match was found in the UniRef90 data-
base, or 2) the match was annotated with following keywords: “unan-
notated”, “uncharacterized”, “hypothetical”, “DUF”(domain of
unknown function).

McrA protein analysis
McrA protein encoding Methanogens and ANME genomes were
selected from the accession ID list found in the supplement of Shao
et al.35. subcontigs containing mcrA were extracted with at most 15
genes before and after mcrA. The context-free and contextualized
embeddings of McrA were calculated using the ESM2 and gLM,
respectively.

Distributions of unannotated and annotated embeddings
Distributions of unannotated and annotated embeddings in the data-
base were compared using Kullback-Leibler (KL) divergence analysis.

First, ten random samples of 10,000 subcontigs from the MGnify
corpus. pLM and gLM embeddings of the genes were calculated using
mean-pooled last hidden layer of ESM2 embeddings andmean-pooled
last hidden layer of gLM, respectively. Outliers were removed using
Mahalanobis distance and a chi-squared threshold of 0.975. pLM and
gLM embedding dimensions were reduced to 256 principal compo-
nents (91.9 ± 1.72% and 80.1 ± 6.89% total variances explained, respec-
tively). KL divergence was calculated using the following Eq. (4).

DKLðPjjQÞ=
1
2

trðΣ�1
1 Σ0Þ � k + ðμ1 � μ2ÞTΣ�1

1 ðμ1 � μ0Þ+ ln
detΣ1

det 0

� �� �

ð4Þ

where P corresponds to the distribution of unannotated genes and Q
corresponds to the distribution of annotated genes, with μ0,μ1

respectively as means and Σ0,Σ1 respectively as covariance matrices.
The significance of the KL divergence differences between pLM and
gLM embeddings is calculated using a paired t-test across the ten
samples.

Enzyme Commission number prediction
Custom MGYP-Enzyme Commission (MGYP-EC) dataset was created
by first searching (mmseqs252 with default setting) MGYPs against the
“split30.csv” dataset previously used to train CLEAN59. “split30.csv”
dataset consists of EC numbers assigned to UniProt sequences clus-
tered at 30% identity. Only MGYP hits with >70% sequences to
“split30.csv”were considered andMGYPs withmultiple hits with >70%
similarity were removed. Test split was selected by randomly selecting
10% of “split30.csv” UniProt IDs in each EC category that map to
MGYPs. EC categories with less than four distinct UniProt IDs with
MGYP mapping were removed from the dataset, resulting in 253 EC
categories. The train set consisted of MGnify subcontigs in the corpus
that contained at least one the 27936MGYPsmapping to 1878 UniProt
IDs. The test set consisted of randomly selected MGnify subcontig
containing each of 4441 MGYPs mapping to 344 UniProt IDs. pLM
(context-free) embeddings were calculated for each of MGYP with EC
number assignment bymean-pooling the last hidden layer of its ESM2
embedding. Masked (context-only) gLM embeddings were calculated
for eachof the 19 layersby running inferenceon subcontigswithmasks
at the positions of MGYPs with EC number assignment and subse-
quently extracting per-layer hidden representations for masked posi-
tions. gLM (contextualized) embeddings were calculated also for each
layer by running inference without masking and subsequently
extracting per-layer hidden representations for MGYPs with EC num-
ber assignments. Linear probing was conducted for these embeddings
with a single linear layer. Linear probes were trained with early stop-
ping (patience = 10, github.com/Bjarten/early-stopping-pytorch/blob/
master/pytorchtools.py) and batch size = 5000, and training results
were replicated five timeswith random seeds to calculate error ranges.

Variance of contextualized protein embedding analysis
Contextualized protein embeddings are generated at inference time.
Variances of contextualized protein embeddings were calculated for
MGYPs that occur at least 100 times in the dataset, excluding the
occurrences at the edges of the subcontig (first or last token). For each
suchMGYP,we take 10 random independent samples consistingof 100
occurrences and calculate the mean pairwise euclidean distances
between the contextualized embeddings. To assess the role gLM plays
in contextualization, we used the above sampling method to calculate
the variance of contig-averaged pLM embeddings (pLM embeddings
mean-pooled across the contig) for eachMGYP that occurs at least 100
times in the dataset.
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Attention analysis
Attention heads (n = 190) were extracted by running inference on
unmasked subcontigs, and the raw attention weights were subse-
quently symmetrized. E.coliK-12 RegulonDB56 was used to probe heads
with attention patterns that correspond the most with operons. Pear-
son’s correlation between symmetrized raw attentions and operons
were calculated for each head. We trained a logistic regression classi-
fier that predicts whether two neighboring genes belong to the same
operon based on the attention weights across all attention heads
corresponding to the gene pair.

