
Article https://doi.org/10.1038/s41467-024-46879-4

Training an Ising machine with equilibrium
propagation

Jérémie Laydevant 1 , Danijela Marković 1 & Julie Grollier 1

Ising machines, which are hardware implementations of the Ising model of
coupled spins, have been influential in the development of unsupervised
learning algorithms at the origins of Artificial Intelligence (AI). However, their
application to AI has been limited due to the complexities in matching
supervised training methods with Ising machine physics, even though these
methods are essential for achieving high accuracy. In this study, we demon-
strate an efficient approach to train Ising machines in a supervised way
through the Equilibrium Propagation algorithm, achieving comparable results
to software-based implementations. We employ the quantum annealing pro-
cedure of the D-Wave Ising machine to train a fully-connected neural network
on the MNIST dataset. Furthermore, we demonstrate that the machine’s con-
nectivity supports convolution operations, enabling the training of a compact
convolutional network with minimal spins per neuron. Our findings establish
Ising machines as a promising trainable hardware platform for AI, with the
potential to enhance machine learning applications.

Investigating physical systems that can execute cognitive tasks based
on their dynamic behaviors or statistical features has long been a topic
of interest in physics, motivated by the quest to unravel the brain’s
learning capabilities1. The Ising system2 of coupled spins, described by
the Ising energy function:

EIsing =
X
i>j

Jijσiσj +
X
i

hiσi, ð1Þ

has played a significant role in these developments3–6. We use here an
Ising energy that differs from the standard one by a minus sign, in
order to match the D-Wave formulation7, and to be consistent with all
the equations and learning rules in the rest of the paper. It can indeed
be likened to a neural network,where the state of a spin σi (upor down)
corresponds to the activity of a binary neuron, the value of the
coupling between spins Jij corresponds to the strength of the synaptic
connection between the neurons they emulate, and the bias fields hi
applied to individual spins correspond to the biases of the artificial
neurons. The majority of learning demonstrations on Ising
machines8–14 have focused on implementing Boltzmann machines
methods15,16. This algorithm capitalizes on the properties of physical
systems, characterized by an energy function, to evolve towards an

equilibrium state governed by Boltzmann statistics. However, Boltz-
mann machines are generative models that do not directly optimize a
cost function related to a classification error. Furthermore, the
parameters are typically evolved with approximations of the gradient,
as the exact value is complicated and lengthy to compute. Boltzmann
machines therefore underperform in difficult classification tasks when
compared to standard supervised learning algorithms like
backpropagation17.

The recent boom in AI, driven by the advent of these highly
effective supervised algorithms, has led to the development of various
new hardware platforms for AI applications. These platforms aim to
address the growing power consumption and computational demands
associated with both training and inference phases in AI systems.
Emerging AI hardware solutions exploit localmemory and leverage the
unique physical phenomena exhibited by novel components1,18,19.
However, these new platforms face compatibility challenges with the
most efficient supervised training methods, which rely on the mini-
mization of a global cost function, such as error backpropagation. This
is due to the intrinsically non-local nature of these methods and the
fact that the calculation of associated gradients is based on mathe-
matical procedures that do not correspond to the physics of the
emerging devices used. As a result, a significant research effort is

Received: 11 May 2023

Accepted: 12 March 2024

Check for updates

1Laboratoire Albert Fert, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France. e-mail: jeremie.laydevant@gmail.com; julie.grollier@cnrs-thales.fr

Nature Communications | (2024) 15:3671 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0009-0002-3544-6355
http://orcid.org/0009-0002-3544-6355
http://orcid.org/0009-0002-3544-6355
http://orcid.org/0009-0002-3544-6355
http://orcid.org/0009-0002-3544-6355
http://orcid.org/0000-0001-7521-217X
http://orcid.org/0000-0001-7521-217X
http://orcid.org/0000-0001-7521-217X
http://orcid.org/0000-0001-7521-217X
http://orcid.org/0000-0001-7521-217X
http://orcid.org/0000-0003-4866-4490
http://orcid.org/0000-0003-4866-4490
http://orcid.org/0000-0003-4866-4490
http://orcid.org/0000-0003-4866-4490
http://orcid.org/0000-0003-4866-4490
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46879-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46879-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46879-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-46879-4&domain=pdf
mailto:jeremie.laydevant@gmail.com
mailto:julie.grollier@cnrs-thales.fr

currently underway to develop algorithms capable of training these
novel, AI-dedicated hardware platforms efficiently20–27.

Our work belongs to the growing field of Physical neural
networks26, where the goal is to develop physical systems based on
unconventional nanodevices that solve AI tasks through the natural
laws of physics1,28–30. We aim to show that a physical system of coupled
spins7,30–41 can learn to perform supervised AI tasks through an algo-
rithm that harnesses its intrinsic ability to minimize an energy, arising
from the natural laws that govern our physical world.

Introduced in 2017, Equilibrium Propagation (EP)42 has garnered
significant attention for its ability to train in a supervised way con-
vergent recurrent energy-based models. Unlike traditional methods
that compute gradients of the objective function using Back-
propagation Through Time (BPTT), EP employs a local learning rule
that not only approximates BPTT-derived gradients43 but also over-
comes the limitations of conventional training in physical
systems22,23,44,45. The algorithm requires that the physical system
evolves toward a stable equilibrium state—that does not need to be the
ground state42—through the minimization of an energy function such
as:

EEP =
1
2

X
i

s2i �
X
i>j

W ijρðsiÞρðsjÞ �
X
i

biρðsiÞ, ð2Þ

where si, sj are the real and continuous states of the neurons,Wij are the
symmetric synaptic weights connecting neurons i and j, bi are indivi-
dual biases applied to the neurons, and ρ is a non-linear activation
function such as tanh. The first term in Eq. (2) is a damping term that
allows the system to reach a stable equilibrium state. In Equilibrium
Propagation, the inference is performed by conditioning the steady
state of the system with input values (free phase), while learning is
achieved by dynamically perturbing the outputs to align themwith the
desired values (nudge phase) and thus minimize the objective loss
function L. The parameter changes required for learning are derived
from local measurements of the equilibrium states, as opposed to a
complex non-local analytic mathematical procedure like backpropa-
gation. The corresponding learning rule for synaptic weights writes:

� ∂L
∂Wij

=ΔWij /
1
β
ðρðsiÞρðsjÞÞ*,nudge � ðρðsiÞρðsjÞÞ*,f ree
h i

, ð3Þ

with a term β that characterizes the strength of the nudging force. It
favors the equilibrium state obtained after the nudge phase, whose
outputs are closer to the target value, and destabilizes the one
obtained after the free phase. This is accomplished by decreasing the
energy of the nudge state and increasing the energy of the free state.
Numerical simulations of Equilibrium Propagation have demonstrated
state-of-the-art performance on benchmark tasks such as MNIST42,43,
CIFAR-1046, and Image-net-3247, using both fully-connected networks
and convolutional architectures.

Equilibrium Propagation is, therefore, an excellent candidate for
training physical systems described by an energy function44,45. Ising
Machines48 are analog32,37,39,49 or digital hardware34,41 systems that are
particularly fitted for this purpose, as they are designed to find the
ground state of the Ising spin model. Moreover, they offer thousands
of spins, and their reconfigurable coupling parameters facilitate
training. However, their applications are mostly limited to solving
combinatorial problems with fixed parameters50. Training Ising
machines using EquilibriumPropagationwouldbroaden their scope to
supervised classification tasks and leverage their adjustable para-
meters. Nonetheless, three fundamental differences exist between the
Ising model (Eq. (1)) and the EP model (Eq. (2)), which present chal-
lenges for training.

First, the Ising energy function (Eq. (1)) lacks the damping term
present in the Equilibrium Propagation (EP) model (Eq. (2)), which

allows the latter to reach steady state equilibrium intrinsically. Ising
machines can approach the ground state using various annealing
methods7,39,51 or minimum gain principle52, but destabilizing it for the
nudge phase in EP remains challenging. Developingmethods to gently
manipulate the equilibrium state is necessary.

Second, the difference between Ising spins’ two-state nature and
EP’s continuous-state neurons poses a challenge. Approaches must be
devised to create smooth modifications of the spin system by the
outputs, emulating the gradual changes in a neural network’s learning
process. This would bridge the gap between the two-state Ising
machine and continuous-state EP neurons, enabling efficient training.

Third, the implementation of EP on Ising machines necessitates
navigating the balance between connectivity and parallelism. In con-
trast to biological neural networks, which are highly interconnected
systems where neurons evolve simultaneously, Ising machines typi-
cally fall into two distinct categories. The first category offers full
connectivity but operates with sequential dynamics, leveraging
measurement-feedback mechanisms for simulating the spin
dynamics32,52. Conversely, the second category showcases fully parallel
dynamics but is limited by its sparser physical connections53. While the
former is preferred for combinatorial optimization in current appli-
cations, the natural parallel dynamics toward an equilibrium state in
the latter is especially fitting for Equilibrium Propagation. Strategies
then need to be established to adapt the network architecture to the
Ising hardware’s connectivity.

In this study, we report a critical advancement towards utilizing
Ising machines for machine learning applications. Employing the com-
mercial D-Wave Ising machine7, composed of thousands of two-state
components, and the Equilibrium Propagation algorithm42, we suc-
cessfully recognize handwritten digits from the MNIST/100 database54,
achieving recognition rates comparable to a fully connected network
trained using software simulations on standard digital hardware.

We train the Ising machine with Equilibrium Propagation, taking
advantage of its capacity to reach the ground state of its energy
function through annealing during the free phase and reverse-
annealing during the nudge phase. While the coupling between the
spins of the D-Wave machine has a high precision (5–6 bits)
approaching the full precision synapses of the original Equilibrium
Propagation model23,46, the spins of the machine correspond to neu-
rons with binary activations. In order to train this binary system, we
adapt procedures developed for training binary neural networks55,56

and increase the number of outputs.
Finally, we demonstrate that the connectivity between near-

neighbor spins on the DW-2000 chip, featuring the Chimera
architecture7, is inherently compatible with convolutional operations.
We successfully train a compact convolutional network entirely on the
chip, achieving recognition rates on par with software performance.

