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Genetic similarity between relatives provides
evidence on the presence and history of
assortative mating

Hans Fredrik Sunde 1,2 , Nikolai Haahjem Eftedal 3, Rosa Cheesman3,
Elizabeth C. Corfield 4,5, Thomas H. Kleppesto 1,6, Anne Caroline Seierstad3,
Eivind Ystrom 3,5, Espen Moen Eilertsen 3 & Fartein Ask Torvik 1,3

Assortativemating – the non-randommating of individuals with similar traits –
is known to increase trait-specific genetic variance and genetic similarity
between relatives. However, empirical evidence is limited for many traits, and
the implications hinge on whether assortative mating has started recently or
many generations ago.Herewe show theoretically and empirically that genetic
similarity between relatives can provide evidence on the presence and history
of assortative mating. First, we employed path analysis to understand how
assortative mating affects genetic similarity between family members across
generations, finding that similarity between distant relatives is more affected
than close relatives. Next, we correlated polygenic indices of 47,135 co-parents
from the Norwegian Mother, Father, and Child Cohort Study (MoBa) and
found genetic evidence of assortative mating in nine out of sixteen examined
traits. The same traits showed elevated similarity between relatives, especially
distant relatives. Six of the nine traits, including educational attainment,
showed greater genetic variance among offspring, which is inconsistent with
stable assortative mating over many generations. These results suggest an
ongoing increase in familial similarity for these traits. The implications of this
research extend to genetic methodology and the understanding of social and
economic disparities.

Assortative mating – the non-randompairing of individuals with similar
traits – has long been a challenging topic of interest across various
fields, including genetics1–9, sociology10–12, and economics13,14. Con-
sequences of assortativemating are wide-ranging, affecting topics such
as genetic research methods15,16, relationship quality10,17,18, and the per-
petuation of social and economic inequalities10,13,14. Although partner
similarity have been documented for numerous characteristics15,16,19, it
remains uncertain to what extent these similarities result from assor-
tative mating or other processes, such as convergence over time18,20.

Hence, the genetic consequences are unknown. Recent advances in
data availability have enabled empirical investigation into the genetic
consequences of assortative mating, wherein two are of key interest:
First, partners should exhibit genetic similarity for assorted traits; and
second, genetic similarity between relatives should increase for the
assorted traits in subsequent generations1–3. In this paper, we aim to: 1)
clarify the theoretical consequences of assortative mating on genetic
similarity in extended families; 2) use polygenic indices to assess trait-
specific genetic similarity between partners for a range of psychosocial,
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anthropometric, and health-related traits; 3) investigate whether these
traits also exhibit increased genetic similarity among relatives; and 4)
use the observed genetic similarity in mother-father-child trios to
investigate the stability of assortative mating over many generations.

According to a recent meta-analysis, phenotypic correlations
between partners exist for many traits16. The correlations are particu-
larly high for cognitive and social traits like educational attainment
(0.53) and political values (0.58), but moderate correlations exist for
many diverse traits such as height (0.23), depression (0.14), and per-
sonality (0.08–0.21). Positive correlations between partners can arise
fromnumerous processes, including convergence (partners becoming
more alike over time due tomutual influence), common environments
(partners originating from similar environments that affect their traits,
but without influencing partner formation), and assortative mating
(individuals tending to form partnerships with those having similar
traits)18. If partner similarity arises because of assortative mating, then
this will induce cross-partner correlations between factors that are
associated with the trait. If the trait is heritable – which most traits
are21,22 – then partners will tend to carry genetic variants with similar
effects on the trait. Genetic similarity between partners has been
documented for some traits, including height and educational
attainment6,19,23–25. For example, Yengo et al. 25 investigated genetic
similarity in partners from the UK Biobank across 32 complex traits,
but lack of statistical power left the question unresolved for most
traits. Here, we remedy this by investigating partners in the Norwegian
Mother, Father, and Child Cohort Study (MoBa)26,27, the largest cohort
of confirmed partners with available genetic data (n = 47,135).

If assortative mating leads to genetic similarity between partners,
then any resulting offspring are likely to inherit trait-specific genetic
variants with similar effects from both parents. This has two important
consequences: First, the trait-specific genetic variance in the popula-
tion will increase because genetic variants with similar effects will tend
to co-occur in the same individuals (i.e., variants will be in linkage
disequilibrium)3,8,28,29. Second, trait-specific genetic similarity between
relatives will increase because other familymembers aremore likely to
inherit genetic variants with similar effects1–4,8. With no assortative
mating, genotypic correlations between family members for a trait

should equal the coefficient of relationship. For example, full siblings
(not includingmonozygotic twins) and parent-offspring pairs are first-
degree relatives, with a coefficient of 0.50; aunt/uncle-niece/nephew
and grandparent-grandchild pairs are second-degree relatives, with a
coefficient of 0.25; and first cousins are third-degree relatives, with a
coefficient of 0.125. Under assortative mating, however, the trait-
specific genotypic correlations will be higher than the corresponding
coefficients of relationship. Importantly, assortative mating only
induces correlations between trait-associated loci and should not be
confused with inbreeding, which induces correlations between all
loci30. With successive generations of stable assortative mating, trait-
specific genetic variance and genotypic correlations between relatives
increase asymptotically towards an equilibrium, at which point
they become constant across generations3,8,28,29. (See also Supple-
mentary Note 2).

