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Predictive evolutionary modelling for
influenza virus by site-based dynamics
of mutations

Jingzhi Lou1,2,14, Weiwen Liang 3,14, Lirong Cao1,4,14, Inchi Hu5, Shi Zhao 1,6,
Zigui Chen 7, Renee Wan Yi Chan 8,9, Peter Pak Hang Cheung 10,
Hong Zheng1, Caiqi Liu1, Qi Li 1, Marc Ka Chun Chong 1,4, Yexian Zhang2,4,
Eng-kiong Yeoh1,11, Paul Kay-Sheung Chan 7,12, Benny Chung Ying Zee 1,4,
Chris Ka Pun Mok 1,13 & Maggie Haitian Wang 1,4

Influenza virus continuously evolves to escape human adaptive immunity and
generates seasonal epidemics. Therefore, influenza vaccine strains need to be
updated annually for the upcoming flu season to ensure vaccine effectiveness.
We develop a computational approach, beth-1, to forecast virus evolution and
select representative virus for influenza vaccine. The method involves mod-
elling site-wise mutation fitness. Informed by virus genome and population
sero-positivity, we calibrate transition time of mutations and project the fit-
ness landscape to future time, based on which beth-1 selects the optimal
vaccine strain. In season-to-season prediction in historical data for the influ-
enza A pH1N1 and H3N2 viruses, beth-1 demonstrates superior genetic
matching compared to existing approaches. In prospective validations, the
model shows superior or non-inferior genetic matching and neutralization
against circulating virus in mice immunization experiments compared to the
current vaccine. The method offers a promising and ready-to-use tool to
facilitate vaccine strain selection for the influenza virus through capturing
heterogeneous evolutionary dynamics over genome space-time and linking
molecular variants to population immune response.

The major driver of recurrent influenza epidemics is fast virus evolu-
tion that enables the influenza virus to escape from human immunity
acquired from prior vaccination or infection1. In response, influenza
vaccines need to be updated annually to match the circulating virus
population2. Prediction of virus evolution has a critical role in ensuring

the protective effect of influenza vaccines, which aids the selection of
candidate vaccine strains nearly a year ahead before the arrival of next
epidemic season2,3. We present a computational approach to predict
influenza virus evolution through modeling the dynamic process of
mutation adaptation at individual sites and locating the optimal wild-
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type strains by a combined evaluation of multiple gene segments for
considerations of vaccine strains.

Virus evolution is shaped by a complex interplay of genetic
mutations, host immune response, and epidemiology1,4. Thus,
although mutation is stochastic5,6, the evolutionary process could be
traced with the observed viral genetic and antigenic profiling in the
host population6. The influenza virus evolves through antigenic drift
on the two surface proteins, hemagglutinin (HA) and neuraminidase
(NA), the primary immuno-active components of influenza vaccines.
Previous studies showed that mutations at epitope sites of the HA
played a dominant role in characterizing virus antigenic change and
were under higher immune selection pressure5,7. In addition to the
major antigenic substitutions, the virus evolution is also critically
influenced by epistatic mutations or mutation interference effects8–10,
making predictions challenging as the evolutionary dynamics are non-
uniform across genomic regions and time.

Currently, influenza vaccine strain determination involves exten-
sive surveillance and characterization of the virus in terms of genetic,
antigenic evolution, and epidemiological profiles, a global effort
coordinated by the World Health Organization (WHO)11. While anti-
genic evolution of influenza virus can be mapped by the antigenic
cartography based on hemagglutinin inhibition (HAI) assay data12,
genetic evolution is mostly delineated with the phylogenetic trees13.
Current prediction methods of virus evolution mainly focus on mod-
eling the fitness of tree parts14–16, using sequences of the HA or
HA1 segment, with epitope or antigenic data incorporated as compo-
nent information14,15,17. For instance, Łuksza and Lässig calculated fre-
quency of tree-clades and predicted the future predominant clade by
an exponential function (the Malthusian model) with a certain growth
rate14. Neher et al. used the local branching index (LBI) to rank tree-
nodes in a given phylogeny to identify lineage with the highest fitness
as a progenitor of strains in an upcoming influenza season, where
fitness is estimated by integrating exponentially discounted branch-
length surrounding a node16. Steinbrück and McHardy used allele

dynamics plots to identify the top three alleles characterizing antigenic
novelty of tree-clades in a given season, pre-screened based on the
epitope information, HI data, and phylogeny17,18. Also based on the
Malthusian model, Huddleston et al. regarded strain rather than clade
as a primary unit of analysis, and investigated different combination of
factors to calculate growth rate for strains15. These methods projected
the most likely predominant future lineages by tracing the fitness of
clusters of strains. However, as virus evolution is driven by major
antigenic substitutions, a substantial amount of information is con-
tained in the dynamic process of the fitness of mutations, character-
izing which might provide critical information for predicting genetic
evolution.