Our work belongs to the growing field of Physical neural
networks26, where the goal is to develop physical systems based on
unconventional nanodevices that solve AI tasks through the natural
laws of physics1,28–30. Our results show that a physical system of cou-
pled spins can learn to perform supervised AI tasks through an algo-
rithm that harnesses its intrinsic ability to minimize an energy, arising
from the natural laws that govern our physical world.

Our results indicate that Ising machines hold significant potential
as machine learning hardware, with their physics allowing for infer-
ence, error backpropagation, and gradient computation. Furthermore,
our findings highlight the promise of physics-based learning algo-
rithms, such as Equilibrium Propagation, in training fully connected
and convolutional networks on emerging hardware.

Results
Training an Ising machine with EP through annealing
In this study, we have chosen the commercial Isingmachine D-Wave as
the demonstration platform for our algorithm, owing to its distinct

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 2

advantages compared to other publicly available IMs. Specifically,
D-Wave offers a large number of spins, ranging from 2000-5000
depending on the version (2000Q or Advantage 4–5), high-precision
coupling parameters (4–6 bits), and the ability to control these para-
meters online through a Python interface. This interface is fully com-
patible with the code developed for the training algorithm, which is
essential, as the parameters need iterative adjustments during the
training process.

We illustrate the implemented training procedure in Fig. 1a and
provide a comprehensive description of how we execute the free
phase, nudge phase, and learning rule in the subsequent sections. For
both the free and nudge phases, we introduce the input data to the
spin system through bias fields. In the following sections, we elaborate
on how the bias fields are set according to the input data and the
architecture implemented on the chip.

In each phase, the input bias fields are maintained constant,
allowing the system to stabilize at an equilibrium state conditioned by
the input data. Ising machines employ extrinsic mechanisms, such as
simulated annealing57, noise annealing39, or quantum annealing7, to
guide the spin system towards its ground state rather than local energy
minima. These annealing procedures regulate the system’s exploration
of its energy landscape by adjusting a probability parameter that dic-
tates the system’s capacity to escape a given configuration. This
probability is controlled by the temperature of the system in simulated
annealing, by the noise in the system in noise annealing, and by the
tunneling rate between states in quantum annealing. For this demon-
stration, we utilized the quantum annealing procedure of the D-Wave
chip to achieve the free phase of EP (Fig. 1a (free phase) and Fig. 1b
(0 < time< 20μs)). The ground state is obtained by progressively
reducing the probability from a high value where the system explores

Fig. 1 | Training the Ising machine with EP. a Illustration of the free phase and
nudge phase of the Equilibrium Propagation algorithm applied to an Ising spin
system. For both phases, the input is fed to the chip throughbias fields (see Section
1 and 1), with a strength that depends on the task. The steady spins states obtained
at equilibrium after the free and the nudge phases can be directly measured on the
chip to compute the parameters updates. b Annealing schedule used to drive the
Isingmachineduring the two sequential phasesof EP. At the endofbothphases, the
probability of transition between states ends at 0, in the steady state where we
measure the states of all the spins. The small bump in the probability during the

nudge phase, achieved through reverse annealing, allows the system to be sensitive
to the nudge signal applied to the output neurons. c Binary activations - such as
spins - in a dynamical neural network trained with EP can cause the vanishing
gradient issue if the input of the neuron is only weakly modified between the free
and the nudge phase. d Schematic of the D-Wave chip used with the specific Chi-
mera architecture where spins are arranged as small 4 × 4 fully connected square
lattices and laterally coupled to 2 neighbors. The spins σi are represented as hor-
izontal and vertical lines, whereas the couplings Jij are represented as plain circles
for intra-cluster coupling and dotted bridges for cluster-to-cluster coupling.

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 3

all possible configurations, towards zero probability (Fig. 1b:
0 < time < 20μs).

The nudge phase of Equilibrium Propagation involves adding to
the energy of the system a term proportional to the cost function (C)
that describes the discrepancy between the output neurons and the
target. Here, we use as a cost function the Mean Square Error (see
Methods 1) that represents the deviation between the activation
functions of the output neurons and their target states:

CðρðyÞ,ρðŷÞÞ=
X
i2Y
ðρð yiÞ � ρð ŷÞiÞ2, ð4Þ

where Y denotes the set of output neurons, the subscript i refers to the
index of a specific output neuron and ρð ŷiÞ represents the target value
sought for their activation function. For an Ising system, this corre-
sponds to minimizing the spin energy

EIsing + β � Cðσ y,σ̂ yÞ=
X
i>j

Jijσiσj +
X
i

hiσi +β
X
i2Y
ðσi � σ̂iÞ2, ð5Þ

where the output of the activation function is the binary value of the
state σ. Since the output spin σ y and their corresponding target state
σ̂ y always take a value equal to ± 1, this formula can be rewritten as (see
Supplementary Note 4):

EIsing +β � Cðσ y,σ̂ yÞ=
X
i>j

Jijσiσj +
X
i=2Y

hiσi +
X
i2Y
ðhi � βσ̂iÞσi: ð6Þ

This encodes the nudge as an additional bias term βσ̂i that is only
applied to the output spins.

At the end of the free phase, the system is frozen in its ground
state 1b (time = 20μs). We found that the application of biases at the
output alone is not sufficient to destabilize it, which prevents the error
from being backpropagated. To overcome this problem, we employed
the Reverse Quantum Annealing procedure58. As depicted in Fig. 1b
(20μs < time < 40μs), we slightly increase the interstate tunneling
probability, allowing the system to evolve to a state that is close to the
equilibrium state of the free phase but closer to the desired output
state. Finally, we decrease the tunneling probability to 0 again,
ensuring that the system reaches the new nudged steady state, as
illustrated in Fig. 1b (40μs < time < 60μs).

While reverse annealing allows for the nudge phase, EP requires
additional adaptation to effectively train systems that have abruptON/
OFFflip-flopactivation functions, suchas binary neuronsor Ising spins.
For example, for the same range of input values, a flip-flop neuron is
statistically much less likely to change state than a neuron with a
continuous activation functionwhen the same nudge bias is applied to
them. As illustrated in Fig. 1c, for small nudge biases applied to output
spins, the network does not change its state in practice and does not
learn. Applying too high nudge biases also poses a problem, as the
switching of the output neurons between their two extreme values
leads to very strong changes in the states of the neurons of the whole
network, hindering the learning process, which needs to be pro-
gressive. To solve this problem, Laydevant et al.56 proposed using
several neurons to represent each output class instead of using only
one as is commonly done.We have adopted this method, which allows
us to induce more flip-flop events in the output and back-propagate
them more easily to the rest of the network.

The steady states of the spins at the end of the free and nudge
phase (respectively σ *,0 and σ *,β) are measured, recorded, and used to
calculate the gradient of the loss functionwith respect to the couplings

according to the following learning rule:

� ∂C
∂Jij

=Δ Jij / �
1
β
ðσiσjÞ*,nudge � ðσiσjÞ*,f ree
h i

ð7Þ

for a fully connected architecture. The updates are then applied to the
weights using the standard stochastic gradient descent algorithm.

The number of layers, of neurons per layer, and the connectivity
of a neural network depend on the task to be solved. Additionally, in
our case, this architecture is constrainedby the specific connectivity of
the hardware system. The D-Wave machine’s spins are organized in
locally connected sub-networks, as illustrated in Fig. 1d. As a result,
mapping a fully connected architecture onto the chip is not straight-
forward.We employ the embedding procedure provided byD-Wave to
map the neural network architecture to the chip’s architecture. This
procedure relies heavily on the “chaining” process of spins, allowing a
spin to couple with more spins than its direct six neighbors. The
chaining process involves strongly coupling a chain of physical spins
on the chip so that they maintain the same value at each time step of
the annealing procedure, effectively implementing a single spin.
Through the embedding procedure, we have successfully mapped our
fully connected architecture at the expense of using chains of
approximately six physical spins per neuron.

Training a fully connected neural network
We now apply the methods we introduced and described in the pre-
vious section to train a neural network featuring a fully connected
architecture for recognizing handwritten digits from the MNIST
database59, a widely used benchmark for evaluating the performance
of hardware-based neural networks.

Fully connected neural networks for solving the MNIST problem
typically consist of several layers of neurons, including an input layer
with 784 neurons (one neuron per image pixel), one or more hidden
layers, and an output layer. Here we chose to embed the largest pos-
sible neural network with one hidden layer as described below. Since
Equilibrium Propagation-based training relies on the dynamics of the
neuronswithin thenetwork and input neuronshavefixed values,wedo
not implement themon the chip (see Eq. (8)). Instead, we calculate the
product of the input data X (an input image, for instance) and a
trainable weight matrix Winput using a digital computer. In our work,
Winputhas the followingdimension: 784 × 120 (input size × hidden layer
size). The resulting vector of fixed bias fields hinput encodes the input
on the chip:

hinput =X*Winput: ð8Þ

This bias is then augmented by a secondbias that is the equivalent
of the standard biasof artificial neural networks:hhidden=hinput +hbias.

We find that using 4 output neurons per class of digits to be
recognized (from 0 to 9, resulting in 40 output neurons) allows the
nudge phase to function effectively. When mapping this fully-
connected network architecture onto the 5000 locally connected
spins ofD-Wave,wedetermined that themaximumnumberof neurons
we can implement in the hidden layer is 120 (Fig. 2a). Due to the limited
access time to the D-wave machine, we train this network with only a
partof theMNISTdata—using 1000 images for training and 100 images
for testing (see Methods). We refer to this task as MNIST/100, follow-
ing the notation of 54. As shown in Fig. 2b, we obtained a recognition
rate of 98.8% (±0.8) on the training data and 88.8% (±1.5) on the
test data.