In this paper, we study the extent of assortative mating on a
range of phenotypes and its historical consequences by using genetic
data from extended family members. Our first aim is to derive the
expected genotypic correlations between family members under
various assumptions using path analysis. There are earlier theoretical
papers that lays out the consequences of assortative mating on
familial resemblance1–5,31. However: 1) they often focus on phenotypic
rather than genotypic resemblance; 2) they don’t consider imper-
fectlymeasured genetic factors (i.e., polygenic indices); 3) they often
do not consider gene-environment correlations; and 4) they either
don’t consider disequilibrium or do so only under simplistic
assumptions. We use path analysis because it offers a ready way to
relax assumptions while making the theory accessible for non-
specialists. In doing so, we describe a general formula for finding
such correlations between any two extended family members under
assortative mating at equilibrium. Our results imply that genetic
similarity between distant relatives should be more affected by
assortative mating than similarity between close relatives1,3,32. Our
second aim is to document polygenic index correlations for various
traits among partners in MoBa26,27. We find genetic evidence of
assortative mating for nine out of sixteen investigated traits. Our
third aim is to investigate whether genetic similarity between

Fig. 1 | Path diagram of similarity in extended families under assortative mat-
ing. Path diagram for a model of genetic similarity in extended families under
phenotypic assortative mating at intergenerational equilibrium (i.e., equal variance
across generations). The partner correlation attributable to assortment is denoted

by μ, the recombination variance is denoted byVK , and h and e denote the effect of

additive genetic (Ait ) and environmental factors (Eit ), respectively, on the pheno-
type (Pit ) of individual i in generation t. All variables have unit variance, meaning

e=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2

p
and VK = 1�μh2

2 . See the Supplementary Notes 1–3 for path diagrams

with relaxed assumptions.
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relatives was increased as predicted for these traits. We find that
polygenic index correlations among relatives was increased in a way
that broadly corresponded to the theoretical expectations. Trait-
specific genetic similarity between partners and elevated genetic
similarity between relatives indicate that many of the previously
observed phenotypic correlations are partly attributable to assorta-
tive mating. Our fourth aim is to use mother-father-child trios to
test whether the observations were consistent with equilibrium.
Although some traits did not significantly deviate from equilibrium
expectations, psychosocial traits like education attainment did.
This would imply that that the genetic variance and genetic similarity
between relatives for these traits are still increasing across
generations.

Results
Figure 1 shows a theoretical model of similarity in extended families in
the presence of assortative mating at intergenerational equilibrium.
The model includes eight individuals (i) in three generations (t): two
partners in the first generation, their two children in the second gen-
eration (who are each other’s full sibling) along with their respective
partners, and two children in the third generation (who are each oth-
er’s first cousin). The phenotype that is assorted on is denotedwith Pit ,
whereas trait-associated additive genetic factors and unique environ-
mental factors are denoted with Ait and Eit , respectively. The geno-
typic correlation between any two individuals is the sum of all valid
chains of paths between their respective additive genetic factors and
the value of a single chain is the product of its path coefficients33,34.
Valid chains always begin by tracing backward (←) in relation to the
direction of arrows, incorporating exactly one double-headed arrow
(↔), after which tracing continues in a forward direction (→). Because
the variables in Fig. 1 have unit variances, all valid chains connecting a
variable to itself will sum to 1, allowing us to immediately trace in
a forward direction (i.e., change direction at once). Copaths (—),
which are arrowless paths representing associations arising from
assortment35, link together valid chains per the rules above, forming
longer, valid chains. For a more detailed description of path tracing
rules involving copaths, see Balbona et al.36 or Keller et al.37 Path dia-
grams with relaxed assumptions (e.g., gene-environment correlations)
are presented and discussed in Supplementary Notes 1–3, whereas
simulations validating our theoretical expectations are presented in
Supplementary Notes 4 and 5.