Results
A site-based dynamic model for mutation forecasting
Our prediction method is primarily based on modeling the time-
resolved frequency pattern of mutations for individual sites across
virus genome segments (Fig. 1). The selective advantage of a muta-
tion could be reflected in their growing prevalence in the host
population. To make a projection into the future, the velocity of
mutation frequency growth can be estimated by solving the first-
order derivative of a frequency function over a period of mutation
adaption in the host population, which is captured by the mutation
transition time (Methods). Since the transition time is specific to
substituted residues, the dynamic model is site-based and time-
dependent. Scanning over the genome restores a global picture of
mutation-selection. Such design shares the advantage of the agent-
based model that agglomerates individual agents carrying simple
rules and avoids fitting a complicated system with copious para-
meters or unrealistic assumptions19. The potential relationship
between the genome-wide dynamics of mutation prevalence and
population epidemics is illustrated in Supplementary Fig. 1. The site-
based model is also highly computationally efficient in analyzing
large genomic datasets.
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Fig. 1 | Overview of the computationalmodel and study design. Site-wise fitness
dynamics are modeled and projected to the next season (T + 1). Based on the pre-
dicted genome-wide fitness landscape of future virus population, an optimal wild-
type virus can be selected integrating evolutionary information of both hemag-
glutinin and neuraminidase genes. The prediction is validated by geneticmismatch

against observed circulating viruses in the Northern Hemisphere retroactively and
prospectively forpH1N1 andH3N2. In addition,mousemodel is used to evaluate the
antibodies elicited by predicted vaccine strain in neutralizing the clinical isolates in
2019/20 season.
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Specifically, transition time in this study is defined as the duration
for amutation to emerge until it reaches an influential frequency in the
population. This quantity is related to but different from the conven-
tional fixation time, which covers a period from the first observation
time of a mutation to the point when it reaches 0.99 prevalence in the
population. The fixation time was reported to span over a long period
of 4-32 years for the influenza virus A(H3N2)8. In contrast, the transi-
tion time we identified for the same viral subtype had amedian length
of only ~17 months and ranged between 0-7 years (Supplementary
Fig. 2). As the transition time calibrates the initial period of mutation
adaptation, it may have the advantage of informing the emerging
genetic variants on a short-term time horizon. The transition time is
determined with a frequency threshold (θ) indicating fitness strength,
at which the overall mutation activities are detected to influence
population epidemics significantly (Supplementary Fig. 1); and it can
be estimated using the virus epidemic-genetic association model we
previously developed20 (Methods).

This site-based mutation dynamic model enables the prediction
for fitness of competing residues at individual sites, thereby the con-
struction of a genome-widefitness landscape of the virus population in
future time (Fig. 1).

Identification of optimal wild-type virus
Since regulations for influenza vaccines requires the use of a wild-type
virus as vaccine strain, we next select the optimal wild-type strain
based on the predicted virus population (Fig. 1). First, a consensus
strain can be shaped containing all mutations showing selective
advantage relative to their precedent or competing alleles in the
upcoming epidemic season. Next, the optimal wild-type virus can be
located by minimizing the weighted genetic distance between a can-
didate strain and the projected future consensus strain considering
one or more proteins contained in vaccine antigen (Methods).
Although only HA concentration is standardized in the current vaccine
production21, both HA and NA genes are major components of the
influenza vaccines; an integrative evaluation would provide a useful
tool for strain selection and evaluation.

This two-step evolution prediction and wild-type virus selection
method are referred to as the “beth-1” for easy reference.

Genetic matching of retroactively predicted vaccine strains
We applied the beth-1 to predict vaccine strains of the influenza A
(H1N1)pdm09 (pH1N1) and A (H3N2) viruses. Data was collected from
the Global Initiative on Sharing All Influenza Data (GISAID)22 between
1999/2000 and 2022/23, involving a total number of 13,192 HA and
11,260 NA sequences of pH1N1, and 37,093 HA and 34,037 NA
sequences of H3N2 from ten geographical regions in the Northern
Hemisphere, covering North America (New York State, California
State, Canada), Europe (United Kingdom, Germany, France), and Asia
(Hong Kong SAR, South China provinces, Japan, Singapore) (Supple-
mentaryTable 2). Three-year datawasburnt-in formodel building. The
prediction was performed using data up to February in season T, tar-
geting the subsequent epidemic seasonT + 1 (October-April next year).
We calculate the average amino acid (AA) mismatch between the
predicted strain and sequences of circulating viruses in the target
season to determine prediction accuracy. To fully understand the
performance of beth-1 in the context of existing methods, we calcu-
lated the following comparison groups: (1) WHO-recommended vac-
cine strains (the “current-system”) for season T + 1; (2) The local
branching index (LBI) method16, as the representative approach based
on phylogenetic trees; (3) beth-1 (single protein): the beth-1 predicted
strains for season T + 1 by a single protein; (4) beth-1 (two-protein):
predicted strains for season T + 1 integrating two proteins; (5) the
“answer”: the observed representative strains in season T + 1 (Methods,
Supplementary Tables 3, 4).

In the retroactive data, prediction was conducted for seven sea-
sons from 2012/13 to 2018/19 for pH1N1 and 17 seasons from 2002/03
to 2018/19 for the H3N2. beth-1 demonstrated significantly improved
genetic matching to the future virus population compared to the LBI
and the current-system on full-length HA and NA gene, their epitopes,
and for both pH1N1 and H3N2 subtypes (Fig. 2, Supplementary
Table 5). For example, the beth-1 (HA)model results in 7.5 AAs (SD 2.2)
mismatch on the full-length HA protein of H3N2, while mismatch by
the LBI and current-system are 9.5 AAs (SD 4.7) and 11.7 AAs (SD 5.1),
respectively (pair-wise t-test p-value < 0.001) (Supplementary Table 5).
The beth-1 (NA) gives 3.9 AAs (SD 1.5) mismatch on full-length NA
protein of pH1N1, significantly lower than the 6.4 AAs (SD 2.1) by the
LBI and 11.6 AAs (SD 4.4) by the current-system. Using the beth-1 (two-
protein) model, the mismatch on the HA epitopes is 1.2 AAs (0.6) for
pH1N1 and 5.1AAs (SD 1.7) forH3N2. Particularly, themismatchof beth-
1 (two-protein) on the NA epitopes are 0.5 AA (SD 0.4) for pH1N1 and
0.6 AAs (SD 0.5) for the H3N2, close to the best possible outcome by
the answer strains. In all these results, beth-1 delivers prevailingly
smaller uncertainties (standard deviation) in prediction accuracy
compared to the current-system and the LBI (Supplementary Table 5).

