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Developing a machine learning model for
accurate nucleoside hydrogels prediction
based on descriptors

Weiqi Li 1,2, Yinghui Wen 1,2, Kaichao Wang1,2, Zihan Ding 1,
Lingfeng Wang 1, Qianming Chen 1, Liang Xie 1 , Hao Xu 1 &
Hang Zhao 1

Supramolecular hydrogels derived from nucleosides have been gaining sig-
nificant attention in the biomedical field due to their unique properties and
excellent biocompatibility.However, amajor challenge in thisfield is that there
is nomodel for predicting whether nucleoside derivative will form a hydrogel.
Here, we successfully develop a machine learning model to predict the
hydrogel-forming ability of nucleoside derivatives. The optimal model with a
71% (95% Confidence Interval, 0.69−0.73) accuracy is established based on a
dataset of 71 reported nucleoside derivatives. 24molecules are selected via the
optimal model external application and the hydrogel-forming ability is
experimentally verified. Among these, two rarely reported cation-independent
nucleoside hydrogels are found. Based on their self-assemblemechanisms, the
cation-independent hydrogel is found to have potential applications in rapid
visual detection of Ag+ and cysteine. Here, we show the machine learning
model may provide a tool to predict nucleoside derivatives with hydrogel-
forming ability.

Recently, supramolecular hydrogels derived from nucleosides have
attracted increasing attention in the biomedical field due to their
manifold noncovalent interactions, unique properties, and excellent
biocompatibility1–3. Since Bang et al. reported in 1910 that con-
centrated solutions of guanylic acid could form a gel4, significant
progress in nucleoside-based hydrogels have been developed and
used in various applications, including drug delivery, biosensors, and
tissue engineering5–11. For example, Lehn et al. showed that a guanosine
derivative was a stable supramolecular hydrogel in the presence of
metal cations and provided a highly selective and controllable release
of bioactive substances, making it an attractive option for drug
delivery9. Davis et al. designed long-lived guanosine-borate hydrogels,
enabling sustained drug release10. Based on these findings, our group
developed a series of nucleoside-based dual-function hydrogels that
show potential applications in the field of biomedicine, including

wound healing and cancer treatment2,5–7. Amajor challenge in this field
is the limited comprehension of how to anticipate whether a nucleo-
side derivative will form a hydrogel. Design suggestions are frequently
made, but gelators are usually discovered unintentionally or through
the synthetic modification of an existing gelator12,13. This fundamental
constraint results from the little understanding of the association
between the nucleoside structure and hydrogel forming ability.

Machine learning (ML) is a powerful technology that allowsmodel
to automatically learn from data and improve their performance over
time, helping to automate and optimize processes and improve
decision-making14–16. The advantage of ML in predicting the hydrogel-
forming ability of molecules lies in its ability to learn the structure-
property relationships through high-dimensional data, which can be
used to excavate newgelators17–19. In recent years, substantial advances
have beenmade in the application ofML in hydrogels17–19. For example,
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Li et al. developed ML models to learn the correlation between che-
mical features and the dipeptide hydrogel-forming ability of peptide-
like molecules with algorithms including random forest (RF), gradient
boosting (GB), and logistic regression (LR)18. However, there are no
models for accurate nucleoside hydrogels prediction due to the
complexity of the self-assemble process of nucleoside derivatives
forming hydrogels13.

Here, we show an optimal ML model which was successfully
developed to predict the hydrogel-forming ability of nucleoside deri-
vatives based on feature selection, hyperparameter optimization and
algorithm comparison. The simplified illustration of this study is
shown in Fig. 1. In this work, the optimal ML model may provide a tool
to predict nucleoside derivatives with hydrogel-forming ability in the
future.

