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Uveal melanoma immunogenomics predict
immunotherapy resistance and
susceptibility

Shravan Leonard-Murali1,2,3,4, Chetana Bhaskarla 1,2,3, Ghanshyam S. Yadav1,2,3,
SudeepK.Maurya1,2,3, Chenna R. Galiveti1,2,3, Joshua A. Tobin1,2,3, Rachel J. Kann1,
Eishan Ashwat1, Patrick S. Murphy1,2, Anish B. Chakka 5, Vishal Soman5,
PaulG.Cantalupo5, XinmingZhuo6,Gopi Vyas6, Dara L. Kozak6, LindseyM.Kelly6,
Ed Smith 6, Uma R. Chandran1,5, Yen-Michael S. Hsu1,7,8 &
Udai S. Kammula 1,2,3

Immune checkpoint inhibition has shown success in treating metastatic
cutaneous melanoma but has limited efficacy against metastatic uveal mela-
noma, a rare variant arising from the immune privileged eye. To better
understand this resistance, we comprehensively profile 100 human uveal
melanoma metastases using clinicogenomics, transcriptomics, and tumor
infiltrating lymphocyte potency assessment. We find that over half of these
metastases harbor tumor infiltrating lymphocytes with potent autologous
tumor specificity, despite low mutational burden and resistance to prior
immunotherapies. However, we observe strikingly low intratumoral T cell
receptor clonality within the tumor microenvironment even after prior
immunotherapies. To harness these quiescent tumor infiltrating lymphocytes,
we develop a transcriptomic biomarker to enable in vivo identification and
ex vivo liberation to counter their growth suppression. Finally, we demon-
strate that adoptive transfer of these transcriptomically selected tumor infil-
trating lymphocytes can promote tumor immunity in patients with metastatic
uveal melanoma when other immunotherapies are incapable.

Significant advances have been made in the treatment of metastatic
cutaneous melanoma (CM) using immune checkpoint inhibition (ICI)
targeting the cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),
the programmed cell death protein 1 (PD-1), and the lymphocyte-
activation gene 3 protein (LAG-3)1–5. Unfortunately, ICI therapy has
not shown comparable activity against most other solid tumors,
especially those with low tumor mutational burden (TMB)3,6. To

improve immunotherapeutic strategies for this large group of unre-
sponsive cancers we focused our studies on uveal melanoma (UM), a
prototypic ICI resistant cancer with low TMB4,7–10. With an annual
incidence of ~6 per million in Europe and the United States, UM is a
rare cancer accounting for 3% of all melanomas9,10. Although both CM
and UM develop from transformed melanocytes, UM uniquely arises
from the pigmented epithelium of the uveal tract, an immune
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privileged site11, and has an unusual predilection to aggressively
metastasize to the liver which results in a dismal prognosis9. In further
distinction, immunotherapies demonstrating efficacy against meta-
static CM have shown disappointing results against UM7,8, leading to
speculation that UM is an immunologically ‘cold’ variant of mela-
noma. However, there has been recent therapeutic progress with the
clinical introduction of tebentafusp, a bispecific glycoprotein 100
peptide-HLA-directed CD3 T cell engager, which has intriguingly
improved overall survival in patients with metastatic UM yet has
demonstrated only limited ability tomediate tumor regression12,13. To
reconcile these paradoxical findings and develop more effective
immunotherapeutics for metastatic UM, we sought to build upon our
previous discovery that a subset of UM metastases naturally harbor
tumor infiltrating lymphocytes (TIL) with potent autologous anti-
tumor reactivity14 and that adoptive cell therapy (ACT) administering
such TIL could mediate cancer regression in 35% of patients with
metastatic UM, including individuals who were refractory to ICI15.
These observations suggested that occult immune responses exist
and can be exploited to treat metastatic UM.

In this work we perform comprehensive immunogenomic pro-
filing on the largest andmost diverse group of human UMmetastases
compiled to date to uncover the tumor microenvironmental prop-
erties that underlie its occult immunogenicity and promote its resis-
tance and susceptibility to different classes of immunotherapy. We
find that over half of these metastases harbor TIL with potent auto-
logous tumor specificity, despite having low tumor mutational bur-
den and resistance to prior immunotherapies, including ICI and the
bispecific T cell engager tebentafusp. These T cell infiltrated metas-
tases display activated antigen presenting cells, chronic interferon
signaling, and diverse T cell receptor repertoires. However, we
observe strikingly low intratumoral T cell receptor clonality and
transcriptionally non-proliferative TIL within the tumor micro-
environment even after ICI and tebentafusp therapy, demonstrating
that these immunotherapies were insufficient to induce proliferation
of the tumor reactive TIL. To harness the therapeutic potential of
these quiescent TIL, we develop rapid tumor transcriptomic profiling
to enable their selective in vivo identification and ex vivo liberation to
counter their growth suppression. We demonstrate that adoptive
transfer of these transcriptomic selected TIL can promote tumor
immunity in patients with metastatic UM when other immu-
notherapies are incapable.

Results
Clinicogenomic landscape of metastatic uveal melanoma
One hundred metastases were surgically procured from 84 UM
patients as part of eligibility screening for TIL ACT clinical trials at the
National Cancer Institute and the University of Pittsburgh Medical
Center between 2013 and 2022 (NCT01814046 andNCT03467516)15,16.
Resected metastases originated from 11 unique anatomic locations
(Fig. 1a), with liver as the predominant procurement site (56%)
(Fig. 1b). Patient demographics revealed a median age of 56 years
(range = 17–78) and an even gender distribution (52% female, 48%
male) (Supplementary Data 1). Patients had extensive metastatic dis-
ease burdens, with 95% having liver involvement, 75% having elevated
LDH levels, and 71%withM1B orM1C stage (AJCC8th edition) (Fig. 1c).
Metastases were harvested from both treatment naïve patients (24%)
and treatment refractorypatients (76%). Notably, 46patients received
prior ICI therapy (anti-CTLA4 only = 3, anti-PD-1 only = 11, sequential
therapy = 8, combination therapy = 24) and 9 patients received
tebentafusp, of whom none showed objective response (Fig. 1c).
Somatic mutational analysis of the metastases confirmed a low TMB
(median = 0.64 mutations per megabase) with ubiquitous and
mutually exclusive presence of established UM driver mutations
(GNAQ,GNA11,CYSLTR2or PLCB4) and frequent secondary alterations
of BAP1 (62%) and SF3B1 (42%) (Fig. 1c and Supplementary Fig. 1a–e).

Somatic copy number alterations included chromosome 3 loss (46%)
and 8q gain (85%) (Fig. 1c). No associations were found between TMB
and cohort demographics (Supplementary Fig. 1f and Supplementary
Data 2). In sum, clinicogenomic profiling established this patient
cohort to be broadly representative of advanced UM and the pro-
cured metastases to have canonical UM driver alterations and
low TMB.

