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Multi-omic integration of microbiome data
for identifying disease-associated modules

Efrat Muller 1, Itamar Shiryan1 & Elhanan Borenstein 1,2,3

Multi-omic studies of thehumangutmicrobiomeare crucial for understanding
its role in disease across multiple functional layers. Nevertheless, integrating
and analyzing such complex datasets poses significant challenges. Most
notably, current analysis methods often yield extensive lists of disease-
associated features (e.g., species, pathways, ormetabolites), without capturing
the multi-layered structure of the data. Here, we address this challenge by
introducing “MintTea”, an intermediate integration-based approach combin-
ing canonical correlation analysis extensions, consensus analysis, and an eva-
luation protocol. MintTea identifies “disease-associated multi-omic modules”,
comprising features from multiple omics that shift in concord and that col-
lectively associate with the disease. Applied to diverse cohorts, MintTea cap-
tures modules with high predictive power, significant cross-omic correlations,
and alignment with known microbiome-disease associations. For example,
analyzing samples from a metabolic syndrome study, MintTea identifies a
module with serum glutamate- and TCA cycle-related metabolites, along with
bacterial species linked to insulin resistance. In another dataset, MintTea
identifies a module associated with late-stage colorectal cancer, including
Peptostreptococcus and Gemella species and fecal amino acids, in line with
these species’ metabolic activity and their coordinated gradual increase with
cancer development. This work demonstrates the potential of advanced
integration methods in generating systems-level, multifaceted hypotheses
underlying microbiome-disease interactions.

The human gut microbiome is an incredibly complex ecosystem that
has a marked, multifaceted impact on our health1–3, and a well-
established role in the pathogenesis of numerous diseases4–8. This
appreciation for the importance and complexity of the gut micro-
biome has prompted a proliferation of multi-omic microbiome stu-
dies, which apply several molecular assays to the same set of samples,
in the hope of capturingmultiple layers of information concerning the
involvement of the microbiome in disease. Among such multi-omic
studies, one increasingly popular study design, for example, relies on
collecting paired high-throughput microbiome and metabolome
profiles9–13 (e.g., coupling shotgun metagenomics sequencing and

mass spectrometry). Unfortunately, however, while such multi-omic
data clearly offer an exciting opportunity to study themicrobiome and
its role in human health, rigorous integrative analysis of such data
remains highly challenging, as does using such data to gain a systems-
level understanding of the microbiome14–16.

A common aim of microbiome studies, and accordingly a key
goal of many multi-omic microbiome analyses, is to identify disease-
associated markers—specific features from the various omics (e.g.,
certain species, pathways, or metabolites) whose measured abun-
dances are strongly associated with the disease in question17. Such
markers can later be used to predict disease, informing, for example,
microbiome-based diagnosis18–20, or to suggest novel hypotheses
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concerning specific microbiome components or mechanisms that
are at play, guiding future experimental and clinical studies. Given
disease and control samples (or, more generally, some phenotypic
measure of interest), disease-associated markers can be identified
using a variety of statistical approaches, ranging from univariate
statistical tests that are applied independently to each feature from
each omic, tomultivariate statistical methods that consider potential
statistical dependencies between all features, such as partial least
squares (PLS) or linear regression10,21–24. More recently, machine
learning (ML) methods have also been applied widely for this pur-
pose by first training some ML model for predicting the phenotype
based on all features (either from a single omic or from multiple
omics combined), and then using various model explainability
methods for detecting informative features in this model11,12,25–28.
Ultimately, however, such analyses generally result in long lists of
features (from one or more omics) that are associated with the dis-
ease, without leveraging the multi-layered structure of multi-omic
data and without offering clear, interpretable hypotheses concerning
specific and coherent mechanisms underlying microbiome-disease
interactions.

Several preliminaryattempts directed at addressing this challenge
and consideringboth cross-omicdependencies and associationswith a
disease state have been introduced. For example, some microbiome
studies took a two-step approach by first identifying features that are
associated with the disease, and then clustering these features based
on pairwise correlations between features29. This approach, however,
may fail to identify features that are not sufficiently informative by
themselves but can be incorporated into larger modules that, as a
whole, are strongly predictive of the disease. Other studies aiming to
tackle a similar challenge constructed cross-omic correlationnetworks
while also including phenotypes of interest in the network30, or alter-
natively constructed separate networks for each host condition and
then explored the differences between the networks to identify
condition-specific motifs31–33. These approaches, however, are often
hard to interpret given the high dimensionality of omic data, and the
massive correlation networks that are accordingly produced.

A particularly intriguing approach that may be utilized for
addressing such analyses originates from the domain of multi-view
learning, and is known as “intermediate integration“34,35. Unlike tradi-
tionalmulti-view approaches thatdirectly combine raw features, either
by naïvely concatenating different omics into a single joint table (i.e.,
“early integration”) or bymodeling each omic independently and then
creating a final ensemble model (i.e., “late integration”), intermediate
integration seeks to combine features from the various omics (or
‘views’) into an intermediary representation level before utilizing them
for downstream tasks such as classification34 (Supplementary Fig. S1).
This approach thus captures dependencies between omics and could
accordingly be beneficial for generating multifaceted biological
hypotheses. Canonical correlation analysis (CCA), for example, is a
popular intermediate integration method that receives two feature
tables, and outputs a linear transformation per table so that the
resulting latent variables are maximally correlated36. CCA extensions
that may be particularly relevant for microbiome multi-omic data
include sparse CCA (sCCA)—a CCA extension that includes sparsity
constraints to deal with large numbers of features, and sparse gen-
eralized CCA (sGCCA), which generalizes sCCA to further support
more than two views36,37. Indeed, CCA and its extensions have been
previously applied to microbiome-related multi-omic data with
insightful results38–43. One recent study, for example, applied sCCA to
microbiome taxonomic profiles and host transcriptomics data from
patients with either irritable bowel syndrome, inflammatory bowel
disease (IBD), or colorectal cancer (CRC), identifying host-microbiome
associations that are shared across these cohorts and others that are
disease-specific38. In another study, sCCA was used to explore the
association between early life gut microbiome and metabolome,

