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EEG decoders track memory dynamics

Yuxuan Li1,2, Jesse K. Pazdera 1,3 & Michael J. Kahana1

Encoding- and retrieval-related neural activity jointly determine mnemonic
success. We ask whether electroencephalographic activity can reliably predict
encoding and retrieval success on individual trials. Each of 98 participants
performed a delayed recall task on 576 lists across 24 experimental sessions.
Logistic regression classifiers trained on spectral features measured immedi-
ately preceding spoken recall of individual words successfully predict whether
or not those words belonged to the target list. Classifiers trained on features
measured duringword encoding also reliably predict whether thosewordswill
be subsequently recalled and further predict the temporal and semantic
organization of the recalled items. These findings link neural variability pre-
dictive of successful memory with item-to-context binding, a key cognitive
process thought to underlie episodic memory function.

Cognitive neuroscience has experienced a paradigm shift. After early
studies appeared to localize cognitive operations to specific brain
regions, subsequent work challenged this view, favoring distributed
models of cognitive processes. Multivariate statistical methods,
including classification and similarity-based approaches, now enable
researchers to test models of these distributed processes and their
dynamics. Here we apply thesemethods to episodic memory, with the
goal of testing predictions of cognitive theories regarding the
dynamics of encoding- and retrieval-related cognitive processes.

Our approach uses multivariate analysis of scalp electro-
encephalographic (EEG) recordings to classify single-trial accuracy of
memory encoding and retrieval. Prior research has demonstrated that
classifiers trained on spectral features extracted from scalp EEG
recordings can predict recognition memory performance1,2. Building
on this work, we first askedwhether such classifiers can distinguish the
encoding of subsequently recalled and non-recalled items in a verbal
free recall task. Applying the same classification approach to recall
period data, we further asked whether, prior to vocal free recall, clas-
sifiers could distinguish correct recalls from intrusion errors. Obtain-
ing an affirmative answer to these questions allowed us to assess
whether the encoding and retrieval classifiers’ low-dimensional neural
representation could illuminate the dynamics of memory processes.
Specifically, can encoding and retrieval classifiers differentiate items
recalled on the basis of semantic and/or temporal associations, and do
the classifiers exhibit dynamics consistent with the predictions of
memory theory? To the extent that encoding success relies upon
associating items with their temporal and/or semantic context3–5,

we predicted that the encoding classifier would assign greater prob-
abilities to spectral features of EEG signals recorded during the
encoding of subsequently clustered items. To the extent that cognitive
resources deplete over the course of the encoding and retrieval
periods6,7, we predicted that classifier output probabilities would
decline during these intervals.

To probe the upper-bound of what could be learned using scalp
EEG methods, we assembled a dataset comprising more than one
million word encoding events and nearly a half-million delayed recall
responses. Ninety-eight healthy young adults each came to the lab for
24 days of testing. The large number of trials and sessions contributed
by each participant allowed us to train classifiers at the individual trial
level and validate these classifiers using data from held-out sessions
(rather than held-out lists).

Prior intracranial (iEEG) studies have documented increases in
high-frequency activity (HFA) across a network of cortical and sub-
cortical regions predicting successful memory encoding and
retrieval8–10 including the hippocampus11. These studies found that
decreases in low-frequency activity, particularly in the 8−13 Hz alpha
band, accompanied the HFA increases. Whereas the previously cited
studies examined theunivariate relationbetween spectral EEG features
and memory processes, other studies have taken a multivariate
approach, using machine learning classifiers to distinguish single-trial
encoding of subsequently remembered and forgotten items. These
multivariate studies have found a similar reliance on combined HFA
and LFA effects in predicting memory success12–16; two of these
studies13,16 also showed that multivariate classifiers could distinguish
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moments preceding correct recalls from periods of deliberation that
did not lead to successful recall. Non-invasive EEG and MEG studies
have also found that greater HFA and diminished alpha-band activ-
ity generally accompany successful as compared with unsuccessful
memory encoding and retrieval17–21; theta-band activity exhibits
increases in some studies and decreases in other studies17–23. A review
of the conflicting theta effects24 suggests that increases may appear in
contrasts that look specifically at lower theta frequencies, isolate
specific associative retrieval processes, and/or separate broadband
from narrowband EEG components11,25.

iEEG classifiers rely on differences in varied spectral features to
predict memory success. However, two key limitations in previous
work have made it difficult to distinguish the contributions of these
spectral features. First, comparisons between subsequently remem-
bered and non-remembered encoding events often pooled events
across all list serial positions. Because people typically exhibit better
memory for items appearing in early and late serial positions, any
signal that differs between the encoding periods of these items could
predict mnemonic success when comparisons pool across serial
positions. Results obtainedusing suchcomparisons cannotdistinguish
neural signals that predict encoding success of an item learned in a
givenpositionwith those thatonlypredict differences across positions
in the list, independent of encoding success. A similar problem exists
across retrieval output positions, as people make more recalls early
during a free recall period and comparisons that pool across the entire
recall period will not be able to distinguish correlates of retrieval
success at a given output time with those that simply distinguish early
vs. late times within an extended retrieval period.

A second limitation concerns the memory retrieval signals just
prior to spoken free recall. Comparisons between accurate recall and
deliberation intervals do not control for the premotor activity related
to word vocalization, even though these two types of retrieval events
were carefully matched in their temporal distributions over the
retrieval period. This could be especially important when generalizing
findings from intracranial recordings to non-invasive measures.
Building on iEEG studies that examined HFA increase as associated
with retrieval success by comparing correct and incorrect recall
responses10, here we have the opportunity to examine whether
increased HFA is similarly seen in trial-level retrieval classification with
scalp EEG, in a dataset with rich behavioral responses that affords the
possibility of revealing individual differences beyond group-level
consistency.

