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Elevation-dependent pattern of net CO2
uptake across China

Da Wei 1,2,4 , Jing Tao1,2,4, Zhuangzhuang Wang1,2, Hui Zhao 1, Wei Zhao1 &
Xiaodan Wang1,3

The elevation gradient has longbeen known tobe vital in shaping the structure
and function of terrestrial ecosystems, but little is known about the elevation-
dependent pattern of net CO2 uptake, denoted by net ecosystem productivity
(NEP). Here, by analyzing data from203 eddy covariance sites across China, we
report a negative linear elevation-dependent pattern of NEP, collectively
shaped by varying hydrothermal factors, nutrient supply, and ecosystem
types. Furthermore, the NEP shows a higher temperature sensitivity in high-
elevation environments (3000–5000m) compared with the lower-elevation
environments (<3000m). Model ensemble and satellite-based observations
consistently reveal more rapid relative changes in NEP in high-elevation
environments during the last four decades. Machine learning also predicts a
stronger relative increase in high-elevation environments, whereas less change
is expected at lower elevations. We therefore conclude a varying elevation-
dependent pattern of the NEP of terrestrial ecosystems in China, although
there is significant uncertainty involved.

Terrestrial ecosystems play a fundamental role in counteracting
increasing CO2 concentrations in Earth’s atmosphere1,2. The net uptake
of CO2 by terrestrial ecosystems shows a geographical pattern
(denoted here by net ecosystemproductivity, NEP), with a peak in NEP
in subtropical and temperate forests3. Similar to latitude, the elevation
gradient has long been considered to exert an important physical
control on vegetation, which can be traced back to Alexander von
Humboldt in the nineteenth century4, or even earlier. Similar phe-
nomena were also recorded by Andrew D. Hopkins, who observed a
progressive delay in leafing out with increasing elevation5.

The elevation gradient affects temperature, precipitation and the
supply of nutrients, with colder temperatures, lower precipitation and
a smaller supply of nutrients at higher elevations6. This elevation-
dependent pattern in the supply of resources largely determines both
the structure of ecosystems (e.g., the ecosystem type, biodiversity, and
soil characteristics) and their function (e.g., photosynthesis, phenol-
ogy, and microbial activity)4–7. Several studies have been conducted

across Earth’s high-elevation environments, e.g., the Alps8, Andes9, and
Tibetan Plateau10, suggesting varying elevation-dependent patterns of
photosynthesis and respiration. The strong elevation-dependent pat-
tern of resource supply may also affect the NEP, i.e., the net balance
between photosynthesis and respiration, but we do not have a broad
picture of Earth’s elevation-dependent pattern of NEP due to a lack of
instrumental measurements of CO2 exchange like eddy covariance
observations.

High-elevation environments, i.e., high mountains (defined as
>3000m above sea-level), hold a disproportionally high proportion of
Earth’s biodiversity11, despite their colder, drier climate and stronger
nutrient limitation12. However, the current warming of Earth’s climate
will affect the net uptake of CO2 in high-elevation environments by
relieving the limitation of temperature. More importantly, these
regions will experience elevation-dependent warming—that is, high-
elevation environments will experience more rapid changes in tem-
perature than lower-elevation environments6. In addition, there is less

Received: 5 July 2023

Accepted: 14 March 2024

Check for updates

1State Key Laboratory of Mountain Hazards and Engineering Safety, Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of
MountainHazards andEnvironment, ChineseAcademyof Sciences, Chengdu,China. 2University of ChineseAcademyof Sciences, Beijing, China. 3Institute of
Tibetan Plateau Research, Chinese Academyof Sciences, Beijing, China. 4These authors contributed equally: DaWei, Jing Tao. e-mail: weida@imde.ac.cn;
wxd@imde.ac.cn

Nature Communications |         (2024) 15:2489 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1923-5905
http://orcid.org/0000-0002-1923-5905
http://orcid.org/0000-0002-1923-5905
http://orcid.org/0000-0002-1923-5905
http://orcid.org/0000-0002-1923-5905
http://orcid.org/0000-0001-6320-9731
http://orcid.org/0000-0001-6320-9731
http://orcid.org/0000-0001-6320-9731
http://orcid.org/0000-0001-6320-9731
http://orcid.org/0000-0001-6320-9731
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46930-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46930-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46930-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46930-4&domain=pdf
mailto:weida@imde.ac.cn
mailto:wxd@imde.ac.cn


direct disturbance from humans in high-elevation environments,
implying the responses of their CO2 uptake to climate change may
differ from lower-elevation environments. Taken together, these fac-
tors suggest that climate warming in high-elevation environments
could cause a more robust change in the uptake of CO2 than at lower
elevations, although evidence is still lacking.