finding that the specific taxa and metabolites driving these associa-
tions at 6 weeks of age differed from those at the age of 12 months40.
Importantly, the CCA transformation can further take the disease state
of each sample into account, thus seeking representations that high-
light interactions both across different omics andbetween theseomics
and the disease36,44,45. Galié et al.44, for example, studied the effects of a
Mediterranean diet on circulating metabolites and used an extension
of sGCCA to identify signatures of dietary intervention reflected in
both the gut microbiome and plasma metabolites in concert46. These
studies testify to the potential benefit of such CCA-based models, yet,
their applicability to diverse microbiome datasets, and the robustness
of the obtained results, remain unclear. Moreover, CCA and its
extensions, aswell as similarmultivariate linear statisticalmethods, are
generally highly sensitive to small perturbations in the data, parameter
choices (e.g., sparsity constraint), atypical samples, and collinearity
between variables47–50, requiring careful attention and interpretation
when applied to complex microbiome data.

Setting out to address the challenges above and to allow
researchers to gain systems-level insights into coherent mechanisms
underlying microbiome-disease interactions, here, we introduce a
comprehensive intermediate integration-based method (combining
CCA extension, consensus analysis, and a validation protocol), which
we term “MintTea”, for analyzing multi-omic microbiome data. We
hypothesize that each such mechanism may involve various taxa,
functions, and metabolites which act in concert in disease, and thus
MintTea aims to identify robust “disease-associated multi-omic mod-
ules”, each comprising a set of features from the various omics that
both exhibit coordinated variation across omics and, as a whole,
associate with the disease or phenotype of interest. We applied Min-
tTea to 9 diverse case-control cohorts with available shotgun meta-
genomics data (processed into both taxonomic and functional
profiles), 6 of which further included fecal or serum metabolomics
data. We demonstrated that MintTea was indeed able to capture
modules that had high predictive power of the disease (often com-
parable with that achieved by using all features), while also exhibiting
significant correlations between features fromdifferent omics.We also
showed that some of the modules identified by MintTea recapitulated
previous observations concerning the role of the gut microbiome in
disease, and provided a catalog of identified multi-omic modules
across all datasets analyzed. This work thus serves as a proof of con-
cept for the benefit of advanced integration methods in generating
integrated multi-omic biological hypotheses underlying microbiome-
disease associations.

Results
Introducing MintTea: a framework for identifying robust
disease-associated microbiome multi-omic modules
Inspired by the potential of intermediate integration methods descri-
bed above, we developed amulti-omic integration framework, termed
“MintTea” (Multi-omic INTegration Tool for microbiomE Analysis), for
identifying sets of features from multiple different omics that are
strongly associated both with the disease andwith each other (Fig. 1A).
MintTea is based on sparse generalized canonical correlation analysis
(sGCCA) and other previously introduced relatedmethods36,44,51,52, and
further applies repeated sampling, consensus analysis, and module
evaluation to account for noisy data and to ensure robust and con-
fident results.

Briefly, MintTea receives two or more feature tables describing
different omics obtained for the same set of samples, as well as a label
(e.g., healthy vs. disease) for each sample, as input. Following filtration
of rare features and other preprocessing steps (seeMethods),MintTea
encodes the label as an additional omic (containing a single feature) as
previously suggested44,51,52, and then applies sGCCA, searching for a
sparse linear transformation per feature table that yields maximal
correlations between the respective latent variables, aswell asbetween
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these variables and the label (Fig. 1A top). This procedure yields a
latent variable per feature table (omic), which is a sparse linear com-
bination of the various features.We then record the set of features that
were assigned non-zero coefficients across the various omics, and
define this set as the first “putative module”. sGCCA can then find
additional sets of latent variables that are orthogonal to the previous
ones, by deflation on those previous latent variables, with each itera-
tion similarly providing a new putative module. Next, to identify spe-
cific modules of features that are robust to small changes in the input

data, MintTea repeats the entire process multiple times on random
data subsets (e.g., 90% of the samples) and records the resulting
putative modules from each such iteration. It then constructs a co-
occurrence network, where features are connected if they consistently
co-occurred in the same putative module (e.g., over 80% of total
iterations), and identifies “consensus modules” (i.e., connected sub-
graphs; seeMethods; Fig. 1Amiddle). Importantly, asMintTea balances
between two objectives, namely associations between omics and
associations with the phenotype, the resulting consensus module may

Fig. 1 | MintTea pipeline illustration and the multi-omic datasets analyzed in
this study. A An illustration of theMintTea pipeline, including data preprocessing,
repeated module discovery using sparse generalized CCA (sGCCA), consensus
analysis, and evaluation of each module’s association with the disease. The letters
“H” and “D” represent the terms “healthy” and “disease”, respectively. SeeMethods.
B Data types used in this analysis. Throughout the manuscript, taxonomic,

pathway, fecal metabolite, and serum metabolite features are labeled with the
letters ‘T’, ‘P’, ‘M’ and ‘S’, respectively.C The number of features available from each
omic in each dataset after preprocessing. Sample sizes are noted under dataset
names.CD crohn’s disease,CRCcolorectal cancer, ESRDend-stage renaldiseaseMS
metabolic syndrome, T2D type-2 diabetes, UC ulcerative colitis.
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capture only one of these two objectives. Accordingly, to output
robust, disease-associated, and cross-omic correlated modules, Min-
tTeafinally evaluates each consensusmodule, discardingmodules that
do not adhere to the desired criteria. To this end, it first filters out any
module in which the average cross-omic correlation is not higher than
that obtained for random modules. Then, MintTea applies principal
component analysis (PCA) to all the features included in each
remaining module, uses the first principal component (PC) of each
module as the module’s representative, quantifies how well this one
representative PC predicts the disease using the area under the
receiver operating characteristic curve (AUC), and preserves only
modules for which this AUC is >0.7 and higher than AUC obtained for
random module (of the same size and distribution over omics; see
Methods; Fig. 1A bottom). The final outcome of MintTea is therefore
multiple “disease-associated, multi-omic modules”, each capturing
features from multiple omics that are highly correlated across the
different omics, and also with the disease.