Seasonal and geographical breakdown of prediction accuracies
were also analyzed. Year-by-year comparison with the LBI and current-
system showed that the beth-1 gave vastly lower genetic mismatch
throughout the epidemic seasons (Fig. 3, Supplementary Fig. 3, Sup-
plementary Table 6–9). A separate analysis by geographical regions
showed no systematic difference in vaccine mismatch across con-
tinents by all predictionmethods and for the two influenza A subtypes
(Supplementary Fig. 4, Supplementary Table 10–13).

Weperformed twopredictions for the 2019/20epidemic season: a
prospective prediction conducted in October 2019 using training data
up to June 2019; and a retroactive prediction conducted inMarch 2022
using data up to March 2019 to better match the current-system’s
timeline (Supplementary Table 14). Genetic mismatch was calculated
for all prediction experiments. Between the 2019-03 and 2019-06
predictions by beth-1, the latter one recorded 0.1 less HA epitope
mismatch for pH1N1 and 1.1 less HA epitope mismatch for H3N2. Both
predictions showed significantly better geneticmatching compared to
the current-system on all protein segments of pH1N1, the NA of H3N2,
andnon-inferiormatching inother segments.We further evaluated the
immunogenicity of predicted strains for this particular season using
clinical samples collected in Hong Kong (Methods, Supplementary
Fig. 5). Against the viral isolates of H1 and H3 positive samples, beth-1
strains induced significantly higher neutralizing antibodies in PRNT50

for pH1N1 and non-inferior antibodies for H3N2, compared to the
current vaccines (Supplementary Fig. 6).

Prospective predictions and validations in 2020/21–2022/23
To further validate our prediction method, we conducted prospective
predictions from 2020/21 to 2022/23. The predictions were sent to the
WHO before the vaccine composition meetings for the Northern
Hemisphere each year (Supplementary Table 3). To fully understand
the relationship between the beth-1 strains and the current vaccine
viruses, wemapped them on phylogenetic trees (Fig. 4). Generally, the
beth-1 predicted strains extended more into the future clusters for
both influenza subtypes in all seasons of prospective validations
compared to the current vaccine strains.On the epitopes ofHA andNA
of pH1N1 and H3N2, beth-1 demonstrated non-inferior or significantly
increased genetic matching to the future circulating viruses (Supple-
mentary Table 15). For instance, in 2020/21, beth-1 gave 2.7 AAs (SD 1.1)
mismatch on the HA epitopes of pH1N1 and the current-system gave
3.8 AAs (SD 1.2) (Supplementary Table 15). In the 2021/22 season, beth-
1 resulted in 4.2 AAs (SD 1.6)mismatch on theHAepitopes ofH3N2, 6.6
AAs more accurate than the current-system’s 10.8 AAs (SD 1.9) mis-
match (p-value < 0.001). In the 2022/23 season, beth-1 prediction
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resulted in 1.0 AA (SD 0.7) mismatch on the HA epitopes of pH1N1 and
the current-system gave 3.0 AAs (SD 0.7) mismatch (p-value < 0.001).

Discussion
Predictability of the pH1N1 and H3N2 viruses
Predictability for the two influenza subtypes pH1N1 and H3N2 can be
compared on genetic mismatch of HA epitopes in the retrospective
data. The ceiling of prediction can be approximated by the answer
strain, that is, the observed representative strain in respective seasons.
For the pH1N1 virus, the lowest possible mismatch of HA epitope was
0.7 AAs (SD 0.4) achieved by the answer strain, and the beth-1’s mis-
matchwas 1.2 AAs (SD0.6) (SupplementaryTable 5). This suggests that
a highly precise hit by predictivemodeling is achievable for the pH1N1,
such that the resulting vaccine strain could provide an excellentmatch
to the circulating viruses in regions of the Northern Hemisphere.
However, for theH3N2 virus, the lowest possibleHA epitopemismatch
was as large as 3.5 AAs (SD 1.1), that is 2.8 more epitope mismatch
compared to the pH1N1. Although the 5.1 AAs (SD 1.7) mismatch by
beth-1 was only 1.6 residue away from the answer, the prediction for
H3N2would be ultimately bounded by the ceiling of geneticmatching.
The large genetic mismatch of the H3N2 answer strain might be
attributed to the high genetic diversity of this virus23,24, making the
selection of a single representative wild-type strain challenging. New
vaccinology strategies, such as developing broadly reactive vaccines,

designing antigens containing multiple H3N2 strains, or preparing
region-specific vaccines,mayprovide solutions fromother dimensions
to enhance vaccine protection against this subtype.