China is the third largest country on Earth, and the elevation of
China ranges from sea level to 8844m and includes a wide range of
tropical, subtropical, temperate, boreal, and alpine ecosystems.
Roughly 65% of China’s land surface is covered by mountains13. These
mountains are home to 22% of China’s population, indicating much
lower human pressures than at lower elevations13; plus, they also
receive much stronger protection and restoration efforts. For exam-
ple, most newly planted forests are located in mountain
environments14—whereas non-mountainous regions are occupied by
croplands, buildings and other artificial land surfaces. Most protected
areas are also in mountainous regions, such as the newly built San-
jiangyuan (>4000m) and Giant Panda (1500–3000m) National
Parks14. Existing studies have highlighted that these mountains func-
tion as a vital net CO2 sink

3,15 and eddy covariance observations have
been widely established in China during the last two decades16–18.
China’s topography and its eddy covariancenetwork therefore provide
a unique opportunity to explore the elevation-dependent pattern of
NEP under the influence of a changing climate and human activities.

Therefore, in this study, we collected observations from 203 eddy
covariance sites across China to determine the elevation-dependent
pattern of NEP and its changes under a warming climate and changing
human activities. We refer to this dataset as EddyChina2023 (Fig. 1a;
more details of the dataset can be seen in Text S1, Figs. S1–S3 and
Table S1). We first describe the pattern of NEPwith elevation, aswell as
the environmental drivers of the elevation-dependent pattern of NEP.
We then compare the difference between the high-elevation environ-
ments (3000–5000m) and their lower elevation counterparts
(<3000m) in terms of the temperature sensitivity. We also explore the
variation in NEP along the elevation gradient during the past four
decades, based on biogeochemical models and satellite observations.
Finally, we predict how the elevation-dependent pattern of NEP will be
affected under various climate scenarios using machine learning, the
eddy covariance dataset, and CoupledModel Intercomparison Project
Phase 6 (CMIP6) models. Taking China as an example, the objective of
this study was to draw a broad picture of Earth’s elevation-dependent
patten of NEP and to determine whether there will be amore robust or
different change at higher elevations compared with that at lower
elevations.

Results
Elevation-dependent pattern of NEP and its drivers
We first explore the elevation-dependent pattern of NEP. It shows a
linear negative elevation-dependent pattern attributable to both the
peak CO2 rate and the length of the growing season (Fig. 1b, c)—that is,
a shorter growing season and lower peak CO2 uptake at higher eleva-
tions. There is a clear elevation-dependent pattern wherein a 100-m
increase in elevation causes an NEP loss of about 4 gCm−2 yr−1. In fact,
both gross primary productivity (GPP) and ecosystem respiration (RE)
are significantly and negatively dependent on elevation, similar toNEP.
Moreover, GPP and RE are highly correlated with each other, and RE
consumes 72%of theGPP, leaving a 28%carbonuse efficiency across all
terrestrial ecosystem types (Fig. S4).

We find, based on >200 eddy covariance towers, that NEP and its
components follow a linear negative pattern with an increase in ele-
vation. Correlation analysis and structural equation model (SEM)
analyses suggest that NEP is better correlatedwith GPP (Fig. 2a), rather
than RE, indicating the dominant role of photosynthesis in affecting
NEP19. Correlation analysis supports a dominant role for temperature,
precipitation and the reactive nitrogen (N) level in shaping the spatial

pattern of GPP and RE (Fig. S5). SEM analysis further validates the
importance of temperature, precipitation, and reactive N level to the
spatial pattern of NEP. It is also clear that the temperature, precipita-
tion, and reactive N level consistently show a negative elevation-
dependent pattern (Fig. 2b), which contributes to a similar linear
negative elevation-dependent pattern of NEP. Climate-induced land-
cover and land-use types along the elevation gradient may also con-
tribute to the varying elevation-dependent pattern of NEP. For exam-
ple, there is more grassland, but less forest and cropland, at higher
elevations (Fig. S6), among which forest and cropland have much
higher NEP than grassland (Fig. S3). To summarize, the varying
hydrothermal factors, nutrient supply, and ecosystem types may have
collectively shaped the negative elevation-dependent pattern of NEP.

