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High performance artificial visual perception
and recognition with a plasmon-enhanced
2D material neural network

Tian Zhang 1, Xin Guo1,2, Pan Wang 1,2, Xinyi Fan1, Zichen Wang1, Yan Tong1,
Decheng Wang1, Limin Tong1,2 & Linjun Li 1,2

The development of neuromorphic visual systems has recently gained
momentum due to their potential in areas such as autonomous vehicles and
robotics. However, current machine visual systems based on silicon technol-
ogy usually contain photosensor arrays, format conversion, memory and
processing modules. As a result, the redundant data shuttling between each
unit, resulting in large latency and high-power consumption, seriously limits
the performance of neuromorphic vision chips. Here, we demonstrate an
artificial neural network (ANN) architecture based on an integrated 2D MoS2/
Ag nanograting phototransistor array, which can simultaneously sense, pre-
process and recognize optical images without latency. The pre-processing
function of the device under photoelectric synergy ensures considerable
improvement of efficiency and accuracy of subsequent image recognition. The
comprehensive performance of the proof-of-concept device demonstrates
great potential formachine vision applications in termsof largedynamic range
(180 dB), high speed (500ns) and low energy consumption per spike
(2.4 × 10−17 J).

Thehuman visual system ismainly composedof the eyes and the visual
cortex of the brain1,2. The retina of the eye is normally used to capture
external optical information and perform first-stage image pre-
processing3–5. The regulated visual signals are transmitted to the
neural network of the visual center for final processing and
recognition6,7. Accordingly, a variety of bio-inspired artificial visual
perception and recognition modules (AVPRM) for emulating certain
functions of the humaneye and neural network image processing have
emerged that are used to perform typical image processing function-
alities, which include image-contrast enhancement1,2,8,9, noise
suppression10,11, visual adaptation5,12, detection and recognition13–19,
and auto-encoding20. In addition, the first prototype of artificial optical
graded neuron was proposed and realized for processing spatio-
temporal information with more than 99% accuracy21. However, for
current AVPRM, a hardware solution with both the pre-processing
function of the human retina and the image recognition capability of

the visual cortex has not been reported, especially in on-site critical
applications18,20. There is a high demand to develop multifunctional
electronic devices to meet the challenges of next generation machine
vision. Additionally, developing low-power and high-efficiency AVPRM
has become amajor research focus, where themost critical issue to be
addressed is the efficient conversion of optical images into electrical
digital signals.

Plasmonic energy conversion has been considered as a promising
alternative to drive a wide range of physical and chemical
processes22–25. This emergingmethod is based on the generationof hot
electrons with energy distribution deviating substantially from equili-
brium Fermi-Dirac distribution in plasmonic nanostructures after light
absorption through non-radiative electromagnetic decay of surface
plasmons26–30. While the 2D semiconductor itself has excellent optoe-
lectronic properties31–33 such as ultrafast response34,35, external
tunability20,36 and large photothermoelectric effect37, plasmonics can
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further enable strong light-matter interactions in 2D materials38,39. 2D
materials technology has by now achieved a sufficiently high level of
maturity for integration with conventional complex electronic
systems40–42. Herein, we present a plasmonic phototransistor array
(PPTA) constructed of nanogratings and 2D heterostructures, which
constitutes an ANN that integrates simultaneous sensing, pre-
processing and image recognition functions. The plasmonic photo-
transistor (PPT) takes advantage of the strong coupling of photonic
and electronic resonances in an elaborately designed device, in which
hot electrons are injected efficiently into the floating gate and produce
a large photoelectric effect, to simulate the response of the human
retina to optical color information. Moreover, the electrical dynamic
modulation of the gate electrode can effectively enlarge the dynamic
rangeof thedevice for imagepre-processing functions (image contrast
enhancement). Further real-time image recognition is realized by
training the network through varying the drain-source voltage to set
the photoresponsivity value of each pixel individually. As a result, the
AVPRM integrated with image pre-processing and ANN can effectively
improve the image quality, and increase the efficiency and the accu-
racy of image recognition.

Results
The structure and mechanism of PPTA
Figure 1a illustrates the schematic structure of a 2DPPT, which consists
of a 2DMoS2/Ag nanograting integrated structure on the left and a 2D
MoS2/h-BN/WSe2 heterostructure on the right. The left part of the
device mimics the sensing and pre-processing functions of the human
retina for color information (Supplementary Fig. 1a) using light-excited
waveguide-plasmon polaritons (WPPs)43 and electrical modulation of
the gate electrode, respectively (see Fig. 2 for more details of the
mechanism). The photocurrent signal processed in the first stage can
be passed to the floating gate on the right side of the device to induce
the channel current, which is similar to that visual information can be
transmitted through the optical nerve to each neuron in the visual
center via synaptic interconnection (Supplementary Fig. 1a, b). The
photoresponsivity (synaptic weight) of the device is modulated by
changing the drain-source voltage to emulate the regulation of neu-
rotransmitter release between biological synapses (Supplementary
Fig. 1c). To avoid unnecessary direct photocurrents in the channel, the
right side is covered by the Al2O3/Au layer. Interconnecting each 2D
PPT (subpixel) in the formof an ANNconstitutes anAVPRMwith image
sensing, pre-processing and recognition functions (Fig. 1b). It contains
Npixels, which form the imaging array, and each pixel is divided intoM
subpixels. The circuit connections of M subpixels and N pixels are
presented in Fig. 1c, d, respectively. Each subpixel delivers a photo-
current of Imn =RmnPn under illumination, whereRmn is the regularized
photoresponsivity of the subpixel and Pn denotes the optical power at
the nth pixel. n = 1,2,:::,N and m= 1,2,:::,M denote the pixel and sub-
pixel indices, respectively. Figure 1e depicts the entire operation pro-
cess of AVPRM in the form of a flowchart. The input optical image is
first sensed by the hybrid plasmonic structure in PPT, and the per-
ceived electrical signal is modulated by the side gate electrode in PPT
to achieve the pre-processing of the signal. Then, the preprocessed
signals are transported to ANN base on a single-layer perceptron, and
the network is trained off-line using computer simulation. Subse-
quently, the predetermined photoresponsivity matrix, that is, photo-
resonsivities scaled from dimensionless weights, is transferred to the
PPTA to complete the image recognition.