In Supplementary Note 1, we discuss the conceptual differences
between MintTea and other related approaches, and quantitatively
compare MintTea to other sGCCA-based methods36,44, demonstrating
that MintTea provides a good balance across multiple desired prop-
erties, while achieving a substantially lower false discovery rate.

Using MintTea for identifying multi-omic modules across
cohorts and diseases
To examineMintTea’s ability to identify disease-associatedmulti-omic
modules in various settings, we obtained 9 different datasets of shot-
gun metagenomics sequencing. All datasets are from case-control
studies, spanning multiple health conditions and diseases, including
Crohn’s disease (CD), ulcerative colitis (UC), CRC,metabolic syndrome
(MS), type-2 diabetes (T2D) and others. For each dataset, we generated
2–3 different feature tables (‘views’) based on the available omic data.
Specifically, in all datasets, metagenomic data was available and pro-
cessed into taxonomic profiles (“T”) and pathway-level functional
profiles (“P”) (see Methods). In addition, for 3 of the datasets, fecal
metabolomics data (“M”) were also available, and for 2 others datasets,
fasting serum metabolomics data (“S”) were available. Figure 1B, C
summarizes the omics and datasets used for themain analysis (and see
also Supplementary Data File S1).

Applying MintTea to these 9 datasets, we found 2–5 consensus
modulesperdataset, eachcomprising2 to 38 features fromthe various
omics (average: 13.23; Fig. 2A; Supplementary Data File S2; Supple-
mentary Data File S3). Most of these modules captured correlations
between features from different omics that significantly exceed those
of randomly sampled modules (Fig. 2B), with 1–2 modules per data-
set also exhibiting strong association with the disease, as defined
above (Fig. 2C; Supplementary Data Files S2 and S4). In the T2D
(MetaCardis13,53) dataset, for example, we identified 5 consensus
modules, 2 of which also passed our evaluation and were classified as
disease-associated multi-omic modules, with AUCs reaching 0.86
(based on the 1st PC of the 21 features in this module) and 0.73 (based
on only 2 features in this module), compared to 0.71 and 0.64 on
average, respectively, when evaluating randomly selected modules. In
the late-stage CRC dataset (Yachida, 201911), as another example, we
found 2 consensus modules, one of which was classified as a disease-
associated multi-omic module with an AUC of 0.72 compared to only
0.63 using equivalent, randomly selected modules (more on this
module below). The entire list of identifiedmodules, aswell as detailed
statistics about their associationwithdiseaseand correlations between
features across omics, is provided in Supplementary Data Files S2–S4).

While most of our analyses below focus only on disease-
associated multi-omic modules (i.e., modules that passed our evalua-
tion phase and adhere to the criteria we defined), we also sought to
evaluate the overall predictive power of all identified consensus
modules in each dataset in order to gain a better understanding of

CCA-basedmethods’ ability to identify informative axes of variation in
the data. To this end, we trained random forest (RF) models on the 1st

PCs of all modules in each dataset, and estimated their combined
predictive accuracy (with cross-validation). We further compared the
AUC’s of these models to RF models trained on the entire con-
catenated multi-omic data (referred to as an “early integration”
approach; seeMethods; SupplementaryData File S5). We found that in
most cases, these consensus modules by themselves achieved an AUC
comparable to that of the early-integration models, while utilizing a
substantially smaller number of features in total (Supplementary
Fig. S2). In the UC (Franzosa, 201912) dataset, for example, the 4 con-
sensusmodules identified byMintTea (totaling 73 features) achieved a
total AUC of 0.885 (SD: 0.12), where each module is represented by its
1st PC as explained above. In comparison, the early integration
approaches achieved a similar AUC of 0.882 (SD: 0.14), but used 235
features on average for training the RF model after feature selection.
Similarly, the overall AUCof the CRC (Feng, 2015)54modules was 0.839
(SD: 0.15), utilizing 36 features in just 3 modules (and hence based on
just 3 values), compared to 0.824 (SD: 0.15) using early-integration-
based on 103 features.

It should also be noted that the features included in the disease-
associated multi-omic modules reported above, did not necessarily
overlap with those ranked highest by the early integrated multi-omic
models. Specifically, on average, only 63.9% (SD: 24.8%) of the features
comprising each disease-associated module (as defined above), were
also significant contributors to the multi-omic early-integration mod-
els (see Methods, Supplementary Data File S6). This observation may
attest to the ability of the intermediate integration approach to con-
sider features in the context of their associations with other features
and not only their association with disease.

Disease-associated multi-omic modules reveal multifaceted
biological signatures
Figure 2D presents one example of a MintTea module identified in the
late-stage CRC dataset11. This module included 7 features in total; 3
bacterial species, namely Peptostreptococcus stomatis, Peptos-
treptococcus anaerobius, and Gemella morbillorum, and 4 fecal meta-
bolites: 2 branched-chain amino acids (BCAA’s), namely valine (Val)
and leucine (Leu), an aromatic amino acid - phenylalanine (Phe), and
cysteine-glutathione disulfide divalent. The 1st PC of the 7 features
included in this module, by itself, yielded an AUC of 0.72 in classifying
disease state (Fig. 2C), and the average Spearman correlation between
features from different omics was 0.28 (all correlations had an FDR-
corrected p value < 0.05, Supplementary Data File S4). All features in
this module, except for the last, were significantly elevated in disease
(Mann–Whitney tests, FDR <0.05), and were also reported as disease
biomarkers in multiple other independent studies55–59. Specifically, in
the original paper by Yachida et al11., all three species were over-
represented consistently across all disease stages, as opposed to other
species that were elevated in specific stages only. A similar trend was
reported for the three amino acids (Val, Leu and Phe), indicating a
coordinated pattern with the above taxa11. P. stomatis and G. morbil-
lorum were also found to have significantly high replication rates
compared to controls across all cancer stages in that study, hinting at
their increased metabolic activity during cancer development. One
possible explanation for Peptostreptococcus species appearing toge-
ther with the BCAA’s is their involvement in BCAA metabolism. Inter-
estingly, Peptostreptococci species were specifically identified as major
fermenters of Phe and Leu, while the most prominent CRC-associated
species, Fusobacterium nucleatum, for comparison, was reported to
prefer different amino acid substrates in the same review study60.
Phenylalaninewas also significantly andpositively correlatedwithboth
P. stomatis and G. morbillorum in a recent meta-analysis61. Lastly,
though we could not recover a mechanistic link between cysteine-
glutathione disulfide and the other features, we note that the
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correlations between this metabolite and the other 3 amino
acids were strikingly high, even when controlling for disease state
(with all Spearman and partial Spearman correlations ρ>0:47
and FDR< 1 � 10�10).