Temperature sensitivity difference between high- and lower
elevation environments
Further analyses validate our expectation that high-elevation envir-
onments and thus colder ecosystems (3000–5000m; mean annual
temperature of −0.12 °C, ranging from −6.0 to 8.7 °C), such as the
Tibetan Plateau, are more sensitive to climate warming than their
lower-elevation counterparts (mean annual temperature of 10.9 °C,
ranging from −4.4 to 25.0 °C). We are already aware of the higher
temperature sensitivity of RE in colder areas20, which was also vali-
dated in our analysis (Fig. 3; Fig. S7), with Q10 = 2.19 in the high-
elevation environments and Q10 = 1.92 at lower elevations (P <0.01).
Like the RE, the temperature sensitivity of GPP shows an elevation-
dependent pattern: the temperature sensitivity of GPP in high-
elevation environments is higher than that at lower elevations
(P < 0.01). The higher temperature sensitivity of GPP in high-elevation
environments thus leads to a stronger temperature sensitivity of NEP
(P < 0.01). The higher temperature sensitivity of GPP, RE, and NEP in
high-elevation environments are also well captured by the models’
ensemble (Fig. S8).

It is notable that the temperature sensitivity of GPP in high-
elevation environments is higher than that at lower elevations, while
the temperature sensitivity of RE is not that significant, highlighting
the role of GPP in dominating the temporal sensitivity of NEP. In terms
of RE, it is well known that the carbon-rich soils accumulated in cold
climates will suffer decomposition. Regarding the GPP, it is possible
that the extent of temperature restriction has contributed to the sig-
nificant variance in its sensitivity to temperature. Specifically, it
appears that environments at lower elevations are approximately 11 °C
warmer than high-elevation ecosystems. A similar phenomenon has
also been recorded in the Scottish mountains, where greater pheno-
logical sensitivity to temperature was found, especially for spring
growth at high elevations21. Another reason for the lower temperature
sensitivity in lower-elevation environments may be the strong human
impact present there, such as plantation, harvesting, logging, and land
use changes. These factors may have partially masked the role of
temperature in relation to GPP. Additionally, in populated lower-
elevation areas, the availability of photosynthetic active radiation for
plant growth may also affect photosynthesis and thus the variation in
GPP22. In contrast, high-elevation environments typically experience
intense solar radiation due to the thin air23. Thus, our eddy covariance
dataset, in conjunction with process-based models, consistently
demonstrates that the NEP is more sensitive to temperature variations
in high-elevation environments than at lower elevations. This may be
attributed to difference in temperature constraints, human impacts,
and photosynthetic active radiation.

Productivity change rates during the past four decades
NEP may have experienced varying rates of change under the varying
climatic conditions along the elevation gradient—that is, it is uncertain
whether high-elevation environments have become more productive
during the last four decades as a result of significant changes in
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precipitation, as well as changes in reactive N concentrations. It is
notable that reactive N deposition has increased persistently across
high-elevation environments in China24. This is different from lower
elevations, where N deposition increased (1980–2000) and then

stabilized (after 2005), driven by socioeconomic changes and vigorous
controls on N pollution25,26. We use the outputs of the Multi-scale
Synthesis and Terrestrial Model Intercomparison Project (MsTMIP,
Table S2)27, which captures well the elevation-dependent pattern of
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Fig. 1 | Locations of eddy covariance sites and the variation of ecosystem
characteristics in China. a Locations of eddy covariance observation sites across
China. To simplify the map, we only list the main ecosystem type for each station,
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(NEP) along elevation gradients across China. The gray shading represents the 95%
confidence band of the fits. c Temporal pattern of NEP at various elevation gra-
dients across China. DOY=day of year. Source data are provided as a Source
Data file.
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NEP and GPP (Fig. 4a, b). Further analyses suggest that there is a
consistent, more rapid relative increase in both NEP and GPP in high-
elevation environments than at lower elevations, thereby validating
our assumption that high-elevation environments are becoming more
productive under global climate change.