The schematic of a classifier is provided in Supplementary Fig. 1d.
The array is operated as a single-layer perceptron using pre-processed
visual information as the input layer. Here, we chose the softmax
function ϕmðIÞ= eImξ=

PM
k = 1e

Ikξ as the nonlinear activation function to
generate the neuron output off-chip, where ξ = 1011A�1 is a scaling
factor. In one type of ANN representing a supervised learning algo-
rithm, in order to facilitate the classification of images P into different

categories y, we chose a binary code encoding, where eachof the three
letters corresponds to an output code. Following the elaborated
design concept of the 2D PPTA, we fabricated the actual device as
shown in Fig. 1f. The sample fabrication process is provided in Sup-
plementary Figs. 2 and3 (for details, seeMethods). This device consists
of 27 subpixels ðN ×M =27Þ, of which every 9 subpixels were arranged
to form a 3×3 imaging array ðN =9Þ with a subpixel size of about
17 × 5 μm2. A schematic of the entire circuit connections of the array is
presented in Supplementary Fig. 4. Summing all photocurrents gen-
erated by 9 PPTs with the same subpixel index m according to
Kirchhoff’s law, the output Im is expressed as

Im =
XN

n= 1

Imn =
XN

n= 1

RmnPn ð1Þ

Figure 1g shows the high-resolution scanning transmission elec-
tron microscope and energy dispersive X-ray spectroscopy element
mapping characterizations of a single subpixel in the black box in
Fig. 1f, indicating a clean heterostructure interface. The additional
analysis on the MoS2, h-BN and WSe2 flakes is described in Supple-
mentary Fig. 5.

In order to understand the mechanism of 2D PPT, we present a
scenario for elaboration below. As shown in Fig. 2a, following light
absorption and localized surface plasmon resonance (LSPR) excitation
in the Ag nanograting, the electromagnetic resonance can be damped
radiatively by re-emission of photons, or non-radiatively through
transferring the energy to hot electrons via Landau damping22,26. In the
subsequent hot electron injection29 (Fig. 2b), hot electrons with
momentumwithin the escape cone28 can be rapidly emitted intoMoS2
through ohmic contacts during the relaxation time27,39. At the same
time, 2DMoS2 itself also produces a fraction of energetic hot electrons
after absorbing light energy, although the effect of this fraction is
minimal. The quantitative comparison of the photocurrents of the
devices with and without nanograting shows that the plasmon
enhancement effectplays a crucial role in the generation and transport
of hot electrons (see Supplementary Fig. 6). Figure 2c shows the
simulated normalized transmittance mapping of the grating period
from 250 to 450nm in the visible region (for details, see Methods),
where Rabi splitting can be clearly observed as a distinguishing char-
acteristic of the strong coupling. It isworthmentioning that the upper,
middle and lower three hybrid branches are caused by the coupling of
the symmetric and antisymmetric modes in the waveguide with the
LSPR mode, respectively, and the bottom two branches are caused by
thepresenceof themode in thequartz substrate,which is independent
of the strong coupling modes. We choose the three eigenenergies
corresponding to the red (632 nm), green (535 nm) and blue light
(469 nm) when the grating period is 320 nm as the eigenvalues of the
three-coupled oscillator model to analyze the strong coupling of
this structure. The obtained Rabi splitting (Ω≈680 meV) is satisfied
with the strong coupling criterion between these three oscillators,

that is,Ω>W � P
i =Pl, Sym,Asym

Piγi, whereW = (WUpper,WMiddle,WLower) are

the weight of each hybrid branch, Pi = ðPi
Upper , P

i
Middle, P

i
Lower Þ repre-

sents the proportion of uncoupled states in each branch, and γi
represents the linewidth of each uncoupled mode (for details, see
Methods). The electric field distribution corresponding to the eigen-
energy of different branches at the period 320 nm is provided in
Fig. 2d. It can be clearly found that the coupling between LSPR mode
andwaveguidemode leads to energy exchange. The abovemechanism
suggests that the 2D PPT can respond to optical color information.
Thus, by exploiting the hybrid LSPR and waveguide modes, we realize
highly efficient photoelectric conversion, while the limitation on the
narrow responding wavelength of LSPR could be surmounted by
adjusting the dimension of the Ag nanograting structure.
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On the other hand, the hot electrons that can not be emitted from
the decay of plasmons can generate enormous heat on the picosecond
scale, which leads to a balance between thermoelectric potential ET
(Supplementary Fig. 7) and the accumulated electropotential EA as
shown in Fig. 2e, f37. The band diagram shown in the lower part of
Fig. 2e, f illustrates this process. The band diagram was divided into
two parts, which correspond to the Ag/MoS2 architecture on the left
side of the PPT device and the MoS2/hBN/WSe2 architecture on the
right side. As shown in the lower part of Fig. 2e, the hot electrons