In Fig. 2c–d, we compare the accuracy reached by the physical
system to numerical simulations. The first network (dashed lines in
Fig. 2c–d) is a spin network identical to theoneon the chip, and trained
in the same way by replacing the quantum annealing with Simulated
Annealing (SA-EP). The second network (solid lines in Fig. 2c) is a

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 4

software Artificial Neural Network with binary activations and real-
value weights (ANN-EP) evolving according to a Hopfield energy and
trained by Equilibrium Propagation. The Simulated Annealing along
with the Artificial Neural Networks (ANN) are executed on a digital
processor as detailed in Methods. Consequently, they establish the
benchmark for accuracy that we aim to achieve. As shown in Fig. 2c–d,
the accuracy that the hardware spin network reaches on MNIST/100
(denoted by the dots with error bars on 3 repetitions) is always higher
or equal to that of the simulated ideal networks for both the training
and test databases, demonstrating the quality of the training per-
formed on the Ising machine.

The MNIST/100 task is the most complex task that the D-Wave
machine has been trained to solve to date. Previous results, based on
unsupervised contrastive divergence learning, have been limited to
smaller subsets of the MNIST dataset, such as MNIST/2010, or images
reduced to (6 × 6) pixels instead of the 28 × 28 pixels of the original
database8,12. The simulations in Fig. 2d indicate that the recognition
rate on the test data of the implemented 784-120-40 network can be
further improved to 97% (± 1%) when trainedwithmore images, in this
case, 10,000.

The simulationswith simulated annealing in Fig. 2c also reveal that
the recognition rate on the reduced MNIST/100 database can be fur-
ther improved to 94% by increasing the number of hidden layer neu-
rons to 1920. While the total number of neurons required for this
network in hardware (1960 in total for the two layers, hidden and
output) is lower than the total number of spins available on D-Wave,
the sparse connectivity of the chipand the need for anembedding step
make it impossible to implement in practice. This is because it requires

the use of several spins per neuron, ~6 per neuron for the implemented
network (Fig. 2a).

Therefore, it is essential to consider neural network architectures
that are congruent with the local connectivity of most Ising machines
to make the best use of their resources and, in particular, to use fewer
spins per neuron in order to embed larger, and thus more powerful,
architectures. In the following section, we demonstrate that it is pos-
sible tomap and train a complete convolutional neural network on the
Chimera graph structure proposed by D-Wave (Fig. 1d), with less than
1.6 spins per neuron on average.

Training a Convolutional neural network
In this section, we show that we can directly map a convolutional
neural network (CNN) to the Chimera connectivity graph of the
D-Wave Ising machine employed in our study.

Convolutional neural networks, which are currently one of the
state-of-the-art architectures for image classification, function by
sliding convolutionalfilters over input data (Conv2D in Fig. 3a) in order
to extract different learnable features. The resulting feature maps are
then down-sampled (Pooling operation in Fig. 3a), combined and fed
into a final fully connected classifier (Flattening and Fully connected in
Fig. 3a) to assign a class to the input data.

Typically, the convolutional operation is sequential since the filters
must move over the input data to compute multiple local dot products
(Fig. 3a). However, with the D-Wave Ising machine’s Chimera con-
nectivity graph, we can perform this operation in a completely parallel
manner by utilizing the local clusters consisting of 4 spins connected to
4 other spins by 4 × 4 adjustable couplings represented in Fig. 1d).

Fig. 2 | Training a fully-connected neural network on MNIST. a Embedding the
fully connected architecture on the Isingmachine.Wefirst compute in software the
product between the input vector (an MNIST image) and the first weight matrix.
The result is a vector of small constant bias fields that are directly applied to the
hidden spins on the chip. The hidden and the output layer are embedded, coupled
and eventually nudged on the actual chip. b Training on D-Wave: training and
testing accuracy as a function of the number of epochs. c Training and testing

accuracy as a function of the number of hidden neurons. We plot the accuracy
obtainedwith the D-Wave Isingmachine (QA-EP) vs. those obtained with Simulated
Annealing (SA-EP) and with the deterministic Artificial Neural Network based on
binary activations and real-value weights (ANN-EP).d Training and testing accuracy
as a function of the size of the training dataset. We plot the accuracy obtained on
the D-Wave Ising machine (QA-EP) vs. that obtained with Simulated annealing
(SA-EP).

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 5

The convolutional layer applies a filter, a set of four weights, to
extract 2 × 2 pixel patches of the image (e.g. p1, p2, p4, p5) and apply a
non-linearity (the binary value of the spin), generating a single output
value for eachpatch (e.g.,x1). This operation creates four output values
for a given filter, constituting a feature map.

We employ four different crossbars, labelled Wconv in Fig. 3b to
process the four different 2 × 2 pixel patches of the input. In the sche-
matic crossbar view, the spins are physically represented by horizontal
and vertical lines. The pixel values pi are applied to the input spins
through strong biases hi that set their direction. The output spins in the

Fig. 3 | Training a convolutional neural network. a Detailed view of the con-
volutional neural network trainedon theD-Wave Isingmachine. The inputs are 3 × 3
pixel images. The convolution layer applies four different sets of 2 × 2 weight filters
to the input images, generating four 2 × 2 feature maps. Each feature map is then
condensed to a single value through an average pooling operation. After flattening,
a fully connected classifier provides the output of the network, a vector of
dimension4.b Schematicof the convolutional neural network’s implementationon
the Chimera architecture of a D-Wave Ising machine. The four peripheral crossbar
arrays perform the convolution operation in parallel. Each array receives a distinct
patch of pixels from the input data, yet all share identical couplings, ensuring
uniform filter application across different patches. The blue spins on the four
crossbar arrays individually represent the values x1, x2, x3, x4 of the feature map
highlighted in a, obtained by convolving the input with the filter encoded in the

couplings depicted in light blue circles. The output of the convolutional operation
is then down-sampled via the averaged pooling coupling (J = 1

4) and linked through
identity couplings (J = 1). The dotted blue chain represents the output of the
averaged pooling operation applied to the feature map depicted with the blue
spins. Finally, the results of the averaged pooling operation are fed into the fully
connected classifier, which predicts the input’s class. Here we have four output
neurons as we use two output neurons to encode a class. The convolutional neural
network is mapped as-is on the chip, eliminating the need for an embedding step.
c The training dataset consisting in the 2 patterns used for training the CNN
implemented on the D-Wave Ising machine. d Training curve (mean squared error)
related to training the CNN on the D-Wave Ising machine. e Training curve (accu-
racy (%) related to training the CNN on the D-Wave Ising machine.

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 6

crossbar then align according to the sum of the inputs weighted by the
coupling values. The set of couplings highlighted in blue across the
crossbars correspond to the same filter, generating the values
x1, x2, x3, x4 in the blue output spin of each crossbar. Thismethod allows
us to apply four different filters to the full input image simultaneously,
thereby executing the entire convolutional operation in parallel.

After the convolution operation, we apply a pooling operation to
reduce the dimensionality of the output. Standard CNNs typically
employ max pooling, which would, in our example, correspond to
keeping themaximumof the four outputs in blue, and couplingonly this
one to the next layers in the network. We found more convenient and
relevant here, given the layout of the chip and the potential degeneracy
in themaximum values of a set of binary spins, to implement an average
pooling,which averages out the four outputs before connecting them to
the next layers. To achieve this, we connect the outputs of the different
convolution operations (e.g. the blue “spins” in Fig. 3c) to another chain
of spins (e.g. thebluehorizontal dotted line in Fig. 3c) through couplings
with the value J= 1/4, highlighted in yellow in Fig. 3c. This arrangement
enables the computation of the weighted average of the convolution
outputs and concurrently performs the “flatten” operation of CNNs.

The final stage of the neural network, subsequent to the pooling
and flattening operations, consists of a fully connected layer with four
outputs. This stage is realizedusing the central crossbar array depicted
in Fig. 3c, where the array’s couplings implement the layer’s weights.

Here, we use two spins/per class to classify the 3 × 3 pixel
thumbnails depicted in Fig. 3d. As shown in Fig. 3e–f, the network
implemented and trained on the D-Wave’s Ising machine achieves a
100% success rate on the training patterns. This result demonstrates
the feasibility of training a convolutional network by performing the
two phases as well as gradient computations directly on a quantum
computer. Thismethod utilizes connectivity farmore efficiently than a
fully connected network, requiring on average only 1.6 spins per
neuron asopposed to approximately 6. These results also demonstrate
the power and flexibility of Equilibrium Propagation to train hardware
systems with constrained connectivity.

Discussion
In the past, several attempts have been made to implement neural
networks on spin systems by using their physics and taking into account
hardware constraints. Boltzmann machines, in particular, can take
advantage of the annealing procedures available in Ising machines.
However, the size of the networks that can be embedded on the chip is
limited in practice because in Boltzmannmachines, all the input neurons
(784 for MNIST) must be physically present on the chip. Most imple-
mentations up to date were made with D-Wave, which offers a few
thousand spins. References8–12 used D-Wave to train a Restricted Boltz-
mann Machine (RBM) on a coarse-grained version of MNIST down-
sampled to 6 ×6 pixel images in order to fit the chip that was available at
the time of publication. They then fine-tuned the network with back-
propagation outside of the chip. Reference13 only trains some couplings
between the hidden nodes (80 nodes) of the Boltzmann Machine. The
couplings between the visible and the hidden layer are computed on a
side computer.Only10 trains the IsingMachineon the standard version of
MNIST but restricted to 200 training images. However, it is still trained
layer-wise and shows limited performances on MNIST/20 (maximum
67% test accuracy with 479 sparsely connected hidden nodes).