Results and discussion
An optimal ML model was constructed for nucleoside deriva-
tives to predict the hydrogel-forming ability
All the published nucleoside derivatives and the information on whe-
ther they have the hydrogel-forming ability were collected by sys-
tematic literature review, and 71 molecules were included in the
dataset (gelator, n = 38, and non-gelator, n = 33, SupplementaryData 1,
Supplementary Data 2)5,20–36. As only a few dozen have clarified
hydrogel-forming ability, more nucleoside hydrogels are urgently
needed to discover. Molecular descriptors are used as features to
construct the models, after removing missing values, 4175 descriptors
were obtained for the 71 nucleoside derivatives (Supplementary
Data 3, Fig. 2d, Supplementary Fig. 1). Subsequently, a three-step fea-
ture selection was utilized based on the 4175 descriptors to avoid
overfitting and improve themodel accuracy (Fig. 2a). Feature selection
including rank-sum test (n = 144, Fig. 2b, Supplementary Figs. 2, 3),
Spearman correlation (n = 40, Fig. 2c, Supplementary Fig. 4) and ML
algorithm-based recursive feature elimination (RFE: Extreme gradient
boosting, XGBoost, n = 16; LR, n = 24; Decision tree, DT, n = 30; RF,
n = 37, Fig. 2e, SupplementaryData 4)37–41. Taken together, to construct
the prediction models comprehensively, different mathematical
representations of molecules based on descriptors were used to build
predictionmodelswith fourMLalgorithms,details for thebuiltmodels
were shown inSupplementaryMethods 2.1 andSupplementaryTable 1.
In this study, test accuracy and area under the curve (AUC)weremainly
focused on, and the results of precision, recall, and F1 score were used
as auxiliary indicators (Supplementary Methods 2.2).

The model performance of LR based on 24 descriptors after RFE,
not only provided better results of test accuracy (0.71 ± 0.02) and AUC
(0.84± 0.02), but also had higher recall (0.95 ± 0.01) and F1 score
(0.78 ±0.01) (Fig. 3a–d, Table 1). So, the model of LR based on 24
descriptors after RFE was finally chosen as the optimal model (Sup-
plementary Data 5). By constructing prediction models of 71 nucleo-
side derivatives, we demonstrated that the ML model could indeed
help in the prediction of the hydrogel-forming ability of nucleoside
derivatives. Based on the optimal model, the important features,
namely the 24 molecular descriptors, were mainly clustered in 2D
matrix-based descriptors, edge adjacency indices, P_VSA-like descrip-
tors, 2D atom pairs, 2D autocorrelations, atom-centered fragments,
functional group counts, and pharmacophore descriptors (Fig. 3e,
Supplementary Table 2 and Supplementary Data 5). Cross validation
without independent test set may overestimate model predictivity.
Therefore, we performed a sensitivity analysis on the dataset. Cluster
analysis was used to randomly select 15 out of 71 nucleosidederivatives
(20%) for the test set (once, not for training, Supplementary Meth-
ods 2.3, and Supplementary Figs. 5–7), and the remaining 56 nucleo-
side derivatives (80%)wereused as the training set (withfive-fold cross
validation). The results were consistent with our previous five-fold
cross-validation of 71 nucleoside derivatives, the three-step feature
selection based logistic regression (LR-RFE) performed better in both
the training set (with five-fold cross-validation: validation accuracy:
0.70 ±0.02, AUC: 0.84 ±0.02, Supplementary Table 3) and test set
(accuracy: 0.67, AUC: 0.81, Table 2).

The importance of features was determined by regression coef-
ficients and the permutation feature importance (PFI). We calculated
the regression coefficient of LASSO regression for 4175 molecular
descriptors and got the feature importance of 70 molecular descrip-
tors after feature selection by LASSO (Supplementary Data 6). The
regression coefficients of the 24 molecular descriptors are the feature
importance of the optimal model (Fig. 3e, Supplementary Table 2). In
addition, the PFI results (mean accuracy decrease) of the 24molecular
descriptors in the optimal model were also provided (Supplementary
Table 2, Supplementary Fig. 8). Notably, according to the regression
coefficients, there were four molecular descriptors that the feature
importance is more than 0.1 in the LR model. These descriptors were
mainly related to hydrogen bonding, molecular polarity, and lipid
solubility, consisted with previous studies reporting, which we believe
they are the key descriptors of the gelator properties12,13,17,19,42 (Fig. 3e,
Supplementary Discussion 1.1).
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Fig. 1 | To predict the ability of nucleoside derivatives to form hydrogels based
on machine learning. An optimal model was constructed for nucleoside deriva-
tives hydrogel-forming ability prediction, and potential gelators were selected
based on the optimal model external application and the hydrogel-forming ability