Targeting these two limitations, we highlight a novel approach to
training episodic memory success classifiers during encoding and
retrieval. To disentangle signals predictive of memory success from
signals associated with early versus late encoding or retrieval, we re-
sampled encoding and retrieval events when training the classifiers to
ensure a matching ratio of positive and negative examples from each
serial position or recall output position. To eliminate any confound
with pre-motor activity in predicting retrieval success, we tested
whether classifiers could distinguish, prior to vocal free recall, whether
a remembered item appeared on the study list (i.e., distinguishing
correct recalls from intrusion errors).

We contrasted classifiers trained on re-sampled events with clas-
sifiers trained on all events (as in previous studies) and asked if the two
complementary training approaches encouraged the models to learn
different signals predictive of mnemonic states, as related to the
cognitive theories discussed above. We expected that training the
encoding classifiers with re-sampled events would induce a greater
focus on differentiating signals underlying item encoding irrespective
of serial positions. Consequently, these classifierswould assign greater
output probabilities to spectral features associated with the encoding
of subsequently temporally- or semantically-clustered items. In con-
trast, classifiers trained with all events would learn a combination of
clustering-based and primacy-based signals, and they would therefore

show a decline in classifier output over list positions. Each of these two
hypotheses has a counterpart during the retrieval phase, which can be
tested using classifiers trained to distinguish correct recalls from recall
intrusions or errors.

Results
We first sought to characterize the spectral correlates of successful
memory encoding and retrieval in delayed free-recall. Comparing
spectral power estimates during the 1.6 s encoding epochs of subse-
quently recalled and non-recalled items (the subsequent memory
effect, or SME) identified spectral markers of successful encoding.
Similarly, comparisons of power in the 500ms epochs preceding
correct recalls and recall errors (prior-list and extra-list intrusions)
identified spectral markers of successful contextual retrieval.

Spectral correlates of encoding success
Tasks such as free recall exhibit pronounced differences in the recall-
ability of items studied in early, middle, and late serial positions (the
well-known primacy and recency effects, illustrated in Fig. 1a for our
experiment). As such, subsequently recalled items will tend to come
from favorable list positions, introducing apotential confound into the
traditional subsequent memory contrast which simply compares
neural activity during the encoding of subsequently remembered and
non-remembered items. To the extent that neural activity exhibits
distinct relations to list position and to encoding success, subsequent
memory comparisons will conflate these effects. To address this
potential confound, we introduce an event re-sampling procedure that
equalizes the contribution of recalled and non-recalled items across
list positions. This method allows us to isolate EEG correlates of
mnemonic variability at a given list position from EEG correlates of
serial position that may reflect a mixture of mnemonic and non-
mnemonic processes (see Methods).

Using event re-sampling, we compared the distributions of spec-
tral power estimates during the encoding epochs of subsequently
recalled and non-recalled items. This comparison generated a t-sta-
tistic for each participant, which served as a normalized estimate of
that participant’s effect size. We then conducted group-level statistics
on the distribution of individual participant t-statistics. These com-
parisons revealed that group-level decreases in 10−30Hz activity
marked encoding success (Fig. 1d, left). In anterior-superior regions of
interest (ROIs), memory encoding-related power decreases extended
into higher frequencies, and at posterior electrodes decreases exten-
ded into lower frequencies.

Analyzing all encoding events without re-sampling yielded the
more typical EEG signature of successful encoding: Widespread
increases in HFA, decreases in LFA, and a positive theta SME in anterior
regions collectively marked periods of encoding success (Fig. 1e, left).
The differences in spectral signatures of encoding success across these
twomethods echoedpriorwork showing thatHFAdecreases and theta
increases from early to late serial positions21,26.

Spectral correlates of retrieval success
We applied a similar event re-sampling method in our analysis of
retrieval success, as seen in the difference between correct recalls and
intrusions during the 500ms immediately preceding vocalization. Due
to EEG fluctuations over the course of the recall period, and because
errors tend to occur more at later output times, event re-sampling
helps isolate the neural correlates of retrieval success while equating
output time/position. We found that increases in HFA reliably dis-
tinguished intrusions and correct recalls both when recall responses
were re-sampled to match recall accuracy rates across the 7.5 s recall
bins and when compared across all correct recall responses and recall
errors (Fig. 1d, e, right panels). That scalp-recorded HFA signals dis-
tinguished true from false recall suggests that non-invasive measure-
ments of HFA can pick up subtle variation in the neuronal correlates of
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contextual retrieval. To our knowledge, only studies involving
indwelling electrodes succeeded in distinguishing correct recalls from
intrusion errors prior to this report10,27.

Individual-differences in group-level effects
Although group-level analyses revealed consistent spectral markers
of mnemonic encoding and retrieval success, one can see variability
in these effects across individuals, especially for the HFA component
of the subsequent memory effect under event re-sampling (Fig. 2a).
When analyzing all events, however, one sees a greater degree of
consistency across participants in all three effects: theta increases,
alpha / beta decreases, and HFA increases. Spectral markers of suc-
cessful retrieval exhibit a higher degree of consistency across parti-
cipants under both event re-sampling and when considering all
retrieval events (Fig. 2b). As we designed this experiment with the
goal of modeling memory dynamics at the individual participant
level, our next set of analyses trained and cross-validated multi-
variate, participant-specific decoders of encoding and retrieval
success.