In a recent study14, researchers trained a 2-hidden layer Deep
Boltzmannmachinewith a connectivity similar to the onewe used. The
simulations were performed digitally, in discrete-time dynamics on an
FPGA, contrary to our study that employs the intrinsic dynamics of a
physical system to extract the gradients used for training. The Boltz-
mann machine was kept sparse, avoiding the use of embedding for a
fully connected architecture, which is reminiscent of our approach to
leverage the Ising machine’s connectivity for convolution operations.
As we do with Equilibrium Propagation, the authors trained the

network as awhole instead of layer-by-layer,which is typically done for
Boltzmann machines. They also employed multiple neurons per
encoded class (five spins per class, compared to our four spins per
class), and showed that their approach converges for systems com-
posed of two-state flip-flop systems, such as Ising machines. None-
theless, the test accuracy achieved on the full MNIST dataset (90% for
both train and test accuracy) underscores the advantage of using
Equilibrium Propagation and reverse annealing to train Ising systems.
As we showed in the simulations of Fig. 2d, a test accuracy of 97% is
theoretically attainable by training the D-Wave Ising machine with
Equilibrium propagation on MNIST/1000, a performance that is likely
to improve when employing the full database.

In Reference60, the authors trained a Boltzmann machine on an
optical Ising machine, achieving ≈95% accuracy on down-sampled
MNIST (8 × 8 pixels). Our approach differs on several points. Their
setup uses an FPGA for vector-matrix multiplication and adds a linear
classifier on top of a hidden layer, trained separately. We train the full
network, including the classifier, directly on the Ising machine using
EquilibriumPropagation.Moreover, they use smaller images andmore
data, sampling their machine 1000 times per problem. In contrast, we
sample just 10 times during training and demonstrate that a single
sample suffices for post-training inference with binary neurons.

The D-Wave Ising machine has also been employed to train spe-
cific components of other neural network types. For instance61–63,
leverage the probabilistic nature of this hardware to generate a sparse
latent representation of an auto-encoder. However, again, the authors
do not train the entire auto-encoder on the D-Wave Ising machine.

In this work, we demonstrate the feasibility of performing infer-
ence, backpropagation of errors, and computation of gradients of a
global cost function solely through the dynamics of a spin system. Our
approach paves the way for training Ising machines using modern
supervised learning algorithms, employing standard gradient-based
methods.

Our experiments were carried out using the D-Wave machine,
whose quantum properties are a topic of ongoing discussion in the
scientific community64,65. Our work, however, is fundamentally classi-
cal and could be applied to any Ising Machine with the capacity to
stabilize in its energy minimum. Although we found that the accuracy
obtained on the hardware through quantum annealing is slightly bet-
ter than software simulations, we cannot conclude on a quantum or
classical advantage as the exact training conditions of the hardware
cannot be easily replicated in simulations (see Methods). To establish
more definitive conclusions on this matter, it would be valuable to
investigate whether the D-Wave machine maintains higher accuracy
compared to software simulations when trained on other tasks
(especially those necessitating an optimal ground state for the Ising
system), and ideally, to compare the hardware accuracy with that of
classical Ising machines with the same connectivity.

Future generations of D-Wave Ising machines will be capable of
modeling larger spin systems, allowing to embed more complex neural
networks. In particular, they will be equipped with larger locally con-
nected crossbar arrays66, enabling the direct application of 3 × 3 filters
and the performance of convolutions on benchmark images, such as
those from MNIST or CIFAR-10. One constraint of our current con-
volution implementation for progressing in this direction is the
requirement for binary inputs. However, there are at least two possible
ways to tackle this issue in the future when implementing convolutional
neural networks on aD-Wave Isingmachine. The first approach is similar
to the method we employed in this article for training the fully con-
nected architecture, where we compute the initial vector-matrix pro-
duct on a digital computer and send the results as inputs to the chip.We
could use the same technique with a first convolutional layer computed
on a digital computer with real-value inputs, as is commonly done with
binary neural networks67,68. A second way to manage binary inputs
directly on the chip would be to take inspiration from69, where the

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 7

authors stochastically binarize the inputs to accommodate binary
inputs, even though the original inputs are real-valued (CIFAR-10).

Finally, Ising machines, designed to reach the ground state of an
Ising system, are inherently stochastic in nature70. D-Wave for instance
operates atfinite non-zero temperature, resulting in thermal excitation
competing with quantum annealing. When the machine is used for
solving combinatorial problems, the state needs to be sampled mul-
tiple times to obtain an accurate solution. We also had to sample the
state of the machine 10 times at the end of each phase in order to
achieve successful trainings. However, we found that after training
with our method, the initially stochastic D-Wave Ising machine is
brought into amuchmore deterministic regime (as seen in Fig. 4). This
means that after training, the solution is given in a single call to the
Ising machine, greatly reducing the inference time. These results also
open up the possibility of learning combinatorial problems through a
data-driven approach that can provide faster and more accurate
solutions than the traditional approach, where Ising system para-
meters are defined by the problem.

Our results and the algorithm employed to obtain them can be
applied to any type of annealing-based Ising machine. Those with an
ultra-low power consumption are particularly appealing for reducing
the overall electrical consumption of AI and deploying it in embedded
systems. Memristors or spintronic nano-components are currently
being extensively researched as building blocks for such systems, as
they enable the co-integration ofmemory, novel physical functionality
and computing. This greatly enhances the efficiency and scalability of
the system, making it more suitable for real-world applications.

The development of unconventional hardware naturally ques-
tions the models and the corresponding algorithms to be run on it71.
For the specific case of hardware or physical neural networks, back-
propagation is difficult to realize end-to-end in hardware without
major overhead costs (massive peripheral circuitry andmemory)1,28–30.

New learning algorithms grounded in the physics of the hardware
are emerging, such as Hamiltonian Echo Backprop72, Coupled
Learning73, Thermodynamics computing74,75, Forward-forward-like
algorithms76, Deep reservoir computing77,78 and Equilibrium
Propagation42. Hardware demonstrations of those alternative training
algorithms are milestones sought after by the unconventional com-
puting community. By physically implementing the spins and cou-
plings, the hardware, which may utilize a variety of technologies such
as CMOS, optics or emerging nanotechnologies1,7,26,28–41, embodies the
algorithm with different degrees of abstraction instead of relying on
highly synthesized and compiled systems.

In line with this trend, a recent study45 successfully trained a
crossbar array of memristors to emulate the couplings of an Ising-like

model using a learning law similar to Equilibrium Propagation. Con-
trary to our study, the system in this research is not intrinsically
dynamic. Instead, the “spin” dynamics is emulated digitally in discrete
timeby iteratively and recursively interfacing thememristive system to
digital electronics.

We show that matching the hardware (a physical system of cou-
pled spins evolving according to the Ising energy - D’Wave system)
with the algorithm (a training algorithm harnessing the energy mini-
mization of an Ising energy to find weight updates) is an efficient way
to achieve learning in unconventional hardware. Futureworkcoulduse
the methods we have developed here on low power and faster
embedded hardware.

In conclusion, this studypresents a significant advancement in the
field of utilizing Ising machines as hardware platforms for Artificial
Intelligence. Leveraging Equilibrium Propagation together with
annealing methods, we have successfully demonstrated that Ising
machines canbe trainedusingmodern supervised learning algorithms,
overcoming the limitations of previous attempts to implement neural
networks on spin systems.Our experiments, conductedon theD-Wave
Ising machine, show that the accuracy obtained through quantum
annealing is on par with that of software simulations. Additionally, our
results indicate that the local connectivity of Ising machines can be
effectively harnessed for performing convolutions. The potential for
future developments by combining our approach, where Ising spin
systems compute gradients through their intrinsic dynamics, with low-
power hardware that employs nanotechnologies such as memristors
for implementing local couplings, presents exciting opportunities for
the future of embedded AI.

Methods
In this section, we outline the essential steps of themethods employed
to generate the results presented in the paper. Further details can be
found in the SupplementaryMaterials file.We begin by discussing how
to interact with the D-Wave Ising machine and identifying the most
crucial features to facilitate training with Equilibrium Propagation (EP)
on this specific Ising machine. Following this, we provide a brief
overview of the requirements and learning rules of EP. Lastly, we delve
into the training methods for both the fully-connected and convolu-
tional architectures.

Additionally, we have made our code available at the following
link: https://github.com/jlaydevant/Ising-Machine-EqProp to facilitate
the reproduction of our results. While access to the D-Wave Ising
machine is required for some of the results, similar outcomes can be
achieved using Simulated Annealing, which ismore easily reproducible.
In particular, we provide our modified Simulated Annealing sampler,

Fig. 4 | Training the stochastic Isingmachine to behave in a deterministic way.
Distribution of the steady-state energy of the spin system modeled by the D-Wave
Ising machine when the exact same inputs are applied 1000 times to the same
neural network architecture. The light pink distribution corresponds to the energy
of the systembefore training it onMNIST/100. Thepurpledistribution corresponds
to the energy of the system after training it with EP. The samples before training

have a flat distribution with a large standard deviation - which is the signature of a
highly stochastic system.The samplesbefore training exhibit aflatdistributionwith
a substantial standard deviation, indicative of a highly stochastic system. In con-
trast, the samples after training are concentrated within a narrower region with a
considerably smaller standard deviation. This demonstrates that the training pro-
cedure causes the Ising machine to exhibit more deterministic behavior.

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 8

https://github.com/jlaydevant/Ising-Machine-EqProp

based on D-Wave’s Simulated Annealing code, which we employed to
perform both the free and nudge phases with the same annealing
schedule baseline, akin to our approachwith theD-Wave Isingmachine.

The article’s text and supplementary material were partially
revised by OpenAI’s ChatGPT to enhance the clarity and quality of the
English.