generated by the decay of plasmons are injected into the conduction
band of MoS2, and then the hot electrons are transported to the right
side by tilting the energy band under the action of thermoelectric
potential. Subsequently, the electrons transported to the right side of
MoS2 inducedholes in the valencebandofWSe2, whichwere thenused
for current measurement. Obviously, the higher the optical power, the
larger the measured channel current. After the light is turned off
(Fig. 2f), the electrons are restored to the initial state by the accumu-
lated potential EA. With such mechanism, the device can respond to
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different luminance (gray scale of image). When the light is turned on
and the negative side gate voltage�VG is applied, the electrons will be
more easily transferred from the left side of MoS2 to the right side, as
there is an additional gate potential EG (Fig. 2g). From the perspective
of energy band (lower part of Fig. 2g), it can be explained that the
energy band of MoS2 is more inclined under the combined effect of
thermoelectric potential (ET) and gate potential (EG), making it easier
for electrons to be transported to the right side. Accordingly, the lar-
ger channel current will be induced by the MoS2 gate. Conversely, by
applying a positive gate voltage +VG while the light is turned on, the
electrons will be dragged to the left side because of the additional gate
potential EG (Fig. 2h). From the perspective of energy band (lower part
of Fig. 2h), in this case, the energy band of MoS2 are tilted in the
opposite direction due to the effect of the gate potential (EG), which

makes it difficult for the electrons to overcome this potential to reach
the right side. Theholes left on the right sideof thefloating gate lead to
electron doping to the channel, which gives low conductance since
WSe2 is a p-type semiconductor. The mechanism of the device
described in Fig. 2g, h can be used to eliminate the redundant infor-
mation. Finally, the regulation of the photoresponsivity of a single
device can be realized by changing the drain-source voltage, which can
be used to train the weights in the ANN formed by interconnected
devices.

Image recognition based on device characterization
Having described the design concept of AVPRM, we next present its
feasibility from an experimental perspective. The optical experimental
setup is shown in Supplementary Fig. 8a, b and the electrical

Fig. 1 | Artificial visual perception and recognition module (AVPRM)-inspired
2D artificial neural network (ANN) plasmonic phototransistor array (PPTA).
a Schematic of a 2D PPT. The white G, D and S represent the gate electrode, source
electrode, and drain electrode, respectively. b Disassembled diagram of the 2D
ANN PPTA. The current induced by subpixels of the same color in WSe2 channel
layer is connected in parallel by wires of the same color to generate an output
current IM . R11:::RMN represent the photoresponsivity of each subpixel. P1:::PN

represent the optical power incident on each pixel. Circuit diagram of the nth pixel
(c) and M2N2 subpixels (d) in the array, whereM2 is a subset ofM, representing a
certain number of subpixels amongM subpixelswith the sameM indice, andN2 is a
subset of N, representing a certain number of pixels among N pixels. VG

1n:::V
G
Mn

represent the gate voltage applied to each subpixel contained in the nth pixel.
VSD

1n :::V
SD
Mn represent the drain-source voltage applied to each subpixel contained in

the nth pixel. e Illustration of an AVPRM based on the 2D PPT for image pre-
processing and an ANN for image recognition. f Scanning electron microscopy
(SEM) image of the PPTA. Scale bar, 20μm. GND, ground electrode. The blue
dashed box shows the drain electrode, the yellow dashed box shows the gate
electrode, the red dashed box shows the source electrode, and the green dashed
box shows the nanograting. g High-resolution scanning transmission electron
microscope image captured from the black box in (f) and energy dispersive X-ray
spectroscopy mapping. Scales bar are 8 (left) and 40nm (right), respectively.

Fig. 2 | Schematic illustrations of themechanismsof 2D PPTA. aAdiagrammatic
model proposed to describe the whole physical process of the strong coupling
between the localized surface plasmon resonance (LSPR)mode and the waveguide
mode and its relaxation. The red arrow represents the energy exchange caused by
the coupling between LSPR mode and waveguide mode. The white arrow repre-
sents hot electron injection from the Ag nanograting to the 2D MoS2. b Simplified
band diagram illustrating the hot electron injection process taking place at the Ag-
MoS2 interface. In addition to receiving hot electrons emitted from the Ag nano-
grating, MoS2 itself can also generate a small amount of electrons after receiving
light. EC, EF, and EV represent the conduction band, Fermi level and valence band of
2D MoS2, respectively. c The simulated transmittance spectrum of the Ag
nanograting-ITOwaveguide integrated structure dependent on the grating period,

showing the classic Rabi splitting. d The calculated electric field distribution at the
320 nm grating period corresponding to each branch at red (R), green (G) and blue
(B) wavelengths in the strong coupling regime. Scale bar, 180 nm. Charge-flow
illustrations and schematic band diagrams at different operation modes: light on
(e), light off (f), light on and apply �VG (g), light on and apply +VG (h). VG

represents the gate voltage applied to the gate electrode. The blue circles denote
the holes, the magenta circles denote the electrons, and the magenta arrows
indicate the flow direction of the electrons. ET represents the thermoelectric
potential, EA represents the accumulated potential, and EG represents the gate
potential. The black arrows represent the direction of each potential. The black
dotted arrow represents the direction of the electron transition.
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experimental setup is shown in Supplementary Fig. 9a (for details, see
Methods). Here we choose the red light of λ = 635 nm, and its power
(0−10μW) is divided into 11 orders. Figure 3a presents the multi-state
photocurrents corresponding to different levels of optical power.
These photocurrents are graphically visualized as 11 gray levels in the
0−1 interval. Thus, the gray level of each pixel in the image can be
extracted and presented through photocurrent measurement, as
shown in Fig. 3b. By measuring the photocurrent corresponding to
three wavelengths of light at the same power P = 10μW, we can dis-
tinguish red (635 nm), green (532 nm) and blue colors (473 nm) when
VDS = 0.1 V (Fig. 3c). As shown in Fig. 3d, when the photocurrent of the
pixel with the largest gray level in the image is measured, the color of
the image can be distinguished by different current values. This is
caused by the different absorption rates of the device for the corre-
sponding threewavelengths of light in the strong couplingmechanism