were experimentally verified. Besides, the self-assembly mechanism of the cation-
independent hydrogel was explored, which could be applied in rapid visual
detection of Ag+ and cysteine.
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Fig. 2 | The flowchart of model construction and feature selection of the
descriptors. a Flow chart of model construction. The results of 4175 descriptors
were initially obtained, 144 descriptors with significant differences (P <0.05) were
selected by the rank-sum test, and 40 descriptors finally remained after excluding
one of the pairs of descriptors with a correlation coefficient higher than 0.8 (Rho
>0.8) with Spearman correlation. b The results of the rank-sum test. With the
logarithm of the P-value (log P-value) for the vertical coordinate, and the logarithm
of the fold change (log FC) between themean values of the gelator group and non-

gelator group for the horizontal coordinate. c 40 descriptor correlation heatmaps.
All correlations between descriptorswere less than 0.80. d Three-dimensional (3D)
principal component analysis (PCA) of 71 nucleoside derivatives with 4175
descriptors. The results of the PCA visualization with 4175 descriptors displayed of
the gelator and non-gelator groups. e 3D PCA of 71 nucleoside derivatives with 40
descriptors. The results of the 3D PCA visualization with 40 descriptors displayed
of two groups.
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Fig. 3 | Evaluation indexes of different models and feature importance of
optimal models. a A scatterplot showed the distribution of AUC (area under the
curve) and test accuracy for all models. The 4-point shapes represent different ML
algorithms: extremegradient boosting (XGBoost), logistic regression (LR), decision
tree (DT), and random forest (RF). Descriptor’s part: Initially obtained 4175
descriptors,144 descriptors after rank sum test, 40 descriptors after correlation
coefficient selection, and descriptors after recursive feature elimination (RFE). The
optimal number of descriptors for RFE of each machine learning (ML) algorithm is
different (XGBoost, n = 16; LR, n = 24; DT, n = 30; RF, n = 37), data aremean values ±

standard error of the mean (SEM). b Evaluation indexes of four algorithms using
descriptors after RFE. Combining the results of test accuracy, F1 score and AUC,
data are mean values ± SEM. c Receiver operating characteristic curve for the four
algorithms (LR, DT, RF, andXGBoost) using descriptors after RFE.dThe RFE results
of the LR models based on different descriptors within the 40 descriptors, indi-
cated that LR with 24 descriptors had the best performance, data are mean
values ± SEM. e The results of feature importance of 24 descriptors for the optimal
LR model based on the regression coefficients.
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Although we found a series of molecular descriptors related to
hydrogel-forming ability, the interpretations of some of them are
still not easy. According to the previous studies12,13,17–19,42, four easy-
to-understand molecular descriptors related to the gelator prop-
erties were selected, such as water solubility and lipophilicity43–45,
that may be relevant to the hydrolgel-forming ability of nucleoside
derivatives. The values’ distributions of these molecular descrip-
tors had no significant differences (P > 0.05) between the gelator
and non-gelator groups, which suggested that these molecular
descriptors were not related to the hydrogel-forming ability of
nucleoside derivatives (Supplementary Fig. 9). Therefore, although
themolecular descriptors chosen in the optimal model are not easy
to understand, they are valuable and important to predict the
hydrogel-forming ability of nucleoside derivatives in this work, and
a further exploration of these molecular descriptors is necessary in
the future.

For the first part, a dataset of 71 nucleoside derivatives with the
information of whether have the hydrogel-forming ability was con-
verted into feature matrices using 4175 molecular descriptors. After
feature selection and hyperparameter optimization, four classifier
algorithms were included for predicting hydrogel-forming ability and
selected an optimal model with 71% accuracy.

Twenty-four molecules were selected based on the optimal
model for external application and the hydrogel-forming ability
were experimentally verified
To test the optimal ML model, external application is crucial. Here, we
screened 7257nucleosidederivatives basedon their three-dimensional
(3D) similarity from the PubChem database. A grouped box plot
(Supplementary Fig. 10) of the 24 descriptors in optimal model (LR)
and a 2D-PCA (Supplementary Fig. 11) based on these 24 descriptors
showed that their multidimensional features of 7257 nucleoside deri-
vatives are in or near the ranges for 71 nucleoside derivatives used for
model construction. The optimal model (LR based on 24 descriptors)
was applied to the 7257 nucleoside derivatives and their predictions
were ranked based on the prediction probability (Supplemen-
tary Data 7).