Expected genotypic correlations in the nuclear family
In Fig. 1, there is only one valid chain between partners’ additive genetic
factors (e.g., A11 ↔A21): h×μ×h. The genotypic correlation between
partners (denoted ρg) is thus the phenotypic correlation attributable to
assortative mating, μ, weighted by the trait’s heritability, h2:

ρg =μh
2 ð1Þ

Similarly, we can trace the valid chains between the additive
genetic factors of a parent and their offspring (e.g., A11 ↔A22). There
are two valid chains: one directly from parental genetic factors to
offspring genetic factors, 1

2, and one through the other parent via the
assorted phenotype: h×μ×h× 1

2. The genotypic correlation between
parent and offspring is therefore 1

2 +
hμh
2 . With no assortative mating

(μ=0), this reduces to 1
2. For siblings (A22 ↔A32), there are four valid

chains: 1
4 + 1

4 + hμh
4 + hμh

4 , which can be rearranged so that it equals the
genotypic parent-offspring correlation. Because they are equal, we can
define a common denotation (rg1

) for first-degree relatives. We can
also substitute h×μ×h with ρg giving us:

rg1
=
1 +ρg

2
ð2Þ

In other words, the genotypic correlation between first-degree
relatives, rg1

, is increased by half the genotypic correlation between
partners at equilibrium. (Note that the phenotypic correlation will
not be the same for siblings and parent-offspring despite the same
genotypic correlation3). An advantage of using path analysis is how
easy path diagrams are to expand. In the Supplementary Informa-
tion, we detail how relaxing the assumption of equilibrium (Note 2)
and including polygenic indices (Note 3) changes the correlations.
During disequilibrium, the genotypic correlation between partners
will still conform to Eq. (1), but the correlation between relatives will
be less than what Eq. (2) would predict. For polygenic index corre-
lations, one must include a term representing the imperfect corre-
lation between the polygenic index and the true genetic
factor. The polygenic index correlation between partners should
therefore be:

ρpgi =μh
2s2 ð3Þ

where s2 is the shared variance between the polygenic index and the
true additive genetic factor (i.e., the genetic signal19). Assortative
mating will induce covariance between different loci (i.e., linkage
disequilibrium), which is included in the genetic signal. This means
that s may be larger than the correlation between the true direct
effects and the polygenic index weights, and as such do not repre-
sent the accuracy of the polygenic index weights (see Supplemen-
tary Notes 3, 4.4, and 5.6). If the genetic signal is low, the polygenic
index correlation between partners will be biased towards zero
compared to the true genotypic correlation19. For first-degree
relatives, the equation becomes similarly altered, but because the
error terms in the polygenic indices are correlated between
relatives, the polygenic index correlation will be biased towards
the coefficient of relatedness rather than zero:

rpgi1 =
1 +ρpgi

2
ð4Þ

Expected genotypic correlations in the extended family
The model in Fig. 1 has two properties that allow a general algorithm
to find the expected genotypic correlation between any two mem-
bers in extended families. First, all the chains that connect the gen-
otypes of first-degree relatives can readily be continued without
breaking path tracing rules. Second, all chains between the geno-
types of any two related individuals are mediated sequentially
through the genotypes of first-degree relatives. The genotypic cor-
relation between kth-degree relatives, denoted rgk

, can thus be
attained by raising the genotypic correlation between first-degree
relatives to the degree of relatedness:

rgk
=

1 +ρg

2

� �k

ð5Þ

For example, the expected genotypic correlation between third-
degree relatives like first cousins is ð1 +ρg

2 Þ
3
, which can be verified by

manually tracing all valid chains between A13 and A23 in Fig. 1. The
genotypic correlation between non-blood relatives like in-laws, which
will be non-zero under assortative mating, can be attained by linking
together chains of rgk

and ρg (for example, Corr A12,A42

� �
= rg1

ρ2
g). As

for polygenic index correlations, they can be approximated by repla-
cing ρg with ρpgi in Eq. (5), although depending on the genetic signal,
the true correlation between polygenic indices may be slightly higher
(see Supplementary Note 3).

Figure 2 shows how assortative mating changes genotypic corre-
lations between relatives at equilibrium. In Panels A and B, it is evident
that assortativemating has amuch larger effect on first cousins than full
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siblings. For example, for a trait where μ= :50 and h2 = 50% (meaning
ρg = :25), siblings (Panel A) will have a correlation of rg1

= :625 whereas
cousins (Panel B) will have a correlation of rg3

= :244, reflecting increa-
ses of 25% and 95%, respectively, compared to randommating. Panel C
shows how this pattern extends to more distant relatives, with the
genotypic correlation between second cousins 3.5 times higher than
normal if ρg = :25 (rg5

= :095 vs. :031). The larger relative increase is not
merely because the correlations are smaller to begin with: Panel D
shows that the largest absolute increase typically occurs in second-
degree relatives like uncles/aunts and nephews/nieces.

The relatively greater increase in correlation between cousins is
because third-degree relatives are affected by three assortment
processes: Mother-father, uncle-aunt, and grandfather-grandmother
partnerships are all correlated under assortative mating and con-
tribute to the increased correlation (Fig. 1). For each additional
degree of relatedness, there is an additional assortment process
opening pathways for relatives to correlate. This pattern extends to
unrelated individuals like siblings-in-laws, who would have a geno-
typic correlation of ρgrg1

= :157 if ρg = :25. It is evident that assortative
mating has a relatively larger impact on the genotypic correlation
between distant relatives compared to close relatives, and that
heritable traits subject to strong assortment can produce significant
genotypic correlations between family members who would other-
wise be virtually uncorrelated.