(see Supplementary Fig. 10a). Also, the measurement of transmission
spectra of 27 PPTs indicates that the device has good uniformity (see
Supplementary Fig. 11). Next, we performed photocurrent-voltage (IPH-
VDS) characteristic measurements under different optical powers (see
Supplementary Fig. 10b). It shows a linear dependence of the photo-
current on the voltage over a wide voltage range, which indicates that
the device is dominated by ohmic contacts. Then, we extracted pho-
tocurrent as a function of optical power under different VDS values
(inset in Supplementary Fig. 10c). A nearly symmetrical and adjustable
(trainable) linear photoresponsivity between −15 and +15 pA/μW can
be obtained by varying the VDS (Supplementary Fig. 10c). Considering
the subsequent ANN training, we plotted the voltage tunable photo-
currents corresponding to each gray level, as shown in Fig. 3e. Similar
measurements of the optoelectronic characterization of green and
blue light and the uniformity of each device are presented in
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Fig. 3 | Functional implementation of 2D PPTA. a Multi-state photocurrents
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wavelength is 635 nm and the drain-source voltage is 0.1 V. b Extraction of the gray
level of each pixel in the image. The images were added with Gaussian noise (with
standarddeviation ofσ =0.3). cPhotocurrent of different colors of light (R: 635 nm,
G: 532 nm, B: 473 nm) under the samemeasurement conditions, where the power is
10μWand thedrain-sourcevoltage is0.1 V.dRecognition of different color images.
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extracted from (b) and its corresponding current. e The voltage (VDS) tunable
photocurrent corresponding to each gray level. f The photoresponsivity of the

array and itsmodulation process after 100off-line training epochs of the letter ‘z’ in
(d). g The total output current of the projected letter after each training epoch,
where the letter ‘z’ in (d) is projected onto the chip. The maximum current corre-
sponds to the label of the projected letter. h The transfer characteristic curves of
the devices with red light measured under different P values at VDS = 1 V, respec-
tively. i The pre-processing process of images. The left column represents the
image with Gaussian noise (σ =0.4) added before pre-processing, the middle col-
umn represents the modulation voltage required for pre-processing, and the right
column represents the image after pre-processing.
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Supplementary Fig. 12. We also performed the photoresponsivity
measurementwhen VG = −1 V (Supplementary Fig. 13), and the increase
of photoresponsivity in the order of magnitude can be applied to
image detection and recognition under weak light. Figure 3f shows the
photoresponsivity (weight) of the array after 100 off-line training
epochs for the letter ‘z’ in Fig. 3d. The corresponding weights can be
written into the array by modulating the voltage VDS, and the subse-
quently projected image generates corresponding output currents for
each subpixel. The training processes of the ANN with experimental
photoresponsivity curve are illustrated in Supplementary Fig. 14. Fig-
ure 3g shows the total output current of the array after each training
epoch. The corresponding photoresponsivity of the array after each
training epoch is also presented in Supplementary Fig. 15. The currents
clearly separate and stabilize after 100 epochs, with the largest current
corresponding to the label of the projected letter. Figure 3h show the
transfer characteristic curves of the PPTs obtained under different

incident optical powers at 635 nm wavelength. The transfer char-
acteristic curves of the PPTs obtained under different incident optical
powers at 532 and 473 nm wavelengths are also presented in Supple-
mentary Fig. 16. Besides, the transfer characteristic curves of the PPTs
corresponding to different optical wavelengths obtained under rela-
tively small drain-source voltage (VDS = 0.1 V) are also shown in Sup-
plementary Fig. 23a−c. The performance summary and detailed
analysis of individual phototransistors are provided in Supplementary
Table 1 and Supplementary Note 2, respectively. The dynamic range
(DR) is defined by the equation: DR=20× log ½Imax=Imin� ðdBÞ, where
Imax and Imin are the photocurrent values corresponding to the max-
imum and minimum gate voltages, respectively. The calculated
effective DR is up to 180 dB, which equals almost the highest value
reported up to date5,11. The reason and mechanism of the device with
ultra-high DR are shown in Supplementary Fig. 22 and Supplementary
Note 1. As shown in Fig. 3i, by applying different levels of gate voltage
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photodiode array in a point-by-point scanning manner. b Examples of images with
(σ =0.4) and without (σ =0.2, 0.4) pre-processing of the device. c Comparison of
image recognition rate before and after pre-processing of the device.

d Responsivity distributions before (initial) and after (final) training. e The mea-
sured three currents corresponding to ‘z’, ‘j’ and ‘u’ target ports, which are con-
verted by the nonlinearity into binary activation codes. In each experiment, the
letters ‘z’, ‘j’ and ‘u’ were projected onto the chip separately. f The reconstructed
letters after post-processing.
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VG to eachpixel in the array, the imagenoise isgraduallyweakened, the
image contrast is gradually enhanced, and its main features are even-
tually fully displayed. Similarly, the features of the image can also be
clearly presented under small gate voltage modulation, as shown in
Supplementary Fig. 23d−f, although the clarity is generallyweaker than
that under large gate voltagemodulation. Therefore, the characteristic
allows us to realize image pre-processing such as contrast enhance-
ment and noise reduction by locally modulating the gate voltage of
each pixel.