Advantages of site-based dynamic model for evolution
prediction
Strain-based dynamic model often requires the estimation of a single-
valued growth rate for a given genome to project future fitness,
whereas a site-based dynamic model is not constrained by a constant
growth rate over genome space-time. This property leads to the fol-
lowing three advantages in predicting virus evolution with the site-
based angle. First, key mutations distributed over multiple clades
could be captured as they arise, while the virus is trialing various epi-
static combinations before shaping a stable lineage. Second, a site-
based model avoids making assumption for directional mutation
effects on fitness, which is self-evident in mutation frequency. In
contrast, strain-basedmodels often need to assumenegative effect for
the non-epitope mutations, to offset the genetic distance obtained
from gene-based analysis in modeling evolutionary pathway14–16,
although studies suggested that the alternative might be true25,26.
Third, the site-based dynamic model is adaptive to the altered residue
fitness from epistasis and environmental factors10,27, by sampling and
re-estimating the dynamic function at each time period. When such
adaptive framework is not in place, one study showed that the fitness
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paired t-test on logmismatchbetween twomethodsmatchedby region and season.
The p-value of current-system versus beth-1(two-protein) are 1.4e–15, 6.9e–16,
<2.2e–16, <2.2e–16, respectively (a), and <2.2e–16, 4.9e–9, <2.2e–16, 9.0e–14,
respectively (b). The p-value of LBI versus beth-1(single protein) are 6.7e–10,
1.5e–12, 1.7e–6, 7.9e–5, respectively (a), and 9.3e–6, 1.1e–8, 6.7e–5, 4.8e–4,
respectively (b). In the retrospective validations, beth-1 shows significantly lower
genetic mismatch on all the protein segments evaluated for the two influenza
subtypes, compared to the LBI and the current-system. Error bar: standard devia-
tion of the average genetic mismatch by region and season. ***: p-value < 0.001.
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advantage estimated in the initial stage ofmutation emergence cannot
predict their ultimate fixation28. However, the proposed site-based
dynamic model avoids making assumptions on the constant effect of
mutations. Through adaptive estimation of fitness by genomic site and
time, it projects a probablefitness landscape including all the trackable
advantageous mutations to the near future.

“Representative” viral strains by the consensus sequence in the
perspective of site-based analysis
Under the perspective of strain-based analysis, a representative virus is
naturally indicatedby themajority vote of strainor clades.While under
the perspective of site-based analysis, a genome-wide fitness land-
scape can be constructed for a virus population, without missing a
single mutation showing selective advantage. Based on this fitness
landscape, a mode estimator can be operated at individual sites and
generate a consensus sequence. Therefore, the consensus sequence is
a natural representative strain for a virus population based on site-wise
fitness. Beth-1 in its primary objective established the theoretical fra-
mework of modeling mutation dynamics site-wise and enabled fore-
casting for fitness landscape into future time.

Dissecting prediction accuracy
We can better understand the power of beth-1 by dissecting its pre-
diction accuracy. The beth-1 (single-protein) gives slightly higher
mismatch compared to the consensus strain of the predicted future by
beth-1 (future-consensus) (Fig. 5), since the former one corresponds to
an available wild-type virus that would be an no better representation
of the predicted future compared to the future-consensus. Next, we
examine performances of the future-consensus and the current virus

population (current-consensus) in the retrospective data. The result
shows that the future-consensus generally improves prediction of the
current-consensus over genomic regions for both influenzaA subtypes
(Fig. 5). It should be noted that the degree of advancement is subject to
the speed of virus evolution, lead time of prediction, as well as the
measurement by genetic mismatch that is under influence of viral
diversity. Therefore, although the amount of advancement seems
moderate, the results indicate that the site-based model can robustly
add to the future that we can correctly foresee. We further analyze the
46 sites that the beth-1 correctly predicts but the current-consensus
does not with respect to the answer strain for the H3N2 in the 17
retrospective seasons. Among these sites, 58.7% are epitopes and 71.7%
involves physiochemical trait change, which is characterized by a
conversion in charge or polarity, or volume change over 20%, and
80.5% of these sites involve either an epitope or physiochemical
property change.

We next analyze the proportion of newly emerged dominant
mutations captured by the site-based model year to year. Using the
H3N2 as an example, on the full-length HA protein, the average num-
ber of dominantmutations arise each year is 5.3 AA (SD 4.2), estimated
from the 17 seasons. The beth-1 captures 2.6 AAs (49.1%) on average of
the new dominant mutations in the upcoming seasons, while LBI
captures 1.5 AAs (28.3%) and the current-consensus captures 0. This
result reveals an interesting fact that although the current-consensus
outperforms the LBI in terms of genetic mismatch towards the future
virus population28 (Fig. 5), it forecasts no evolutionary advancement in
T + 1. Rather, the prediction accuracy achieved by the current-
consensus is solely contributed by capturing the center of viral clus-
ter, which results in a smaller spread of genetic distance from a single
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Fig. 3 | Prediction accuracy of alternative methods for HA evolution in retro-
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epitopes (50 sites). c H3N2, HA full sequence (566 codons). d H3N2, HA epitopes
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in the respective epidemic seasons (X-axis). Error bar: standard deviation of the
average geneticmismatch by region in a given season. The average geneticmismatch
of beth-1 is prevailingly lower compared to the LBI and the current-system.
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strain to the circulating viruses. This also indicates that the genetic
mismatch as a measure of prediction power is contributed from two
aspects: the accuracy in forecasting evolutionary advancement and in
locating the center of the mass of viruses. The beth-1 deals with both
aspects in a simple and elegant way.