Multivariate classification of encoding and retrieval success
We trained participant-specific multivariate classifiers to decode suc-
cessful encoding and retrieval epochs based on spectral features
across all electrodes. We labeled encoding epochs on the basis of
subsequent correct recall and we labeled pre-vocalization retrieval
epochs on the basis of list membership, contrasting correct recalls
with intrusion errors. We used a leave-one-session-out cross-validation
scheme, evaluating classifier performance as the area under the
receiver operating characteristic (ROC) curve, or AUC, over the pre-
dicted probabilities of events in the held-out sessions (see Methods).

As in the preceding analyses, we report findings both using event re-
sampling and with all events.

Before presenting group-level analyses for the full dataset, wefirst
illustrate classifier output for events in example test lists from three
participants, as predicted by the corresponding classifiers trained on
one of the 20 independent rounds of event re-sampling. As shown in
Fig. 3a, the trained classifiers extracted variations in memory states
throughout the encoding and retrieval phase. All but one of the
encoding and retrieval classifiers for these three participants yielded
reliable classification across all held-out test sessions. Comparing the
observed AUCs derived from the prediction on all held-out eventswith
the distributions of baseline AUCs obtained from classifiers trained
with randomly-shuffled training labels (within-session permutation),
five of the six classifiers performed significantly above chance (p’s <
0.01; Fig. 3b illustrates results pooled across all 20 runs of event re-
sampling).

Figure 4 summarizes classifier performance across all partici-
pants. Encoding classifiers reliably predicted performance in held-out
sessions both when trained on re-sampled events (mean AUC=0.59,
SE = 0.004, Fig. 4a) and when trained on all events (mean AUC=0.60,
SE = 0.004, Fig. 4c). In both cases, the encoding classifiers reliably
predicted memory success for nearly all of the 88 analyzed partici-
pants (87 significant event re-sampling classifiers, 88 significant all-
events classifiers, permutation tests). The overall group distribution of
observed AUCs far exceeded the group distribution of baseline AUCs
from the permutation tests (event re-sampling classifiers: t(87) = 24.12,
p <0.001; all-events classifiers: t(87) = 27.54, p <0.001). Retrieval clas-
sifiers also reliably distinguished correct recalls and intrusion errors,
both when trained with event re-sampling (mean AUC=0.57, SE=
0.006, 48 significant classifiers) and when trained on all recall events

Fig. 1 | Behavioral responses and spectral markers of successful encoding and
retrieval. a Probability of delayed recall exhibited a strong primacy effect and a
small recency effect, replicating classic studies. The arithmetic distractor task
performed between the final study item and the recall period attenuated the
recency effect which normally exceeds the primacy effect in immediate free
recall29. b The probability density of recalls (binned every 7.5 s) declined through-
out the retrieval period, replicating classic studies. The subpanel illustrates the
proportion of responses that were correct. c Regions of interest. d Differences in
spectral power during encoding of subsequently remembered words versus sub-
sequently forgotten words (left), and for 500ms intervals preceding correct recalls

versus intrusions (right). Contrast computed with event re-sampling to ensure
matching ratio of successful and unsuccessful memory events from each serial
position or recall bin. Colors in each frequency × ROI pair correspond to the mean
participant-specific independent t-statistics. Significant group-level increases and
decreases (false discovery rate corrected) are shown in red and in blue, respec-
tively. e Visualization as in (d), but across all successful and unsuccessful memory
events. L: left, R: right, A: anterior, P: posterior, I: inferior, S: superior. Error shades
in (a,b) indicate the standarderror of themean across participants. Source data are
provided as a Source Data file.
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(mean AUC=0.59, SE =0.007, 64 significant classifiers). As with the
encoding classifiers, the distribution of retrieval classifier AUCs far
exceeded the baseline AUCs obtained from permuted data (event re-
sampling classifiers: t(87) = 10.24, p <0.001; all-events classifiers:
t(87) = 13.57, p < 0.001).

Classifiers trained with event re-sampling relied on different
spectral components in predictingmemory success compared to those
trained on all events, mirroring our univariate analyses (compare

heatmaps in Figs. 1, 4). To estimate the contribution of each fre-
quency × electrode pair to classification performance, we constructed
forward models based on the learned weights of the significant indi-
vidual classifiers28 and aggregated the activation patterns over elec-
trodes in different ROIs. The significant encoding classifiers
consistently relied on decreased LFA when trained to predict single
item encoding success in re-sampled events, whereas classifiers trained
on all events relied on increased HFA, decreased LFA, and increased

Fig. 3 | Example classifier prediction and performance. a Output probabilities
(from classifiers trained with event re-sampling) of novel events in example held-
out lists as a function of serial position and recall time. Circles mark the ground-
truth successful memory instances (subsequently remembered words and correct
recalls). X’s mark the ground-truth unsuccessful memory instances (subsequently
forgotten words and intrusions). b ROCs and AUCs across all cross-validation test

sessions, averaged over 20 runs of independently re-sampled events. Significance
levels were computed by comparing whether the mean observed AUC across runs
(marked by the dark line) was greater than a distribution of null AUCs obtained
from classifiers trained with permuted training labels (shown in white bars). S1−S3:
participant labels. TPR: true positive rate. FPR: false positive rate. Source data are
provided as a Source Data file.

Fig. 2 | Participant-specific spectral markers of successful episodic memory in
encoding and retrieval. a Individual spectral differences using re-sampled events.
b Individual spectral differences using all events. Each row shows results from one
participant, sorted in ascending recall performance. Participant-specific

independent t-statistics for the successful and unsuccessful memory comparison
are collapsed across eight ROIs. Power increases and decreases are shown in red
and in blue, respectively. Source data are provided as a Source Data file.
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frontal theta to predict encoding success. Classifiers trained to distin-
guish correct from incorrect recalls consistently relied on increased
HFA and (to a lesser extent) decreased LFA both when trained with re-
sampled events and with all events.