Implementations of pattern classification
To test the integrated sensing, pre-processing and image recognition
functions of the AVPRM chip, we used it as a classifier to recognize
the letters ‘z’, ‘j’ and ‘u’. For training and testing of the chip, a point-
by-point scan is used to project the optical image using the setup
shown in Fig. 4a (for details, see Methods). In our current setup, the
weights of the ANN are stored in an external memory and delivered
to each PPT detector via a cabling. In this example of supervised
learning algorithm, cross-entropy is used as the loss/cost function,
the weight values were updated by backpropagation of the gradient
of the loss function20. A detailed flow chart of the whole AVPRM
including the training algorithm is presented in Supplementary
Fig. 9c. Figure 4b illustrates the input image with different Gaussian
noise (σ = 0.2, 0.4) added and the pre-processed image (σ = 0.4),
which is extracted from the drain-source current ID. After applying
gate voltage VG to the certain pixel (the white pixels in Fig. 4b), the
body feature of the letters in the pre-processed image has been
enhanced obviously. The complete dataset used for training after
pre-processing is given in Supplementary Fig. 17. In Fig. 4c, the
accuracy of recognition with and without pre-processing of the
images is plotted. For the pre-processed image, it is faster to reach
recognition accuracy of 100%. The initial and final responsivities/
weights of the classifier are shown in Fig. 4d, and the measured
currents and corresponding codes of the target port for each letter
are depicted in Fig. 4e. Each code corresponds to a letter, and the
corresponding letter is reconstructed through post-processing, as
shown in Fig. 4f. To evaluate the overall performance (processing
speed and energy consumption) of this network, we also performed
time-resolved measurements. The experimental setup is shown in
Supplementary Fig. 9b. The trigger/measurement pulse is provided
in Supplementary Fig. 18a (seeMethod for details). The response of a
single spike in a single device measured with the assistance of gate
voltage is approximately 500 ns (Supplementary Fig. 18b) and the
leakage current is shown in Supplementary Fig. 18c. The dissipated
energy per spike of the device with such sensitive photoresponseis
approximately 2.4 × 10−17 J, according to W = I × V × t16. In order to
illustrate the high-speed capabilities of PPTA, we carried out mea-
surements by employing a 500 ns pulsed laser source and an electric
pulse source with synchronous triggering. As previously mentioned,
the PPTA functioned as a classifier and was pre-trained. We then
projected two letters (‘z’ and ‘u’) and measured the time-resolved
signals of three channels in sequence. As shown in Supplementary
Fig. 19a, each pixel contained in the image is illuminated on the PPTA
with a pulsed laser at a different power PN. Upon optical stimulation,
a total output current IM is generated by a circuit in the array con-
sisting of all the Mth subpixels connected in a neural network man-
ner. Subsequently, the generated current IM is amplified by the
preamplifier and converted into voltage VM input into the oscillo-
scope. The principle of generating total current IM is displayed in
Supplementary Fig. 19b. As shown in Supplementary Fig. 19c, d, we
plot the electric output pulses, with different output codes repre-
senting different image types, which demonstrate the correct pattern
classification within ~500 ns. Such a systemmay hence provide great
potential for the development of ultrafast and ultralow power
machine vision.

Discussion
We have summarized recent achievements in artificial neuromorphic
devices, as shown in Supplementary Table 2. Compared with other
works, our AVPRM device is currently the only fully integrated system
that can perform the entire steps from image acquisition to data pre-
processing/post-processing in a single device. Due to the enhanced
contrastof preprocessed image through thedevice, suchan integrated
multifunctional AVPRM has shown significant improvement in recog-
nition rate and efficiency for image processing. In addition, due to the
compatibility of the manufacturing process with complementary
metal oxide semiconductor technology, the device can be presented
and operated at an array scale. Thus, this allows the device to be one of
the few that can be used for on-site recognition of images after training
on it. As a differentiation from previous plasmonic devices, the proof-
of-concept device we designed introduces plasmonic nanogratings
and utilizes the strong coupling effect to increase light absorption,
converting specific wavelength optical signals (RGB) into electrical
signals, thus additionally introducing carriers, which greatly increases
the energy efficiencyof the device. It is precisely becauseof this design
that, under the synergistic effect of gate electrodes and nanogratings,
the device has achieved the best comprehensive performance
(dynamic range 180 dB, high speed 500ns, ultralow energy con-
sumption 2.4 × 10−17 J per spike) in the existing neuromorphic devices
while possessing multiple functions.

Another important question is the ultrafast recognition capability
of the device. Although the entire process from the generation of hot
electrons by plasmondecay to the injection intoMoS2 is accomplished
on a sub-nanosecond level27,29, the transfer of the hot electrons and the
establishment of the thermoelectric potential prolong the entire pro-
cess. Further solutions can be developed by doping MoS2/WSe2
respectively, using split-gate electrodes to establish potential differ-
ences, thereby assisting rapid migration and detection of hot elec-
trons, ultimately enabling ultrafast image recognition (Supplementary
Fig. 20). Considering the future mass production and cost of the
device, the simpler the device architecture and the fewer the proces-
sing steps, the greater its potential for machine vision applications.
From this perspective, the device structure could be simplified while
maintaining its main performance, for example, by adopting an on-
chip integrated structure or simply by using a few layersMoS2material
as the channel. To demonstrate the feasibility of the latter approach,
we present an plasmon-enhanced photodetector in Supplementary
Fig. 21. Under the irradiation of different power light, the short-circuit
photocurrent is generated under the effect of the thermoelectric
potential generated by the plasmon excited by Ag nanograting. Dif-
ferent photoresponsivity can be tuned by modulating the ITO bottom
gate electrode and source-drain polarity. This tunable photo-
responsivity (weight) can then be applied to the subsequent training of
ANN devices and image recognition.