Gene-environment correlations, shared environment, and
dominance effects
One limitation with most earlier work, such as Fisher1, is that they
assume a simplistic model where genetic similarity is the only cause of
familial resemblance. In Supplementary Note 1, we detail how genetic
similarity between relatives are affected by dominance effects, shared
environmental effects, and various forms of environmental transmis-
sion. If genetic and environmental transmission occur simultaneously,
assortative mating will induce (and greatly increase) correlations
between genetic and environmental factors. Such gene-environment
correlations will, in this context, mimic higher heritability, leading to
higher genotypic correlations between partners and thereby exacer-
bated genetic consequences of assortative mating. However, the
relationship between the genotypic correlation between partners and
the genotypic correlation between first-degree relatives will stay the
same, meaning Eq. (2) and Eq. (4) can be used without making
assumptions about gene-environment correlations or other sources of
familial resemblance.

This is not the case for distant relatives. If there are substantial
sharedenvironmental effects, gene-environment correlations, or other
sources of familial resemblance, the properties of Fig. 1 that allow the
general algorithm in Eq. (5) are no longer present. This is because non-
genetic causes of familial resemblance result in pathways between
distant relatives that bypass the genotypes of intermediate relatives,
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Fig. 2 | Assortative mating’s effect on genotypic correlations between various
relatives. A, B The expected genotypic correlation (rg ) at equilibrium between full
siblings (i.e., first-degree relatives) and first cousins (i.e., third-degree relatives)

under different combinations of assortment strengths (μ) and heritabilities (h2).
C, D The relative and absolute increase in genotypic correlation at equilibrium for
various relatives and genotypic correlations between partners (pg ).
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thus increasing the true genotypic correlation to beyond what Eq. (5)
would predict. Equation (5) still serves as a rough approximation,
although any statistical model that relies on it could be biased if such
extra pathways exist.

Empirical polygenic index correlations between partners and
relatives
Figure 3 shows polygenic index correlations between family members
for a range of traits. Nine out of sixteen traits were significantly cor-
related between partners (Panel A), including height (0.07), bodymass
index (0.04), intelligence (0.04), and educational attainment (0.14).
When educational attainment was split into cognitive and non-
cognitive factors (GWAS-by-subtraction38), we find roughly equal
partner correlations for both components. Psychiatric traits like

ADHD, depression, cross-psychiatric disorder, and bipolar disorder
exhibited no significant correlations between partners. Keep in mind
that the correlations will be biased downwards to the extent the
genetic signal is poor (ref. Equation (3)).

Panels B, C, and D show polygenic index correlations between
full siblings, parents andoffspring, and first cousins, respectively (see
Supplementary Fig. 29 for other family members). The vertical
dashed lines are the expected correlations under randommating and
the black crosses are the expected correlations at equilibrium given
the partner correlation and Eq. (5). All traits with significant corre-
lations between partners had significantly higher parent-offspring
correlations than would be expected under random mating, and
we observed similar patterns for other relatives. For example, the
polygenic index correlation for educational attainment was 0.56
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Fig. 3 | Correlations between familymembers. Polygenic index correlations (with
95% CIs) for various traits between various family members: (A) partners
(N = 47,135), (B) full siblings (N = 22,575), (C) parent-offspring (N = 117,041), and (D)
first cousins (N = 28,330). The vertical dashed lines are the expected correlation

under randommating (i.e., the coefficient of relatedness), and the black crosses are
the expected correlation at equilibriumgiven Eq. (5). Abbreviations: EA educational
attainment, BMI body mass index, IQ intelligence, ADHD attention-deficit hyper-
activity disorder. Correlations are also reported in Supplementary Table 17.
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(instead of 0.50) between full siblings and 0.20 (instead of 0.125)
between first cousins.

Testing intergenerational equilibrium
Wefitted structural equationmodels usingmother-father-child trios to
see if a model constrained to equal variance across generations (i.e.,
equilibrium) resulted in significantly worse fit (see Supplementary
Note 6). Six out of nine traits were significantly different from equili-
brium. We also investigated two consequences of disequilibrium,
namely greater variance in the offspring generation (Fig. 4A)
and smaller-than-expected parent-offspring correlations (Fig. 4B).
During disequilibrium, the ratio of offspring polygenic index
variance to parental polygenic index variance should be positive:
Qpgi =

Of f spring Variance
Parental Variance (see Supplementary Notes 2.1 and 3.3). However,

this ratio is quite sensitive to the genetic signal of the polygenic index,
and therefore provides limited information about the history of
assortative mating beyond demonstrating disequilibrium. An alter-
native measure that is less sensitive to the genetic signal is the
observed increase in polygenic index correlation as a percentage of
the expected increase19: Upgi =

Observed Increase
Expected Increase (see Supplementary

Notes 2.3 and 3.4). This provides a measure of how close the trait is to
equilibrium. By comparing Upgi to reference values under various
heritabilities and assortment strengths, it is possible to infer the
equivalent number of generations of stable assortative mating if
starting from a random mating population. If the parental generation
was the first generation to mate assortatively, we would expect
Upgi ≈ 70%, while we would expect Upgi = 100% if the trait was in
equilibrium.