Having shown that spectral features can reliably classify imminent
recall of intrusions and correct responses, we next examined classifi-
cation of different intrusion types. Specifically, we asked whether our
classification approach could differentiate between prior-list intru-
sions (PLIs) and extra-list intrusions (ELIs). For this analysis, we trained
classifiers using all valid recall responses. Figure 5 shows that classifiers
reliably discriminated correct recalls from PLIs (mean AUC=0.59,
SE = 0.007, 57 significant classifiers) and from ELIs (mean AUC=0.58,
SE = 0.008, 50 significant classifiers), with significant classification at
the group level (t(87) = 11.86, p <0.001, and t(87) = 10.13, p <0.001,
respectively, based on group-level t-tests of observed versus baseline
AUCs). In both cases, the application of a forward model to the parti-
cipants with statistically significant classifiers revealed that HFA was
greater for correct recalls than for both intrusion types, echoing
results shown in Fig. 4b, d, and also that classification of PLIs, but not
ELIs, relied on reduced LFA (Fig. 5a, b, right panels). These findings
demonstrate that spectral features extracted from scalp EEG record-
ings can reliably differentiate subtle differences between correct
recalls and both PLIs and ELIs.

Although commission of PLIs and ELIs likely involve similar cog-
nitive processes, they differ in their reliance on temporal information
(recency) versus semantic similarity29. As such, we asked whether
spectral features could distinguish these two types of errors. As shown
in Fig. 5c, we did not observe reliable group-level classification for this
contrast (mean AUC=0.51, SE =0.010). But despite poor aggregate
level performance (t(87) = 1.63, p =0.11), data from 14 participants
exhibited significant classification. Forwardmodelsderived fromthese
14 significant ELI-PLI classifiers did not yield consistent feature acti-
vations for any frequency-ROI pair (see Methods).

Classifier-based analyses of memory dynamics
Cognitive theories posit that variation in good memory encoding
states should predict the degree to which participants exhibit sub-
sequent organization of the learned materials. Specifically, items
learned during good encoding states should exhibit strong temporal
and semantic clustering30. Cognitive studies of memory also indicate
that goodness of encoding exhibits a strong primacy gradient over the
encoding phase, reflecting rehearsal strategies31, and/or fatigue of
memory encoding networks6,32.

Encoding classifiers trained on all events will include pro-
portionally more recalled events in early list positions. As such, these
classifiers will reflect EEG signals that correlate with list position,
whether or not these signals specifically relate to goodness ofmemory
encoding. Classifiers trainedwith event re-sampling could not leverage
such signals and thus provide a purer (though possibly muted) index
of encoding success. We hypothesized that classifiers trained with
event re-sampling, by isolating cognitive processes underlying
encoding success, would predict the subsequent clustering of the
recalled items. In contrast, we predicted that classifiers trained with all
events would more closely track the primacy gradient, thereby pre-
dicting the magnitude of the primacy effect seen in recall data.

To evaluate these hypotheses, we examined whether the encod-
ing classifiers’ output probability of the held-out test events tracked
memory states across serial positions, as well as this output as a
function of subsequent temporal and semantic organization. We
therefore sorted encoding events corresponding to subsequently
recalled words into four subtypes: (1) BC, both temporally and
semantically clustered, (2) TC, temporally clustered, (3) SC, semanti-
cally clustered, and (4) NC, not clustered. We designated a studied
item as temporally clustered if it was recalled immediately preceding
or following the item studied in the preceding serial position; we
designated an item as semantically clustered if it was recalled pre-
ceding or following a highly semantically similar item (see Methods).

Fig. 4 | EEG classification of encoding and retrieval success. a Encoding classi-
fiers trained with event re-sampling predicting subsequently recalled words (see
Methods). b Retrieval classifiers trained with event re-sampling predicting correct
recall responses. c, d Encoding and retrieval classifiers trained on all events. a
−d ROCs depict average results across all participants, with dashed lines indicating
chance-level performance. The mean and standard error of the area under the
curve performance metric appears in the upper left region along with the number
of participants whose classifiers reliably predicted out of sample data. **p <0.01.

*p <0.05 (permutation test, as described above in Fig. 3b). Inset histograms indi-
cate thedistributions of observedAUCsandbaselineAUCs for eachparticipant (see
group-level statistical comparisons in main text). Heatmaps to the right of each
panel indicate average results of a forward activation model applied to each fre-
quency× ROI pair (seeMethods). Significant positive and negative activations (FDR
corrected) appear as red and blue, respectively. Source data are provided as a
Source Data file.
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Figure 6a shows the prevalence of each type of clustered response
across serial positions.

When trained under event re-sampling we found a small “primacy
bump” in the output probability predicted by the significant encoding
classifiers around early list positions, followed by a gradual decline
through the rest of the list (Fig. 6b). Moreover, we found a clear
separationbasedon the clustering status of the studied items.Weused
a linear mixed-effects model (see Methods) to characterize how clas-
sifier output differed among the five event subtypes (BC, TC, SC, NC,
and non-recalled) at early (1−4), middle (5−20), and late (21−24) list
positions. The model revealed a significant main effect of event sub-
type, F(4,1204) = 172.08, MSe =0.025, p <0.001, and list position,
F(2,1204) = 81.91, MSe =0.012, p < 0.001, but a non-significant interac-
tion, F(8,1204) = 1.76, MSe =0.0003, p =0.08. Pairwise comparison of
the estimated marginal means (EMMs), with Bonferroni correction,
showed that BC and TC items both had significantly higher classifier
outputs than SC items and NC items (all corrected ps < 0.001). Clas-
sifier output also declined across the three serial position groups (all
corrected ps < 0.001).