In conclusion, we have presented an AVPRM composed of PPTA,
which integrates multifunctions of sensing, pre-processing and image
recognition simultaneously. The strong coupling effect caused by the
WPPs structure greatly enhances the absorption of the tricolor light in
the device, thus improving the generation of hot electrons and the
injection into the floating gate. Under the coordination of photo-
thermoelectric effect caused by plasmon dephasing and electrical
modulation, the current on/off ratio of the device exceeds ~1 × 109 and
the dynamic range reaches 180dB. The performance of the device can
greatly enhance the image contrast during the pre-processing process.
Subsequent image recognition is successfully performed under the
incidence of continuous light and pulsed light, respectively. Two let-
ters with a duration of 500ns can be recognized on the basis of con-
suming 2.4 × 10−17 J per spike. By performing image pre-processing
using this PPT, the image quality is effectively improved, and the effi-
ciency and accuracy of subsequent image recognition is increased.
This device exhibits great potential in terms of large dynamic range,
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ultrafast and ultralow power consumption for machine vision
applications.

Methods
Device fabrication
The fabrication of the chip follows the procedure described in Sup-
plementary Fig. 2. A quartz wafer was used as the original substrate,
which was cleaned with acetone, isopropyl alcohol and deionized
water, respectively. The cleaned quartz wafer was deposited with a
layer of ITO film (~200nm) using magnetron sputtering (Denton Dis-
covery-635). Subsequently, an Al2O3 layer was grew on top of the ITO
film by atomic layer deposition (~40 nm, Kurt J. Lesker ALD150LX). 2D
crystals including MoS2 (thicknesses: ~8 nm, lateral dimension:
~90 × 60μm), h-BN (thicknesses: ~10 nm, lateral dimension:
~105 × 80μm) and WSe2 (thicknesses: ~7 nm, lateral dimension:
~87 × 60μm) flakes were derived from bulk source materials by a
mechanical peel-transfermethod. For the transfer ofMoS2 flake, it was
first mechanically exfoliated on a transparent polydimethylsiloxane
film and then transferred to the substrate with the help of an optical
microscope. To eliminate unnecessary stresses, the transferred 2D
MoS2 was annealed in an argon atmosphere. Standard e-beam litho-
graphy (EBL, Raith Voyager) and magnetron sputtering were then
employed todefine theTi/Agnanogratings on theproduced structures
by a lift-off approach. Next, we defined the mask with EBL and carried
out reactive ion etching (RIE) with Ar/SF6 plasma to separate the pre-
viously transferredMoS2 sheet into 27 pixels. Afterwards, themaskwas
removed with acetone. 2D h-BN and WSe2 flakes were also transferred
to the structure using the same method described above. In order to
maximize the absorption of nanogratings, Ar/SF6 plasma was again
used to perform RIE towards 2D heterostructure on the mask defined
by EBL. The top metal layer (gate electrode and drain-source elec-
trode) was added by another EBL process and Cr/Au (3 nm/15 nm)
evaporation. Finally, Al2O3 (20nm) and Cr/Au (20nm/50 nm) layers
were deposited on the produced heterostructures by lift-off methods
using standard EBL process and magnetron sputtering/thermal eva-
poration of materials.

Experimental setup
Schematics of the experimental setup are shown in Supplementary
Figs. 8 and 9a, b. Light from a semiconductor laser (635/532/473 nm
wavelength) was collimated by a lens before passing through a linear
polarizer. The polarization direction of the linear polarizer was
mounted perpendicular to the long axis of the Ag nanograting, and the
linearly polarized light was projected on the structure in a normal
incidencemanner. The gray level of eachpixel in the optical imagewas
achieved by adjusting the laser power, and then the optical image was
projected onto the sample using a microscope objective with a long
working distance. A source meter (Keithley, 2400) was used to supply
gate voltage to the PPT, and a source meter (Keithley, 2450) was used
to supply drain-source voltage to the PPT while measuring the output
current. The sample was connected to the source meter via a home-
mademeasurement box and BNC connection cable. For time-resolved
measurements, a femtosecond pulsed laser source (BFL-1030-20B,
BWT)was used, whichwas triggered using a lock-in amplifier (Stanford
Research Systems, SR830) to emit a single pulse at a wavelength of
515 nm. The 500ns cycle drain-source pulse voltage was provided by
an arbitrary waveform generator (Keithley, 3390), and the output
current was amplified by a preamplifier (Stanford Research Systems,
SR570) and converted into a voltage signal, whichwas finally recorded
by an oscilloscope (Siglent). In addition, all measurements were car-
ried out at room temperature in an air environment.

Simulation and strong coupling model
The transmittance spectra and electromagneticfield distributions of the
structures with strong coupling were simulated using finite-difference

time-domain method. The plane wave light source was projected onto
the structure with normal incidence in the direction of polarization
perpendicular to the long axis of Ag nanogratings. In order to highlight
the strong coupling effect,weneglected the effect of 2Dmaterials in our
experimental and theoretical simulations. Here, small volumes Ag
nanorods with a height of 20nm were selected to form the grating in
order to achieve large photoelectric conversion efficiency by reducing
the proportion of radiation damping and increasing the ballistic trans-
port probability27 and hot electron relaxation time39.All calculated data
were collected while satisfying the steady state energy criteria.