Another example, illustrated in Fig. 2E, is a module identified in
themetabolic syndrome (MS) cohort ofMetaCardis (these are subjects
with MS according to International Diabetes Federation criteria,
without type 2 diabetes (T2D) or coronary artery disease). Thismodule
included 8 species (2 of which lacking taxonomic annotation), 4
pathways, and 9 serummetabolites (measured by either NMR or mass
spectrometry), with the 1st PC of these features achieving an AUC of
0.72 for predicting MS. Notably, the interplay between the gut
microbiome and serum metabolites is significantly less straightfor-
ward compared to that observed with fecal metabolites, as it is likely
overshadowed by other physiological processes and systemic meta-
bolic activities22,62,63. Indeed, the average correlation between features
from different omics in thismodel was lower than those in modules of
other datasets, but nonetheless higher than randomly sampled

modules (Fig. 2B). Specifically, 19 of 108 correlations between serum
metabolites and gut microbiome features in this module were sig-
nificantly positive (FDR <0.05; for comparison, in randommodules of
the same size, less than 1 metabolite-microbiome feature pair was
significantly correlated). Of the serum metabolites included in this
module, several are well-known signatures of metabolic disorders,
including increased glucose, mannose64, TCA cycle metabolites (e.g.
pyruvic acid and alpha-ketoglutaric acid)65, and glutamate66. Circulat-
ing levels of isoleucine (as well as other BCAA’s and BCAA-related
metabolites) have also been repeatedly shown to play a role in glucose
homeostasis and metabolic syndrome risk65,67,68. Though some of the
othermodule’s metabolites have not been specifically discussed in the
context of metabolic disorders, they are all significantly positively
correlated with one another (32 of 36 metabolite pairs are positively
correlated with an FDR <0.05), effectively representing a cohesive
cluster of metabolites coordinately elevated in MS. Interestingly, in a
recent study, several of these metabolites (pyruvic acid, glucose, glu-
tamic acid) were found to be significantly well-predicted by the gut

Fig. 2 | Identifying disease-associated multi-omic modules via MintTea inter-
mediate integration framework. A–C Properties of the multi-omic consensus
modules obtained by applying MintTea to several key datasets, including A the
number of features in each module, stratified by feature type, B cross-omic cor-
relation per module, calculated as the average pairwise Spearman correlation
between features of different omics (with gray points and lines indicating the
average and standard deviation of correlations obtained from randommodules of
the same size), and C AUC per module, calculated using the first principal com-
ponent values against disease label of each sample (with gray points and lines
indicating the average and standard deviation of correlations obtained from ran-
dom modules, as before). Modules that only included features from a single omic

were discarded from our analyses but are listed in Supplementary Data
Files S2 and S3. Modules that exhibit between-omic correlations (higher than ran-
dom modules) and that are disease-associated (AUC >0.7 and above that of ran-
dommodules) are shown in a darker color. Circle colors under each dataset name
indicatewhichomicswere available for thisdataset. The sample size of eachdataset
(i.e., the number of individuals profiled) are as shown in Fig. 1C.DA late-stage CRC-
associated multi-omic module. Node colors represent feature types (see Fig. 1B).
Edges connect features that appeared together in an sGCCA putative module in
>80% of data subsampling iterations. Correlations between pairs of features within
themodule can be viewed inSupplementaryData File S4.EAnMS-associatedmulti-
omic module.
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microbiome when measured in feces, but only marginally well-
predicted in blood63, further strengthening the assumption that the
gut microbiome’s association with these serum metabolites is likely
obscured by additional processes, but nonetheless existent.

Moreover, the inclusion of certain bacterial species in thismodule
along with these metabolites is likely related to their previously
reported role in glutamate metabolism and/or BCAA metabolism.
Bacteroides dorei/vulgatus, for example, though only marginally sig-
nificantly increased in MS patients in our dataset (FDR =0.07), have
been shown to impact serum isoleucine levels69.B. vulgatus specifically
was also reported to take part in glutamate metabolism70 and further
recognized as one of themain species driving the association between
biosynthesis of BCAAs in the gut and insulin resistance7,71. The exact
role of B. vulgatus in the development of metabolic disorders, how-
ever, remains unclear and is probably context- and strain-dependent,
as it has been shown to confer health benefits (including metabolic-
related) in some studies, while positively correlating with insulin
resistance and body fat in others7,69,72–75. Interestingly, B. vulgatus was
also reported to induce compositional shifts when administered to
rats, specifically promoting an increase in Parabacteroides species that
is also included in this module72. Parabacteroides mardeae, another
species in this module, has also been shown to enhance BCAA cata-
bolism, again with positive health benefits76, albeit significantly
increased in MS patients in our dataset. Lastly, we note that Bilophila
wadsworthia has beenmostly discussed in the literature in the context
of IBD and colon inflammation77, but has also been implicated in
metabolic dysfunctions78. It was also found to cluster with Clostridium
bolteae, another species in the module, in terms of their responses to
short and long-term diet79, possibly explaining their co-occurrence in
thismodule. As for the pathway features included in thismodule, likely
not all represent specific metabolic functions relevant to MS, but
nonetheless exhibit strong correlations with some of the modules’
species, suggesting potential dependencies. Overall, we find multiple
reports supporting specific links within the module, but the shared
role of these bacterial species in MS phenotypes and circulating levels
of MS-related metabolites specifically remains elusive.