Classifiers trained on all events declined sharply over the encod-
ing list, consistent with the idea that they may have learned to rely on
signals predictive of early versus late items regardless of memory
success (Fig. 6c). Applying the same mixed-effects model revealed
significant main effects of list position, F(2,1218) = 388.70,MSe = 0.118,
p <0.001, and event subtype, F(4,1218) = 90.59,MSe =0.027, p <0.001,
without a significant interaction, F(8, 1218) = 1.15, MSe=0.0003, n.s.
Classifier output was higher among BC and TC items than NC items
(corrected ps < 0.05). Classifier output for BC items also exceeded that
of SC items (corrected p <0.001), but SC items did not reliably differ
from TC or NC items.

We conducted a parallel analysis to examine whether the sig-
nificant retrieval classifiers tracked memory states throughout the
recall phase and as a functionof temporal and semantic organization.

We partitioned correct recalls based on their relation to the subse-
quently recalled item into four response subtypes (BC, TC, SC, NC),
echoing those in the encoding classifier analyses. Figure 6d shows the
probability of each response type as a function of time during the
recall period. When trained on re-sampled retrieval events, classifier
outputs showed that the pre-recall neural activity that distinguished
correct recalls and intrusions did not vary as a function of recall time
or transition subtypes (Fig. 6e). The mixed-effects model on the
output from the event re-sampling classifiers revealed a marginal
effect of recall time (early: first three 7.5 s recall bins, middle: middle
four recall bins, late: last three recall bins), F(2,793.43) = 3.24,
MSe = 0.0015, p = 0.04. A significant main effect of event subtype
(including BC, TC, SC, NC, PLI, and ELI), F(5,793.36) = 76.49,
MSe = 0.036, p < 0.001, primarily reflected the large difference
between classifier outputs associated with correct recalls and intru-
sions, with no reliable differences across the cluster or intrusion
subtypes (model-based EMM comparisons, Bonferroni corrected).
We also found an interaction between recall time and event subtype,
F(10,793.35) = 2.20, MSe = 0.001, p < 0.05, driven by a separation
between NC and SC items (corrected p < 0.01) and a separation
between PLI and ELI items (corrected p < 0.001) towards the end of
the recall period.

When trained on all events, classifier output exhibited a strong
monotonic decline over the 75 s recall period (Fig. 6f). The mixed-
effects model of these classifier outputs revealed a significant main
effect of recall time, F(2,1061.7) = 43.61, MSe =0.032, p < 0.001, and
event subtype, F(5,1061.6) = 83.31, MSe = 0.061, p <0.001, but no sig-
nificant interaction. Classifier output decreased significantly from
early recalls tomiddle recalls (correctedp < 0.001), but did not reliably
change into the late recall interval. Classifier outputs for PLIs and ELIs
were significantly lower than for all other event subtypes (all corrected
ps < 0.001), but the other event subtypes did not differ reliably from
one another.

Fig. 5 | Performance and feature activation of recall-subtype classifiers. a Correct recall (CR) vs. prior-list intrusion (PLI) classifiers. b Correct recall (CR) vs. extra-list
intrusion (ELI) classifiers. c PLI vs. ELI classifiers. Visualization and notations as in Fig. 4. Source data are provided as a Source Data file.
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Predicting individual differences in temporal and semantic
clustering
Encoding classifiers, which were only trained to predict the binary
labels of subsequent recall success, nonetheless discriminated recalled
items based on their subsequent temporal and semantic clustering
(Fig. 6b, c). As this sensitivity appeared in the aggregated classifier
output from all significant classifiers, we asked whether the classifiers
also predict participant-level variability in subsequent clustering as
indexed by behavioral scores of temporal and semantic clustering4,
using a set of corresponding classifier-based neural scores (see
Methods).

Figure 7 illustrates the correlations between classifier-based
neural scores and participants’ behavioral temporal and semantic
clustering scores. Participants whose classifier output probabilities
differed between temporally- or semantically-clustered items and
non-clustered items generally exhibited stronger behavioral effects
of temporal and semantic clustering. When training classifiers with
event re-sampling, which controls for serial position effects, we
found statistically significant correlations between behavioral and
neural temporal clustering (Fig. 7a, r(86) = 0.34, p = 0.001) and
between behavioral and neural semantic clustering (Fig. 7b,
r(86) = 0.24, p = 0.027).

Fig. 6 | Classifier dynamics and recall organization. a−c Encoding classifier
dynamics for subsequently recalled and non-recalled (NR) words, with recalled
words partitioned into the following event types: both temporally and semantically
clustered (BC), temporally clustered only (TC), semantically clusteredonly (SC) and
non-clustered (NC). a shows the probability of each recalled event subtype as a
function of serial position. b, c illustrate classifier output for encoding classifiers
trainedwith andwithout event re-sampling, aggregated across all participants with

statistically significant classifiers. d−f Retrieval classifier dynamics for event types
that vary in clustering status (BC, TC, SC, NC) and for prior-list and extra-list
intrusions (PLIs andELIs) across the 75 s recall period.d illustrates theprobability of
events over binned recall time, and (e, f) illustrate the output of retrieval classifiers
trained with and without event re-sampling. Shaded regions represent within-
participant standard errors45. Source data are provided as a Source Data file.
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Figure 7c, d illustrate the correlations obtained using classifiers
trained with all events. Here we also observed positive correlations
between behavioral and neural clustering measures, but these corre-
lations fell short of our statistical significance threshold (temporal
clustering: r(86) = 0.21, p = 0.055; semantic clustering: r(86) = 0.20,
p =0.061). Nonetheless, our two classification approaches did not lead
to reliable differences in the correlations between behavioral and
neural clustering measures: The mean difference between boot-
strapped Pearson’s rs was−0.08 (95%CI [−0.19, 0.05]) for the temporal
clustering correlations, and −0.07, 95% CI [−0.16, 0.02] for the
semantic clustering correlations. Future work may provide better
tracking of variability in temporal- or semantic-driven encoding pro-
cesses by building multi-class decoders to directly optimize the pre-
diction of neural responses associated with different event clustering
subtypes.