A coupled oscillator model was introduced to analyze the strong
coupling behavior of the hybrid architecture under specific para-
meters.The plasmon of Ag nanogratings, symmetrized photonic
mode, and antisymmetrizedmode can be assumed as three oscillators.
Therefore, the Hamiltonian of this three-coupled system can be writ-
ten as:

EPl � iγPl=2 gw gs

gw EAsym � iγAsym=2 0

gs 0 ESym � iγSym=2

0
B@

1
CA ð2Þ

Where γPl , γAsym, and γSym are the linewidths of plasmon, anti-
symmetrized and symmetrized modes, EPl , EAsym, and ESym are the
resonance energies of plasmon, antisymmetrized and symmetrized
modes, while gw and gs represent plasmon-antisymmetrized mode
and plasmon-symmetrized mode interaction constants. In the three-
oscillator model, the eigenstates of Hamiltonian correspond to the
three hybrid branches. The wave function of each branch from
the admixture contribution of plasmon, symmetric mode and
antisymmetric mode can be expressed as jψji = α j

Pl jPli + α j
SymjSymi

+ α j
AsymjAsymi, where α j

i ði=Pl, Sym,Asym; j =Upper,Middle, LowerÞ
denotes Hopfield coefficients. The modular square of the Hopfield
coefficient represents the proportion of uncoupled states
Pi = ðPi

Upper , P
i
Middle, P

i
LowerÞ in hybrid state. Also, the weight of each

hybrid branch W= ðWUpper ,WMiddle,WLowerÞ in this strong coupling
regime can be calculated as Wj = γj=

P
j
γj .

Image recognition task
In our proposed AVPRM, the pattern classification task was solved by a
single-layer perceptron containing nine input neurons and one output
neuron. The hardware implementation of a single-layer perceptron
was accomplished by interconnecting 3 × 3 PPTs in an ANNmanner to
form a PPTA. The network was trained off-line using computer simu-
lation, a method called the ex-situ training. Subsequently, the pre-
determined photoresponsivity matrix, that is, photoresonsivities
scaled from dimensionless weights, was transferred to the PPTA to
complete the image recognition. The networkwas trained byMATLAB.
The direction of weight update for each training epoch was deter-
mined by the positive or negative value of the delta-rule weight
increments Δ, where Δ=PnðϕmðIÞ � ϕðI 0mÞÞ here is exactly delta-rule
weight increments. Here, ϕðI 0mÞ is the training value, ϕmðIÞ is the target
value and Pn is the incident light power of the nth pixel with noise.

Data availability
Relevant data supporting the key findings of this study are available
within the article and the Supplementary Information file. All raw data
generated during the current study are available from the corre-
sponding authors upon request.

References
1. Zhou, F. et al. Optoelectronic resistive random access memory for

neuromorphic vision sensors.Nat. Nanotechnol. 14, 776–782 (2019).
2. Choi, C. et al. Curved neuromorphic image sensor array using a

MoS2-organic heterostructure inspired by the human visual
recognition system. Nat. Commun. 11, 5934 (2020).

Article https://doi.org/10.1038/s41467-024-46867-8

Nature Communications |         (2024) 15:2471 8



3. Kolb,H.How the retinaworks:muchof theconstructionof an image
takes place in the retina itself through the use of specialized neural
circuits. Am. Sci. 91, 28–35 (2003).

4. Wang, H. et al. A ferroelectric/electrochemical modulated organic
synapse for ultraflexible, artificial visual-perception system. Adv.
Mater. 30, 1803961 (2018).

5. Liao, F. et al. Bioinspired in-sensor visual adaptation for accurate
perception. Nat. Electron. 5, 84–91 (2022).

6. Gollisch, T. &Meister, M. Eye smarter than scientists believed: neural
computations in circuits of the retina. Neuron 65, 150–164 (2010).

7. Prezioso, M. et al. Training and operation of an integrated neuro-
morphic network based on metal-oxide memristors. Nature 521,
61–64 (2015).

8. Wang, C.-Y. et al. Gate-tunable van der Waals heterostructure for
reconfigurable neural network vision sensor. Sci. Adv. 6,
eaba6173 (2020).

9. Zhu,Q. et al. Aflexible ultrasensitive optoelectronic sensor array for
neuromorphic vision systems. Nat. Commun. 12, 1798 (2021).

10. Choi, C. et al. Human eye-inspired soft optoelectronic device using
high-density MoS2-graphene curved image sensor array. Nat.
Commun. 8, 1664 (2017).

11. Dodda, A. et al. Active pixel sensor matrix based on monolayer
MoS2 phototransistor array. Nat. Mater. 21, 1379–1387 (2022).

12. Meng, J. et al. Integrated in-sensor computing optoelectronic
device for environment-adaptable artificial retina perception
application. Nano Lett. 22, 81–89 (2022).

13. Cottini, N., Gottardi, M., Massari, N., Passerone, R. & Smilansky, Z. A
33 μW 64×64 pixel vision sensor embedding robust dynamic
background subtraction for event detection and scene interpreta-
tion. IEEE J. Solid-State Circuits 48, 850–863 (2013).

14. Du, C. et al. Reservoir computing using dynamic memristors for
temporal information processing. Nat. Commun. 8, 2204 (2017).

15. Yao, P. et al. Face classifcation using electronic synapses. Nat.
Commun. 8, 15199 (2017).

16. Seo, S. et al. Artificial optic-neural synapse for colored and color-
mixed pattern recognition. Nat. Commun. 9, 5106 (2018).

17. Zhang, Z. et al. All-in-one two-dimensional retinomorphic hardware
device for motion detection and recognition. Nat. Nanotechnol. 17,
27–32 (2022).

18. Cui, B. et al. Ferroelectric photosensor network: an advanced
hardware solution to real-time machine vision. Nat. Commun. 13,
1707 (2022).

19. Wan, C. et al. An artificial sensory neuron with visual-haptic fusion.
Nat. Commun. 11, 4602 (2021).

20. Mennel, L. et al. Ultrafast machine vision with 2D material neural
network image sensors. Nature 579, 62–66 (2020).

21. Chen, J. et al. Optoelectronic graded neurons for bioinspired in-
sensor motion perception. Nat. Nanotechnol. 18, 882–888 (2023).

22. Clavero, C. Plasmon-induced hot-electron generation at nano-
particle/metal-oxide interfaces for photovoltaic and photocatalytic
devices. Nat. Photon 8, 95–103 (2014).