Importantly, even when analyzing metagenomic-derived fea-
tures alone (i.e., in the absence of additional omics), MintTea may
highlight interesting insights related to associated taxonomic and
functional disease biomarkers. In the liver cirrhosis dataset32, for
example, we found a module (Supplementary Fig. S3A) that included
multiple species typically found in the human oral cavity, including
several Streptococcus, Veillonella, and Megasphaera species (both
commensal and opportunistic pathogens)80, all of which previously
found to be increased in stool samples of individuals with liver
diseases81–83, as well as other gastrointestinal disorders84–86. The co-
occurrence of multiple Streptococcus and Veillonella species in this
module is in line with their strong co-abundance patterns, confirmed
across multiple diverse large-scale cohorts87, and also with known
metabolic interactions between them88. Furthermore, several path-
ways in the module relate to vitamin K metabolism (menaquinol-8
biosynthesis I, menaquinol-11 biosynthesis, 2-carboxy-1,4-naphtho-
quinol biosynthesis, phylloquinol biosynthesis, geranylgeranyl
diphosphate biosynthesis), also relevant to liver health89,90. Indeed,
several vitamin K forms (including menaquinone) are known to be
bacterially produced in the human intestines, with Veillonella par-
vula specifically reported to produce menaquinones in vitro91. In
another study, menaquinone biosynthesis was found to be asso-
ciated with Streptococcus overgrowth in IBD87. Additional pathways in
the module, e.g. those related to L-methionine and heme b bio-
synthesis, are also possibly tied to menaquinone metabolism and to
Veillonella’s specific metabolic activities. L-methionine’s role, for
example, as a methyl group donor for certain menaquinones bio-
synthesis has been confirmed in several bacterial species92, though
not specifically in the species of this module. Also, previous genomic

analysis of Veillonella species showed that they harbour complete
gene sets for heme biosynthesis93. Overall, this module suggests a
potential multi-layer vitamin k-related and oral bacteria-driven
mechanism that is highly associated with liver damage. Supplemen-
tary Fig. S3 further illustrates two additional multi-omic modules
associated with IBD, as additional examples.

Multi-omic modules across diverse cohorts
Having shown that MintTea can identify multi-omic modules exhibit-
ing associations both across omics andwith a disease, wefinally sought
to detect prevalent and recurring multi-omic modules shared across
diverse datasets. Due to the substantial technical and methodological
differences between the multi-omic datasets analyzed, which render
cross-study comparisons impractical, here we focused on shotgun
data only, where both taxonomic and functional (pathway-level) pro-
files were generated uniformly by the curatedMetagneomicData
resource94. Specifically, we utilized the 3 datasets, previously pre-
sented, from the curatedMetagonmicData resource (i.e., the CRC54,
Cirrhosis95, and STH96 datasets; Fig. 1C), as well as 11 additional datasets
from the same resource (Supplementary Data File S1; Methods),
totaling 14 uniformly processed datasets. After applying MintTea to
these datasets (Supplementary Fig. S4; Supplementary Data
Files S3 and S4), we quantified the overlaps betweenmodules from the
different datasets and disease states, and identified significant over-
laps (Fig. 3A; Supplementary Data File S7; Methods). Of the 43 con-
sensusmodule pairs with an overlap of at least 2 features, 10 exhibited
a statistically significant overlap (Fisher’s exact test, FDR-corrected p
value < 0.1), suggesting prevalent multi-omic associations between
microbiome features.

We additionally identified specific bacterial species that appeared
in multiple modules of different datasets. Bacteroides uniformis, for
example—a gram-negative, fiber-degrading, highly abundant com-
mensal in the human gastrointestinal tract97–99—appeared in modules
of 5 different datasets (Fig. 3B). Other species commonly appearing
with B. uniformis in MintTea modules were also from the Bacteroides
genus, including B. xylanivsolvens, B. ovatus, and B. thetaiotaomicron.
Interestingly, B. uniformis tended to appear with vitamin B-related
pathways such as pyridoxal 5’-phosphate biosynthesis pathways (the
active form of vitamin B6) and thiamine (vitamin B1) diphosphate
synthesis. Indeed, B. uniformis genomes, as well as the other Bacter-
oides genomes, are known to have a relatively high coverage of bio-
synthetic pathways for multiple vitamins, including B-vitamins100,101.
Furthermore, in a previous study102, we found that the Bacteroides
genus is significantly and consistently correlated with fecal Pyridox-
amine levels (a form of vitamin B6), based on a meta-analysis of 5
different datasets in which both this genus and this metabolite were
detected. Though this analysis was done at the genus level only, we
also know that B. uniformis, B. thetaiotaomicron, and B.ovatus (all of
which shown in Fig. 3C) are among the most prevalent Bacteroides
species in adults103. Lastly, examining the taxon-stratified outputs of
HUMAnN3, we observed that B. uniformis was one of the top con-
tributors of reads assigned to these vitamin B-related pathways, fur-
ther explaining their co-occurrence in the same modules. B. uniformis
was also a top contributor to other pathways that co-appeared with it
across modules from diverse datasets, including 6-hydroxymethyl-
dihydropterin diphosphate biosynthesis I and lipid IVA biosynthesis
(which is part of the biosynthesis process of lipopolysaccharide (LPS),
a crucial component of bacterial outer membrane). Taken together,
these modules suggest a common axis of variation shared between
multiple cohorts and characterized mainly by Bacteroides species and
metabolic processes essential for cell survival, including biosynthesis
of several cofactors and LPS.

Noticing the tendency described above of species from the Bac-
teroides genus to co-occur in modules, we conducted a permutation-
based analysis to test whether species in MintTea modules are indeed

Article https://doi.org/10.1038/s41467-024-46888-3

Nature Communications |         (2024) 15:2621 6



significantly more likely to appear with other species from their
respective genus, compared to random modules. We confirmed
this was indeed a general trend (22.8% compared to 12.7% [7.7–18.6%],
p value: 0.001). This observation is in line with the hypothesis that
phylogenetically related species are more likely to compete for a
shared niche, and, accordingly present stronger co-occurrence
patterns.