Methods for handling the D-Wave Ising machine
The training of neural networks on the D-Wave Ising machine were
conducted as follows.

We accessed the Ising machine virtually through a Python API79

provided by D-Wave. Initially, we needed to define a sampler, which
refers to the type ofD-Wavemachinewe intended to use (e.g., Chimera
or Pegasus architecture) and the embedding procedure we employed
tomap the neural network architecture onto the actual architecture of
the Ising machine.

Following the initial implementation of EP42, we performed the two
sequential phases of EP on the Ising machine. The input image
remained static during all the annealing process, as required for the
system to converge given a fixed input. We had to adjust the duration
of the annealing for the free phase.We chose the native duration, which
is 20μs (see Fig. 1b). For the reverse annealing we specified the dura-
tion and the schedule. We set the duration to 40μs, the initial annealed
fraction to 0, the annealed fraction at time 20μs to 0.25 and the final
annealed fraction to 0 (see Fig. 1b). This enabled the system to change
its state according to the nudging signal. This optimal value for the
annealed fraction, as determined midway through the reverse anneal-
ing process, was first calibrated using a simplified task and then applied
to training on the MNIST/100 dataset. Specifically, we employed the
same MLP (Multilayer Perceptron) architecture (784-120-40) but
trained it on the MNIST/10 dataset. We incrementally adjusted the
annealed fraction until the gradients registered on the chip exceeded
zero, indicating effective training. This was further validated as the loss
diminished and the accuracy exhibited an upward trend.

We want to emphasize that while the quantum annealing proce-
dure is implemented through a dynamical transverse Ising model80

that allows for quantum fluctuations, the final state obtained through
the same quantum annealing procedure is solution of the classical
Ising model.

The D-Wave Ising machine is not perfect and thus does not return
the ground state of the problem at each call to the solver (see Fig. 4 -
distribution before training). This alters the training procedure and we
had to sample the problem multiple times per input image to get a
good estimate of the ground state. For that purpose, we sampled
the same problem 10 times and selected the sample with the lowest
energy.

We used the Ising formalism to sample our problems—i.e. the spins
are ± 1 and not 0/1 as with a QUBO (Quadratic Unconstrained Binary
Optimization)—as the D-Wave Ising machine really optimizes the Ising
problem. We can submit problems in the QUBO formulation to the
D-Wave Ising machine but the parameters (couplings and bias) are
scaled non-trivially, which we found to affect the training procedure.

An essential feature to disable when executing a two-phase
training algorithm, such as EP, on the D-Wave Ising machine, is the
auto-scale feature:

scaling = max
�

max maxðh,0Þ
maxðhrange ,0Þ

� �
,

max minðh,0Þ
minðhrange ,0Þ

� �
,

max maxð J,0Þ
maxð Jrange ,0Þ

� �
,

max minð J,0Þ
minð Jrange ,0Þ

� ��
ð9Þ

This feature enables the scaling (by a factor scaling) of problem
parameters to optimally fit within the accessible value range for the
parameters on the chip, in order to gain in performance. However,
when training the Ising machine with EP, we introduce nudging biases
on the output neurons (which always have a largermagnitude than the
network biases). We immediately see from Eq. (9) that the scaling for
all the parameters will change for the second phase. As a result, the
optimization problem will be significantly different, making the
resulting gradient irrelevant. We found that disabling this feature and
manually scaling the parameters (see Supplementary Table 1) allows
for the successful training of a neural network on the D-Wave Ising
machine. One drawback of this approach is the need to clip the para-
meters within the available range of values accessible on the chip,
which we do after the stochastic gradient descent (SGD) update step.

Objective function for training a neural network on an Ising
machine with Equilibrium Propagation
The particularities of Equilibrium Propagation on Ising spin models
have been discussed in themain text. Here, we revisit the choice of the
objective function to minimize. In standard software-based simula-
tions of EP, we use theMean Squared Error (MSE) between the internal
state of the output neurons and their target states:

Cð y,ŷÞ=
X
i2Y
ð yi � ŷiÞ2 ð10Þ

However, when using the Isingmachine, we no longer have access
to the internal states yi. The only measurement available to us is the
activation - the spin’s state σ(yi) - of the output neurons, as yi is
implicitly computed through the couplings. This is the reason behind
our choice of MSE for training the system (Eq.(4)).

Nevertheless, the choice of using the MSE as the cost function
naturally fits the Ising machine frameworks as the minimization of the
MSE during the nudge phase simply translates in a nudge bias (see
Supplementary Note 4).

Methods for training a fully connected architecture
We now discuss the two primary challenges associated with training a
fully-connected neural network on the D-Wave Isingmachine. The first
challenge involves embedding a dense graph (the fully-connected
architecture) onto a sparsely connected graph, i.e., the architecture of
the D-Wave Ising machine. The second challenge concerns efficiently
feeding inputs to the Ising machine.

Embedding the fully connected architecture onto the chip layout.
To map our problem, which is the underlying graph of the neural
network we want to train, onto the actual architecture of the chip, we
used the LazyFixedEmbeddingComposite function. This function
operates as follows: during the first annealing, it calls a heuristic
function minorminer, which aims to find a way to embed the neural
network onto the chip layout. However, this procedure is itself an NP-
hard problem, resulting in a time-consuming process. LazyFix-
edEmbeddingComposite finds the embedding only for the first
annealing and reuses this embedding for subsequent training exam-
ples, which significantly reduces the annealing time. In addition to this
advantage, it allows the training process to account for the local
imperfections of the chip (faulty spins, noise, etc.) so that the para-
meters are updated based on the actual dynamics of the chip.

We want to emphasize that the graph embedding procedure is
performed only once at the beginning of the training, and this specific
embedding is consistently used throughout the training duration. This
means that the potentially resource-intensive graph embedding step
gets spread out, making it more cost-effective and amortized over
numerous training iterations. As highlighted in the section discussing
the convolutional neural network (Section 1), we anticipate that future

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 9

architectures driven by layout (which are entirely independent of the
graph embedding procedure) will offer greater scalability.

The embedding process relies heavily on the chaining procedure -
using multiple hardware spins to represent a single spin in order to
couple it to more neighbors than the architecture allows for - and the
chaining strength can be adjusted. In practice, we set the chaining
strength (i.e., the value of the couplings between the hardware spins
that represent the same spin) to − 1 which has proven effective.
Moreover, spins within a single chain may not all align post-annealing,
leading to ‘chain breaking.’We address this through a straightforward
majority-vote strategy. While chain breaking poses significant chal-
lenges in contexts requiring highly precise ground states, such as
combinatorial optimization, Equilibrium Propagation (EP) merely
necessitates reaching a stable equilibriumstate42. As a result, we expect
neural network training via EP on Ising Machines to be far more tol-
erant of chain-breaking complications compared to combinatorial
problem-solving.

For training a fully-connected architecture, we used the Pegasus
architecture on the Advantage 4 chip available at the time of the
simulations.

Feeding the input data to the chip. As mentioned earlier, the input
image remains static throughout the entire annealing process, as
required for EP. This enables us to perform the vector-matrix product
between the input image and the first weightmatrix in silico only once,
and apply the result as an input bias to the hidden neurons. This
approach allows us to train the Ising machine with a large input
(MNIST: 28 × 28 pixels), which was previously impossible with existing
training methods that required embedding the input data on the
chip8,14. This weight matrix is also trained, given only the steady-state
spin states in the Ising machine and the input data.

Training data. Training a neural network reduces to an iterative pro-
cesswhere the training data is shownmultiple times to the network. So
training a neural network on the D-Wave Ising machine requires mul-
tiple calls to the solver, each being billed according to the time the
solver is used.

For instance, a free phase is billed the following way: time to
initialize the parameters on the chip (couplings and field biases): ≈ 7
ms, time to thermalize the chip after the initialization of the para-
meters: ≈ 1ms, annealing time: ≈ 20 μs being done 10 times per exam-
ple in our case, readout and thermalization time before next
annealing: ≈ 200 μs which result in≈ 10ms per free phase. The nudge
phase is even more costly in time as we need to re-initialize the spins
for each reverse annealing which adds 10*7ms per example and
gives ≈ 80ms. In total this results in ≈ 9ms per training example (free
and nudge phases). An epoch on full MNIST (60k training images and
10k testing images) would be ≈ 5525 s on the solver. And 50 epochs
would take ≈5k min which is ≈ 77 h. This would result in an insane bill,
which is whywe chose to use a subset ofMNIST:MNIST/100. An epoch
with 1000 training examples would be ≈ 91 s on the solver, 50 epochs
would take ≈ 76minwhich is ≈ 1.27 h. So to trainone neural network on
the D-Wave Isingmachine for 50 epochs onMNIST/100we have to pay
for ≈ 1.27 h access time,which ismuchmoreaccessible than the 76h for
full MNIST.

Following the notation of 54, our dataset is called MNIST/100,
which contains 1000 training images with 100 training images per
class, and 100 testing images with 10 testing images per class. To
create our training (resp. testing) dataset, we select the first 100 (resp.
10) images of each class from the MNIST dataset downloaded with
Pytorch. This equidistribution helps avoid training (resp. testing) bias
in such a small training (resp. testing) dataset. We did not use data
augmentation techniques.

Furthermore, to save access time to the Ising machine, we adop-
ted a simple scheme similar to refs. 22,81. At the end of the free phase,

we compared the state of the output layer of the network to the target.
If theoutput layerwas equal to the target vector,we skipped thenudge
phase for that particular input data, meaning no gradient had to be
computed for this image. This approach significantly saved access time
and accelerated the training.