23. Pan, M., Liang, Z., Wang, Y. & Chen, Y. Tunable angle-independent
refractive index sensor based on Fano resonance in integrated
metal and graphene nanoribbons. Sci. Rep. 6, 29984 (2016).

24. Chorsi, H., Lee, Y., Alù, A. & Zhang, J. Tunable plasmonic substrates
with ultrahigh Q-factor resonances. Sci. Rep. 7, 15985 (2017).

25. Palinski, T., Vyhnalek, B., Hunter, G., Tadimety, A. & Zhang, J. Mode
switchingwith waveguide-coupled plasmonic nanogratings. IEEE J.
Sel. Top. Quantum Electron. 27, 4600710 (2021).

26. Sönnichsen, C. et al. Drastic reduction of plasmon damping in gold
nanorods. Phys. Rev. Lett. 88, 077402 (2002).

27. Hartland, G. V. Optical studies of dynamics in noble metal nanos-
tructures. Chem. Rev. 111, 3858–3887 (2011).

28. Leenheer, A. J., Narang, P., Lewis, N. S. & Atwater, H. A. Solar energy
conversion via hot electron internal photoemission in metallic

nanostructures: efficiency estimates. J. Appl. Phys. 115,
134301 (2014).

29. Brongersma,M. L., Halas,N. J. &Nordlander, P. Plasmon-inducedhot
carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

30. Reddy, H. et al. Determining plasmonic hot-carrier energy dis-
tributions via single-molecule transport measurements. Science
369, 423–426 (2020).

31. Fang, Z. et al. Plasmon-induced doping of graphene. ACS Nano 6,
10222–10228 (2012).

32. Lopez-Sanchez, O., Lembke, D., Kayci, M., Radenovic, A. & Kis, A.
Ultrasensitive photodetectors based on monolayer MoS2. Nat.
Nanotechnol. 8, 497–501 (2013).

33. Long, M., Wang, P., Fang, H. & Hu, W. Progress, challenges, and
opportunities for 2D material based photodetectors. Adv. Funct.
Mater. 29, 1803807 (2019).

34. Hong, X. et al. Ultrafast charge transfer in atomically thinMoS2/WS2

heterostructures. Nat. Nanotech. 9, 682–686 (2014).
35. Liu, C. et al. A semi-floating gate memory based on van der Waals

heterostructures for quasi-non-volatile applications. Nat. Nano-
technol. 13, 404–410 (2018).

36. Pospischil, A., Furchi, M. M. & Mueller, T. Solar-energy conversion
and light emission in an atomic monolayer p-n diode. Nat. Nano-
technol. 9, 257–261 (2014).

37. Buscema, M. et al. Large and tunable photothermoelectric efect in
single-layer MoS2. Nano Lett. 13, 358–363 (2013).

38. Mueller, T. &Malic, E. Excitonphysics anddevice applicationof two-
dimensional transition metal dichalcogenide semiconductors.npj
2D Mater. Appl. 2, 29 (2018).

39. Shan,H.Y. et al.Directobservationofultrafastplasmonichotelectron
transfer in the strong coupling regime. Light Sci. Appl. 8, 9 (2019).

40. Goossens, S. et al. Broadband image sensor array based on
graphene-CMOS integration. Nat. Photon. 11, 366–371 (2017).

41. Akinwande, D. et al. Graphene and two-dimensional materials for
silicon technology. Nature 573, 507–518 (2019).

42. Chen, S. et al. Wafer-scale integration of two-dimensional materials
in high-density memristive crossbar arrays for artificial neural net-
works. Nat. Electron. 3, 638–645 (2020).

43. Christ, A., Tikhodeev, S. G., Gippius, N. A., Kuhl, J. & Giessen, H.
Waveguide-plasmon polaritons: strong coupling of photonic and
electronic resonances in ametallic photonic crystal slab. Phys. Rev.
Lett. 91, 183901 (2003).

Acknowledgements
This work was supported by the National Key R&D Program of China
(2019YFA0308602), the National Science Foundation of China (general
program 12174336 &major program 91950205) and the Natural Science
Foundation of Zhejiang Province (LR20A040002). We thank the Micro
and Nano Fabrication Centre at Zhejiang University for facility support
and W. Wang at the State Key Laboratory of Modern Optical Instru-
mentation for suggestions on nanofabrication. We appreciate the
equipment support provided by the Center of Electron Microscopy of
Zhejiang University for the preparation of samples to be characterized,
as well as the assistance provided by H. Huang from the Center for
Micro/Nano Fabrication of Westlake University for sample characteriza-
tion. We also acknowledge useful comments from Prof. D. Xiang of
Frontier Institute of Chip and System, Fudan University.

Author contributions
L.L. and T.Z. conceived anddesigned theproject. T.Z. designed andbuilt
the experimental setup, programmed the machine-learning algorithm,
fabricated the ANN PPTA, carried out the material and device char-
acterization. X.F., Z.W., Y.T. and D.W. provided assistance with material
characterization. T.Z. and L.L. analyzed data and wrote the manuscript.
X.G., P.W. and L.T. provided suggestions for data analysis. All authors
commented on the manuscript.

Article https://doi.org/10.1038/s41467-024-46867-8

Nature Communications |         (2024) 15:2471 9



Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-46867-8.

Correspondence and requests for materials should be addressed to
Linjun Li.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-46867-8

Nature Communications |         (2024) 15:2471 10

https://doi.org/10.1038/s41467-024-46867-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	High performance artificial visual perception and recognition with a plasmon-enhanced 2D material neural network
	Results
	The structure and mechanism of�PPTA
	Image recognition based on device characterization
	Implementations of pattern classification

	Discussion
	Methods
	Device fabrication
	Experimental�setup
	Simulation and strong coupling�model
	Image recognition task

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