Both the eddy covariance dataset and MsTMIP capture more
robust changes in high-elevation environments, and this is also
recorded by satellite-based GPP observations. The satellite-based GPP
observations also capture the elevation-dependent pattern of average
GPP (Fig. 4c), similar to the results based on both the EddyChina2023
dataset and the MsTMIP ensemble. The satellite-based GPP products
further reproduce well the larger increase in GPP in the high-elevation
environments, as compared with their lower elevation counterparts.
Therefore, both the MsTMIP models’ ensemble and satellite-based
observations consistently reveal that high-elevation environments
have become more productive during the last four decades. Higher
temperature sensitivity may have contributed to the varying NEP rates
of change in high-elevation environments by extending the growing
season. For example, global warming has led to more uniform spring
phenology across elevations in the Alps, i.e., a stronger phenological
advance at higher elevations5. Also, stronger changes in precipitation
in high-elevation environmentsmayhave contributed to their stronger
rates of change in productivity, where the productivity of grasslands is
strongly affected by precipitation28,29.

Projections of productivity change rates
It is uncertain whether future changes in climate, atmospheric CO2,
and reactive N will alter the elevation-dependent pattern of NEP (Figs.

S9–S12; Table S3). The eddy covariance dataset, CMIP6 models, and
machine learning were therefore used to predict future variations in
the elevation-dependent pattern of NEP under different climate sce-
narios (Fig. S13), including the Shared Socioeconomic Pathway (SSP)
SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5 scenarios. Future changes in
climate and nutrient supply will cause a general increase in NEP across
most elevation bands and the various climate scenarios (Fig. 5a−d).
However, there are significant differences in the magnitude of their
relative changes (i.e., the absolute changes divided by their mean
value). Trying to validate the data-driven projections of NEP, we then
compared our results with the default NEP outputs from CMIP6 (not
constrained by EddyChina2023). Therefore, all scenarios, i.e., SSP1-2.6
to SSP5-8.5, consistently predict a stronger increase in NEP in the high-
elevation environments (3000–5000m), but less change in NEP at
lower elevations (<3000m), therefore affecting the slope of NEP along
elevation under various climate scenarios (Fig. 5e−h).

The more robust relative change in NEP in the high-elevation
environments than at lower elevations is generally consistent with the
higher temperature sensitivity of colder regions. In addition, more
robust changes in NEP in high-elevation environments can be attrib-
uted to changes in N deposition. There is only a slight decrease in N
deposition in the high-elevation environments under SSP1-2.6 and
SSP2-4.5, whereas there is an increase in N deposition under SSP3-7.0
and SSP5-8.5, which makes the more robust changes in NEP by plants
possible. Recent evidence suggests that the high-elevation environ-
ments of China have experienced an increasing trend of reactive N
deposition, which is different from the decreasing temporal trend
from cropland/city sites at lower elevations24. Elevation-dependent
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warming in high-elevation environments will also lead to a robust
increase in mineralization30, adding nutrients for plant growth and
thus increasing NEP. We therefore predict a general increase in NEP
under the various climate scenarios, with amore robust change in NEP
in high-elevation environments, whereas lower elevations will be
affected by future limitations in the supply of nutrients, despite
increases in both CO2 concentrations and temperature31–33.

However, it is notable that the data-driven projections do have
some uncertainty, as seen in the large uncertainty range in Fig. 5. The
input states that statistical or “implicit” relationships were used to
achieve data-driven projections between NEP and environmental fac-
tors, but it may have overlooked underlying mechanisms. Nonlinear
changes and interactive effects from CO2 concentration, climate
extremes, species composition, andhumanmanagement could also be
difficult to capture throughdata-drivenprojections. Additionally, data-
driven projections tend to focus more on aboveground factors like
climate and vegetation, while neglecting drastic changes in under-
ground processes, particularly in microbial processes, which may not
be accurately reflected in eddy covariance observation or data-driven
projections. Furthermore, projections based on data rely heavily on
the availability of data, which is not always evenly distributed across
different environments. For instance, there may bemore observations
in lower-elevation environments and fewer in high-elevation ones,
which could introduce some degree of bias.