Unbiased tumor transcriptomics reveals T cell-inflamed uveal
melanoma metastases
Current tumor biomarkers for immunotherapy susceptibility, such as
TMB and PD-L1, are rarely used in metastatic UM due to the uniformly
low expression of thesemarkers in thismelanoma variant3,4,17. Thus, we
first sought to discover alternative immune prognostic metrics by
interrogating the transcriptome of UM metastases using total RNA
sequencing andunbiased computationalprofiling. Further, to facilitate
a clinically relevant andminimally invasive biopsy approach for in situ
tumor characterization, we restricted our analysis to a single random
biopsy from each resected metastasis (~2mm central core fragment
from93metastases and ~500,000 cells post tumor dissociation from 7
metastases). Principal component analysis (PCA) revealed themajority
of transcriptional variance among themetastaseswas restricted to PCs
1, 2, and 3 (variance contributed: 19%, 13%, 12% respectively) while the
remaining PCs (4–100) each contributed ~5% or less variance (Sup-
plementary Fig. 2a). Metastases were then mapped according to the
three main PC coordinates (PCs 1, 2, and 3) (Supplementary Fig. 2b, c).
To determine whether specific cellular pathways and processes were
associated with specific PCs, we correlated PC coordinates (1, 2, and 3)
with enrichment scores for each of the canonical hallmark gene sets
from the Human Molecular Signatures Database (Supplementary
Data 3)18. Unsupervised clustering (Euclidean distance) of the PC-gene
set correlations (Spearman’s rho) identified 4 discrete clusters (A, B, C,
andD)with unique biologicmotifs (Fig. 2a). Cluster A included cellular
metabolism pathways (MYC TARGETS V1, MTORC1 SIGNALING, OXIDA-
TIVE PHOSPHORYLATION), Cluster B included immune and inflamma-
tory signaling pathways (INTERFERON ALPHA RESPONSE, INTERFERON
GAMMA RESPONSE, ALLOGRAFT REJECTION, IL2 STAT5 SIGNALING),
Cluster C included liver dominant physiologic pathways (BILE ACID
METABOLISM, COAGULATION, CHOLESTEROL HOMEOSTASIS), and
Cluster D included cellular signaling and division (WNT BETA CATENIN
SIGNALING, MYC TARGETS V2, G2M CHECKPOINT). The individual
metastatic samples were further clustered by their relative expression
of each of the hallmark gene set clusters to reveal striking variability
across the tumor cohort (Fig. 2b). Having identified transcriptomic
differences among the metastases, we next sought to determine
whether any of the three PCs independently correlated with the
expression of the gene set clusters. Average Spearman’s rank correla-
tion coefficients (rho) for each of the gene set cluster enrichment
scores (A, B, C, and D) were mapped against the individual PCs (1, 2,
and 3) (Fig. 2c). We observed that cluster A (cellular metabolism) was
strongly correlated with PC3 (mean rho = +0.76) but also weakly cor-
related with the negative aspect of PC1 (mean rho = −0.27). Cluster B
(immune and inflammatory signaling) was exclusively correlated with
the negative aspect of PC2 (rho = −0.32). Clusters C and D were not
found to independently correlate with any of the three PCs. Given the
independent association of PC2 with Cluster B immune pathways, we
postulated that PC2 coordinate position was predominantly driven by
intrinsic immune and inflammatory gene expression in these metas-
tases. As support, when the enrichment scores for T cell activation
gene sets were mapped onto three-dimensional PCA plots of the
metastases, we observed that each gene set had a significant inverse
relationship with the PC2 axis (INTERFERON GAMMA RESPONSE versus
PC2: rho = −0.56, p = 2.52e−9; INTERFERON ALPHA RESPONSE versus
PC2: rho = −0.56, p = 2.89e−9; ALLOGRAFT REJECTION versus PC2:
rho = −0.49, p = 2.27e−7) (Fig. 2d and Supplementary Fig. 2d).
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Fig. 1 | Clinicogenomic landscape of metastatic uveal melanoma. a Diversity of
source tissues of resectedmetastases. Created with BioRender.com. b Distribution
of source tissues of resectedmetastases. cClinicogenomic annotation of individual

metastases. Each column represents a single metastasis. BAP1mRNA z-scores were
calculated using log2(normalized counts).
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Collectively, unbiased computational profiling revealed PC2 coordi-
nate mapping as an effective initial approach to segregate UM
metastases with T cell-inflamed transcriptomic attributes.

Development of Uveal Melanoma Immunogenomic
Score (UMIS)
We next sought to refine the rudimentary PC2 variable into a more
specific and clinically applicable immune metric for UM metastases.

First, we defined the 2394 genes that positively correlated with
immune and inflammatory hallmark gene set enrichment (those with
negative PC2 loadings). Rather than biasing this gene list with
supervised filtering, we utilized the entire list of 2394 genes to
facilitate discovery of novel biologic processes. Further, to enable
single-sample prospective analysis, we employed a cohort-
independent rank-based gene set scoring method (singscore18) to
calculate enrichment scores for individual biopsies based upon

Fig. 2 | Unbiased tumor transcriptomics reveals T cell-inflamed uveal mela-
noma metastases. a Unsupervised clustering of Spearman’s rank correlation
coefficients derived from correlating PC coordinates (columns) with enrichment of
hallmark signatures (row) for each individual metastatic sample (n = 100). Natural
clusters identified by the row dendrogram are split, labeled (A, B, C, D), annotated,
and color coded for visualization. b Heatmaps illustrating heterogeneity of hall-
mark signature enrichment across UM metastases (n = 100). Rows correspond to
hallmark signatures listed in (a). Columnswithin eachheatmap represent individual

metastases. Each heatmapwas clustered bymetastases separately to display tumor
heterogeneity within each hallmark cluster. Z-scores were calculated per row.
c Matrix of mean Spearman’s rank correlation coefficients for each cluster-PC
combination. d Three-dimensional PCA plots displaying enrichment scores for
selective hallmark immune related pathways identified in cluster B. Euclidean dis-
tance was used for hierarchical clustering (a, b). Statistical comparisons were
performed using Spearman’s rank correlation (a–d).
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transcript abundance (transcripts per million; TPM). Using this
approach, we generated a single continuous variable for each
metastasis called Uveal Melanoma Immunogenomic Score (UMIS)
which reflected the concordance andmean percentile rank of our list
of 2394 genes within the sample transcriptome (Fig. 3a). Cohort-
independent UMIS (singscore) correlated strongly with the corre-
sponding cohort-dependent score calculated using established
pipelines (GSVA), supporting that our single-sample rank-based tool
could be used for prospective evaluation of tumor biopsies without
batch artifact (Fig. 3b)18. Of the 2394 genes that constitute UMIS, 1527
were protein-coding and the remaining 867 were a mixture of non-
coding, unclassified, and pseudo genes (Fig. 3c and Supplementary
Data 4). Functional annotation of UMIS coding genes confirmed
pathways related to immune and inflammatory response (Fig. 3d).
UMIS values ranged from 0.114 to 0.347 across the 100 metastases
with a median score of 0.237, which was used as a cutoff to define
high and low UMIS groups for categorical comparisons (Fig. 3e).
Gene set enrichment analysis of high versus low UMIS metastases
demonstrated that the most significantly enriched pathways were in
the high UMIS group and involved T cell activation (Fig. 3f and
Supplementary Fig. 3a). UMIS level was observed to be independent
of metastatic site (Fig. 3g and Supplementary Data 5), TMB (Fig. 3h
and Supplementary Data 4), somatic mutations and copy number
alterations (Supplementary Fig. 3b and Supplementary Data 6 and 7),
and class I human leukocyte antigen (HLA) alleles (Supplementary

Fig. 3c). Thus, UMIS represented a unique single-sample gene
expression score derived from an unbiased mixture of coding, non-
coding, and unannotated transcripts that could rank UM metastases
based upon the expression level of immune and inflammatory genes.

UMIS uncovers in vivo drivers of T cell recruitment and
exclusion
To characterize the tumor microenvironmental cellular attributes
contributing to UMIS, we performed whole-tumor single cell tran-
scriptomics of six UM metastases with disparate UMIS values; 3 high
UMIS (0.300, 0.268, 0.264) versus 3 low UMIS (0.199, 0.178, 0.162)
(Supplementary Fig. 4a, b). We cataloged the 93,670 analyzed cells by
building a unique metastatic UM single cell atlas using a two-step
process that first categorized cells into large buckets (tumor, immune,
and stroma) then assigned specific cellular and lineage labels (myeloid
versus lymphoid) to the immune cellular fraction (Fig. 4a, b; Supple-
mentary Fig. 4c–e and Supplementary Data 8 and 9)19–21. Our single cell
analysis of low UMIS tumors had expectedly low numbers of immune
cells. However, tomaintain the true proportional landscape of specific
cell types and avoidmanipulation induced transcriptomic changes, we
profiled the tumor digests without an additional enrichment step. We
observed more lymphoid cells (proportion ratio = 10.50, p = 0.047)
and fewer tumor cells (proportion ratio = 0.88, p =0.047) in highUMIS
versus low UMIS metastases (Fig. 4b and Supplementary Fig. 4f). Fur-
ther, the composition of these lymphoid fractions differed, with the

Fig. 3 | Development of Uveal Melanoma Immunogenomic Score (UMIS).
a Workflow for the development of UMIS. Created with BioRender.com.
b Correlation of UMIS scores calculated by the cohort-independent method,
singscore, with UMIS scores calculated by the cohort-dependent method, gene set
variation analysis (GSVA). c Annotation of UMIS genes using Human Genome
Organization (HUGO) Gene Nomenclature Committee (HGNC). d Functional
annotation of protein-coding genes within UMIS using Database for Annotation,
Visualization and Integrated Discovery (DAVID) and Human Molecular Signatures
Database Gene Ontology Biological Process gene set collection. e Distribution of