Current WHO vaccine virus selection considerations
Currently, WHO selects vaccine strains by considering the emergence
of virus with distinct genetic and antigenic characteristics, their geo-
graphical spread, and the potential loss of effective binding of anti-
bodies from antisera of previously vaccinated subjects against the
current circulating viruses29. These factors depict a picture of
the current global virus population and their antigenic relationship to
the previous representative viruses and vaccine strains, based on
which recommendations of vaccine strains are made. One major

consideration of vaccine strain selection is the HAI titer for antigenic
characterization30. Nevertheless, the HAI only evaluates one specific
type of reaction, that is the prevention of HA binding to sialic acid
receptor on host cells inhibited by the anti-HA head antibodies31, while
other types of immune responses are undetected, such as the anti-
bodies against HA-stem and T-cell responses that also play important
roles in protection32,33. Developing improved assays with broader
range or finer specificity for vaccine protection may facilitate the
assessment and selection of vaccine strain29. Another major constraint
of the current vaccine strain selection process is the limited availability
of high-yield virus in embryonated eggs, with which more than 95% of
the current influenza vaccines are produced34. These candidate vac-
cine viruses (CVVs) are prepared from representative strains by the
WHOCollaborating Centers (CC) and Essential Regulatory Labs (ERLs)
before the annual WHO consultation meetings29. Thus, earlier

20232021201720152013 2019

beth-1 2022-23 NH vaccine
A/Bangladesh/3210910005/2021

WHO 2022-23 NH vaccine
A/Victoria/2570/2019

20232021201720152013 2019

beth-1 2020-21 NH vaccine
A/Hong Kong/4435/2019

WHO 2020-21 NH vaccine
A/Hong Kong/2671/2019

20232021201720152013 2019

beth-1 2020-21 NH vaccine
A/Hong Kong/4380/2019

WHO 2020-21 NH vaccine
A/Guangdong-Maonan/SWL1536/2019

20232021201720152013 2019

beth-1 2021-22 NH vaccine
A/Bangladesh/0004/2020

WHO 2021-22 NH vaccine
A/Cambodia/e0826360/2020

20232021201720152013 2019

beth-1 2022-23 NH vaccine
A/Arsal/5773/2021 

WHO 2022-23 NH vaccine
A/Darwin/6/2021

20232021201720152013 2019

beth-1 2021-22 NH vaccine
A/NAGASAKI/8/2020

WHO 2021-22 NH vaccine
A/Victoria/2570/2019

ba

dc

fe

Fig. 4 | Prospectively predicted strains on phylogenetic tree from 2020/21 to
2022/23. a 2020/21, pH1N1. b 2020/21, H3N2. c 2021/22, pH1N1. d 2021/22, H3N2.
e 2022/23, pH1N1, f 2023/23, H3N2. Predicted strains by beth-1 (two-protein) and
the current-system are marked on phylogenetic trees with red and green,

respectively. Predictions were made prospectively for the next epidemic season in
the Northern Hemisphere (highlighted by yellow band in the background). The
phylogeny relationship shows that beth-1’s predictions are generally more
advanced into the future.
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prediction, even year-round projection of future representative strains
may facilitate the preparation of CVVs and the subsequent vaccine
strain selection, while the development of alternative vaccine tech-
nologies for influenza virus would sidestep the constraints of egg-
based platform. The potential of computational optimized vaccine
strains may be fully explored coupling with the availability of new
production platforms, as “new wine in new wineskins”.

Limitations of the study
One major limitation in our analysis is the sparse time interval, con-
strained by the sequence sample size in the earlier years. In the future,
this sampling gapmay be gradually closedwith increasing surveillance
strength and global collaborations. Second, the epitope mismatch
could have been underestimated as it was subjected to the known
epitope sites, especially in the immune-subdominant protein seg-
ments. Nevertheless, the comparison across prediction methods was
fair with the same evaluation criteria.

In summary, we have introduced a new computational method,
the beth-1, for predicting influenza evolution through the site-based
fitness dynamic modeling and enables strain selection considering
multiple proteins. The model demonstrated promising prediction

performances in both retrospective and prospective real data appli-
cations. The framework has potentially wide applications by virology
labs, vaccine manufacturers, health authorities and the WHO for
indicating virus evolution and preparing vaccine virus, to facilitate
influenza vaccine strain selection towards more effective vaccines.

Methods
Dataset
We downloaded genetic sequences of the influenza virus from the
Global Initiative on Sharing All Influenza Data (GISAID)22. All samples
were retrieved and analyzed if the strain has complete sequence and
were isolated from the target epidemic seasons and geographical
regions (Supplementary Table 2). The data of genetic sequences for
pH1N1 spanned from2009/10 to 2022/23, and for theH3N2 from1999/
2000 to 2022/23. Ten geographical regions in the Northern Hemi-
sphere (NH) were considered, including North America (New York
State, California State, Canada), Europe (United Kingdom, Germany,
France), and Asia (Hong Kong SAR, South China provinces, Japan,
Singapore). In 2020/21 and 2021/22, due to sharp decline of available
samples in these regions, all sequences inNHwere considered.Overall,
the total number of genetic sequences used in analysis was 50,285 for
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Fig. 5 | Dissecting prediction of beth-1 by consensus strain. a Full-length protein.
b Epitope. The bar-plots display average genetic mismatch (amino acids, AA) over
seven seasons in 2012/13-2018/19 for pH1N1 and 17 seasons in 2002/03-2018/19 for
H3N2 (n = 70 region × season strata for each HA and NA of pH1N1, n = 144 and
n = 146 available strata for HA and NA of H3N2, respectively). Panel (b) left Y-axis:
average genetic mismatch of pH1N1; right Y-axis: average genetic mismatch of
H3N2. We dissect prediction performance of the beth-1 by showing its accuracy
achieved at multiple steps. The beth-1 (single protein) is compared to the future-
consensus (consensus strain of the predicted future by the beth-1) and the current-
consensus (consensus strain of the current virus population). Two-sided p-value is
calculated using paired t-test on log mismatch between two methods matched by