Discussion
The elevation gradient is a vital driving force in shaping NEP in terres-
trial ecosystems. The elevation gradient affects the climate, soils,
vegetation, and nutrient supply, which have an important impact on
NEP. Previous elevation-dependent studies have mainly focused on
climate and biodiversity. Some studies have focused on alpine biomes,
like the Alps8 and Tibetan Plateau10, but the broad picture of NEP along
the elevation gradient is yet unclear. Taking the mountainous China as
an example, we used an eddy covariance network to investigate the
variations in NEP at different elevations. We found a linear negative
elevation-dependent pattern in NEP, which is consistent across GPP and
RE. This pattern was then validated by both model simulations and
satellite observations. The elevation-dependent pattern of NEP is con-
trolled by climate factors (temperature and precipitation), ecosystem
type, and human activities (e.g., the supply of nutrients, such as reactive
N). The eddy covariance dataset and models both supported well our
expectation that higher and colder ecosystems may be more sensitive
to climate warming, indicating an intrinsic feature in these high-
elevation environments. The models and satellite observations showed
that high-elevation environments respond consistently to a warming
climate and may play a positive role in mitigating the effects of climate
change.

Despite the scientific contributions mentioned above, our
research has some limitations: (1) Our study was conducted at a
national scale. Some unidentified factors may also affect the apparent
CO2 exchange recorded by the eddy covariance towers, such as the
forest type/species composition, and the management, observation,
and calculation procedures employed, but their contributions are
currently difficult to determine. (2) Accurate climate data are impor-
tant for analyses like those carried out in the present study. The cli-
mate data employed here for the temperature sensitivity analysis and
Random Forest training were obtained from gridded climate datasets
rather than ground-based datasets from each eddy covariance tower.
This may have inevitably caused some uncertainty, despite these
datasets being able to represent the elevation-dependent variation in
both temperature and precipitation. To facilitate future analyses of the
eddy covariance dataset, a data-sharing culture in the earth sciences
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should be encouraged in China34. (3) The future variation in NEP at
lower elevations shows strong uncertainties, largely due to the
uncertainties in the carbon capacity of forests and the supply of
nutrients. China’s afforestation campaigns during recent decades have
transformed lower-elevation regions into hotspots of greening19,
although the future carbon storage capacity of forests is uncertain.
Furthermore, the ongoing control of both pollutants and carbon
emissions in China will reduce the supply of nutrients, though future
variation in the level of reactive N is highly uncertain. (4) In high-
elevation environments, there are large uncertainties regarding the
vast areas of permafrost, which may provide positive feedback to the
climate by releasing old carbon to the atmosphere35. However, there is
scarceobservational evidence relating to the vast area of permafrost in
the interior of the Tibetan Plateau15.

Methods
EddyChina2023 dataset
A total of 203 eddy covariance observation sites covering all ecosystem
types and climate zones in China were identified (Table S1). Data were
obtained for a total of 523 site-years (i.e., 2.5 years per site). Most of the
datawereobtained frompeer-reviewedpapers fromtheWebof Science
(for English-language papers; http://apps.webofknowledge.com/) and
the China National Knowledge Infrastructure (for Chinese papers;
https://www.cnki.net/). The following keywords were used during the
literature search: eddy covariance; CO2 flux/exchange/sink/source; and
China. Several criteria were used to guarantee the quality of the data in

the studies identified in the literature review. First, the data collection
must haveused the eddy covariance technique to ensure the spatial and
temporal coverage. Observations based on static chambers, especially
manual static chambers, were excluded because of their relatively small
spatial coverage (typically <1m2) and low temporal coverage (usually
conducted in the daytime atweekly intervals). Second, the observations
had to cover at least a whole year because CO2 emissions outside the
growing season significantly affect the annual-scale CO2 sink. Third, the
paper had to include a clear description of the eddy covariance instal-
lation, data collection and processing procedures (e.g., the
Webb–Pearman–Leuning correction and axis rotation). All the sites
were subjected to Webb–Pearman–Leuning density correction and
were determined by the coordinate axis rotation approach—that is, 2D,
3D or planar fit coordinate axis rotation. The observational data had to
be clearly and correctly presented, and papers with incorrect units of
measurement were not included.