UMIS scores across the cohort of 100metastases. fGene set enrichment analysis of
differentially expressed genes between high UMIS and low UMIS UM metastases.
The ten pathways with the lowest FDR are displayed. g Comparison of UMIS by
source tissue of resected metastases (n = 100 biologically independent samples;
liver = 56, subcutaneous = 20, lung = 6, other = 18).hCorrelation ofUMISwith TMB.
Statistical comparisons were performed using Spearman’s rank correlation with
overlaid simple linear regression to illustrate linearity (b, h), DAVID modified
Fisher’s exact test (d), fast preranked gene set enrichment analysis (f), or
Kruskal–Wallis test by ranks (g).
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high UMIS metastases being enriched with CD8+ T cells (proportion
ratio = 6.31, p = 6.15e−7) and the low UMIS metastases being enriched
with CD4+ T cells (proportion ratio = 0.63, p = 3.32e−4) and T helper/
Th17 T cells (proportion ratio = 0.25, p =0.024) (Fig. 4c). A granular
analysis of the lymphoid cells revealed that the high UMIS metastases
were enriched for CD8+ exhausted T cells (proportion ratio = 40.73,
p = 4.04e−7) and CD8+ cytotoxic T cells (proportion ratio = 4.70,

p = 1.13e−5) (Fig. 4d). Intriguingly, we observed that 9% of the CD8+
exhausted and 20% of the CD8+ cytotoxic TIL retained transcriptomic
expression of TCF7, suggesting possible progenitor capability (Sup-
plementary Fig. 5a). Differential gene expression of the lymphoid cells
revealed the high UMIS metastases had upregulation of genes invol-
ving T cell activation (TNFRSF9, TNFRSF4), T cell exhaustion (PDCD1,
CTLA4, LAG3, HAVCR2, VSIR), lymphocyte activation (STAT1),
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interferon response (HLA-A, HLA-B, HLA-C, B2M, IFNGR1, IRF1, IFI27, IFI6,
IFITM1, IFITM2, IFITM3), T cell memory (IL7R), lymphocyte trafficking
(CXCL13, CCR7, SELL, CXCR3), and T cell progenitor capability (TCF7)
(Fig. 4e; Supplementary Fig. 5b and SupplementaryData 10)22–28. Taken
together, these data demonstrate that the TIL found in high UMIS
metastases had undergone activation and effector differentiation
consistent with an in vivo adaptive anti-tumor response and indicative
of a T cell-inflamed microenvironment.

We next investigated the myeloid cells found in high UMIS versus
low UMIS metastases (Fig. 4f and Supplementary Fig. 5c). Although
there was no enrichment of specific myeloid cell types (macrophages,
dendritic cells, mast cells) in either group, differential gene expression
revealed the high UMISmyeloid cells had upregulated genes involving
CD8+ T cell recruitment (CXCL10, CXCL9), tumor phagocytosis
(SLAMF7), antigen processing (TAP1, TAP2), antigen presentation (HLA-
A, HLA-B, HLA-C, B2M, HLA-DPB1, HLA-DQB1, HLA-DRB1) and interferon
response (IRF1, IRF8, IFI27, IFI6) (Fig. 4g; Supplementary Fig. 5d and
Supplementary Data 11)24,25,28–31. These findings support that the T cell-
inflamed microenvironment found in high UMIS metastases also
included more active myeloid lineage antigen presenting cells (APCs)
capable of recruiting CD8+ T cells.

Finally, since UMIS was derived using unbiased whole-tumor
transcriptomics we postulated that this scoremay also reflect intrinsic
differences among the tumor cells within high versus low UMIS
metastases. Upon reclustering of tumor cells, we confirmed distinct
separation of cells derived from high versus low UMIS metastases
(Supplementary Fig. 6a). Differential gene expression revealed high
UMIS tumor cells had significantly increased expression of several
interferon-inducible transcription factors and elements (IRF1, IFI27,
IFI6, IFITM1, IFITM2, IFITM3) and each of the major histocompatibility
complex (MHC) class I molecule heterodimer components (HLA-A,
HLA-B, HLA-C, B2M) (Fig. 4h, i; Supplementary Fig. 6b and Supple-
mentary Data 12)23–25. These findings suggested that high UMIS
metastases were composed of IFN-γ primed tumor cells that had
upregulated MHC class I expression in response to chronic IFN-γ
secretion from tumor specific CD8+ T cells23,24. In contrast, low UMIS
tumor cells had 1.44-fold higher expression of CTNNB1 (log2(fold
change) = −0.53, FDR ~ 0) which encodes the beta-catenin protein
(Fig. 4h, l and Supplementary Data 12). Activation of the Wnt/beta-
catenin pathway has been implicated in T cell exclusion and may
explain the paucity of CD8+ T cell infiltrate in lowUMISmetastases30,32.
In support, we found a significant inverse relationship across the total
metastatic cohort (n = 100) between UMIS and the expression of a
previously reported immune resistance program (Fig. 4j, k)33. Inter-
estingly, the most upregulated gene in low UMIS tumor cells was the
long non-coding RNA, SNHG7, which was 3.48-fold upregulated in low
UMIS tumor cells (log2(fold change) = −1.80, FDR ~ 0) and has been
previously reported as a positive regulator of CTNNB1 expression in

several cancers (Fig. 4h, i and SupplementaryData 12)34–38. Our findings
confirmed a strong association between SNHG7 and CTNNB1 expres-
sion level in UMmetastases (n = 100) (Fig. 4l) that was independent of
tumor cell abundance as measured by melanoma-specific gene
expression (S100A1, SOX10, MITF) and total RNA quantity (ACTB,
GAPDH) (Fig. 4m and Supplementary Fig. 6c).

In sum, single cell transcriptomics demonstrated that UMIS was a
holistic metric that reflected the gene expression of the lymphoid,
myeloid, and tumor compartments within the tumor microenviron-
ment. Further, UMIS classification of metastases revealed increased
CTNNB1 expression by low UMIS tumors cells as a putative driver of
immune exclusion. In contrast, high UMIS metastases displayed lower
tumor cell CTNNB1 expression, more activated APCs, greater CD8+ T
cell recruitment, and robust interferon signaling.

UMIS predicts anti-tumor potency of ex vivo expanded TIL
To validate the transcriptomics demonstrating T-cell inflamed gene
expression, we next interrogated the specific anti-tumor potency of
the endogenous TIL from each of the UM metastases. Currently, the
assessment of TIL tumor reactivity requires patients to undergo sur-
gical resection of metastases followed by several weeks of ex vivo TIL
expansion and finally resource intensive coculture with autologous
tumor cells. Thus, we also investigated whether UMIS could serve as a
rapid andminimally invasive clinical tool to predict the tumor specific
potency of endogenous TIL. We compared UMIS values, derived from
a single randombiopsy fromeach sourcemetastasis (n = 100), with the
level of TIL anti-tumor reactivity found after conventional ex vivo
expansion (Fig. 5a). TIL cultures (n ~ 24) were initiated from each
freshly resected metastasis using a standardized ex vivo tumor frag-
mentation approach to address tumor heterogeneity, as previously
described15. The individual TIL fragment cultures were tested for
tumor specificity by coculture with autologous tumor digest (versus
normal tissue controls) followed by measurement of 4-1BB upregula-
tion on CD3+ cells (flow cytometry) and IFN-γ release (ELISA), which
were found to be strongly correlated (Fig. 5b, c). The percentage of TIL
cultures having tumor-specific reactivity from each metastasis was
used as a standardized reactivitymetric for comparing the level of anti-
tumor TIL responses across tumors (Fig. 5d). We found the frequency
of tumor reactive TIL cultures varied significantly among the total
cohort (median = 6%; range =0–100%) with 55 metastases having
measurable anti-tumor reactivity and the remaining 45 metastases
with no detected reactivity (Fig. 5e). Further, the metastases that had
undergone prior ICI (n = 53) and tebentafusp therapy (n = 12) showed
no difference in the mean percentage of tumor reactive TIL cultures
when compared to samples that had not undergone these treatments
(ICI 22% vs. no ICI 23%, p = ns; tebentafusp 32% vs. no tebentafusp 21%,
p = ns) (Fig. 5e and Supplementary Data 13). The percentage of tumor
reactive TIL cultures was also independent of metastatic site, TMB,

Fig. 4 | UMIS uncovers in vivo drivers of T cell recruitment and exclusion.
aUniformmanifold approximation and projection (UMAP) plot of all cells analyzed
from 6 UM metastases. Magnified panel shows immune subset of cells after
reclustering. Cell labeling is with a broad classification. b Proportion of overall cell
types within UMIS groups. Fold enrichment refers to proportion ratio (high UMIS/
low UMIS). c Proportion of lymphoid broad cell types within UMIS groups. Fold
enrichment refers to proportion ratio (high UMIS/low UMIS). d Volcano plot of
lymphoid granular cell types within UMIS groups. Fold enrichment refers to pro-
portion ratio (high UMIS/low UMIS). e Selected genes from differential gene
expression analysis of high UMIS versus low UMIS lymphoid cells. Bars indicate
medians and log2fc refers to log2(fold change). f Proportion of myeloid broad cell
types within UMIS groups. Fold enrichment refers to proportion ratio (high UMIS/
low UMIS). g Selected genes from differential gene expression analysis of high
UMIS versus low UMIS myeloid cells. Bars indicate medians and log2fc refers to
log2(fold change).hHeatmapof differentially expressed genes between high UMIS
and low UMIS tumor cells. Columns are individual cells, rows are genes. Cells are