To validate the model and consider possible subsequent appli-
cations, the nucleoside derivatives with the top 10% prediction prob-
ability of gelatorswere selected and 12 nucleoside derivatives (1, 1-[3,4-
Dihydroxy-5- (hydroxymethyl) oxolan-2-yl]-1,3,5-triazinane-2,4,6-
trione, DTT;2, xanthosine, XTS;3, guanine 5’-monophosphate, GMP;4,
inosine 5’-monophosphate, IMP; 5, 5-fluorouridine, 5-FUR; 6, 8-ami-
noguanosine, 8-AG; 7, 2’-deoxyguanosine 5’-monophosphate, dGMP;
8, 8-hydroxyguanosine, 8-OHG;9, 8-azaguanosine, 8-azaG, 10, inosine-
5’-carboxylic acid; I-5’-CA; 11, 2’-amino-2’-deoxyguanosine, 2’-NH2-dG,
and 12, 2’-O-Methylguanosine, 2’-OMe-dG) were selected in a relatively
homogeneous manner based on our experience and the costs of
obtaining and synthesizing nucleoside derivatives (Fig. 4a, Supple-
mentary Fig. 12). To validate the hydrogel-forming ability of the 12
nucleoside derivatives, as well as the strength and stability of the
hydrogels, we conducted the tube-inversion tests (Fig. 4a, Supple-
mentary Figs. 13–15, Supplementary Data 8). Furthermore, to be more
persuasive, we had additionally chosen 12 nucleoside derivatives pre-
dicted to have no hydrogel-forming ability and it was experimentally
validated subsequently (Fig. 4a, Supplementary Figs. 16–18, Supple-
mentary Data 8).

To 12 nucleoside derivatives with the top 10% prediction prob-
ability, the result shows 10 nucleoside derivatives (1, 3, 4, 6, 7, 8, 9, 10,
11, and 12) formed hydrogels, while the two others (2 and 5) did not
(Fig. 4b, Supplementary Figs. 13–15, Supplementary Data 8), suggest-
ing the success rate of forming hydrogels is 83.33% (10/12). Specifically,
1, 3, 4, 7, 10, and 12 formed hydrogels in the presence of AgNO3. 6 and
8 self-assembled into hydrogels in H3BO3 and Tris solution, as well as
NaB(OH)4 and KB(OH)4 solutions. 9 formed hydrogels in H3BO3 and
Tris solution, as well as AgNO3 solution. 11 could self-assemble into
hydrogels in KCl, NaCl, NaB(OH)4 andKB(OH)4 solutions. Among these
nucleoside derivatives, eight nucleoside derivatives (1,6,7,8, 9, 10,11,
and 12) have not been reported as gelators. To 12 nucleoside deriva-
tives with low prediction probability, the results show that 10 of the 12
nucleoside derivatives didn’t form hydrogels (14–23), while the two
others formed (13 and 24 formed hydrogels in AgNO3 solution, accu-
racy rate is 83.33%, Supplementary Data 8 and Supplementary
Figs. 16–19). Thus, for 24 nucleoside derivatives from external dataset,

Table 2 | The result of AUC (Area under Curve) and accuracy for models based on test set of 14 nucleoside derivatives

Models Features Test set performance

Accuracy F1 Score Precision Recall AUC

DT Descriptor_ REF # 0.60 0.67 0.75 0.60 0.60

LR Descriptor_ REF # 0.67 0.76 1.00 0.61 0.81

RF Descriptor_ REF # 0.53 0.59 0.63 0.56 0.53

XGBoost Descriptor_ REF # 0.60 0.57 0.50 0.67 0.61

*LR Logistic regression, DT Decision tree, RF Random forest, XGBoost Extreme gradient boosting.
#Descriptors-REF: Recursive feature elimination (REF) has different optimal descriptors for different Algorithms: LR, n = 34; XGBoost, n = 33; DT, n = 23; RF, n = 26.