region and season. The p-value of LBI versus beth-1(single protein) are 6.7e–10,
1.5e–12, 1.7e–6, 7.9e–5, respectively (a), and 9.3e–6, 1.1e–8, 6.7e–5, 4.8e–4,
respectively (b). The p-value of current consensus versus beth-1 future consensus
are 0.061, 6.1e–5, 0.005, 0.011, respectively (a), and 1, 0.001, 0.009, 0.016,
respectively (b). The future-consensus generally advances prediction of the
current-consensus on the genomic segments, while beth-1 (single protein) gives
slightly higher mismatch compared to the future-consensus. The LBI is displayed
to replicate the previous finding involving the current-consensus strain28. Error bar:
standard deviation of the average genetic mismatch by region and season. *:
p-value < 0.05; **: p-value < 0.01; ***: p-value < 0.001.
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the HA and 45,297 for the NA. Sequence alignment was performed by
MEGA (7.0.26)35. All statistical analysis were conducted in R version
4.1.336. All p-values reported are two-sided.

The model for evolution prediction and strain selection: beth-1
In the following, we introduce the beth-1 model in four parts: (1)
Introduction of the transition time that characterizes mutation
dynamics; (2) Estimation of transition parameters; (3) Prediction of
future virus fitness; (4) Identification of the wild-type virus closest to
the predicted virus population. A flowchart of the method is provided
in Supplementary Fig. 7.

Transition time. Let xjkðtÞ denote amino acid residue or nucleotide
type at time t and site j,j 2 J, where J is the set of sequence positions
and k 2 K = ½1,20� indexes alternative substitutions observed at site j.
The prevalence of xjkðtÞ is denoted by pjk tð Þ. We use a prevalence
threshold θ to detect the mutations that demonstrate selective
advantage in the host population, θ 2 Θ= ð0,1Þ. The mutation transi-
tion time describes the period for an emerging mutation to reach θ
from 0 prevalence. Let t0jk denote the time point when pjk tð Þ=0 and
pjk t + 1ð Þ>0, and tθjk denote the time when pjk tð Þ= θ for the first time
after t0jk . The transition time (τ) for a particular mutation xjkðtÞ is
defined as

τ jk θð Þ= tθjk � t0jk : ð1Þ

τ>0. Sincemutationsmight occurmultiple times in history at the same
site by the prediction time T, we can estimate the site-specific
transition time τj θjTð Þ using the average transition time of xjkðtÞ for
k 2 K and t ≤T . When no history of transition event is available at the
site, its transition time is estimated by the mean transition time of
mutations from the same protein in the training data (Supplementary
Table 16).

Estimation of the transition parameters. The threshold θ is the level
of prevalence for a mutation to demonstrate selective advantage in
the population, which is jointly estimated with another parameter
h≥0 that quantifies the duration of a mutation to remain in
advantage after reaching θ. With ðθ,hÞ, the EffectiveMutations (EMs)
are those mutations that reach θ and within its effective mutation
period, namely, τ +h. The EMs are formally defined as the indicator
function

mjk θ,h,tð Þ≜Ift0jk ≤ t ≤ tθjk +hg, ð2Þ

j 2 J, k 2 K , and t 2 ½1,T �. The overall level of mutation activities in the
population canbe summarizedby the sumof prevalenceof the EMsvia
the g-measure

g θ,h,tð Þ=mðθ,h,tÞ � pðtÞ=
X
j,k

mjkðθ,h,tÞpjk tð Þ, ð3Þ

The ðθ,hÞ is estimated through fitting the g-measure and epidemic
level, yðtÞ, which equals the annual sero-positivity rate in this study.
Consider the linear regression model,

yðtÞ=βg θ,h,tð Þ+
X
l

αlzl tð Þ+ ε, ð4Þ

in which zlðtÞ are covariates including mean temperature, absolute
humidity and season in a geographical region. Theparametersβ and αl

are coefficients of the g-measure and the covariates, respectively, and ε
is a random error, ε∼Nð0,σ2Þ. The θ,hð Þ can be estimated by
maximizing the goodness-of-fit of the linear regression model
(Eq. 4), such that the epidemic trend is concordant with the mutation
spread in the population. Suppose the R-square, Rðθ,hÞ, is used as the

goodness-of-fit statistic, we have,

bθ,bh� �
= arg max

θ2Θ,h2H
R
�
θ,h

�
: ð5Þ

Θ= ð0,1Þ and H= f0,1,2, . . .g. The parameters θ and h are jointly esti-
mated for each geographical region. The fitted θ,hð Þ can be found in
Supplementary Table 16 and the estimated EMs in Supplementary
Table 1. We showed in previous works that the g-measure is a good
predictor for epidemic cycles of the A(H3N2)20, A(H1N1)pdm0937 and
COVID-1938,39, and yðtÞ can adopt other measures for epidemic level,
such as the time-varying reproduction number Rt38,39.