grouped by the UMIS level of their metastasis. The genes included had log2(fold
change) ≥ |0.5| and FDR <0.05. Z-scores were calculated per row. i Selected genes
from differential gene expression analysis of high UMIS versus low UMIS tumor
cells. Bars indicate medians and log2fc refers to log2(fold change). UMAP plots
display all cells within each UMIS subset. j Correlation of UMIS with immune
resistance program scores33 in UMmetastases (n = 100). k Comparison of immune
resistance program scores33 by UMIS level in UMmetastases (high UMIS n = 50, low
UMIS n = 50; total n = 100 biologically independent samples). l Correlation of
SNHG7 with CTNNB1 transcript expression in UM metastases (n = 100). Units are
log2(normalized counts) from bulk RNAseq. m Correlation of SNHG7 with cano-
nical melanoma marker transcripts (S100A1, SOX10, MITF) in UM metastases
(n = 100). Units are log2(normalized counts) from bulk RNAseq. Statistical com-
parisons were performed using propeller (arcsin square root transformation of
proportions) (b–d, f), Wilcoxon rank-sum test (two-tailed) (e, g, i, k) and Spear-
man’s rank correlation with overlaid simple linear regression to illustrate linear-
ity (j, l, m).
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specificmutation expression, copy number alterations, and class I HLA
alleles (Supplementary Fig. 7a–d and Supplementary Data 13–15).
When UMIS of each source metastasis was compared to the percen-
tage of tumor reactive TIL cultures that were generated several weeks
later, we found a strong positive correlation (rho = +0.47, p = 7.06e−7)
(Fig. 5f). Notably, reactive TIL cultures were rarely expanded from
metastases with a UMIS less than 0.2, suggesting the use of this cutoff

as a preoperative threshold to avoid futile surgical resection of non-
inflamed UM metastases. Interestingly, we did observe a small subset
of discordant metastases (n = 16) with high UMIS values that yielded
TILwith nodetectable anti-tumor reactivity based uponcoculturewith
autologous tumor digest (Fig. 5f). However, upon assessing the quality
of these specific tumor digest samples, we found they had significantly
lower viability when compared to digests (n = 34) that yielded

Fig. 5 | UMIS predicts anti-tumor potency of ex vivo expanded TIL. aWorkflow
for parallel analysis of source tumor transcriptomics and expanded TIL anti-tumor
reactivity. Created with BioRender.com. b Example of TIL culture anti-tumor
reactivity screening from source tumor UM #100. From left, tumor fragments
(n = 24) are cultured individually for ~2 weeks before overnight coculture with
autologous tumor cells and measurement of 4-1BB (CD137) expression by flow
cytometry and IFN-γ release by ELISA. Final reactivity measurement subtracts
background reactivity of TIL (TIL alone) and non-specific reactivity (TIL +
autologous APCs). c Correlation between %4-1BB+CD3+ cells and IFN-γ release
among the 24 fragment cultures from UM #100 after overnight tumor coculture.
d Individual TIL fragment culture anti-tumor reactivity as assessed by 4-1BB upre-
gulation and IFN-γ release from source tumor UM#100. TIL cultures were classified
as tumor reactive if their 4-1BB expression was >1% (dotted line) and twice back-
ground or IFN-γ release was >100pg/ml (dotted line) and twice background. Per-
centage tumor reactive TIL cultures was defined as 100*(tumor reactive TIL
cultures)/(total TIL cultures). e Distribution of percent tumor reactive TIL cultures
among the cohort of 100 metastases color-coded by pre-harvest treatments.

f Correlation of UMIS with percent tumor reactive TIL cultures. Color of each point
denotes tumor digest viability percentage. g Correlative benchmarking of UMIS
against published gene expression profiles and tumor biomarkers (n = 100 metas-
tases). All correlations are with percent tumor reactive TIL cultures. h Predictive
benchmarking of UMIS against published gene expression profiles and tumor
biomarkers (n = 100 metastases). Receiver operating characteristic (ROC) curves
and accompanying statistics are for variables’prediction of≥33% tumor reactive TIL
cultures. i Disparate UMIS and TIL culture reactivity from synchronous hepatic
metastases in UM patient #1. Created with BioRender.com. j Validation of UMIS’
ability to predict ex vivo TIL reactivity in an independent metastatic biopsy cohort
(n = 20 metastases). Receiver operating characteristic (ROC) curve and area under
curve (AUC) value is for UMIS’ prediction of ≥33% tumor reactive TIL cultures.
Statistical comparisons were performed using Spearman’s rank correlation with
overlaid simple linear regression to illustrate linearity (c, f, g) or univariate logistic
regression (h, j). Gene expression profiles were calculated using singscore to best
assess their cohort-independent predictive ability (Supplementary Data 16)30,39–41.
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concordance between high UMIS and co-culture reactivity (median
digest viability: 78% vs. 93%, p = 0.046) (Fig. 5f and Supplementary
Fig. 7e). Since UMIS quantitation was neither associated with nor
dependent upon tumor digest viability (Supplementary Fig. 7f), the
discordance with anti-tumor reactivity observed with this outlier
subset likely stemmed from insufficient stimulatory capacity of these
low viability tumor digests. To further characterize the performanceof
UMIS in our discovery cohort of 100 UMmetastases, we benchmarked
its ability to predict co-culture anti-tumor reactivity against several
other tumor biopsy metrics including TMB, percentage of infiltrating
CD8+ T cells, and several published gene expression profiles for T cell
inflammation (Fig. 5g, h and Supplementary Data 16)30,39–41. We found
that UMIS was the strongest performer as both a correlative metric
(rho = +0.47, p = 7.06e−7) and classification metric (AUC=0.85) for
predicting ex vivo TIL reactivity (Fig. 5g, h). Not surprisingly, TMB had
no predictive value (rho = +0.01, p = ns; AUC=0.51) (Fig. 5g, h). In
further support of UMIS as a preoperative biomarker, we found that
UMIS level could identify metastases with the greatest yield of tumor
reactive TIL among synchronous metastases in individual UM patients
(Fig. 5i). In a prospective and independent validation cohort of meta-
static UM biopsies, we corroborated the predictive ability of UMIS for
ex vivo TIL reactivity (n = 20, AUC=0.76) (Fig. 5j). Additionally, we
validated that UMIS remained consistent across spatially distinct areas
of individual tumors (Supplementary Fig. 8a) and could also be
obtained from minimally invasive core biopsies (Supplementary
Fig. 8b). Taken together, these findings establish that UMIS, obtained
from a metastatic biopsy, could serve as a minimally invasive pre-
operative biomarker to both identify UMmetastases harboring tumor
reactive TIL and predict the percentage of tumor reactive TIL cultures
that could be expanded without the limitations associated with con-
ventional coculture assays.

UMIS identifies quiescent TIL resistant to ICI and tebentafusp
but sensitive to ex vivo expansion and adoptive transfer
Having found that UMIS strongly correlated with the level of TIL anti-
tumor reactivity in metastases, we were surprised to find that high
UMIS status was not significantly associated with improved survival in
our UM cohort (Supplementary Fig. 9a). Furthermore, despite dis-
covering tumor reactive TIL within the metastases of 23 UM patients
(50%) who received prior ICI and 7 patients (78%) who received
tebentafusp, we noted that none of these patients showed objective
tumor regression with these therapies. To investigate these para-
doxical findings, we analyzed the intratumoral TCR repertoire within
the sourcemetastases42. We found that the in situ diversity of the TCR
beta (TRB; n = 88) and TCR alpha (TRA; n = 82) chains varied sig-
nificantly across the total cohort ofmetastases (Shannon index ranges;
TRB = 0.08–4.84, TRA =0.69–4.72) (Fig. 6a and Supplementary
Fig. 10a). UMISwas found to strongly correlate with both TRB diversity
(rho = +0.54, p = 5.40e−8) (Fig. 6a) and TRA diversity (rho = +0.45,
p = 2.14e−5) (Supplementary Fig. 10a) suggesting that high UMIS
metastases had more polyclonal T cell infiltrates. In contrast, TRB and
TRA clonality, an in vivo surrogate for relative TIL clonal expansion,
was low and minimally variant across the samples (1 − Pielou’s index
ranges; TRB = 0–0.89, TRA =0–0.23) (Fig. 6a and Supplementary
Fig. 10a). We expectedly found no correlations between UMIS and the
clonality of theTRB (rho = +0.02,p = ns) (Fig. 6a) andTRA (rho = −0.07,
p = ns) chains (Supplementary Fig. 10a). The in vivo quiescence of
these TIL was further corroborated by single cell TCR repertoire ana-
lysis demonstrating low clonality (Supplementary Fig. 10b) and single
cell transcriptomics which found that the percentage of proliferative
T cells was equivalently low in high and low UMIS metastases (Figs. 4c
and 6b). Interestingly, prior ICI therapies (n = 53) had no influence on
TCR diversity compared with untreated samples (Fig. 6a, c and Sup-
plementary Fig. 10a, d). In contrast, prior tebentafusp treatment
(n = 12) was associated with greater TCR diversity, consistent with the

ability of this bispecific T cell engager to recruit T cells to these
metastases (Fig. 6a, c and Supplementary Fig. 10a, c, d). However,
neither prior ICI nor tebentafusp therapy were associated with an
increase in TCR clonality (Fig. 6a, c and Supplementary Fig. 10a, c, d),
indicating that these immunotherapies were incapable of inducing
in vivo proliferation of the endogenous TIL. When specific TRB and
TRA sequences were compared across the metastases (n = 100), we
found that most of the sequences were private, with rare and limited
public expression suggesting unique, rather than shared, antigen tar-
geting (Supplementary Fig. 10e). Cumulatively, these TCR repertoire
studies demonstrated that although high UMIS metastases were infil-
trated with a unique polyclonal population of TIL, these T cells
remained quiescent, even after receiving ICI and tebentafusp therapy.