Discussion
In this work, we set out to enhance the analysis of microbiome
multi-omic data, allowing researchers to identify robust, disease-
associated microbiome signatures across multiple molecular pro-
cesses and to generatemultifaceted hypotheses concerning the role
of the microbiome in disease. We specifically utilized an “inter-
mediate integration” approach to analyze multi-view (multi-omic)
human gut microbiome data, presenting a framework (termed
“MintTea”) for simultaneously identifying sets of features from
different omics that are both highly associated with one another
and jointly associated with the studied disease. Our “views” inclu-
ded taxonomic and pathway functional profiles derived from
shotgun metagenomics data, as well as metabolomic profiles (from
either feces or serum). Applied to multiple diverse case-control
datasets, MintTea was able to pinpoint cohesive multi-omic mod-
ules of features that reflected coordinated shifts in the data across
omics, while also being highly predictive of disease.

Using MintTea, we identified, for example, a CRC-associated
module driven by Peptostreptococcus and Gemella species and the
metabolism of specific amino acids. In another cohort of patients
with metabolic syndrome, we found a module that included a
highly correlated cluster of fasting serum metabolites (mostly
glutamate- and TCA cycle-related metabolites) as well as bacterial
species that were previously implicated in insulin resistance/
metabolic disorders as well as in isoleucine metabolism. Applying
MintTea to a large collection of shotgun datasets, and comparing

the consensus modules identified in each dataset, we further
identified multiple modules with a significantly high overlap, sug-
gesting common axes of variation in the gut’s microbiome com-
position and function, shared across multiple cohorts. Future work
could specifically search for shared modules across different
cohorts of the same disease, or shared modules spanning addi-
tional omics (or clinical data, for example, from electronic medical
records), to gain more clinically relevant insights into disease-
related microbiome processes. Due to data availability limitations,
this proposed analysis remained outside the scope of this
current work.

Intermediate integration methods, in general, can serve as an
alternative (or complementary) analytical approach to early inte-
gration, in which different omics are simply concatenated together
prior to the application of some ML model (an approach we used in
this study as a baseline of disease predictability). Indeed, inter-
mediate integration methods have been gaining increased attention
in recent years, in concordance with the proliferation of multi-omic
study designs, due to their ability to uncover intricate multivariable
interactions, which is desperately required when dealing with
complex biological systems35. Our motivation to use a sCCA-based
method was the assumption that gut microbiome-disease associa-
tions may be manifested in microbiome multi-omic data as one or
more “modules” of features from all omics that take part in a specific
mechanism effected by or promoting host disease. Furthermore,
sCCA-based frameworks have been previously applied to various
microbiome multi-omic data with insightful results38,39,45. To over-
come challenges related to the high-dimensionality of the data and
consequent instability of results, however, we further expanded this
analytical technique with repeated iterations using data subsamples
and consensus analysis, to identify robust consensusmodules based
on multiple sCCA-based putative modules. This conservative
approach indeed resulted in markedly lower risk of false discovery,
while maintaining similar performance across other evaluation

[P] 6-hydroxymethyl-dihydropterin
diphosphate biosynthesis I

[P] glycogen degradation II

[P] lipid IV [A] biosynthesis

SP of thiamine diphosphate biosynthesis
I

[T] Bacteroides _thetaiotaomicron

[T] Fusicatenibacter_saccharivorans

[T] Parabacteroides _distasonis

[P] pyridoxal 5'-phosphate biosynthesis I

[T] Bacteroides_ovatus

[T] Bacteroides_xylanisolvens

[P] SP of pyridoxal 5'-phosphate
biosynthesis /salvage

[T] Bacteroides _uniformis

[T] Bacteroides_uniformis

Fig. 3 | Multi-omic modules across datasets. A Overlaps between multi-omic
modules of different datasets. Each sector in the circus plot represents a consensus
module, grouped by the datasets to which they belong. Black dots represent
disease-associated multi-omic modules (as previously defined). Links between
modules indicate overlaps of at least 2 features, with darker links indicating sta-
tistically significant dependences (Fisher’s exact test FDR < 0.1). B Multi-omic
modules from multiple datasets that include B. uniformis, and additional over-
lapping features. For each module (from the dataset listed on top), all module

features that appear in at least one other module are presented. Triangles pointing
up indicate that the feature level was significantly increased in disease in that
dataset, while triangles pointing down indicate an opposite trend (Mann–Whitney
tests, FDR<0.1). Circles indicate no significant difference between study groups.
Themodule in dark orange (CRC, Feng) was also associated with disease state. STH
soil-transmitted helminths, HT hypertension, ME-CFS myalgic encephalomyelitis/
chronic fatigue syndrome, IGT impaired glucose tolerance, SP super-pathway. Also
see abbreviations in the legend of Fig. 1.
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metrics, when compared to similar methods (see Supplemen-
tary Note 1).

In essence, MintTea is a data-driven hypothesis generation tool
that aims to discover microbiome signatures reflected by multiple
layers of information. The evaluation of such signatures, however, is
nontrivial, and remains an open challenge and a major limitation of
multiple integration methods. We specifically recognize 3 main
types of valuable evaluations: First, robustness evaluation, i.e.,
consistency of results in the face of data perturbations or altera-
tions in method’s parameters. MintTea inherently improves
robustness by requiring that modules are steady across multiple
data perturbations (e.g., subsampling), and indeed this addition
yielded lower false discovery rates as previously noted. A second
type of evaluation may concern the generalizability of the obtained
findings, i.e., the ability to replicate results in independent cohorts.
One limitation of our study is the lack of such cross-study valida-
tions of multi-omic modules, which stems from the challenges
involved in obtaining unified multi-omic data from different
cohorts. We note that as multi-omic data sharing becomes more
common and more standardized, such validations will become
essential. Lastly, and perhaps most importantly, results should,
ideally, be evaluated for their biological coherence and relevance.
Indeed, this represents a major caveat of MintTea (and other multi-
omic integration methods that are purely statistical in nature).
Unfortunately, systematically validating the meaningfulness of
inferred interactions between multi-omic features is challenging,
largely since systematic mapping of such multi-omic mechanisms is
lacking or unknown. Accordingly, we encourage users ofMintTea to
approach result interpretation with caution.