After applying these standards, the resultant EddyChina2023
dataset covered all the major ecosystem types of China—forest
(61 sites), grassland (43 sites), wetland (38 sites), cropland (41 sites),
desert (12 sites), and shrubland (10 sites)—with 203 sites in total.
Among the data, 118 sites (58% of the dataset) covered 2+ years of
observations, while 79 sites (40%) covered 3+ years. For each ecosys-
tem type, 10+ sites were built to cover the NEP strength. In China,
croplands, forests, and grasslands cover 3/4 of the land area. It is also
notable that there were many eddy covariance observations in crop-
lands (116 site-years), forests (134 site-years) and grasslands (129 site-
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years). Part of the dataset was retrieved from ChinaFLUX and another
literature-based dataset15. For those sites whose CO2 fluxes could not
be directly accessed, they were processed using GetData Graph Digi-
tizer 2.2.6 (www.getdata-graph-digitizer.com). From theperspectiveof
climate coverage, the eddy covariance sites were well distributed over
China’s climate gradient, albeit with relatively fewer sites in cold–dry
and hot–wet areas, which is consistent with the limited number of sites
in northwesternChina. From the perspective of the study period,most
observations were conducted during 2002–2020, with amean of 2012
(Fig. S1). The dataset presented here is therefore representative of
China in terms of its ecosystems, climate, and regional contributions,
albeit with a slight regional bias.

Structural equation model analysis
SEManalysis was used to estimate the relative importanceof the direct
and indirect impacts of geographical factors, climate factors and soil
processes on the spatial pattern of CO2 fluxes. For continuous obser-
vations of more than one year, the multi-year average value was cal-
culated for each site. All NEP data are displayed as mean± 1 SE values
unless stated otherwise. It was hypothesized that the geographical
factors (altitude and latitude) would largely affect the climate factors
(radiation, mean annual precipitation and temperature), whereas the
climate factorswould directly and indirectly regulateCO2 exchange via
the ecosystem types. The site-averaged CO2 exchange, geographical
factors, climate factors, and soil factors were used in the SEManalyses.
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each elevation band under each climate scenario. Solid curves are the ensemble
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data are provided as a Source Data file.
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For the climate factors (radiation, precipitation and temperature), the
data for the nearest pixel to each site were extracted from the China
Meteorological Forcing Dataset (CMFD), a high-resolution (0.1° × 0.1°,
3-h time step) climatological dataset (a simple evaluation of the CMFD
dataset can be seen in Fig. S14)36. All the SEM analyses were preformed
using IBM SPSS Amos (SPSS Inc., Chicago, IL, USA).

Temperature sensitivity
For GPP and NEP, their temperature sensitivities were defined as the
slopes of their variations on air temperature with linear regressions.
For RE, the Van’t Hoff equation was used to calculate the temperature
sensitivity. i.e., y = aebt (1) and Q10 = e10b (2). During the calculation, the
daily average aboveground air temperature at 2m was obtained from
the CMFD dataset, given most towers did not provide air temperature
observations in the literature. We then used General Linear Model
(GLM) univariate analysis to test the differences regarding the
regression lines for GPP, RE and NEP. During this process, the GPP, RE
and NEP were the dependent variables, the different elevation groups
(higher or lower than 3000m in elevation) were the independent
variables, while air temperature was covariate. For GPP, over 40,000
observationswere involved in theGLManalysis, while thereweremore
than 50,000 observations for RE and more than 60,000 observations
for NEP. Daily accumulated or averaged GPP, NEP and air temperature
data were used during the GLM analyses. For RE, given exponential
regressionmodelswere used to reflect its temperature sensitivities, we
applied a log transformation to the RE data before the GLM analysis.
Effects were considered as significant at P <0.05 (difference in tem-
perature sensitivities between elevation bands), while the null
hypothesis was accepted when P >0.05 (no difference in temperature
sensitivities between elevation bands).

MsTMIP and GPP datasets
The MsTMIP dataset is a formal multiscale synthesis with prescribed
environmental and meteorological drivers shared among model
teams. The simulations are standardized to facilitate comparison with
othermodel results andobservations through an integrated evaluation
framework (Table S2)27. The MsTMIP simulations were classified into
four groups (BG1, SG1, SG2 and SG3). The BG1 group was simulated by
the time-varying climate, land use, deposition of CO2, and the reactive
N input (eight models). BG1 mimics the ongoing changing Earth,
enabling it to be compared with EddyChina2023. Within BG1, eight
models provided the NEP or net ecosystem exchange outputs,
including BIOME, CLASS-CTEM-N, CLM4, CLM4-VIC, DLEM, ISAM,
TEM6 and TRIPLEX-GHG. All the models were driven by Climate
Research Unit–National Centers for Environmental Prediction
(CRUNCEP) climate data and the same soil map, and were run at a
resolution of 0.5° with monthly time steps. For the GPP, we also used
the Global Land Surface Satellite (GLASS) product. The GLASS GPP
products are generated using integrated satellite GPP time series and
Moderate Resolution Imaging Spectroradiometer surface reflectance
data or Advanced Very High-Resolution Radiometer surface reflec-
tancedata37. Compared tootherGPPproducts, theGLASSGPPproduct
has been shown to have higher quality and accuracy38, which has
facilitated its wide application in global and regional studies, e.g., to
drive process-based models, to evaluate land surface models, and to
investigate vegetation dynamics under the changing environment37.