To determine whether the deficient proliferation of the intratu-
moral T cells was due to T cell exhaustion or other intrinsic pro-
liferative defects, we performed clinical scale ex vivo rapid expansion
(REP) of TIL from UM metastases that were either naïve to ICI and
tebentafusp (n = 3), or refractory to ICI (n = 10), tebentafusp (n = 4), or
both therapies (n = 2) (Fig. 6d, e and Supplementary Fig. 11a–c). We
observed that TIL from each of the metastases demonstrated
approximately 5-log expansion, reaching massive cell counts (med-
ian = 7.31e10, range = 1.00e10–1.12e11) (Fig. 6d, e and Supplementary
Fig. 11a). Further, these expanded TIL demonstrated a significant
decrease in TCR diversity (p = 4e−6) and a significant increase in TCR
clonality (p = 4e−6) as compared to their source metastases using
highly specific targeted TCR sequencing (Fig. 6d, e and Supplementary
Fig. 11a–c). Thesefindings suggested that the endogenous TILwerenot
limited by intrinsic proliferative deficiencies, but instead their growth
was likely suppressed by the tumor microenvironment. Taken toge-
ther,we observed the quiescence of endogenous TIL inUMmetastases
was not reversed with ICI or tebentafusp but could be revived with
ex vivo liberation and expansion.

Based upon the observation that UMIS from a metastatic biopsy
could predict the ex vivo potency of quiescent endogenous TIL, we
postulated that UMIS might also predict the clinical efficacy of adop-
tive transfer of theseTIL after ex vivo liberation andexpansion (Fig. 6f).
Of the 100 UM metastases profiled, 19 had been used to manufacture
TIL for a previously reported ACT trial in patients with metastatic UM
(NCT01814046)15. Among this treatment cohort, which included 6
responders and 13 nonresponders, we observed a strong correlation
between source tumor UMIS and the ex vivo anti-tumor reactivity of
the post-REP TIL infusion product (n = 17, rho = +0.61, p = 0.011; 2
infusion products were not tested due to insufficient tumor) (Fig. 6g).
Additionally, we found that UMIS as a continuous variable strongly
correlated with magnitude of clinical tumor regression after adoptive
transfer in patients with metastatic UM, including ICI refractory indi-
viduals (n = 19, rho = −0.68, p = 0.001) (Fig. 6h). To help define a UMIS
threshold value that might have future clinical utility in predicting
RECIST objective responses (≥30% reduction), we utilized the median
UMIS value of the non-responder group (UMIS = 0.246) as a response
threshold (Fig. 6i). We observed that patients having source metas-
tases above this threshold had significantly improved progression-free
and overall survival after TIL ACT versus those below the threshold
(Fig. 6j). In sum, thesefindings demonstrate thatUMIS, performedon a
pre-treatment metastatic biopsy, correlated with the clinical outcome
after adoptive transfer of TIL and may serve as a future predictive
biomarker for the treatment of metastatic UM with ACT.

Discussion
Here we profiled the immunogenomic landscape of metastatic UM
using bulk and single cell transcriptomics, TCR repertoire analysis, TIL
reactivity assessment, and clinical adoptive cell therapy. Our findings
establish that metastatic UM is not an immunologically ‘cold’ cancer,
but instead over half of the analyzed UM metastases harbored
tumor reactive TIL, despite having one of the lowest mutational
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burdens of any solid cancer4,9,43,44 and an equally limited responsive-
ness to approved immunotherapies, including ICI therapy and
tebentafusp4,7,8,12,13,45,46. To avoid sampling bias in our study, we ana-
lyzed a large clinically representative groupofUMpatients (n = 84) and
theirmetastases (n = 100) whichwere procured from a diverse array of
organ sites (n = 11). Further, the metastases in the current study were
genomically validated to be of uveal origin by expression of canonical
UM somatic alterations and low TMB4,9,43,47,48. Thus, we believe our
study cohort to accurately represent the metastatic immunogenomic

landscape of this rare cancer and uniquely suited to answer two critical
questions that have significant therapeutic implications for UM: what
factors drive T cell inflammation in metastatic UM, and why does
metastatic UM respond so poorly to currently approved
immunotherapies?

To define drivers of immune response against metastatic UM, we
utilized bulk total RNA sequencing of metastatic biopsies and found
that T cell-inflamed metastases naturally segregated from T cell exclu-
ded metastases based upon an unsupervised transcriptomic signature
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composed of coding, non-coding, and unannotated transcripts. Rather
than biasing this gene list with supervised filtering, we integrated the
entire 2394 gene set into a gene expression score called UMIS. Based
upon a unique single cell transcriptomic atlas that we developed spe-
cifically for metastatic UM, we found that UMIS could holistically reflect
the multiple cellular components of the tumor microenvironment49.
Metastases with low UMIS (versus high UMIS) had a paucity of TIL and
were composed of tumor cells with higher beta-catenin transcript
expression (CTNNB1), which has been described as a transcriptional
repressor of BATF3-lineage dendritic cell recruitment of CD8+
T cells30,50,51. In contrast, high UMIS metastases had lower tumor cell
expression of CTNNB1, increased APC expression of T cell chemoat-
tractant ligands (CXCL10 and CXCL9), greater tumor reactive TIL
recruitment, and markedly elevated MHC expression on multiple cell
populationswithin the tumormicroenvironment, suggesting prominent
interferon signaling. Thus, we believeWnt/beta-catenin signaling to play
an important role in promoting immune exclusion in metastatic UM,
similar to prior reports in metastatic CM30,32,50–52. Surprisingly, we iden-
tified only a single metastasis with a possible activating somatic muta-
tion of theWnt/beta-catenin pathway, suggesting hotspotmutations are
not a common driver of beta-catenin overexpression in UM
metastases53. However, we did observe a strong correlation between the
expression of the long non-coding RNA, SNHG7, and CTNNB1. Based
upon several reports that SNHG7 is a positive regulator of CTNNB1 and
compelling evidence that in vitro knockdown of SNHG7 leads to
downregulation of the Wnt/beta-catenin pathway in various other
cancers34–38 we are investigating the mechanistic role of this non-coding
RNA in driving T cell exclusion in UM metastases and therapeutic stra-
tegies to potentially abrogate its effect in low UMIS metastases.

To better understand why UM metastases rarely regress with
approved immunotherapies, we evaluated TIL from ICI and tebenta-
fusp resistant patients. From our total cohort of TIL samples (n = 100),
we observed that 55% of UM metastases harbored tumor reactive TIL
and there was no difference in the percentage of tumor reactive TIL
cultures expanded from ICI and tebentafusp treatedmetastases versus
untreated. Yet, despite the presence of potent TIL in thesemetastases,
we found they were strikingly quiescent with an absence of in vivo TIL
expansion using TCR clonality analysis and single cell transcriptomics.
Interestingly, we observed prior tebentafusp therapy was associated
with increased in vivo TCR diversity in our samples, demonstrating its
ability as a T cell recruiter12,13. However, neither tebentafusp nor ICI
therapy were associated with an increase in TCR clonality. The quies-
cence of these T cells within the tumormicroenvironmentmay explain
the low rates of objective tumor regression and the intriguing decou-
pling of overall response rate as a surrogate for overall survival in UM
patients treated with tebentafusp12,13,54. In contrast, TCR repertoire
studies of cutaneous melanoma metastases have reported significant

variance in TCR clonality, with higher pre-treatment clonality being
associatedwith improved response to PD-1 blockage55–58. Interestingly,
we found the quiescent TIL from ICI and tebentafusp treated UM
metastases could demonstrate significant ex vivo expansion, indicat-
ing that these T cells were not limited by intrinsic factors such as
exhaustion, but rather by extrinsic constraints within the UM tumor
microenvironment. In support, we previously observed that adoptive
transfer of tumor reactive TIL couldmediate objective regression in ICI
refractory UMpatients15. In sum, these findings reveal that occult T cell
responses do exist against metastatic UM but require therapeutic
strategies such as ACT to overcome their growth-suppressed state
within the tumor microenvironment.