Table 1 | The result of AUC (Area under Curve) and test
accuracy for all models based on 71 nucleoside derivatives

Models Features Test Accuracy AUC

Mean SEM Mean SEM

DT* Descriptor_4175 0.65 0.01 0.65 0.02

LR Descriptor_4175 0.65 0.02 0.67 0.02

RF Descriptor_4175 0.63 0.01 0.72 0.02

XGBoost Descriptor_4175 0.63 0.01 0.69 0.02

DT Descriptor_144 0.64 0.01 0.64 0.01

LR Descriptor_144 0.68 0.02 0.80 0.02

RF Descriptor_144 0.67 0.01 0.75 0.02

XGBoost Descriptor_144 0.64 0.02 0.72 0.02

DT Descriptor_40 0.66 0.02 0.69 0.02

LR Descriptor_40 0.70 0.01 0.81 0.02

RF Descriptor_40 0.67 0.01 0.74 0.02

XGBoost Descriptor_40 0.65 0.01 0.75 0.02

DT Descriptor_ REF # 0.59 0.02 0.63 0.02

LR Descriptor_ REF # 0.71 0.01 0.84 0.02

RF Descriptor_ REF # 0.67 0.01 0.75 0.02

XGBoost Descriptor_ REF # 0.70 0.02 0.79 0.02

*LR Logistic regression,DTDecision tree,RFRandom forest,XGBoostExtremegradient boosting,
SEM Standard error of the mean.
#Descriptors-REF: Recursive feature elimination (REF) has different optimal descriptors for dif-
ferent Algorithms: LR, n = 24; XGBoost, n = 16; DT, n = 30; RF, n = 37.
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the accuracy of the optimal model for predicting hydrogel-forming
ability was 83.33% (20/24).

In the process of validating the synthesis of nucleoside hydrogels
and exploring the synthesis conditions, it was surprising that 6 and 8

exhibited the same hydrogel-forming abilities and can self-assemble
into hydrogels (8AG-T and 8OHG-T hydrogels) through a simple one-
pot method in the absence of cations, and the hydrogels display long
lifetime stability of 6 months (Fig. 5a). Although guanosine-derived

Fig. 4 | Prediction and verification of untested nucleoside derivatives. a 24
nucleoside derivatives were selected (12 high probability and 12 low probability) in
a relatively homogeneous manner based on our experience and the costs of
obtaining and synthesizing nucleoside derivatives. b 12 nucleoside derivatives with
high probability of hydrogel-forming ability were selected. The result shows 10
nucleoside derivatives (1, 3, 4, 6, 7, 8, 9, 10, 11, and 12) formed hydrogels, while the
two others (2 and 5) did not. 1, 1-[3,4-Dihydroxy-5- (hydroxymethyl) oxolan-2-yl]

−1,3,5-triazinane-2,4,6-trione, DTT; 2, xanthosine, XTS; 3, guanine 5’-monopho-
sphate, GMP; 4, inosine 5’-monophosphate, IMP; 5, 5-fluorouridine, 5-FUR; 6, 8-
aminoguanosine, 8-AG; 7, 2’-deoxyguanosine 5’-monophosphate, dGMP; 8, 8-
hydroxyguanosine, 8-OHG; 9, 8-azaguanosine, 8-azaG, 10, inosine-5’-carboxylic
acid; I-5’-CA; 11, 2’-amino-2’-deoxyguanosine, 2’-NH2-dG, and 12, 2’-O-methylgua-
nosine, 2’-OMe-dG.
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supramolecular hydrogels have potential applications in the fields of
drug delivery, targeted release, and tissue engineering, the need for
excess cations hinders their widespread applications. To date, the
reports on developing cation-independent guanosine-derived supra-
molecular hydrogels are rare. This has piqued our great interest to
further explore these two unknown nucleoside hydrogels (8AG-T and
8OHG-T hydrogels).

To better understand two cation-independent hydrogels, G-T,
8AG/8OHG/G-Na+, and 8AG/8OHG/G-K+ hydrogels were prepared as
controls. Different from the long-term stability of 8AG-T and 8OHG-T
hydrogels, the 8AG-K+ and 8OHG-K+ hydrogels are weak and collapse
within hours, and a precipitate generates in the G-T hydrogel within
hours. These findings suggest that the 8AG-T and 8OHG-T hydrogels
aremore stable than the 8AG-K+ and 8OHG-K+ hydrogels, respectively,
but the opposite is true for the G-T/Na+/K+ hydrogels (Supplementary
Fig. 14 and Supplementary Fig. 20). To further explore the solid-like
state of the hydrogels, rheological measurements were performed.
The 8AG-T and 8OHG-T hydrogels possessed higher storage modulus
(G′) values than loss modulus (G″) values, suggesting that they were
solid-like hydrogelsover the entire applied frequency range (Fig. 5b, c).
The G′ values of the 8AG-T and 8OHG-T hydrogels were higher than
those of the 8AG-Na+/K+ and 8OHG-Na+/K+ hydrogels, respectively
(Supplementary Fig. 21). Supplementary Figs. 22–23 illuminate the
shear-thinning capabilities and gel–sol transitions of these hydrogels,
respectively. The self-healing ability of hydrogels is an important
property for biomedical applications. The circle strain time sweep