We also note that clearly, any attempt to identify disease-
associated modules based on metagenomic and other features can
only be as accurate and reliable as the underlying features. Though
there are several well-established tools for taxonomic and func-
tional profiling from metagenomics data, they may each induce
biases and inaccuracies104. Moreover, additional, possibly invalu-
able features can be recovered from metagenomics and metabo-
lomics data, for example, by using assembly-based methods to add
unknown-genome abundances or strain-level information to taxo-
nomic profiles104, or adding unannotated metabolites from untar-
geted metabolomic profiles. Another limitation is the insufficient
control for major confounders known to exert microbiome shifts
(e.g., stool consistency, diet, and medication usage)105. This limita-
tion could be potentially mitigated by careful sample stratification,
inclusion of these factors as covariates in models, or even adding
such data as an additional “view”. Diet, for example, is likely a sub-
stantial mediator of many of the identified microbiome-
metabolome modules, and it could therefore be especially inter-
esting to include “diet”-view profiles in future analyses to elucidate
potential diet-driven modules. Finally, since microbiome omic data
has unique characteristics, linear approaches such as CCA may be
insufficient, and alternative algorithmic and statistical approaches
should definitely be explored and developed.

Overall, this work serves as a proof of concept for the potential
benefit of applying advanced intermediate integration methods to
microbiome multi-omic data for generating multifaceted hypotheses
concerning the role of themicrobiome in human disease.We advocate
for using such multi-omic intermediate integration models to capture
complementary biological insights into microbiome-disease
associations.

Methods
Dataset collection
In this work, we collected, processed, and analyzed data from a
few different multi-omic studies, as well as from the
curatedMetagenomicData94 resource. Below are details describing

the data obtained from each of these sources, and further pro-
cessing we performed. We first obtained data from 3 case-control
studies that profiled both stool shotgun metagenomics and
metabolomics, including an IBD cohort (Franzosa et al.12), a CRC
cohort (Yachida et al., 201911), and an end-stage renal disease
(ESRD) cohort (Wang et al.32). For each of these studies we ran
HUMAnN3106 (version v3.0.1) on the raw metagenomic sequencing
files to obtain MetaCyc107 pathway profiles. MetaPhlAn3106 (ver-
sion 3.0.14) was used to obtain taxonomic profiles at the species
level. Processed metabolomics data was obtained from the sup-
plementary information of each of the original publications or
online repositories. Only identified metabolites (i.e., annotated
with metabolite name by the original study’s authors) were
included in the analysis, to allow downstream interpretation.
Metadata per subject was obtained from the supplementary
information. When distinct disease subtypes were present, we
split the data into separate datasets per disease subtype (or kept
only a specific subtype), taking each subtype as the “case”
patients, and the same set of control subjects as shared controls.
Specifically, the IBD cohort12 was split into Chron’s disease (CD)
and ulcerative colitis (UC), and in the CRC cohort11 we kept only
late-stage cancer patients (Supplementary Data File S1). In both of
these cases, the original publications indicated unique micro-
biome signatures for each disease subtype/stage and performed
separate analyses accordingly, as we do here.

We additionally included data from the European MetaCardis
cohort13,53, in which participants underwent deep clinical pheno-
typing combined with gut microbiome and serum metabolome
profiling. Pre-processed taxonomic, functional, and serum meta-
bolome profiles were downloaded from zenodo.org/records/
6242715. Notably, taxonomic profiles were obtained using the
mOTU108 approach, and functional profiles at the KEGG-module
level were generated using a custom pipeline. Full data processing
details are described in the original publication53. As theMetaCardis
cohort is inherently divided into several study groups based on
metabolic and cardiac phenotypes, we focused on two specific
conditions, T2D and metabolic syndrome (without T2D or coronary
artery disease). Subjects with antibiotics indications (‘ANTI-
BIOTICS_TOTAL’ > 0) or multiple drugs intake (‘DRUGTOTAL’ ≥ 3)
were excluded. As before, the same set of control samples were
used for both comparisons.

Lastly, 14 processed shotgun metagenomics datasets were
extracted from the “curatedMetagneomicData” R package94, ver-
sion 3.2.3, together with the corresponding sample metadata. Spe-
cifically, MetaPhlAn3106 species-level abundances and HUMAnN3106

unstratified pathway-level (MetaCyc) abundances were obtained.
We only considered datasets with data from at least 40 stool sam-
ples from different subjects in each study group (as defined by the
“study_condition” variable). Longitudinal studies were excluded.
Additional details for each dataset are available in Supplementary
Data File S1.

In total, data analyzed in this study included 2,629 samples,
obtained from 16 studies, and partitioned into 20 case-control data-
sets, covering 13 disease states. We preliminary focused on 9 datasets
(allmulti-omic datasets and 3 additional shotgun-only datasets), and in
the last section expand the analysis to all datasets.

Shared data preprocessing
For each of the datasets described above, we obtained sample
metadata, taxonomy abundances (‘T’), pathway abundances (‘P’),
and, when available, fecal/serum metabolite abundances (‘M’/’S’)
(Fig. 1B). For all datasets, T and P profiles were converted into
relative abundances (by total sum scaling), metabolite values were
log-transformed, and constant and rare features (defined as those
with <15% non-zero abundance values, or a mean abundance
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<0.005% for taxonomy/pathways) were discarded. Moreover,
extremely highly correlated features, which likely represent tech-
nical artifacts rather than biological phenomena, were clustered (to
avoid misleading interpretation downstream) such that absolute
correlations between any two cluster members is higher than 0.99
and using one random feature as cluster representative (Supple-
mentary Data File S8). Lastly, non-bacterial MetaCyc pathways were
removed from the P profiles, as annotated in the MetaCyc database
within the “Expected Taxonomic Range” field.

Identifying disease-associated multi-omic modules with
“MintTea”
To identify multi-omic sets of features that are both tightly asso-
ciated with each other and collectively associated with the disease,
we developed “MintTea” (Multi-omic INTegration Tool for micro-
biomE Analysis). MintTea is based on sparse generalized canonical
correlation analysis (sGCCA)36,37 and additional methods that
extend sGCCA to a supervised scenario by encoding the disease
label of each subject as an additional single-variable omic44,51,52,109.
Briefly, sGCCA searches for a sparse linear transformation per fea-
ture table that yields maximal correlations between the respective
latent variables, as well as between these variables and the label (see
also Supplementary Note 2). Herein, we define the set of features
across all omics that were assigned a non-zero loading by sGCCA, as
a “putative module”. SGCCA can further find additional linear
transformations, orthogonal to the previous ones, by a process
called matrix deflation37. Each such additional set of omic trans-
formations yields an additional “putative module”.