Finally, our study revealed the importance of UMIS as a tumor
intrinsic biomarker to predict TIL potency and clinical response after
adoptive transfer in UM patients. Whereas recent reports have pro-
posed phenotypic and transcriptomic markers for the purpose of
defining neo-antigen specific TCR sequences fromTIL27,59,60, webelieve
UMIS represents a unique tumor biomarker for the identification of
tumor reactive TIL capable of ex vivo expansion for clinical adoptive
transfer. Importantly, a UMIS level of less than 0.2 identified metas-
tases that were unlikely to yield potent TIL, suggesting that pre-
operative UMIS measurement could prevent futile invasive surgical
harvests. We found UMIS performed significantly better as a tumor
intrinsic biomarker of TIL potency when compared to several focused
gene expression signatures of T cell inflammation. We postulate that
the superior performance of UMISwas a result of its unique derivation
from a large unbiased mixture of coding and non-coding transcripts.
Further, rather than narrowly reflecting the gene expression of only
immune cells, UMIS was developed as a whole-tumor metric that
reflected the gene expression of the lymphoid, myeloid, and tumor
compartments within the tumor microenvironment.

Potential limitations of our study include selection bias of the
patients and metastases analyzed. The rare nature of UM limited our
sample size to 100 metastases. A subset of patients contributed mul-
tiple metastases to the study (14 patients with multiple metastases
included). We chose to include these metastases to maximize sample
size in this rare cancer but recognize that this may be a source of
selection bias. Given that UM patients presented with the intent of ACT
screening, which has strict eligibility requirements, the analyzed cohort
may not represent elderly individuals or those demonstrating rapidly
progressive metastatic disease and declining performance. Further,
although UMIS was found to correlate with TIL reactivity across 24
geographically unique tumor fragments, the predictive ability of UMIS
in larger and more heterogenous lesions needs further study. Finally,
while our ongoing independent validation cohort (n = 20) has corro-
borated the ability of UMIS to predict TIL reactivity, longer clinical
follow up is required to evaluate survival in this group of patients.

Fig. 6 | UMIS identifies quiescent TIL resistant to ICI and tebentafusp but
sensitive toex vivo expansion andadoptive transfer. aT cell receptor beta (TRB)
repertoire analysis of bulk RNAseq of UMmetastases (n = 88). Immune checkpoint
inhibition (ICI) refers to treatment history prior to metastatic biopsy. b Proportion
of proliferative T cells in UMIS groups by single cell atlas. c Comparisons of TRB
diversity and clonality in ICI or tebentafusp untreated versus treated metastases
(ICI: 48 treated, 40 untreated; tebentafusp: 12 treated, 76 untreated). d Ex vivo TIL
expansion from treatment naïve and refractory patients (n = 19). Listed therapies
were received prior to metastatic biopsy. Changes in TIL cell counts (left), T cell
receptor beta (TRB) diversity (middle), and TRB clonality (right) are shown for
source metastases and corresponding TIL cultures post rapid expansion protocol
(post-REP TIL). Metastases’ TIL counts were conservatively estimated to be ≤106.
TRB repertoires were characterized with targeted TCR repertoire analysis. Sche-
matic created with BioRender.com. e Examples of TRB dynamics with ex vivo TIL
expansion. Bubble plots represent unique TRB clonotypes (color coded) with
bubble size indicating percentage of total clonotypes. Shown are representative
examples for each pre-harvest treatment group (neither =UM #73, ICI = UM #50,

tebentafusp =UM #59, both =UM #49). Schematic created with BioRender.com.
f Schematic for evaluation of UMIS in the context of NCT01814046 (ACT of TIL for
metastatic UM)15. Created with BioRender.com. g Correlation of source metastasis
UMIS with TIL infusion product reactivity (n = 17). h Correlation of source metas-
tasis UMISwithmaximumpercent change in tumor size frombaseline (RECIST v1.1)
after TIL ACT. RECIST response line is drawn at−30% (n = 19). iComparison ofUMIS
between responders (R; n = 6) and nonresponders (NR; n = 13) to TIL ACT. The
median UMIS of the NR group (0.246) was used as a clinical response threshold for
outcome analyses. j Time-to-event curves of post-ACT survivals by UMIS response
thresholds (n = 19). Progression-free survival used progressive disease as the event
(median follow-up (months): high = 5.09, low = 2.07). Overall survival used death as
the event (median follow-up (months): high = 20.97, low =4.90). Hazard ratios (HR)
are for above versus below threshold groups. Statistical comparisons were per-
formed using Spearman’s rank correlation with overlaid simple linear regression to
illustrate linearity (a, g, h), Fishers exact test (b), Wilcoxon rank-sum test (two-
tailed) (c, i), Kruskal–Wallis test by ranks (c), Wilcoxon signed-rank test (two-tailed)
(d) or logrank test (j).
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Methods
Patient samples and clinical annotation
Patients were screened and tumor samples were obtained after
informed consent in conjunction with tumor procurement banking
protocols associated with two adoptive TIL transfer clinical trials:
NCT03467516 (Hillman Cancer Center, UPMC, Pittsburgh, PA, USA)
and NCT01814046 (Surgery Branch, NCI, Bethesda, MD, USA). Patients
gave informed consent in accordance with the Declaration of Helsinki,
and the trials were reviewed and approved by the NCI and UPMC
Institutional Review Boards. There was no requirement for previous
systemic therapy, given the lack of known effective systemic treat-
ments for metastatic UM at the time of study. If patients did receive
previous systemic treatment, more than 4 weeks must have elapsed
before initiation of the current trial therapy, and patients’ toxicities
must have recovered to a grade 1 or less (except for toxicities such as
alopecia or vitiligo). All patients were required to have progressive and
measurable metastatic disease with an Eastern Cooperative Oncology
Group performance status of 0 or 1 and life expectancy greater than
3 months at the time of enrollment. Patients were required to have
adequate hematological, renal, and hepatic function. Patients were
excluded if they had active systemic infections, coagulation disorders,
or other active major medical illnesses of the immune system15.

Clinical information, including demographics and treatments,
were collected relative to the date ofmetastatic tumorharvest. Sexwas
self-reported by patients and consistent with biological sex deter-
mined by genomic analysis. Time-to-event data was collected relative
to multiple dates: date of primary diagnosis, date of metastatic diag-
nosis, and date of ACT (if applicable). In cases of patients withmultiple
metastatic biopsies an algorithm was adopted for selection of a
representative biopsy for the purposes of patient-centered time-to-
event analysis (in descending order of priority: metastasis harvested
prior to any ACT, metastasis whose TIL was utilized for subsequent
ACT, more recently harvested metastasis. Response to ACT was eval-
uated using RECIST v1.1 criteria61.

Tumor procurement, ex vivo TIL culture and tumor reactivity
testing
All patients had surgical metastatectomies as screening for clinical
trials NCT03467516 (Hillman Cancer Center, UPMC, Pittsburgh, PA,
USA) and NCT01814046 (Surgery Branch, NCI, Bethesda, MD, USA) to
procure tumor tissue to generate autologous TIL for therapy16. After
surgical procurement of a metastatic lesion, the fresh tumor under-
went sterile dissection in the UPMC Immunological and Cell Products
Laboratory (Pittsburgh, PA, USA) or the Surgery Branch Cell Produc-
tion Facility (Bethesda, MD, USA). Representative samples of tumor
were sent for formal pathological confirmation of UM. Tumor samples
procured at the Surgery Branch, NCI, were transferred via a Material
Transfer Agreement to the University of Pittsburgh where the analyses
were conducted. To develop a clinically relevant core biopsy approach
for in situ tumor characterization, a single random biopsy was
obtained from each resected metastasis (~2mm central core fragment
from93metastases and ~500,000 cells post tumor dissociation from 7
metastases) and were snap-frozen in liquid nitrogen and stored long
term at −80 °C for future DNA and RNA extraction.