Prediction of future virus fitness. Prediction of future mutation fit-
ness can be made by solving a classical initial value problem of the
differential equation,

f 0 tð Þ= F t,pjk tð Þ,τj θjtð Þ
h i

,t>T

f Tð Þ=η

(
, ð6Þ

where f(t) is a function describing mutation prevalence through time,
F ½t,pjkðtÞ,τjðθjtÞ� is the velocity of the prevalence change, η is the initial
value, and T is the prediction time. Using the Euler’s method, the
projected mutation prevalence at time T + 1 for substitution k at
position j is,

p̂jk T + 1ð Þ= pjk Tð Þ+ F T ,pjk Tð Þ,τj θ̂jT
� �h in o

� C, ð7Þ

where C = 1=
P
k2K

fpjkðTÞ+ F½T ,pjkðTÞ,τjðθ̂jTÞ�g is a normalization
constant.

Equation 7gives the forecasted future virusfitness. In practice, the
time interval shall be chosen such that the training data can support a
robust estimation. In the earlier seasons, only a few influenza sequence
samples were available each year in many regions, thus yearly interval
is chosen. Specifically,

F T ,pjk Tð Þ,τj θ̂jT
� �h i

=
Δpjk Tð Þ

Δt
=
pjk Tð Þ � pjk

�
T � τj θ̂jT

� ��

τj θ̂jT
� � : ð8Þ

The predictionmodel is trained using sample sequences from the
South-east Asia region that is the source of influenza A epidemics40,41;
for the 2020/21 and 2021/22 seasons during COVID-19 pandemic, all
Northern Hemisphere samples were used.

Identification of the closest wild-type virus to the forecasted virus
population. Regulation for influenza vaccines requires the use of wild-
type virus in vaccine antigen, therefore, we next identify the closest
wild-type virus to the forecasted virus population. First, we use a
consensus strain to represent the future virus population,

xc
j ðT + 1Þ

n o
≜ xjcðT + 1Þjc= k*

j

n o
, ð9Þ

in which,

k*
j = argmax

k2K
p̂jk T + 1ð Þ:

Thus, fxc
j T + 1ð Þg consists of the most advantageous mutations in

T + 1 through the mode estimator. For a given gene s, its future con-
sensus strain is estimated by Eq. (9) and denoted by fxc

sj T + 1ð Þg.
When evaluating “closeness” between strains, obviously not all

sites in the genome are equally important. Thus, we consider only the
sites that are informative to vaccine effectiveness (VE) when
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calculating genetic distance. These sites are known as the predictor
codon set, which we identified previously inmodeling the relationship
between VE and genetic distance (VE-GD)42,43. The predictor codon set
is composed of EMs residing in the epitope regions of the HA and NA
genes43 and is listed inSupplementaryTable 1. EMs inT + 1 areobtained
using the projected p̂jk T + 1ð Þ in Eq. (7). Denote the predictor codon set
of gene s identified up to T + 1 by W T + 1jsð Þ, s 2 S= fHA,NAg. The
genetic distance between a candidate wild-type sequence i and the
future consensus strain for gene s is given by

di
s T + 1ð Þ=

X
j2W T + 1jsð Þ

Ifxisj≠x
c

sj
ðT + 1Þg: ð10Þ

The optimal wild-type virus can be located by minimizing the
weighted sum of distances on both HA and NA

xv
j

n o
= arg min

i2NðTÞ
xi
jj
X
s2S

bsd
i
s T + 1ð Þ

( )
, ð11Þ

where NðTÞ is the set of available wild-type viruses on and before time
T, bs are the weights for gene s estimated by the VE-GD model for
influenza42,43, bHA : bNA = 1 : 3 for the pH1N1, and 1: 1.8 for the H3N2
(p-value < 0.001). Equation (11) gives the optimal wild-type virus
identified by beth-1 for considerations of vaccine strains. For beth-1
(two-protein) model, S= fHA,NAg, and for beth-1 (single-protein)
model, S= fHAor NAg.

Vaccine strains predicted by alternative models
The list of predicted strains by alternative methods can be found in
Supplementary Table 3–4. The answer strain is set as the closest wild-
type to the consensus sequence in season T + 1 obtained using the
observed data. The predicted strains of LBI16 are obtained by running
the model’s source code in python (https://github.com/rneher/
FitnessInference) on the same training data as the beth-1 by gene. In
each season, a new tree is built for the LBI using default parameters
(eps_branch =10−5, tau = 0.0625, outgroup= “A/Puerto Rico/8/1934” for
pH1N1, “A/Hong Kong/1/1968” for H3N2). When the highest LBI score
corresponds to more than one strain, one of the strains is randomly
picked. Two-sample t-test is used to compare log mismatch against
circulating viruses between alternative prediction models in a given
season. When comparing model performances over multiple seasons,
paired t-test of two methods by season is used to control seasonal
variation.

Phylogenetic tree
To better visualize the predicted strains, we present them in the time-
scaled maximum-likelihood phylogenies generated from TreeTime44.
The input tree was built by IQ-TREE45,46 with the default parameters
(bootstrap analysis = ultrafast, number of bootstraps = 1000, pertur-
bation strength = 0.5). Genetic sequences for building the tree were
sampled in proportion to continent distributions in the corresponding
epidemic season, targeting a total number of 400 sequences
per season for each of the pH1N1 and H3N2 subtype per season. In
2020/21, all available sequences of pH1N1 in the NH were used.