Learning rule for the fully connected architecture. The D-Wave Ising
machine minimizes the following Ising energy function:

EIsing =
X
i>j

Jijσiσj +
X
i

hiσi ð11Þ

Thus, the learning rule for the couplings is directly derived from
Eq. (11):

∂L
∂Jij

=
1
β

∂EIsing

∂Jij
ðx,θ,σ*,β,β,σ̂Þ � ∂EIsing

∂Jij
ðx,θ,σ*,0,0,0Þ

 !
ð12Þ

where σ *,0 and σ *,β stands for the two sequential free and nudge
equilibrium states.

Finally, Eq. (12) directly read as:

� ∂L
∂Jij

=Δ Jij = �
1
β
ðσiσjÞ*,β � ðσiσjÞ*,0
� �

ð13Þ

where L stands for the loss function to be minimized during the
training procedure - here the Mean Squared Error function.

This learning rule differs from a negative sign to the conventional
learning rule of fully-connected layers with EP as conversely to the
standard energyminimized in EP, theD-Wave Isingmachineminimizes
this specific Ising energy function (Eq. (11)) where there is a positive
sign in front of the coupling sum.

Similarly, we can derive the learning rule for the bias fields:

� ∂L
∂hi

=Δh = � 1
β

σ*,β
i � σ*,0

i

� �
ð14Þ

We feed these gradients to a SGD optimizer without momentum
and no mini-batch:

J J +η � Δ J ð15Þ
where η stands for the learning rate which is a tunable parameter.

Methods for training a convolutional architecture
In this section, themain challenge, besides training the systemwith EP,
is to find the correct embedding that implements the convolutional
neural network we want to train.

Handcrafting the embedding dictionary. Contrary to the embedding
procedure for the fully-connected architecture, we handcrafted the
embedding for this case, as we leveraged the actual architecture to do
specific computations. To achieve this, we manually created a dic-
tionary thatmaps the index of the spins in our architecture to a specific
site on the chip. For the spins requiring chaining (e.g., for imple-
menting the results of the average pooling operation), the dictionary
maps the spin to a list of hardware sites.

For the convolutional architecture, we used the Chimera archi-
tecture on the chip DW-2000.

A typical embedding dictionary is:

embedding= f0 : ½560�,1 : ½561�, . . . ,39 : ½579�g

where the key of the dictionary is the index of a specific neuron in the
architecture and the linked list is the corresponding spin(s) on the
chip. The embedding is shown in Supplementary Fig. 12.

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 10

Feeding the input data to the chip. The concept behind the con-
volutional architecture is centered around the “local” product of input
data and the coupling. To demonstrate that this works in practice for
realizing convolutional operations, we had to embed the inputs
directly on the chip, unlike the fully-connected architecture. For that
purpose, we set strong biases (i.e., ± 4, the largest possible value for
biases on DW-2000) on the spins corresponding to the inputs. This
ensures that they remain constant throughout the entire annealing
procedure and have the binary value corresponding to the sign of the
bias applied to them.

Learning rule for the convolutional architecture. The learning pro-
cess for the convolutional architecture differs from that of the fully-
connectedmodel. The operations involved in the energy functionhave
changed, resulting in a different learning rule for the convolutional
weights. However, the learning for the last weights involved in the
classifier remains the same as for the standard fully-connected
architecture.

The learning rule for the convolutional weights J between the
input x and the “hidden” layer h - after activation but before the
pooling operation - is:

ΔJ=
1
β

x ? hð Þ*,β � x ? hð Þ*,0
h i

ð16Þ

where⋆ denotes the convolution operation between x and h. Here the
gradient ΔJ has the same dimension as the convolutional weights
tensor J, so we can directly apply the update through stochastic gra-
dient descent:

J J+η � ΔJ ð17Þ

The learning rule Eq. (16) can be easily extended to the layers that
are not directly linked to the fixed inputs:

ΔJ=
1
β

h‘
? h‘ + 1

� �*,β
� h‘

? h‘+ 1
� �*,0� �

ð18Þ

where hℓ and hℓ+1 stands for the states of the two consecutive layers ℓ
and ℓ + 1.

Methods for the simulated annealing simulations
We performed digital simulations using Simulated Annealing (SA) to
benchmark the results obtained on the D-Wave Ising machine. SA
shares the same goal as quantum annealing algorithms, but relies on
temperature to control the probability of a system to escape from a
given configuration. The temperature is initially set to a high value,
allowing the system to explore various configurations. It is then gra-
dually decreased, so that y the end of the annealing process, the sys-
tem reaches a steady state (see Alg. 2).

We used a code provided by D-Wave to perform those
simulations.

However, similarly to the “auto-scale” feature that had to be dis-
abled on the D-Wave Ising machine, we manually set the temperature
range, which is natively auto-scaled to match the range of parameters
for the problem to be solved through simulated annealing. The tem-
perature range is chosen based on the initial parameter values and
remains fixed throughout the training. Although the temperature
range may not be ideal, it works well in practice.

We also modified the original code to implement a similar kind of
reverse annealing to the one of D-wave, but with temperature. In this
case, we reversed the temperature schedule during the first annealing
for a certain duration up to a tunable value (as with simulations on

D-Wave) and thendecreased it back to zero. The temperature schedule
- i.e., the schedule of p1!2 as here p1!2 / e�

ΔE1!2
T - follows the same

curve as in Fig. 1b.
To run the simulations, we integrated the Simulated Annealing

sampler into the code developed for the training on the D-Wave Ising
machine. The user simply needs to specify which sampler to use for a
specific training.

Similar to the trainings on the D-Wave Ising machine, the states
reached with SA are stochastic. As a result, we also had to sample the
states multiple times per image to obtain a reliable estimate of the
ground state. Additionally, we skipped the nudge phase when the free
phase ad already produced the correct output state.

Methods for the deterministic simulations
We also conducted digital simulations using a similar type of neural
network: one with binary activations and real-valued weights but with
deterministic dynamics, i.e., a gradient dynamics on the energy
function.

For these simulations, we adapted the code from56, in which the
neurons are described by the standard EP energy function:

EEP =
X
i

s2i �
X
i>j

W ijρðsiÞρðsjÞ �
X
i

biρðsiÞ ð19Þ

where theweightsWij are real-valued and ρ is the binary Heaviside step
function (see Fig. 1c):

ρðsÞ= 0 if s <0

1 else

�
ð20Þ

A dynamical equation for the neurons that minimizes this energy
function is given by the following gradient dynamics:

ds
dt

= � ∂EEP

∂s
ð21Þ

where s stands for the internal state of a specific neuron in the network.
For a particular neuron si, we can simply rewrite this equation as:

dsi
dt

= � si +ρ
0ðsiÞ

X
j

W ijρðsjÞ+bi

" #
ð22Þ

This equation governs the internal dynamics of the binary neu-
rons - with the particular choice of ρ0ðsiÞ= 10<si<1 which is arbitrary as
the derivative of the Heaviside step function is almost zero
everywhere.

We use an Euler scheme to solve this dynamics:

st +dt = st +dt*
ds
dt

ð23Þ

where the time step dt, the number of time steps for the free and
nudge phases resp. T and K are hyperparameters to tune (see Sup-
plementary Table 3). No annealing is used here so given an initial state
(always 1 here) and a set of parameters, the dynamics always converges
toward the same steady state so we do not need to repeat the simu-
lation for each image.

For the nudge phase, the energy function is augmented by a cost
term as follows:

ds
dt

= � ∂EEP

∂s
� β

∂C
∂s

ð24Þ

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 11

where C is the cost function to be minimized and β the nudging
parameter.

The output neurons y now have the following dynamics:

dyi
dt

= � yi +ρ
0ð yiÞ

X
j

W ijρðsjÞ+bi

" #
+β � ð yi � ŷiÞ ð25Þ

where ŷi is the target state for the corresponding neuron yi.
We compute the gradients given the free and nudge equilibrium

states:

� ∂L
∂Wij

=ΔW =
1
β
ðρðsiÞρðsjÞÞ*,β � ðρðsiÞρðsjÞÞ*,0
� �

ð26Þ

and feed them to a SGD optimizer (Eq. (15)).

Data availability
The datasets analyzed, and all datameasured in this study are available
at: https://doi.org/10.5281/zenodo.10690111.

Code availability
The code to reproduce the results is available on github at the fol-
lowing link: https://github.com/jlaydevant/Ising-Machine-EqProp.

References
1. Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neu-

romorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).
2. Ising, E. Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für

Physik 31, 253–258 (1925).
3. Little, W. A. The existence of persistent states in the brain. Mathe.

Biosci. 19, 101–120 (1974).
4. Hopfield, J. J. Neural networks and physical systemswith emergent

collective computational abilities. Proc. Natl. Acad. Sci 79,
2554–2558 (1982).

5. Amit, D. J., Gutfreund, H. & Sompolinsky, H. Spin-glass models of
neural networks. Phys. Rev. A 32, 1007–1018 (1985).

6. Mézard, M., Parisi, G. & Virasoro, M. A. Spin glass theory and
beyond: an introduction to the replica method and its applications,
9, 476 (1987).

7. Harris, R. et al. Experimental investigation of an eight-qubit unit cell
in a superconducting optimization processor. Phys. Rev. B 82,
024511 (2010).

8. Adachi, S. H. & Henderson, M. P. Application of quantum annealing
to training of deep neural networks. arXiv preprint arXiv:1510.06356
https://doi.org/10.48550/arXiv.1510.06356 (2015).

9. Benedetti, M., Realpe-Gómez, J., Biswas, R. & Perdomo-Ortiz, A.
Quantum-assisted learning of hardware-embedded probabilistic
graphicalmodels. Phys. Rev. X. 7, https://doi.org/10.1103/physrevx.
7.041052 (2017).

10. Dorband, J. E. A boltzmann machine implementation for the
d-wave. In 2015 12th International Conference on Information
Technology - New Generations, 703–707 https://doi.org/10.1109/
ITNG.2015.118 (2015).