Discussion
We show that models based on spectral EEG features can reliably dis-
tinguish between the encoding of subsequently recalled and forgotten
items and between the imminent recall of correct list items and
intrusions. Consistent with univariate analyses, these individual-
participant classifiers revealed elevated high-frequency (gamma)
activity and suppressed alpha activity as spectral signatures of good
memory (Fig. 4). Ourmemory encoding classification results also align
with prior intracranial EEG findings12,13,16,33. In the case of retrieval,
however, our study demonstrates participant-specific classification of
both prior-list and extra-list intrusions (Fig. 5). The features recovered
by our retrieval classifiers match findings from univariate analyses of
memory intrusions in a study using indwelling electrodes in the human
hippocampus10. Both studies show that increased HFA signals correct
responses, with our study showing that such signals can be observed
non-invasively, and that decoders can reliably use these signals to
predict retrieval success in individual participants. In demonstrating
these results, we leveraged our unusual design in which each partici-
pant contributed data from 576 lists across 24 experimental sessions.

As noted by one previous study34, variability in memory perfor-
mance across items can reflect a combination of underlying factors,
including endogenous fluctuations in brain states that support suc-
cessful memory formation and exogenous factors that influence
memory performance via other channels.We know, for example, that
in delayed free recall, participants exhibit far better recall for early
list items than for items from latter list positions (thewell-established
law of primacy32,35). We highlight that the event re-sampling techni-
que was key to allowing us to determine whether our scalp-EEG
decoders were solely picking up on list position-related differences
in recall, where we re-sampled training events to ensure equal num-
bers of correctly recalled items in each list position before training
the classifiers. We found that these decoders achieved similar overall
levels of classification performance to decoders trained on all events,
but they showed a reduced reliance on high-frequency neural activity
(Fig. 4a, b).

To successfully remember which words occurred on a particular
list, participants must form and retrieve associations between items
and their situational or list context. Experimental psychology has
extensively documented the behavioral evidence for such associa-
tions as seen in participants’ tendency to subsequently recall items
clustered according to their temporal and semantic associations with
other list items. To the extent that our classifiers identify features
underlying contextual associations, we would expect to find higher
classifier outputs during the encoding and prior to the recall of
subsequently clustered items. We found that encoding classifiers
predicted increased recall probability for subsequently clustered
items, an effect that appeared regardless of whether the classifiers
were trained on all events or on re-sampled events. We did not,
however, find an analogous clustering effect for our retrieval
classifiers.

Unlike group-level analyses of neural data, decoders provide a
participant-specific model relating neural activity to behavior. We
leveraged thesemodels by askingwhether individual differences in the
degree to which people clustered their recalls correlated with

Fig. 7 | Correlating neural and behavioral indices of temporal and semantic
clustering.We constructed neural indices of clustering by conducting two-sided
independent t-tests on the classifier outputs associated with subsequently-
clustered and non-clustered recalled items for each individual. Comparing these
neural indices with behavioral clustering measures using two-sided Pearson

correlation revealed a significant positive relation for both temporal and semantic
clustering for classifiers trained under event re-sampling (a, b). For classifiers
trained on all events, we observed weaker correlations that trended in the same
direction (c, d). Source data are provided as a Source Data file.
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differences in the degree to which their encoding classifiers dis-
tinguished clustered and non-clustered items. In the case of classifiers
trained on re-sampled events—which removed effects of list position
from the model—we observed a striking positive correlation between
neural and behavioral indices of temporal and spatial clustering. These
findings indicate that the classification-based model of encoding suc-
cess includes at least some features that reflect memory-specific con-
textual-encoding processes. Thematched event distributions from the
re-sampling technique enabled the classifiers to better pick up these
nuanced signals. The ability of healthy participants to each contribute
data of hundreds of lists with high recall rates enabled us to detect
these relations between brain and behavior.

The free recall task is ideally suited to observe the neural
mechanisms underlying conscious recollection; here, participants
attempt to remember the items from a previously experienced list,
with list context serving as the retrieval cue. When they commit recall
errors they typically believe that they have correctly recalled pre-
viously studied items36. Thus, the neural activity that differentiates
these classes of responses provides a specific signal related to the
veridicality of the retrieved information. That such signals appear in
scalp-recordedHFA offers promise for future non-invasive approaches
to measuring, and perhaps modifying, the neural substrates of con-
scious recollection.

Methods
Participants
The data reported here come from Experiment 4 of the Penn Elec-
trophysiology of Encoding and Retrieval Study (PEERS). Prior
studies34,37 reported detailed behavioral analyses of this study. Herewe
focus on the electrophysiological correlates of encoding and recall
behavior. Ninety-eight young adults (52 female, mean age = 21.45,
SD = 3.06), recruited from among the students and staff at the Uni-
versity of Pennsylvania and neighboring institutions, each contributed
24 sessions of multi-list delayed free recall data. The experimental
protocol was approved by the Institutional Review Board at the Uni-
versity of Pennsylvania, and all participants provided informed con-
sent. Monetary compensation was provided to participants for each
session completed, with bonus payment rewarded for minimizing
eyeblink rates during stimulus presentation, maximizing performance
during distractor tasks, and for completion of the 24th session. To
ensure adequate representation of successful and unsuccessful mne-
monic events we decided, prior to carrying out any analyses, to only
include participants with recall rates between 15% and 85% for 10 or
more sessions. All reported analyses were based on the 88 participants
who met this criteria. No gender-based analyses were carried out
during this study.