Height did not deviate from equilibrium: There was no significant
difference between the parental and offspring variance nor between
the observed and expected correlations. The results for drinking and
smoking behavior were also consistent with equilibrium, although the
observed partner correlation was too small to make this test infor-
mative. Body mass index and other psychosocial traits, on the other
hand, did deviate from equilibrium: For example, the polygenic index
variance for educational attainment was 2.46% greater in the offspring
generation compared to the parental generation. The true genetic

variance ratio is likelymuch larger: For example, if the polygenic index
captures one third of the true genetic factor (s2 = 1=3), then the true
variance increase would be approximately 7.4% (see Supplementary
Note 3.3). The parent-offspring polygenic index correlation was also
slightly but significantly lower than expected at equilibrium
(Upgi =90%, 95%CIs: 87�93%).Whenwe compared this to calculations
of what the observed increase would have been after successive gen-
erations of assortative mating, we found that Upgi =90% is equivalent
to approximately three generations of stable assortment (see Sup-
plementary Note 2.3). Results were similar for other psychosocial
traits, albeit with somewhat shorter implied histories. Body mass
index, on the other hand, had a parent-offspring polygenic index
correlation thatwould imply that the parent generationwas the first to
mate assortatively (Upgi = 71%, 95% CIs: 60�81%). This would also
explain why the sibling correlation – many of whom are in the parent
generation – was not higher than expected under random mating.

Discussion
In this study, our goal was to clarify the theoretical consequences of
assortativematingongenetic similarity in extended families andassess
empirical measures of genetic similarity to provide insights into the
presence and history of assortative mating. We first employed path
analysis to deduce the expected polygenic index correlations between
relatives under assortative mating. We then presented empirical evi-
dence that assortative mating is present for many traits, leading to
significantly increased genetic similarity among relatives for those
traits. Finally, we showed that – while assortative mating does not
appear to be a recent phenomenon for most traits – genetic similarity
is still increasing across generations for psychosocial traits. Here, we
discuss the implications of our findings.

Our first aim was to clarify the theoretical consequences of
assortative mating. One key finding is the stronger impact of assorta-
tive mating on genotypic correlations between more distant relatives.
Althoughnot a novel discovery– even Fishermentioned it offhandedly
in his seminal paper1 – this effect has been largely overlooked in the
literature (cf32.). This is despite important implications. A Swedish
economics paper reported that nearly one-third of persistence in
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Fig. 4 | Tests of intergenerational equilibrium. Parameter estimates (with 95%
likelihood-based CIs) from structural equation models using mother-father-child
trios (N= 87,896 families, 35,025 of which were complete). A Ratio of offspring
polygenic index variance to parental polygenic index variance (Qpgi, see Supple-
mentary Note 2.1). A value above 1 would indicate that the variance is greater in the
offspring generation compared to the parental generation, as expected during
disequilibrium. B Observed increase in parent-offspring correlation compared to

expected increase at equilibrium (Upgi, see Supplementary Note 2.3). A value of
about 70% would indicate that the parent generation was the first generation to
assort on this trait, whereas 100% would indicate that the trait is in intergenera-
tional equilibrium. Only traits with significant correlations between partners are
shown. Shape corresponds to trait types in Fig. 3, where circles are anthropometric
traits and squares are psychosocial traits. Abbreviations: EA educational attain-
ment, BMI body mass index, IQ intelligence.
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inequality across generations – traditionally attributable to parent-
offspring relationships – is attributable to the extended family39.
Assortative mating’s effects on similarity in extended families may be
key to understanding these issues. Similar logic may also apply to
environmentally mediated sources of similarity40. We also described
how assortative mating can induce and increase gene-environment
correlations, which mimic higher heritability and thereby exacerbate
the genetic consequences of assortative mating – especially correla-
tions between distant relatives.

The second aimof this studywas to investigatewhich traits show
genetic evidence of assortative mating. One key challenge
when evaluating the pervasiveness of assortative mating is that
phenotypic partner similarity can come about from multiple pro-
cesses. Genotypic similarity, on the other hand, canmore confidently
be attributed to assortative mating. Most anthropometric traits and
psychosocial traits had significant polygenic index correlations
between partners. The largest correlation was for educational
attainment (0.14), which adds to the growing list of evidence that
variants associated with educational attainment are undergoing
assortative mating6,19,23,25,41.