Clinical samples for animal experiment
BetweenOctober 2019 to February 2020, a total number of 117 positive
H1 and 43 H3 nasopharyngeal swab samples were collected in the
Prince of Wales Hospital, Hong Kong SAR. Ten samples from each of
the H1 and H3 subtypes were randomly selected for virus isolation in
humanized Madin-Darby canine kidney (hMDCK) cells47. The sequen-
ces of the HA gene from each virus was then determined by Sanger
sequencing. Phylogenetic analysis showed that the viruses belonged to
the sameclusters of their respective subtype in these isolates, of which
HA ectodomain shared >98% amino acids similarity for the pH1N1 and

>96% for H3N2. Thus, one pH1N1 and one H3N2 virus from these iso-
lates were randomly selected for animal experiments. Human study
ethics approval has been obtained from the Joint Chinese University of
Hong Kong—New Territories East Cluster Clinical Research Ethics
Committee.

Cell culture
hMDCK cells and human embryonic kidney (HEK) 293 T cells were
used in this study. Both cells were maintained in minimum essential
medium (MEM) supplemented with 10% fetal bovine serum (FBS;
Gibco), 25mM HEPES, and 100U/mL penicillin-streptomycin
(PS; Gibco).

Virus rescuing by reverse genetics
The H1N1 A/Puerto Rico/8/1934 (PR8) eight-plasmid reverse genetic
system was used to produce the recombinant influenza virus with the
predicted HA and NA genes48. Chimeric 6:2 recombinant viruses with
six internal genes from PR8 (PB2, PB1, PA, NP, M, and NS) and 2 genes
(HA and NA) from strain of interest were synthesized by Sangon
Technology (Guangzhou, China) and were cloned into the pHW2000
vector49. The HEK 293 T cells and hMDCK cells were then mixed at a
ratio of 2:1 one-day before transfection and co-cultured in a 6-well
plate until they reached 70% confluence. For each recombinant virus,
16μL TransIT®-LT1 (Mirus) and 1μg for each of the 8 plasmids
encoding the corresponding virus fragments were mixed thoroughly
for transfection. The medium was replaced with 1mL of MEM sup-
plemented with 25mM HEPES and 100U/mL PS at 6-hour post trans-
fection. At 24-hour post-transfection, another 1mL ofMEMwas added,
supplemented 25mM HEPES, 100U/mL PS, and 1μg/mL tosylpheny-
lalanyl chloridemethyl ketone (TPCK) trypsin (Sigma). At 72-hour post-
transfection, cell supernatants were inoculated into hMDCK cells
maintained in MEM containing 25mM HEPES, 100U/mL PS, and 1μg/
mL TPCK trypsin. The viruses were harvested at 72 hours after infec-
tion and titrated by plaque assay.

Immunization of the influenza vaccine virus in a mouse model
The research protocol of animal experiment was carried out in strict
accordance with the recommendations and was approved by the
Teaching and Research Committee on the Use of Live Animals
(CULATR 5598-20) of the University of Hong Kong. Batches of ten 8-10
weeks old female BALB/c mice were inoculated intraperitoneally (i.p)
with 105 PFU of Addavax-adjuvant recombinant virus in 200μL of
phosphate-buffered saline (PBS; Gibco). At twenty-one days post
immunization, peripheral blood was drawn from the immunized mice
by cardiac puncture, and the serumwas collectedby centrifugation. All
sera were treated with receptor destroying enzyme (RDE; Sigma) for
16–18 hours to reduce non-specific antibodies, then heated at 56
degrees for 30minutes to inactivate the RDE residue. The serum was
stored at −80 degrees for further experiments.

Immunogenicity assessment based on plaque reduction
neutralization test
hMDCK cells were used for virus titration by plaque assay and plaque
reduction neutralization test (PRNT). hMDCK cells were prepared in a
12-well plate at least 24 hoursbeforePRNTand cultured until obtaining
a 100% confluent monolayer in each well. Two-fold serial dilutions of
antiserum from 1:10 to 1:1280 were prepared, where each 100μL was
mixed with 100 PFU of viruses and incubated at 37 °C for 1 hour. Cells
were washed once with PBS and inoculated with corresponding virus-
antiserum mixture for further incubation at 37 °C for one hour. After
that, the supernatant in each well was replaced with 3mL of MEM
supplied with a final concentration of 25mM HEPES, 100U/mL PS, 1%
agarose gel, and 1μg/mL TPCK trypsin. Against the live viruses, the
highest dilution of the antiserum that inhibited at least 50% of the viral
plaques (PRNT50 titer) was recorded. The plate was inverted and
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incubated at 37 °C for 48 hours. Finally, the cells were fixed with 4%
formaldehyde and stained with 0.5% crystal violet for virus plaque
counting. We recorded the highest dilution of the antiserum that
inhibited at least 50% of the viral plaques as the PRNT50 titer of the
antiserum. Detailed information of the reagents and cell lines used in
this study were listed in Supplementary Table 17.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data used in this study is publicly available. Viral sequence datawere
downloaded from the global initiative on sharing all influenza data
(GISAID) at http://platform.gisaid.org/ and the accession numberswere
provided in the online supplementary acknowledgment table (https://
github.com/mwanglab/beth-1/tree/main/acknowledgement_table).

Code availability
The code is available at https://github.com/mwanglab/beth-1. Access
and use of the code is subject to a revocable, non-transferable, and
limited right for the exclusive purposeof undertaking academicornot-
for-profit research. Use of the Code or any part thereof for commercial
purposes requires a Commercial License Agreement from Beth
Bioinformatics (info@bethbio.com).
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