TIL cultures were initiated from geographically discrete 1–2mm3

tumor fragments (n ~ 24) that were placed individually in wells of a 24-
well culture plate containing complete media with human AB serum
and recombinant interleukin-2 (6000 IU/ml; Clinigen). Remaining
fresh tumor was processed by mechanical and enzymatic digestion
with the human Tumor Dissociation Kit (Miltenyi Biotec) and gentle-
MACS Dissociator (Miltenyi Biotec) to provide a single cell suspension
of autologous tumor targets for TIL reactivity testing. Tumor digests
underwent flow cytometric phenotyping with propidium iodide fol-
lowed by the following anti-human monoclonal antibodies: CD3-APC-
Cy7, CD8-PE-Cy7, CD4-PE (BD Biosciences). Tumor digest viability was

determined by percent propidium iodide negative cells by flow cyto-
metry or percent trypan blue negative cells by manual cell counting
(UM #47). After ~2 weeks of growth, individual TIL fragment cultures
were tested for tumor specificity by coculture with autologous tumor
cells (versus normal tissue controls) followed by measurement of
4-1BB upregulation on CD3+ cells by flow cytometry using anti-human
CD137 (4-1BB)-APC (BD Biosciences) and IFN-γ release by ELISA14,15.
Tumor single cell suspensions (digests) and peripheral blood mono-
nuclear cells were cryopreserved in freezing media and stored long
term in liquid nitrogen. Monocytes were isolated from peripheral
blood mononuclear cells using the CD14+ MicroBead isolation kit
(Miltenyi Biotec). All flow cytometry data was analyzed with FlowJo
v10.8 Software (BD Life Sciences).

Clinical scale ex vivo rapid expansion protocol (REP) involved
selection of individual fragment T cell cultures for further expansion
based on proliferative capacity and evidence of autologous tumor
reactivity. Final large-scale expansionof selectedTIL cultureswasdone
with anti-CD3 antibody (30 ng/ml, Ortho Biotech or 50ng/ml, Miltenyi
Biotec) and recombinant interleukin-2 (3000 IU/ml; Clinigen) in the
presence of irradiated peripheral blood mononuclear feeder cells15.
The specific anti-tumor reactivity of the infused TIL from
NCT01814046 (Surgery Branch, NCI, Bethesda,MD, USA) was assessed
by ELISA-based assays. Following overnight co-culture of the TIL with
their autologous source tumor, the supernatant from these respective
co-cultures was assessed by ELISA to determine the tumor-induced
IFN-γ production as described previously15.

DNA extraction, library preparation, sequencing, and somatic
analysis
Whole genome sequencing of the majority of samples was performed
at the UPMCGenome Center (n = 93). Genomic DNAwas isolated from
tumor samples or peripheral blood mononuclear cells on the auto-
mated Chemagic 360 (PerkinElmer) instrument according to the
manufacturer’s instructions. Extracted DNA was quantitated using
Qubit dsDNA BR Assay Kit (Thermo Fisher Scientific). DNA libraries
were prepared using the KAPA Hyper Plus Kit (KAPA Biosystems).
Genomic DNA was processed through fragmentation, enzymatic end-
repair and A-tailing, ligation, and quality check a Standard Sensitivity
NGS Fragment Analyzer Kit (Agilent). Libraries with an average size of
450 base pairs (range = 300–600 base pairs) were quantified by qPCR
on the LightCycler 480 (Roche) using theKAPAqPCRquantificationkit
(KAPA Biosystems). The libraries were normalized and pooled as per
manufacturer protocol (Illumina). Sequencing was performed using
the NovaSeq 6000 platform (Illumina) with 151 base pair paired end
reads to an average target depthof 70X coverage. The sequencing data
was demultiplexed with bcl2fastq2 v2.20 (Illumina) to produce the
fastq files.

The samples were mapped with Sentieon v1.3.462. Somatic var-
iants were called by TNhaplotyper2 on tumor-normal mode with the
best-practice recommended whole genome sequencing setting. Var-
iants were annotated with Funcotator from GATK v4.0.563. Copy
number alterations were called with an in-house developed ensemble
method (CNVsenate) with mapped BAM and somatic SNV VCF files.
CNVsenate gathers calling results fromGATK v4.0.563, CNVkit v0.9.564,
CNVnator v0.2.765, Manta v1.3.266, Sentieon CNV (201911)62 and com-
bines calling with SURVIVOR2 v1.0.367, then uses machine learning and
event size for filtering. The filtered results were annotated with
AnnotSV v1.1.168 for affected genes. The denoised copy ratio for
chromosomal segments from GATK was primarily used. A customized
script was used to calculate the denoised copy ratio for chromosomal
arms. Copy number gain was defined as chromosomal arm denoised
copy ratio ≥1.25, while copy number loss was defined as chromosomal
arm denoised copy ratio ≤0.80.

Somatic SNV VCF files were converted to MAF format with
vcf2maf v1.6.1969 and annotated with VEP v10270. The MAF cohort was
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filtered with a genomic data commons-like strategy, including for
population allele frequency <2%, coding regions, and presence in
dbSNP71 and COSMIC72. Further filtering was done for only somatic
mutations with variant allele frequency ≥5%. Mutations were manually
tabulated for one sample thatwasunable to beprocessed into theMAF
format (UM #20). All computational processes above were performed
on a linux-based amazon web services ec2 instance on the DNAnexus
platform (DNAnexus). The MAF file was then processed and summar-
ized using maftools v2.10.0573.

For six samples (UM #4, #13, #22, #23, #26 and #30) without
sufficient tumor tissue for whole genome sequencing we utilized
whole exome sequencing performed as described previously14 to
assess for canonical UM somatic mutations. For one sample (UM #53)
without sufficient tumor tissue forwholegenome sequencingDNAand
RNA were extracted from paraffin embedded tumor tissue and pro-
cessed with the Oncomine Comprehensive Assay v3 DNA and RNA
primer sets (Thermo Fisher Scientific) according to themanufacturer’s
protocol. Alterations assessed were per the UPMC Oncomine panel
which has been described previously74.

RNA extraction, library preparation, sequencing, and read
alignment
Total RNA was isolated from tumor samples on the automated Che-
magic 360 (PerkinElmer) instrument according to the manufacturer’s
instructions. Extracted RNA was quantitated with the Qubit RNA BR
Assay Kit (Thermo Fisher Scientific) followed by an RNA quality check
using Fragment Analyzer (Agilent). For each sample, RNA libraries
were prepared from 100 ng of RNA using the KAPA RNAHyperPrep Kit
with RiboErase (Kapa Biosystems) according to the manufacturer’s
protocol, followed by a quality check using Fragment Analyzer (Agi-
lent) and quantification by qPCRwith the Kapa qPCR quantification kit
(Kapa Biosystems). The libraries were normalized, pooled, and
sequenced using the NovaSeq 6000 platform (Illumina) to an average
of ~50million 101 base pair paired end reads. The sequencing data was
demultiplexed with bcl2fastq2 v2.20 (Illumina) to produce the
fastq files.

Bulk transcriptomic computational analyses
Sequencing data was quality controlled with FastQC v0.11.775 before
and after adapter trimming with cutadapt v1.1876 along with assess-
ment of estimated ribosomal content with sortmerna v4.3.477. Trim-
med reads were then aligned with STAR v2.7.5a78 using the Gencode
v38 GTF and GRCh38 fasta references79. Uniquely mapped percentage
of reads and total uniquelymapped readsmetrics after STARmapping
were used as further quality control metrics. The BAM file was indexed
with samtools v1.1080. Gene counts from the STAR BAM files were
calculated with htseq-count v0.13.581.

Gene names were converted from Ensembl v10382 to HUGO gene
symbols with biomaRt v2.50.383. Redundant gene counts after name
conversion were summed. Transcripts per million (TPM) were calcu-
lated in standard fashion using gene lengths calculated with Feature-
Counts v1.6.284. Raw counts were normalized with DESeq2 v1.34.085

using default and recommended parameters. Variance stabilizing
transformation was performed on the normalized counts and used for
principal component analysis (PCA) with PCAtools v2.10.086. PCA was
performed using the 10% most variant genes (n = 5942) in the dataset.
Differential gene expression by UMIS level was performed without any
adjustment parameters with default and recommended settings.

Enrichment scores of gene sets were calculated with singscore
v1.14.018 using TPM input. Calculations utilized the unidirectional
expected-upregulated mode, with the exception of the immune
resistance program score33 which was calculated using the bidirec-
tional mode using separate expected-upregulated and expected-
downregulated gene sets. UMIS was calculated with singscore using
the unidirectional expected-upregulated mode using with the 2394

genes that positively correlated with immune and inflammatory hall-
mark gene set enrichment (negative PC2 gene loading) (Supplemen-
tary Data 4). A cohort-dependent version of UMIS was also calculated
using gene set variation analysis (GSVA) with GSVA v1.42.087 using
default settings and the same list of genes (Supplementary Data 4).
This was only done for the purposes of comparison to the cohort-
independent implementation with singscore and was not used else-
where. Functional annotation of genes within UMIS (n = 2394) was
performed with the Database for Annotation, Visualization and Inte-
grated Discovery (DAVID) online tool (accessed March 20th, 2022)88

after filtering for protein coding genes using Human Genome Orga-
nization (HUGO) Gene Nomenclature Committee (HGNC) complete
set annotation (accessed October 6th, 2021). Similarly, functional
annotation of differentially expressed genes between UMIS levels was
performed with clusterProfiler v4.2.289 using the fgsea v3.16 method
on only protein-coding genes using HGNC complete set annotation
(accessed October 6th, 2021). Correlation and clustering analysis of
PCs used theHumanMolecular Signatures DatabaseHallmark gene set
collection90 while functional annotation used the Human Molecular
Signatures Database Gene Ontology Biological Process gene set
collection91.