Psychiatric traits did not show evidence of assortative mating
despite pervasive phenotypic partner correlations15,16. Similarly, a
recent study found no genetic partner similarity on general risk for
psychopathology (i.e., the “p-factor”)42. These findings seemingly
contradict Torvik et al.19, who reported evidence of assortative mating
ondepressionusing a smaller subset of the samecohort. However, that
paper used a structural equation model requiring both genetic and
phenotypic data, and the polygenic index correlations reported in that
papermatch thosewe report here. This could indicate that phenotypic
partner similarity in mental health is caused by processes other than
assortative mating, such as convergence20 (which was not modelled in
Torvik et al.19). On the other hand, the results could also be false
negatives resulting from low-quality polygenic indices. The depression
polygenic index only correlates :11 with the phenotype in the current
cohort19, meaning the expected partner correlation is only about
:112 × :14 = :0017 under direct assortment. A false negative is therefore
highly likely. Reports of smaller but non-zero phenotypic correlations
prior to partner formation suggests that both convergence and
assortment play an important role43,44.

As highlighted in Eq. (3), the polygenic index correlation
between partners should be the product of the phenotypic correla-
tion attributable to assortative mating (μ), the heritability (h2), and
the genetic signal (s2). If the polygenic index fails to adequately
measure the relevant genetic factors (meaning s2 ≈0), for example
due to lack of statistical power or other measurement issues45 in the
underlying genome-wide associations study (GWAS), then the poly-
genic index correlation will be biased towards zero. The highest
observed correlations were for educational attainment and height,
which are among the traits with the largest sample sizes in the
underlying GWAS. A corollary is that the correlations reported here
do not quantify the exact degree of assortative mating because it is
confounded by the genetic signal of the polygenic index. Compli-
cating inference further is that the genetic signal is itself increased
under assortative mating.

Our third aim was to investigate whether relatives were more
genetically similar for traits that exhibit evidence of assortative
mating. Our findings broadly correspond to theoretical expectations:
Traits with significant polygenic index correlations between partners
showed increased similarity between relatives, whereas traits with no
correlations between partners broadly exhibit patterns as expected
under random mating. These empirical patterns demonstrate the
theoretical expectations derived earlier, meaning we should expect
distant relatives to be highly correlated for traits under strong
assortment. The correlations reported here are underestimated by
the quality of the polygenic index, meaning the true genotypic

correlations between relatives are likely much larger. Our findings
have at least two implications. First, genetic variants associated with
traits undergoing assortment, such as educational attainment, clus-
ter in extended families, thus increasing or maintaining societal
stratification by families39 (i.e. between-family variation); and second,
genetic studies that unknowingly involve numerous distantly related
individualsmaybe biased if the genotypic correlations between them
are not negligible.

For educational attainment, the polygenic index correlations
between first-degree relatives are lower than expected (indicating
disequilibrium, see below) while correlations between third- and
fourth-degree relatives are higher than expected. This is consistent
with substantial gene-environment correlations for educational
attainment46–48. In Supplementary Notes 1 and 5, we showed theore-
tically and with simulations that correlations between higher-degree
relatives (but not first-degree relatives) will be higher than expected
given Eq. (5) if such gene-environment correlations are present.

Our fourth aim was to investigate the history of assortative mat-
ing. Our findings differed across traits: Height did not deviate from
equilibrium expectations, whereas psychosocial traits such as educa-
tional attainment did. This was evident in both lower-than-expected
parent-offspring polygenic index correlations and greater variance in
the offspring generation. Whether or not a trait is in intergenerational
equilibrium has important implications for the consequences of
assortative mating because it decides whether differences are
increasing across generations or merely maintained. We found that
polygenic index variance was stable across generations for height (as
well as for traits not undergoing assortative mating). However, psy-
chosocial traits have greater variance in the offspring generation,
implying that the traits are in disequilibrium and that assortative
mating is currently leading to increased genetic differences in these
traits. Although the non-genetic consequences may differ, assortative
mating may therefore play a key role in explaining recent increases in
inequality10,13.

Despite being in disequilibrium, the evidence does not suggest
that the parental generation was the first to assort on educational
attainment. Instead, it appears that the trait is quite near equilibrium.
This would also explain the discrepancy between our conclusion and
that in Torvik et al.19, who found no significant deviation from equili-
brium using an earlier version of data from the same cohort. We pri-
marily used variance differences across generations whereas Torvik
et al.19 compared the predicted and expected correlations between
siblings andpartners. Considering that the sibling correlation in Fig. 3B
is significantly lower than expected given equilibrium, the change in
result likely stem from an increase in statistical power, owing to more
genotyped individuals available in the current sample, and further
aided by the use of parent-offspring dyads instead of sibling dyads. In
this paper, we estimate that the evidence for educational attainment
corresponds to approximately three generations of stable, univariate
assortative mating starting from a randommating population, but the
exact history of assortment will be longer if the strength of assortment
has varied over time or if the genotype-phenotype correlation
increased for other reasons49.