Experimental task
In each of the 24 experimental sessions participants completed 24 lists
of a delayed free recall task. In each list, participants first studied 24
session-unique English words. Words in each list were drawn without
replacement fromapool of 576 commonEnglishwords (see ref. 34, for
details regarding list construction). Each word appeared individually
onscreen for 1600ms, andwas followed by an interstimulus interval of
800–1200ms (uniformly distributed). Following list presentation,
participants performed a distractor task for 24 s. The distractor task
consisted of answering math problems of the form A + B +C = ?, where
A,B, andCwerepositive, single-digit integers, though the answer could
have been one or two digits. When a math problem was presented on
the screen, participants typed the sum as quickly and accurately as
possible. After the post-encoding distractor task, there was a jittered
delay of 1200–1400ms, after which a tone sounded, a row of asterisks
appeared, and the participant was given 75 s to freely recall the studied
items. Participants were given a short break (about 3min) after every
eighth list in each session.

Data collection and pre-processing
We recorded EEG with either a 129-channel EGI Geodesic Sensor Net
(N = 53) in the Netstation acquisition environment or with a 128-
channel BioSemi Active Two system (N = 35). Within each participant,
we used the same system to record all 24 sessions.We applied a 0.1 Hz
high-pass filter to remove the baseline drift of the EEG signals over the
course of each session. In addition, we applied a fourth-order Butter-
worth notch filter with a 58−62Hz stop-band to attenuate electrical
line noise.

We re-referenced recordings to the common average of all elec-
trodes. When calculating the voltage mean across all electrodes, we
excluded bad electrodes based on the channel variance and Hurst
exponent. Specifically, raw session recordings were high-pass filtered
at 0.5 Hz to reduce the impact of baseline drift on the variance and
Hurst exponent. We then partitioned the EEG recording into three
sections, separated by the two mid-session breaks. Within each parti-
tion, we calculated the log-variance and Hurst exponent of each (non-
electrooculogram) channel and z-scored across channels. We marked
channels as bad if their z-scored log-variance exceeded +3.0 or fell
below −3.0, or if their z-scored Hurst exponent exceeded 3.0 during
any of the three partitions.

Event and feature construction
Spectral decomposition. We used the multitaper method imple-
mented in the MNE Python software package38,39 (Version 0.15) to
estimate spectral power at each electrode over 4–128Hz. We spaced
frequencies every 2Hz in the range of 4–26Hz, and every 6Hz within
26–128Hz, resulting in 29 frequencies of interest. We used a 500ms
movingwindowcentered atmultiple time-points relative to the startof
word encoding events and free recall vocalization events, with a 50ms
step size. We chose the multitaper method over the Morlet wavelet
method, as convolving low frequency wavelets using buffer periods
may allow speech artifacts to intrude in the power estimates of inter-
vals just prior to participants’ vocal responses. Within each session, we
log-transformed and z-scored power across events at each frequency
and electrode pair, separately for encoding or retrieval events.

Epoch construction. We partitioned encoding or retrieval trials into
two event classes. During the encoding of a list, we defined successful
memory events as words that were subsequently recalled within the
corresponding recall period of the list, and unsuccessful memory
events as words that were not recalled. During retrieval, we defined
successfulmemory events as thememory search intervals immediately
preceding recalls of list items (correct recalls). Unsuccessful memory
search periods preceded recall errors, including recall of words from
previous lists (prior-list intrusions, PLIs) and from outside of the word
pool (extra-list intrusions, ELIs). To minimize speech artifacts, we
excluded recall responses which beganwithin 1 s after the onset of the
previous recall. For the encoding events, we averaged the spectral
patterns from 250ms to 1350ms after word onset, effectively covering
the 0–1600ms presentation window. For memory search intervals in
the free recall phases, we extracted the spectral patterns at 250ms
prior to speech onset, effectively covering a 500ms memory search
window before the observed onset of recall responses.

Event re-sampling. We re-sampled the training events to achieve an
equal ratio of positive and negative instances across serial positions
(for the encoding classifier) and recall bins (for the retrieval classifier).
For each session, we down-sampled events at each serial position so
that the ratio of positive and negative events at that serial position
matches the session-level ratio across all serial positions. Because
recall responses occur at variable time-points throughout the 75 s free
recall period, we first binned the recall responses within every 7.5 s,
and down-sampled either the correct recalls or intrusions within each
bin to approximate the session-level global rate of recall accuracy. On
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average, re-sampling the training events within-individual preserved
76.7% of the encoding events and 53.2% of the retrieval events.

Event clustering type. During classifier evaluation, we further parti-
tioned the successful memory events into four sub-types: (1) BC, both
temporally and semantically clustered, (2) TC, temporally clustered
but not semantically clustered, (3) SC, semantically clustered but not
temporally clustered, and (4) NC, non-clustered (i.e., temporally and
semantically isolated). During encoding, we labeled each remembered
word based on the relationship between its corresponding recall
response and the neighboring recall responses. A subsequently tem-
porally clustered encoding event (with list serial position i) has a cor-
responding recall response either immediately preceding or
immediately following recall of the previous list item (serial position
i − 1). A subsequently semantically clustered encoding event has a
corresponding recall response whose similarity score with either the
previous or the next recall response, calculated by the cosine similarity
of thewordembeddings in theword association space, is≥0.4 (see also
refs. 30, 40). During retrieval, we labeled each correct recall event
based on its temporal and semantic relationships with the next recall
event. A temporally clustered recall event preceded its encoding list
neighbors, with an absolute transition lag (i.e., the difference between
their serial positions) of 1. A semantically clustered recall event pre-
ceded the recall of a semantically related item, defined as having a
word-association score ≥0.4.