Human leukocyte antigen (HLA) typing of patients was performed
using tumor bulk total RNAseq data. The arcasHLA v0.5.092 package
was run with default settings to produce an output of genotypes for
samples. Representative data for patients withmultiple tumor samples
was selected using the same algorithm as described previously in the
survival analysis. TCR repertoires of tumors were analyzed from bulk
total RNAseq data using MiXCR v3.0.1293 with allowPartialAlignment-
s=true as recommended for bulk RNAseq data. Counts were tabulated
per amino acid CDR3 clonotype and used to calculate diversity
(Shannon index) and clonality (1–Pielou’s index) for TRB and TRA
chains42. Samples with one or zero detected unique clonotypes were
excluded from diversity and clonality analysis due to mathematically
undefinable clonality; this resulted in exclusion of 12 metastases from
TRB analysis and 18 metastases from TRA analysis. Public versus pri-
vate repertoire analysis was performed using immunarch v0.6.994.

Targeted TCR repertoire library preparation, sequencing, and
analysis
Targeted TCR repertoires of paired tumors and post-REP TIL were
derived from respective total RNA. Libraries were prepared using the
QIAseq Immune Repertoire RNA Library Kit (Qiagen) per manu-
facturer’s instructions. Libraries underwent quality check using a
Standard Sensitivity NGS Fragment Analyzer Kit (Agilent) and quanti-
fication by qPCR with the Kapa qPCR quantification kit (Kapa Biosys-
tems). The libraries were normalized, pooled, and sequenced using the
MiSeq platform (Illumina) to an average of ~2.5 million 251 base pair
paired end reads. The sequencing data was demultiplexed with
bcl2fastq2 v2.20 (Illumina) to produce the fastq files. Sequencing data
was processed using the Qiagen Biomedical Genomics Analysis 23.0
(Qiagen) per default recommended settings. Counts were tabulated
fromoutput files per amino acid CDR3 clonotype and used to calculate
diversity (Shannon index) and clonality (1–Pielou’s index) for TRB and
TRA chains.

Single cell RNA sequencing library preparation and sequencing
Selected tumors and previous treatments were UM #72 (tebentafusp),
83 (ICI and tebentafusp), 100 (ICI), 46 (liver directed therapy), 79
(cytotoxic chemotherapy and ICI), and 80 (liver directed therapy,
kinase inhibition, antiangiogenic therapy and ICI). Cryopreserved sin-
gle cell suspensions of selected tumors were prepared for input into
the Chromium Next GEM Single Cell 5’ Reagent Kit v2 (10X Genomics)
by thawing in complete media with human AB serum, sequential fil-
tration through 70mm and 30mm MACS SmartStrainers (Miltenyi
Biotec) and removal of dead cells using the Dead Cell Removal Kit
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(Miltenyi Biotec) per manufacturer’s protocol. Cell suspensions were
inspected to confirm adequate viability (≥70%). Each tumor sample
was processed in a separate lane of the Chip K, with ~35,000 cells
loadedper sample. The 5’gene expression andTCRV(D)J librarieswere
then prepared per manufacturer’s instructions. Prior to sequencing,
libraries underwent quality check using a Standard Sensitivity NGS
Fragment Analyzer Kit (Agilent) and quantification by qPCR with the
Kapa qPCR quantification kit (Kapa Biosystems). The libraries were
normalized, pooled, and sequenced using the NovaSeq6000 platform
(Illumina) to an average of ~30,000 paired-end reads per 5’ gene
expression library per cell and ~5000 paired-end reads per TCR V(D)J
library per cell with parameters per manufacturer’s protocol. The
sequencing data was demultiplexedwith bcl2fastq2 v2.20 (Illumina) to
produce the fastq files.

Single cell RNA sequencing computational processing
Sequencing data was processed using 10XGenomics Cell Rangermulti
v6.1.295 using 10X Genomics Cloud Analysis with introns excluded and
an estimated expected cell count of 20,000. Bioinformatic processing
of each sample involved adjustment for ambient RNA contamination
with SoupX v1.5.296 (default settings), normalization with the sctrans-
form v2 method within Seurat 4.1.197,98 (default settings), and estima-
tion and removal of doublets with DoubletFinder v2.0.399 (default
settings). Cells remaining after quality control and removal of doublets
were then input into our cataloging algorithm. This involved first
assigning cells to large buckets using UCell v2.1.020 in the following
order: immune (UCell score >0 for gene set of PTPRC), tumor (UCell
score >0 for gene set of SOX10, S100A1, MITF, MLANA, PMEL, TYR),
stroma (all remaining cells). A TIL atlas was created using a published
dataset19 with harmony v0.1.0100 and symphony v0.1.021 using settings
appropriate for the normalization method of the published dataset.
Our samples’ immune fractionswere thenmapped onto the atlas using
symphony settings recommended for data normalized with sctrans-
form v2. The higher resolution “level 2” annotation, which included 31
phenotypes, was utilized. The addition of tumor and stroma cells to
these immune cells completed our cellular cataloging and various
levels (overall, broad, granular) were also assigned to the cells (Sup-
plementary Data 9). For pooled analysis, samples were integrated with
Seurat 4.1.1 using settings appropriate for sctransform v2-normalized
data. Dimensionality reduction and differential gene expression were
performed on the integrated Seurat object. Counts of specific cell
types were derived from this integrated Seurat object. Comparison of
cell type proportions by UMIS level was performed with the propeller
function within the speckle v0.0.3101 package using the arcsin square
root transformation of proportions method.

TCR V(D)J repertoires were filtered for most frequent TRA and
TRB chains using scRepertoire v1.4.0102. Counts were tabulated for
cells with paired TRA and TRB chains per unique TRA-TRB amino acid
CDR3 clonotype and used to calculate diversity (Shannon index) and
clonality (1–Pielou’s index).

Statistical analysis
Statistics were calculated using R v4.1.2103 (R Core Team) with RStu-
dio v.2022.12.0 + 353104 (Rstudio Team) or GraphPad Prism v9.5.0
(GraphPad Software), and specific statistical analyses used are high-
lighted in the respective figure legends. In general, continuous-
continuous associations were assessed with the Spearman’s rank
correlation with simple linear regression with 95% confidence inter-
vals only to illustrate linearity. Unpaired categorical-continuous
associations were assessed with the Wilcoxon rank-sum test (two-
tailed) or Kruskal–Wallis one-way analysis of variance test as appro-
priate. Paired categorical-continuous associations were assessed
with the Wilcoxon signed-rank test (two-tailed). Categorical-
categorical associations were assessed with the Fisher’s exact test.
Receiver operating characteristic curves were generated using

univariate logistic regression and mapping of true positive 1 − spe-
cificity versus sensitivity. Areas under the ROC curves were calcu-
lated using the trapezoid rule. Time-to-event curves using the
Kaplan–Meier method were generated with survminer v0.4.9105 and
comparisons between categorical groups were assessed with the
logrank test. Clustering analysis was performed with Complex-
Heatmap v2.10.0106 and used the default method of Euclidean dis-
tance. Where appropriate, multiple comparison adjustment was
performed with the false discovery rate (FDR) method using the
p.adjust function with method = “fdr” in R. In R the lowest possible
numeric value is roughly 1e−324. Thus, we presented values less than
1e−324 as ~0 rather than listing arbitrary lower limit numbers.

Utility visualization software
Aside from software previously mentioned, the following were used
for various visualizations throughout the manuscript: tidyverse
v1.3.2107, ggplot2 v3.4108, RColorBrewer v1.1-3109, ggprism v1.0.4110,
patchwork v1.1.2111, packcircles v0.3.4112, plotly v4.10.0.9001. Illustra-
tions were created with BioRender.com.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Bulk total RNAseq raw sequencing data generated in this study have
been deposited in the database of Genotypes and Phenotypes
(dbGaP) under accession number phs003330.v1.p1 [https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs003330.v1.
p1]. These data are available under restricted access for patient con-
fidentiality reasons and access can be obtained by request via the
dbGaP system by following the instructions provided by the website.
Approval is determined by the National Cancer Institute Data Access
Committee, which can be emailed at ncidac@mail.nih.gov. Access to
data is generally granted within a month of successful application and
available indefinitely thereafter. Selected raw data are protected and
are not publicly available due to data privacy laws but may be shared
upon request. Source data are provided with this paper.

Code availability
Software packages were implemented as described in the “Methods”
and no custom packages were created.
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