MintTea pipeline, as also illustrated in Fig. 1A, includes the
following steps: After data preprocessing described above, MintTea
performs a repeated subsampling procedure so that for each sub-
sample of the data (80% of the samples, 100 iterations) sGCCA is
applied and the first 5 resulting putative modules are recorded.
Next, MintTea identifies “consensus modules”, by constructing a
network of multi-omic features where 2 features are connected by
an edge if they appeared together in a putative module in at least
80% of the iterations. Connected components in the graph of size
≥ 2 are then considered “consensus modules”. Lastly, to assess the
extent to which each identified consensus module adheres to the
desired properties described above, MintTea further evaluates each
such consensus module preserving only those that meet certain
criteria. Specifically, to evaluate whether a given consensus module
is associated with the disease state, MintTea applies PCA on all
features included in that module (scaled and centered) and takes
the first PC as a single representative of the module. It then com-
putes the area under the receiver operating characteristic curve
(AUC) for this first PC of each module, and compares it to “null”
modules where the same number of features, from the same omics,
are randomly selected. MintTea further evaluates, per module, how
well it captures associations between different omics, by calculating
the average Spearman correlation between pairs of features from
different omics within that module (Supplementary Data File S4).
Consensus modules with an AUC > 0.7 and above that of random
modules, and an average Spearman correlation between features
from different omics that was also above that of random modules,
are considered ‘disease-associated multi-omic modules’. Impor-
tantly, all parameters mentioned above can be adjusted by the user
(see below). Supplementary Note 1 further describes a conceptual
and quantitative comparison between MintTea and related
methods.

Thepipelinewasdeveloped inRusing thepackages “mixOmics”109

(version 6.18.1, “block.splsda” function), and “igraph”110 (version 1.3.4)
for graph operations. Classification performances were generally
estimated using repeated 10-fold cross-validation and averaged over
folds and repeats.

MintTea pipeline parameters and sensitivity analysis
The MintTea pipeline has several user-adjustable parameters
required for tuning the process to specific datasets. Different
parameters may be favored based on the size of the outputted
modules and downstream analyses, correlation structures in the
data, dimensionality of the data, etc. Briefly, these parameters
include: ‘keep’—the number of features to select from each omic as
provided to sGCCA’s computation; ‘des’—the value to set as design
matrix default (see Supplementary Note 2); ‘nrep’—number of
repetitions; ‘nfol’—number of folds to which the entire data is split in
order to run sGCCA on nfol-1 folds at a time (i.e., subsampling ratio);
‘ncom’—number of orthogonal sGCCA components; ‘edge’—the
threshold defining how often should a pair of features co-appear in
a putative module in order for them to co-appear in a consensus
module. Exact parameters used per dataset in our analysis are listed
in Supplementary Data File S2. Supplementary Fig. S5 shows an
example of a sensitivity analysis applied to a specific module from a
specific dataset, assessing that module’s sensitivity to different
parameter choices. Overall, and as demonstrated in Supplementary
Fig. S5, modules are generally robust to choice of parameters.

Modules overlap analysis
To identify significantly overlapping modules from different datasets,
we first narrowed the consensus modules to the set of features avail-
able in both datasets, and then ran Fisher’s exact test to determine
odds ratios and p values. Results are listed in Supplementary Data
File S7.

Predicting disease state using simple, early-integration random
forest classifiers
To provide a reference value for the AUC’s estimations of MintTea’s
multi-omicmodules,we implemented a standardMLpipeline to assess
disease predictability in each dataset. Input data was a simple
concatenation of all features from all omics (also known as an “early
integration” approach). Training was performedwith a repeated 5-fold
cross-validation (10 repeats) procedure and included reducing
dimensionality with a feature selection step (using Boruta111), training a
random forest (RF) classifier, evaluatingmodel performance onout-of-
fold data using AUC, and evaluating feature importance (as descri-
bed below).

Final model performances, for each dataset, were determined by
averaging AUC over the 5 repeats and 10 folds (i.e. a total of 50 trained
models).

We used the ‘ranger’ R package (version 0.14.1)112 for RFmodeling
with default parameters. We opted for RF due to its simplicity on the
one hand and its tendency to performwell onmicrobiome abundance
data as consistently shown in previous studies25,113–117. Hyper-parameter
tuning for the RF classifiers with a nested cross-validation approach
did not result in significantly improved performance formost datasets
and was therefore discarded. ‘Boruta’ R package (version 7.0.0)111 was
used for feature selection. All results fromRFmodeling are provided in
Supplementary Data File S5.

Random forest’s feature importance analysis
We examined the features importance in each model that achieved an
AUC>0.7, as follows: Within each fold, we calculated permutation-
based feature importance scores implemented in ‘ranger’ package112.
We additionally applied the method introduced by Altmann et al.118 to
assign a p-value for each feature in each model. Final feature impor-
tance per feature was averaged over repeats and folds. Final p-values
were FDR-corrected over all features in each feature set. We refer to
features that were selected by the feature selection method in at least
50% of repeats/folds and obtained a final Altmann FDR <0.1 as “con-
tributors”. Feature importance results are provided in Supplementary
Data File S6.
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Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used in this study were retrieved from either the cur-
atedMetagenomicData package94 (version 3.2.3., available at: https://
waldronlab.io/curatedMetagenomicData/), supplementary files and
deposited data from 4 specific studies11,12,32,53 (exact source of each
table and accession numbers are listed in Supplementary Data File S1).
Functional microbiome profiles were based on metabolic pathways in
either the MetaCyc (https://metacyc.org/) or KEGG databases.

Code availability
The R code used for this analysis, including the MintTea pipeline, is
available on GitHub (https://github.com/borenstein-lab/multi_view_
integration_analysis), and onZenodo (DOI: 10.5281/zenodo.10707477).
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