Many genetic research methods assume random mating, but our
findings suggest that such assumptions are unwarranted for many
traits. Accounting for assortative mating poses its own challenges, as
the genetic consequences and corresponding methods needed
depend onwhether assortativemating started recently or has reached
intergenerational equilibrium. Studies on the genetics of educational
attainment especially – or the many traits that correlate with educa-
tional attainment50 – may therefore be biased unless this is properly
accounted for. Twin and family studies that account for assortative
mating typically assume equilibrium37. For example, Clark51 uses
equations that assume equilibrium when he claims that familial cor-
relations in social class in the United Kingdom can be explained by
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genetic similarity alone. Conversely, Kong et al.46, who investigated
genetic nurture effects of educational attainment in an Icelandic
sample, assumedno assortment prior to their parental generation. Our
findings imply that, for some traits, neither of these assumptions are
valid. Although the patterns and history of assortment may be differ-
ent across populations, future research should investigate how the
conclusions from Kong et al.46 and related papers depend on these
assumptions52,53.

Newer genetic methods that can account for disequilibrium are
being developed36,54. When these methods are impractical, the
potential biases induced by different assumptionsmust be considered
on a case-by-case andmethod-by-methodbasis. Differentmethodswill
be biased in different ways. For example, assortative mating leads to
underestimated heritability in classical twin designs37,55 and over-
estimated heritability in molecular designs56, with the corollary that
the missing heritability problem may be larger than previously
assumed57,58. Overall, researchersmust carefully considerwhat impacts
the presence and history of assortative mating would have on their
results.

Despite our large sample size, our results are limited by low-
quality polygenic indices, which results in lower partner correlations
and consequently less power to detect assortative mating. This is
amplified in tests of equilibrium, where smaller polygenic index cor-
relations between partners result in less statistical power to detect
deviations from equilibrium. Our tests for equilibrium are therefore
less conclusive for traits with small polygenic index correlations, such
as drinking and smoking behavior. Furthermore, assortative mating
can bias GWAS estimates and thereby bias polygenic indices59.
Although this should not affect our conclusions (see Supplementary
Note 5.6), it does make it difficult to precisely quantify the strength of
assortative mating on various traits and hence the magnitude of the
genetic consequences.

Another concern is that our results may be confounded by
population stratification60, where (1) the trait in question happens to
be more common within certain strata (e.g., subcultures or geo-
graphical areas), (2) some genetic variants are randomly present at
higher frequencies in these strata, and (3) individuals aremore likely to
mate within these strata. The combination of the first two phenomena
would result in a spurious correlation between those genetic variants
and the trait, and when coupled with the third phenomenon, similar
spurious correlations could emerge between partners. While we con-
trolled for 20 principal components in our analysis, which is the
standardmethod for addressing stratification61, this approachmay not
fully account for this phenomenon62. However, the evidence we pre-
sent aligns well with predictions given assortative mating. It is also not
obvious howpopulation stratification could explain increased variance
in the offspring generation. Consequently, our results should be con-
sidered indicative of assortative mating until a more compelling
alternative explanation is offered. Future theoretical work should
investigate how the consequences of assortative mating and popula-
tion stratification differ so that they can better be distinguished in
future research.

There are several interesting research avenues that could follow
from this work. First, there may be some selection bias in the cohort
study our results are based on. Future work using population-wide
phenotypic data might provide insights into how much this matters.
Second, patterns of assortative mating are likely to vary between
populations63,64, meaning that our empirical findings are not uni-
versally generalizable. Replicating these results in other populations
will thereforebe beneficial. Third, the approachweuse here is agnostic
as to which trait(s) the polygenic indices actually measure, and which
phenotype(s) are being assorted upon. Future research may want
to investigate what set of phenotypes mediate the polygenic index
correlations between partners, as it may not always be attributable
to the phenotype that the polygenic index supposedly measures.

Furthermore, we have assumed assortment is unidimensional. Con-
sidering ample evidence of partner correlations across different
traits44,59, future studies may want to extend this line of research to
multidimensional assortment.

Methods
Sample
We used data from the Norwegian Mother, Father and Child Cohort
Study (MoBa)26. MoBa is a population-based pregnancy cohort study
conducted by the Norwegian Institute of Public Health. Participants
were recruited from all over Norway from 1999 to 2008. The women
consented to participation in 41% of the pregnancies. Blood samples
were obtained from both parents during pregnancy and frommothers
and children (umbilical cord) at birth65. The cohort includes approxi-
mately 114,500 children, 95,200 mothers and 75,200 fathers. The
current study is based on version 12 of the quality-assured data files
released for research in January 2019. The establishment of MoBa and
initial data collection was based on a license from the Norwegian Data
Protection Agency and approval from The Regional Committees for
Medical and Health Research Ethics. The MoBa cohort is currently
regulated by theNorwegianHealth RegistryAct. The current studywas
approved by The Regional Committees for Medical and Health
Research Ethics (2017/2205).