Future climate scenarios and machine learning
The prediction (during 2015–2065) of the net CO2 sink of China’s ter-
restrial ecosystems was driven by CMIP6 model simulations under
various climate scenarios (Table S3). Specifically, four scenarios were
used: SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5. SSP1-2.6 is a combi-
nation of low societal vulnerability and a low forcing level, with a
substantial change in land use (e.g., increased global forest cover).
SSP2-4.5 is a combination of intermediate societal vulnerability and an

intermediate forcing level. SSP3-7.0 combines relatively high societal
vulnerability and a relatively high forcing level with substantial chan-
ges in landuse (decreased global forest cover). SSP5-8.5 combines high
societal vulnerability and a high forcing level.

The atmospheric [CO2] shows a consistent increase by 2060:
478 ppm under SSP1-2.6, 535 ppm under SSP2-4.5, 587 ppm under
SSP3-3.7, and627 ppmunder SSP5-8.5. Correspondingly, temperatures
in China would increase by 1.3–2.6 °C by 2060 relative to the baseline
period (2016–2020; annual average). All climate scenarios predict a
general increase in precipitation of 48.9–86.7mm by 2060 (annual
cumulative), although there is strong spatial heterogeneity. The
deposition of reactive N is projected to peak before 2030 and then
decrease, consistent with the recently observed stabilization of reac-
tive N deposition in China25. Forest cover is expected to benefit from
land management and climate change39, consistent with China’s plans
for forest plantations to double in size by 205040. Vegetation will
experience persistent greening, albeit with the magnitude differing
among the various scenarios: the LAI is projected to increase by
18.7–30.1% by 2060 relative to the baseline period.

The Random Forest algorithm was used to conduct machine
learning of the CO2 sink. During the training, NEP was set as the label
data, whereas environmental factors, like TAS, PRE, RAD, LAI and NR,
were used as the input data. Before training, itemswithout values were
dropped from the datasets. Over 70,000 items of NEP for >130 sites
were used for machine learning and the remaining sites that were not
used were omitted because the studies that covered them did not
include daily NEP data, instead only providing an annual average NEP
rate. After normalization, 90% of the data were used for training and
the remaining 10% for validation. They were trained 500 times to
obtain a stable performanceof themodel (to keep a balance between a
lack of fitting and over-fitting), with themean square error used for the
evaluation of model performance. Several datasets were used to
retrieve environmental factors and simulations, including air tem-
perature, precipitation, photosynthetically active radiation, and LAI.
During the prediction, all driving data—temperature, precipitation,
photosynthetically active radiation, and LAI—were obtained from
CMIP641. All datasets were resampled to a resolution of 0.1° × 0.1° via
bilinear interpolation to facilitate model simulations and analyses.
Before predicting future variation in NEP with Random Forest, the
results of training Random Forest based upon the EddyChina2023
dataset were compared with FLUXCOM42, a global-scale upscaling
product based upon FLUXNET2015, regarding its seasonal pattern and
magnitude (Fig. S15). The NEP outputs after training Random Forest
were also in line with previous upscaling and remote sensing studies in
China19,43.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The EddyChina2023 data generated in this study have been deposited
in the figureshae database under accession code https://figshare.com/
s/e1f7f9c13e547e422a71. TheMsTMIPdata are available athttps://daac.
ornl.gov; the CMFD data are available from the National Tibetan Pla-
teau Data Center (http://data.tpdc.ac.cn); the CMIP6 climate data are
from https://esgf-index1.ceda.ac.uk; the land-cover data are from
https://modis.gsfc.nasa.gov; and the GLASS-GPP product is from
http://www.geodata.cn/thematicView/GLASS.html. Source data are
provided with this paper.

Code availability
The code data generated in this study have been deposited in the
figureshae database under accession code https://figshare.com/s/
87b86f36ef064f0bc599.
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