11. Liu, J. et al. Adiabatic quantum computation applied to deep
learning networks. Entropy 20, 380 (2018).

12. Job, J. & Adachi, S. Systematic comparison of deep belief network
training using quantum annealing vs. classical techniques.
arXiv:2009.00134. https://doi.org/10.48550/arXiv.2009.00134
(2020).

13. Dixit, V., Selvarajan, R., Alam, M. A., Humble, T. S. & Kais, S. Training
restricted boltzmann machines with a d-wave quantum annealer.
Frontiers in Physics 9, 589626 (2021).

14. Niazi, S. et al. Training deep Boltzmann networks with sparse Ising
machines, arXiv:2303.10728, https://doi.org/10.48550/arXiv.2303.
10728 (2023).

15. Hinton, G. E. & Sejnowski, T. J. Optimal perceptual inference. In
Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition. 448, 448–453 (1983).

16. Hinton, G. E. Training Products of Experts byMinimizingContrastive
Divergence. Neural Comput. 14, 1771–1800 (2002).

17. Krizhevsky, A. Convolutional Deep Belief Networks on CIFAR-10.
https://www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf.

18. Wang, Z. et al. Resistive switching materials for information pro-
cessing. Nat. Rev. Mater. 5, 173–195 (2020).

19. Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired
computing. Nat. Mater. 18, 309–323 (2019).

20. Nøkland, A. Direct feedback alignment provides learning in deep
neural networks, arXiv:1609.01596, https://doi.org/10.48550/
arXiv.1609.01596 (2016).

21. Neftci, E. O., Mostafa, H. & Zenke, F. Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Proc. Mag. 36,
51–63 (2019).

22. Martin, E. et al. Eqspike: Spike-driven equilibrium propagation for
neuromorphic implementations. iScience 24, 102222 (2021).

23. Kendall, J., Pantone, R., Manickavasagam, K., Bengio, Y. & Scellier,
B. Training End-to-End Analog Neural Networks with Equilibrium
Propagation. arXiv:2006.01981 [cs] https://doi.org/10.48550/arXiv.
2006.01981 (2020).

24. Frenkel, C., Lefebvre, M. & Bol, D. Learning without feedback: Fixed
random learning signals allow for feedforward training of deep
neural networks. Front. Neurosci. 15, https://doi.org/10.3389/fnins.
2021.629892 (2021).

25. Ernoult, M. M. et al. Towards scaling difference target propagation
by learning backprop targets. In International Conference on
Machine Learning, 5968–5987 (PMLR, 2022). https://proceedings.
mlr.press/v162/ernoult22a/ernoult22a.pdf.

26. Wright, L. G. et al. Deep physical neural networks trained with
backpropagation. Nature 601, 549–555, (2022).

27. Schuman, C. D. et al. Opportunities for neuromorphic computing
algorithms and applications. Nat. Comput. Sci. 2, 10–19 (2022).

28. Torrejon, J. et al. Neuromorphic computing with nanoscale spin-
tronic oscillators. Nature 547, 428–431 (2017).

29. Kumar, S., Wang, X., Strachan, J. P., Yang, Y. & Lu, W. D. Dynamical
memristors for higher-complexity neuromorphic computing. Nat.
Rev. Mater. 7, 575–591 (2022).

30. Kiraly, B., Knol, E. J., van Weerdenburg, W. M., Kappen, H. J. &
Khajetoorians, A. A. An atomic boltzmann machine capable of self-
adaption. Nat. Nanotechnol. 16, 414–420 (2021).

31. Byrnes, T., Koyama, S., Yan, K. & Yamamoto, Y. Neural networks
using two-component bose-einstein condensates. Sci. Rep. 3,
2531 (2013).

32. McMahon, P. L. et al. A fully programmable 100-spin coherent
ising machine with all-to-all connections. Science 354,
614–617 (2016).

33. Yamaoka, M. et al. A 20k-spin ising chip to solve combinatorial
optimization problems with cmos annealing. IEEE J. Solid-State
Circuits 51, 303–309 (2016).

34. Tsukamoto, S., Takatsu, M., Matsubara, S. & Tamura, H. An accel-
erator architecture for combinatorial optimization problems
https://www.fujitsu.com/global/documents/about/resources/
publications/fstj/archives/vol53-5/paper02.pdf (2017).

35. Tatsumura, K., Dixon, A. R. & Goto, H. Fpga-based simulated bifur-
cation machine. In 2019 29th International Conference on Field
Programmable Logic and Applications (FPL), 59–66 (2019).

36. Borders, W. A. et al. Integer factorization using stochastic magnetic
tunnel junctions. Nature 573, 390–393 (2019).

37. Pierangeli, D., Marcucci, G. & Conti, C. Large-scale photonic ising
machine by spatial light modulation. Phys. Rev. Lett. 122, https://
doi.org/10.1103/physrevlett.122.213902 (2019).

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 12

https://doi.org/10.5281/zenodo.10690111
https://github.com/jlaydevant/Ising-Machine-EqProp
https://doi.org/10.48550/arXiv.1510.06356
https://doi.org/10.1103/physrevx.7.041052
https://doi.org/10.1103/physrevx.7.041052
https://doi.org/10.1109/ITNG.2015.118
https://doi.org/10.1109/ITNG.2015.118
https://doi.org/10.48550/arXiv.2009.00134
https://doi.org/10.48550/arXiv.2303.10728
https://doi.org/10.48550/arXiv.2303.10728
https://www.cs.toronto.edu/~kriz/conv-cifar10-aug2010.pdf
https://doi.org/10.48550/arXiv.1609.01596
https://doi.org/10.48550/arXiv.1609.01596
https://doi.org/10.48550/arXiv.2006.01981
https://doi.org/10.48550/arXiv.2006.01981
https://doi.org/10.3389/fnins.2021.629892
https://doi.org/10.3389/fnins.2021.629892
https://proceedings.mlr.press/v162/ernoult22a/ernoult22a.pdf
https://proceedings.mlr.press/v162/ernoult22a/ernoult22a.pdf
https://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol53-5/paper02.pdf
https://www.fujitsu.com/global/documents/about/resources/publications/fstj/archives/vol53-5/paper02.pdf
https://doi.org/10.1103/physrevlett.122.213902
https://doi.org/10.1103/physrevlett.122.213902

38. Böhm, F., Verschaffelt, G. & Van der Sande, G. A poor man’s
coherent ising machine based on opto-electronic feedback sys-
tems for solving optimization problems. Nat. Commun. 10, https://
doi.org/10.1038/s41467-019-11484-3 (2019).

39. Cai, F. et al. Power-efficient combinatorial optimization using
intrinsic noise in memristor Hopfield neural networks. Nat. Electr. 3
https://doi.org/10.1038/s41928-020-0436-6 (2020).

40. Guo, S. Y. et al. A molecular computing approach to solving opti-
mization problems via programmable microdroplet arrays. Matter
4, 1107–1124 (2021).

41. Lo, H., Moy, W., Yu, H., Sapatnekar, S. & Kim, C. H. An ising solver
chip based on coupled ring oscillators with a 48-node all-to-all
connected array architecture. Nat. Elec. https://doi.org/10.1038/
s41928-023-01021-y (2023).

42. Scellier, B. & Bengio, Y. Equilibrium Propagation: Bridging the Gap
between Energy-Based Models and Backpropagation. Front. Com-
put. Neurosci. 11, https://doi.org/10.3389/fncom.2017.00024
(2017).

43. Ernoult,M.,Grollier, J., Querlioz, D., Bengio, Y. &Scellier, B. Updates
of equilibriumpropmatchgradients of backprop through time in an
rnn with static input. In Advances in Neural Information Processing
Systems, (eds. Wallach, H. et al.) 32 https://proceedings.neurips.
cc/paper/2019/file/67974233917cea0e42a49a2fb7eb4cf4-Paper.
pdf (Curran Associates, Inc., 2019).

44. Dillavou, S., Stern, M., Liu, A. J. & Durian, D. J. Demonstration of
decentralized physics-driven learning. Phys. Rev. Appl. 18,
014040 (2022).

45. Yi, S.-I., Kendall, J. D., Williams, R. S. & Kumar, S. Activity-difference
training of deep neural networks using memristor crossbars. Nat.
Elect. https://doi.org/10.1038/s41928-022-00869-w (2022).

46. Laborieux, A. et al. Scaling equilibrium propagation to deep con-
vnets by drastically reducing its gradient estimator bias. Front.
Neurosci. 15 https://doi.org/10.3389/fnins.2021.633674 (2021).

47. Laborieux, A. & Zenke, F. Holomorphic equilibrium propagation
computes exact gradients through finite size oscillations. In
Koyejo, S. et al. (eds.) Advances in Neural Information Processing
Systems, vol. 35, 12950–12963 (Curran Associates, Inc., 2022).
https://proceedings.neurips.cc/paper_files/paper/2022/file/
545a114e655f9d25ba0d56ea9a01fc6e-Paper-Conference.pdf.

48. Mohseni, N., McMahon, P. L. & Byrnes, T. Ising machines as hard-
ware solvers of combinatorial optimization problems. Nat. Rev.
Phys. 4, 363–379 (2022).

49. Litvinenko, A. et al. A spinwave ising machine. Commun. Phys. 6,
https://doi.org/10.1038/s42005-023-01348-0 (2023).

50. Lucas, A. Ising formulations of many NP problems. Front. Phys. 2,
https://doi.org/10.3389/fphy.2014.00005 (2014).

51. Farhi, E. et al. A Quantum Adiabatic Evolution Algorithm Applied to
Random Instances of an NP-Complete Problem. Science 292,
472–475 (2001).

52. Yamamoto, Y. et al. Coherent Ising machines—optical neural net-
works operating at the quantum limit. npj Quant. Inform. 3,
49 (2017).

53. Aadit, N. A. et al. Massively parallel probabilistic computing with
sparse ising machines. Nat. Electr. 5, 460–468 (2022).