The sample included all individuals who had been genotyped and
passed quality control27. This included 77,506 mothers (birth year:
M = 1974.36, SD = 5.1), 53,274 fathers (birth year:M = 1972.27, SD = 5.6),
and 71,525 children (49% female, birth year:M = 2005.31, SD = 1.94). For
the correlations, the sample included 47,135 unique mother-father
dyads (i.e., partners). As described in Corfield et al.27 relatedness
relationships in MoBa were inferred from genetic data by applying
KING programs66 to a subset of single nucleotide polymorphisms
(SNPs) with call rate < 98% and minor allele frequency (MAF) < 5%.
KING accurately infers monozygotic twin or duplicate pairs (kinship
coefficient > 0.3540), first-degree (parent-offspring, full siblings,
dizygotic twin pairs; kinship coefficient range0.1770–0.3540), second-
degree (half siblings, grandparent-offspring, avuncular relationships;
kinship coefficient range 0.0884–0.1770), and third-degree (first cou-
sins; kinship coefficient range 0.0442–0.0884) relationships. This
method identified 117,041 parent-offspring dyads, 22,575 full sibling
dyads, 35,923 second-degree dyads (e.g., uncle-nephew), 28,330 third-
degree dyads (e.g., first cousins), 9392 fourth-degree dyads, and
235,209 dyads of unrelated family members (e.g., in-laws,
nephews–uncles’ spouses, partners, etc.,) where both members of the
dyads had been genotyped and passed quality control.

To test equilibrium,we used all availablemother-father-child trios
from MoBa. We relied on trios to test equilibrium for the following
reasons: 1) It allowed estimating the partner correlation and parent-
offspring correlations in the same model; 2) it allowed us to include
both the mother-offspring and father-offspring dyads simultaneously
thus increasing statistical power; 3) it allowed us to estimate variances
separately for the two generations; 4) there was no need to distinguish
between correlations between relatives in the parent generation and in
the offspring generation, as this is inherent in the design; 5) focusing
on the nuclear family removes the need to make assumptions about
the genetic signal or gene-environment correlations; and finally, 6) the
sample in MoBa is inherently selected on parent-offspring dyads
whereas the availability of other relatives is coincidental. Using other
relatives, such as siblings, could therefore lead to stronger ascertain-
ment bias. After randomly selecting one offspring from each nuclear
family, we were able to construct a sample of 76,869 genotyped
mothers, 51,549 genotyped fathers, and 66,751 genotyped offspring,
resulting in a total of 87,896 incomplete and complete trios. Of these,
35,025 were complete trios, whereas 9889 included only partners,
23,177 included only mother-offspring dyads, and 4157 included only
father-offspring dyads.
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Measures
We used beta weights from large, publicly available up-to-date
genome-wide association studies listed the Supplementary Note 8.
None of the used genome-wide association studies used data from
MoBa. Polygenic indices were calculated using LDPred v.167, a Bayesian
approach that uses a prior on the expected polygenicity of a trait
(assumed fraction of non-zero effect markers) and adjusts for linkage
disequilibrium (LD) based on a reference panel to compute SNPs
weights. Genotypes were coordinated with the summary statistics,
with the number of overlapping SNPs reported in Supplementary
Note 8. LD adjustment was performed using the European subsample
of the 1000 Genomes genotype data as LD reference panel68. The
weights were estimated based on the heritability explained by the
markers in the GWAS summary statistics and the assumed fraction of
markerswith non-zero effects. For eachGWAS trait we created LDpred
PGI with the –score command in plink269. Prior to calculating corre-
lations between partners and relatives, we residualised the polygenic
indices by regressing out the first 20 principal components of genetic
ancestry, as well as chip, imputation, and batch number.

Statistics
The polygenic index correlations (and 95% confidence intervals) were
attained by correlating the residualised polygenic indices between
partners and relatives using cor.test in R70 4.0.3. We tested whether the
observed correlations were consistent with equilibrium by fitting
structural equation models to data on mother-father-child trios, and
testing whether a model constrained to equilibrium via equal variance
across generations resulted in significantly worse fit. These models
were estimated using OpenMx71 2.20.6. We describe this procedure in
more detail in the Supplementary Note 6.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from the Norwegian Mother, Father and Child Cohort Study
(MoBa) used in this study are managed by the national health register
holders in Norway (Norwegian Institute of Public Health) and can be
made available to researchers, provided approval from the Regional
Committees forMedical andHealth ResearchEthics (REC), compliance
with the EU General Data Protection Regulation (GDPR) and approval
from the data owners. The consent given by the participants does not
open for storage of data on an individual level in repositories or
journals. Researchers who want access to data sets for replication
should apply through helsedata.no. Access to data sets requires
approval from The Regional Committee for Medical and Health
Research Ethics in Norway and an agreement with MoBa.

Code availability
Scripts used for simulations are provided in Supplementary Software 1
and at https://osf.io/dgw4r/. The summary statistics and reproducible
code for the figures in this manuscript are also available at https://osf.
io/dgw4r/.
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