TnsC structural homolog analysis
TnsC structural homologs were identified by searching ShCAST TnsC
(PDB 7M99 chain H) against the MGYP database using Foldseek60 on
ESM Atlas (https://esmatlas.com/). The contigs containing these
homologs in the MGnify database were used to calculate the con-
textualized protein embeddings of the identified structural homologs.
Contigs with less than 15 genes were excluded from the analysis.
Contigs encoding proteins that were previously identified as “TnsC”
using the UniRef90 database (see Gene annotation methods section
above) were included in the database. “TnsC-like” contigs were
manually annotated based on the presence of transposase genes
(TnsB) and TniQ. Fifty random examples of MGnify contigs containing
MGYPs annotated as NuoA and DnaB were added as negative controls
for the UMAP visualization. We calculated KL divergence ratios using
the following Eq. (5).

DKLðBjjAÞ
DKLðCjjAÞ

ð5Þ

where A is the distribution of representations of known TnsC, B is the
distribution of representations of manually curated TnsC-like AAA+
regulators, C is the distribution of representations of other AAA+
regulators that are functionally unrelated structural homologs of
known TnsC. Therefore, this metric ranges from 0 to 1, where a lower
ratio represents increased ability to functionally discriminate distribu-
tion of B from C relative to A. KL divergence was calculated using the
same formula as in the methods section Distributions of unannotated
and annotated embeddings, exceptwith 20 principal components that
explained >85% of variances across all embeddings.

Paralogy and orthology analysis
UniProt IDs fromABC transporterModA andModCprotein interacting
paralog pairs (n = 4823) were previously identified by Ovchinnikov
et al.47 and were downloaded from https://gremlin.bakerlab.org/cplx.
php?uni_a=2ONK_A&uni_b=2ONK_C and subsequently used to down-
load raw protein sequences from the UniProt server. Only pairs
(n = 2700)whereboth raw sequenceswereavailable for download, and
where the UniProt ID differed by one (indicating adjacent positioning
in the reference genome) were selected for subsequent analyses. We
constructed test contigs consisting of three genes, where first and
third genes are masked, and the second gene encodes one of the pair
in forward direction. We then queried gLM to predict the two neigh-
boring masked genes, and considered the prediction to be correct if
either of the proteins closest to masked genes’s highest confidence
prediction in embedding space belongs to the same sequence cluster
as the interacting protein (50% amino acid sequence identity, calcu-
lated using CD-HIT v4.661). Random chance correct prediction rate
(1.6 ± 1.0 was simulated using 1000 iterations of random predictions
generatedwithin the standard normal distribution and performing the
same operation as above to compute the rate of correct predictions62.

Taxonomic analysis and visualization
4551 bacterial and archeal representative genomes and 11660
reference viral genomes were downloaded from the RefSeq

database (ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq) on 12 Feb
2023. A random 30-gene subcontig is chosen and encoded using
ESM2, which then were subsequently concatenated with an
orientation vector and then used as input for the trained gLM.
The last hidden layer was mean-pooled across the sequence to
retrieve 1280-feature contextualized contig embeddings. The
ESM2 protein embeddings were also mean-pooled across the
sequence to retrieve 1280-feature context-free contig embed-
dings. We trained a logistic regression classifier to predict the
class-level taxonomy of subcontigs and evaluated the perfor-
mance using stratified k-fold cross-validation (k = 5).

UMAP visualization and statistical tests
All UMAP dimensionality reductions calculated with following para-
meters: n_neighbors = 15, min_dist = 0.1. Silhouette scores were cal-
culated using the sklearn package using the default setting with
euclidean distance metric.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Dataset used for training is available for download from the MGnify
server (http://ftp.ebi.ac.uk/pub/databases/metagenomics/peptide_
database/2022_05/). The model is available at zenodo under acces-
sion number 10.5281/zenodo.7855545. Source data for the main Fig.
(2c,e,f,i&h; 3a,b,c&d; 4a,b,c,e&f; 5b,c,d,e&f) and supplementary Figs.
(2,3,4,5,7,8,9,10 &11) are provided with this paper as a zip file. Source
data are provided with this paper.

Code availability
Training and inference code and analysis scripts are available at
https://github.com/y-hwang/gLM (https://doi.org/10.5281/zenodo.
10512240).
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