54. Nielsen, M. Reduced MNIST: how well can machines learn from
small data? https://cognitivemedium.com/rmnist (2017).

55. Lin, X., Zhao, C. & Pan, W. Towards accurate binary convolutional
neural network. In Advances in Neural Information Processing Sys-
tems (Guyon, I. et al. eds.) vol. 30 (Curran Associates, Inc., 2017).
https://proceedings.neurips.cc/paper_files/paper/2017/file/
b1a59b315fc9a3002ce38bbe070ec3f5-Paper.pdf.

56. Laydevant, J., Ernoult, M., Querlioz, D. & Grollier, J. Training dyna-
mical binary neural networks with equilibrium propagation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 4640–4649 https://

openaccess.thecvf.com/content/CVPR2021W/BiVision/papers/
Laydevant_Training_Dynamical_Binary_Neural_Networks_With_
Equilibrium_Propagation_CVPRW_2021_paper.pdf (2021).

57. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by Simu-
lated Annealing. Science 220, 671–680 (1983).

58. Perdomo-Ortiz, A., Venegas-Andraca, S. E. & Aspuru-Guzik, A. A
study of heuristic guesses for adiabatic quantum computation.
Quant. Inform. Proc. 10, 33–52 (2010).

59. LeCun, Y. & Cortes, C. MNIST handwritten digit database http://
yann.lecun.com/exdb/mnist/ (2010).

60. Böhm, F., Alonso-Urquijo, D., Verschaffelt, G. & der Sande, G. V.
Noise-injected analog ising machines enable ultrafast statistical
sampling and machine learning. Nat. Commun. 13, https://doi.org/
10.1038/s41467-022-33441-3 (2022).

61. Nguyen, N. T. T., Larson, A. E. & Kenyon, G. T. Generating sparse
representations using quantum annealing: Comparison to classical
algorithms. In 2017 IEEE International Conference on Rebooting
Computing (ICRC), 1–6 (2017).

62. Nguyen, N. T. T. & Kenyon, G. T. Image classification using quantum
inference on the D-Wave 2X. In 2018 IEEE International Conference
on Rebooting Computing (ICRC), 1–7 (2018).

63. Sleeman, J., Dorband, J. & Halem, M. A hybrid quantum enabled
rbm advantage: convolutional autoencoders for quantum image
compression and generative learning. In Quantum information
science, sensing, and computation XII, vol. 11391, 23–38
(SPIE, 2020).

64. Boixo, S., Albash, T., Spedalieri, F. M., Chancellor, N. & Lidar, D. A.
Experimental signature of programmable quantum annealing. Nat.
Commun. 4, 2067 (2013).

65. Rønnow, T. F. et al. Defining and detecting quantum speedup.
Science 345, 420–424 (2014).

66. Zephyr topology of d-wave quantum processors. https://www.
dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_
d-wave_quantum_processors.pdf.

67. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y.
Binarized neural networks. In Lee, D., Sugiyama, M., Luxburg,
U., Guyon, I. & Garnett, R. (eds.) Advances in Neural Information
Processing Systems, vol. 29 (Curran Associates, Inc., 2016).
https://proceedings.neurips.cc/paper_files/paper/2016/file/
d8330f857a17c53d217014ee776bfd50-Paper.pdf.

68. Rastegari, M., Ordonez, V., Redmon, J. & Farhadi, A. XNOR-Net:
ImageNet Classification Using Binary Convolutional Neural Net-
works. In Leibe, B., Matas, J., Sebe, N. &Welling,M. (eds.)Computer
Vision – ECCV 2016, Lecture Notes in Computer Science, 525–542
(Springer International Publishing, Cham, 2016).

69. Hirtzlin, T. et al. Stochastic Computing for Hardware Implementation
of Binarized Neural Networks. IEEE Access. 7, 76394–76403 (2019).

70. Hamerly, R. et al. Experimental investigation of performance dif-
ferences between coherent Ising machines and a quantum annea-
ler. Sci. Adv. 5, https://doi.org/10.1126/sciadv.aau0823 (2019).

71. Jaeger, H., Noheda, B. & VanDerWiel,W. G. Toward a formal theory
for computing machines made out of whatever physics offers. Nat.
Commun. 14, 4911 (2023).

72. Lopez-Pastor, V. & Marquardt, F. Self-learning machines based on
hamiltonian echo backpropagation. Phys. Rev. X 13, 031020 (2023).

73. Stern, M., Hexner, D., Rocks, J. W. & Liu, A. J. Supervised learning in
physical networks: From machine learning to learning machines.
Phys. Rev.w X 11, 021045 (2021).

74. Coles, P. J. et al. Thermodynamic ai and the fluctuation frontier.
arXiv preprint arXiv:2302.06584 (2023).

75. Aifer, M. et al. Thermodynamic linear algebra. arXiv preprint
arXiv:2308.05660 (2023).

76. Momeni, A., Rahmani, B., Malléjac, M., del Hougne, P. & Fleury, R.
Backpropagation-free training of deep physical neural networks.
Science. 0, eadi8474.

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 13

https://doi.org/10.1038/s41467-019-11484-3
https://doi.org/10.1038/s41467-019-11484-3
https://doi.org/10.1038/s41928-020-0436-6
https://doi.org/10.1038/s41928-023-01021-y
https://doi.org/10.1038/s41928-023-01021-y
https://doi.org/10.3389/fncom.2017.00024
https://proceedings.neurips.cc/paper/2019/file/67974233917cea0e42a49a2fb7eb4cf4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/67974233917cea0e42a49a2fb7eb4cf4-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/67974233917cea0e42a49a2fb7eb4cf4-Paper.pdf
https://doi.org/10.1038/s41928-022-00869-w
https://doi.org/10.3389/fnins.2021.633674
https://proceedings.neurips.cc/paper_files/paper/2022/file/545a114e655f9d25ba0d56ea9a01fc6e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/545a114e655f9d25ba0d56ea9a01fc6e-Paper-Conference.pdf
https://doi.org/10.1038/s42005-023-01348-0
https://doi.org/10.3389/fphy.2014.00005
https://cognitivemedium.com/rmnist
https://proceedings.neurips.cc/paper_files/paper/2017/file/b1a59b315fc9a3002ce38bbe070ec3f5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/b1a59b315fc9a3002ce38bbe070ec3f5-Paper.pdf
https://openaccess.thecvf.com/content/CVPR2021W/BiVision/papers/Laydevant_Training_Dynamical_Binary_Neural_Networks_With_Equilibrium_Propagation_CVPRW_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021W/BiVision/papers/Laydevant_Training_Dynamical_Binary_Neural_Networks_With_Equilibrium_Propagation_CVPRW_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021W/BiVision/papers/Laydevant_Training_Dynamical_Binary_Neural_Networks_With_Equilibrium_Propagation_CVPRW_2021_paper.pdf
https://openaccess.thecvf.com/content/CVPR2021W/BiVision/papers/Laydevant_Training_Dynamical_Binary_Neural_Networks_With_Equilibrium_Propagation_CVPRW_2021_paper.pdf
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1038/s41467-022-33441-3
https://doi.org/10.1038/s41467-022-33441-3
https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://www.dwavesys.com/media/2uznec4s/14-1056a-a_zephyr_topology_of_d-wave_quantum_processors.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/d8330f857a17c53d217014ee776bfd50-Paper.pdf
https://doi.org/10.1126/sciadv.aau0823

77. Gallicchio, C., Micheli, A. & Pedrelli, L. Deep reservoir computing: A
critical experimental analysis. Neurocomputing 268, 87–99 (2017).

78. Gauthier, D. J., Bollt, E., Griffith, A. & Barbosa, W. A. Next generation
reservoir computing. Nat. Commun. 12, 5564 (2021).

79. Ocean api - d-wave. https://docs.ocean.dwavesys.com/en/stable/
(2022).

80. Kadowaki, T. & Nishimori, H. Quantum annealing in the transverse
ising model. Phys. Rev. E 58, 5355–5363 (1998).

81. Park, J., Lee, J. & Jeon, D. A 65-nm neuromorphic image classifica-
tion processor with energy-efficient training through direct spike-
only feedback. IEEE J. Solid-State Circ. 55, 108–119 (2020).

Acknowledgements
This work was supported by the European Research Council advanced
grant GrenaDyn (reference: 101020684). The text of the article was
partially edited by a large language model (OpenAI ChatGPT). The
authors would like to thank D. Querlioz for discussion and invaluable
feedback.

Author contributions
J.G., J.L. and D.M. devised the study. J.L. performed all the simulations
and experiments. J.G and J.L. wrote the initial version of themanuscript.
All authors discussed the results and reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-46879-4.

Correspondence and requests for materials should be addressed to
Jérémie Laydevant or Julie Grollier.

Peer review information Nature Communications thanks John Paul
Strachan, and the other, anonymous, reviewer(s) for their contribution to
the peer review of this work. A peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-46879-4

Nature Communications | (2024) 15:3671 14

https://docs.ocean.dwavesys.com/en/stable/
https://doi.org/10.1038/s41467-024-46879-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Training an Ising machine with equilibrium propagation
	Results
	Training an Ising machine with EP through annealing
	Training a fully connected neural network
	Training a Convolutional neural network

	Discussion
	Methods
	Methods for handling the D-Wave Ising machine
	Objective function for training a neural network on an Ising machine with Equilibrium Propagation
	Methods for training a fully connected architecture
	Embedding the fully connected architecture onto the chip�layout
	Feeding the input data to the�chip
	Training�data
	Learning rule for the fully connected architecture
	Methods for training a convolutional architecture
	Handcrafting the embedding dictionary
	Feeding the input data to the�chip
	Learning rule for the convolutional architecture
	Methods for the simulated annealing simulations
	Methods for the deterministic simulations

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