Decoding successful memory
Univariate analyses. We collapsed spectral power estimates across
subsets of electrodes to generate average spectral patterns at 29 fre-
quencies × 8 regions of interest (ROIs). We selected ROIs based on
previous studies using similar EEG caps30,41. An independent t-test,
performed separately on each participant’s data, assessed the spectral
difference between successful and unsuccessfulmemory events at each
frequency-ROI pair. A one sample t-test on the resulting (across parti-
cipant) distribution of t-statistics evaluated the group-level effects.

Multivariate classification. We trained participant-specific, L2-
penalized logistic regression classifiers to decode brain states asso-
ciated with successful encoding or retrieval events, using power at
each frequency-electrode pair as input features. Classifiers were
trained using a leave-one-session-out cross-validation procedure on
sessions 1 to 23. For classifiers trained with event re-sampling, we
conducted 20 runs of the cross-validated classification procedure with
independent rounds of training event re-sampling, and tested on the
full set of encoding or retrieval events. The baselinemodel was trained
and tested on all events in one round of the cross-validation proce-
dure. The reported analyses included an average of 22.3 sessions for
each of the 88 participants. We excluded features from electrodes
close to the face and the neck (27 excluded for Geodesic caps, 18
excluded for BioSemi caps) to minimize electromyographic artifacts.

In each cross-validation fold, we trained the classifier by mini-
mizing the following loss function over the set of weights, w, and n
training events:

min
w

1
2
wTw+C

Xn

i= 1

logðexpð�yiðXT
i wÞÞ+ 1Þ ð1Þ

Xi is a set of frequency × electrode features for a given encoding or
retrieval event, and yi is the corresponding event class label indicating
memory success. The hyperparameter search around the best inverse
regularization parameter, C, was conducted separately across the two
training distributions (with event-sampling or all events) and for the
two recording systems. C = 2.15−5 from 10 log-spaced values from 10−8

to 10−1 optimized the classification accuracy of encoding success on
the aggregated 24th sessiondata fromall participantswith a leave-one-

participant-out cross-validation procedure in all four cases, and was
subsequently shared across all cross-validation folds when training
both the encoding and the retrieval classifiers. To adjust for class
imbalance, we weighted observations inversely proportional to their
class frequencies.

Classifier evaluation. We evaluated classifier performance by com-
puting the area under the receiver operating characteristic curve (i.e.,
AUC) of the predicted probabilities of held-out test events across all
folds. To determine whether each classifier performed above chance,
we obtained a distribution of 100 baseline AUC scores for each indi-
vidual classifier by repeating the cross-validation training procedure
on permuted data, where the event class labels within each training
session for a given foldwere randomly reassigned to eventswithin that
session. The event class labels in the held-out test session in each fold
remained unshuffled. A significant classifier must have an observed
AUC above95%of the baseline AUCdistribution. At the group level, we
used a paired t-test to determine whether the distribution of the
observed AUCs was significantly higher than the distribution of indi-
vidual mean baseline AUCs.

We also derived feature activation maps by constructing forward
models from the trained classifier weights, similar to prior work12,13,28.
For each individual classifier, we first averaged the activation values at
each frequency-electrode pair across all training folds, then pooled the
activation values across electrodes within each ROI. At the group level,
we performed a one-sample t-test on the mean activation values at
each frequency-ROI pair.

Classifier-based analysis of memory dynamics
We constructed linear mixed-effects models42 to assess how classifier
outputprobabilitiesonheld-outdata trackedevent clustering types (BC,
TC, SC, NC, and the unsuccessful memory events) over three item
position ranges (early, middle, and late). We defined the first four list
items as “early”, the last four list items as “late”, and the remaining items
as “middle”21. During retrieval, the responses within the first three recall
bins (each spanning 7.5 s) and the last three recall bins were designated
as the early and late responses. This analysis only included predictions
from the significant classifiers, with each classifier contributing a mean
output probability for each event sub-type× itemposition pair. For both
the encoding and retrieval mixed effects models, we included event
type, item list position, and the interaction between them as fixed
effects, with participant-level random intercepts. We tested hypotheses
using a Type III ANOVA with degrees of freedom approximated by the
Satterthwaitemethod43, as implemented in the lmerTestpackage forR44.

To quantify the relation between classifier-based neural indices
and behavioral indices ofmemory dynamicswe computed the Pearson
correlation, across participants, of these twomeasures. We computed
participant-specific temporal and semantic clustering scores based on
a previous study4, as implemented in https://github.com/pennmem/
pybeh. We derived neural temporal clustering scores and semantic
clustering scores as the t-statistics of independent t-tests between the
classifier output of (1) TC items and NC items, and (2) SC items and NC
items, respectively.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw EEG data generated in this study have been published in BIDS
format on the OpenNeuro platform as experiment PEERS4 within
dataset ds004395 andhavebeenmadepublicly available athttps://doi.
org/10.18112/openneuro.ds004395.v2.0.0. The source data for all fig-
ures are provided in the Source Data files. Source data are provided
with this paper.
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Code availability
All analysis code has been made publicly available at https://github.
com/pennmem/EEG-memory-dynamics-public.
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