rheology assessments show that the 8AG-T and 8OHG-T hydrogels
exhibit excellent self-healing properties, but the 8AG-K+ and 8OHG-K+

hydrogels do not (Fig. 5d, e, Supplementary Fig. 24). Therefore, the
cation-independent 8AG-T and 8OHG-T hydrogels are stable and self-
healing, which suggests extensive application prospects.

To characterize the microstructures of the hydrogels, scanning
electron microscopy (SEM), atomic force microscopy (AFM) and
variable-temperature small-angle X-ray scattering (VT-SAXS) mea-
surements were performed. SEM images illustrate that the 8AG-T and
8OHG-T hydrogels are porous structures (Fig. 5f), and the porous
structures of the 8AG-T hydrogel are finer ordered than 8OHG-K+

hydrogel (Supplementary Fig. 25). Intertwined nanofibers and aggre-
gated rod-like structures of 8AG-T and 8OHG-T hydrogels are
observed under AFM, respectively (Fig. 5g). As shown in Supplemen-
tary Fig. 26, the 8AG-T hydrogel showsmore robust fibers than 8AG-K+

hydrogel, and the size of the rod-like structure in the 8OHG-T hydrogel
is larger than that in the 8OHG-Na+ and 8OHG-K+ hydrogels. Con-
versely, the G-T hydrogel exhibits weaker fibers than the G-K+ hydro-
gels. The VT-SAXS results reveal that at 25 °C, the 8AG-T hydrogel
fibers were nanowires with diameters of approximately 12 nm, and the
fibers disappeared as the temperature rose to 85 °C (Fig. 5h). The
diameters of the rods in the 8OHG-T hydrogel were approximately
23 nm at 25 °C, and the rods turned into slender nanowires with dia-
meters of approximately 2 nm at 85 °C (Fig. 5i). The fibers disappeared
in the G-T hydrogel at 55 °C, while fibers even existed in the G-K+

hydrogel at 95 °C (Supplementary Fig. 27). Therefore, these results
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microscopy (SEM, scale bar: 50μm) images of 8AG-T and 8OHG-T hydrogels.

g Atomic forcemicroscopy (AFM, scale bar: 200 nm) images of 8AG-T and 8OHG-T
hydrogels. h, i The pair distances distribution functions (PDDF) profiles from
variable-temperature small-angle X-ray scattering (VT-SAXS) experiments of 8AG-T
(h) 8OHG-T (i) hydrogels.
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demonstrated that the 3D porous networks of the 8AG-T and 8OHG-T
hydrogels were constructed by intertwined nanofibers and aggregated
rod-like structures, respectively. According to the results of the tube-
inversion test, rheological measurements and microstructures, the
cation-independent hydrogels constructed by 6 and 8 exhibited more
robust and self-healing properties than their cation-dependent
hydrogels.

For the second part, the optimalMLmodel was applied to predict
the hydrogel-forming ability of 7257 publicly available nucleoside
derivatives. Twelve potential gelators were selected based on the
optimal model for external application and the hydrogel-forming
ability was experimentally verified. Among these, two rarely reported
cation-independent nucleoside hydrogels were found.

Self-assembly mechanism of the cation-independent hydrogel
and its application in rapid visual detection of Ag+ and cysteine
Davis et al. found the vicinal diol group in G could form monoesters
and diesters with H3BO3, thus introducing borate diesters into the
hydrogel network to improve the gel-forming11. Therefore, we specu-
lated that the formation of dynamic borate diester bonds contributed
to form stable and self-healing hydrogels in the absence of cations. To
further confirm our hypothesis, firstly, we explored the hydrogelation
of 6 and 8 in different conditions. The tube-inversion test results show
that 6 and 8 fail to form hydrogels in NaCl, KCl, and H3BO3 solutions,
but self-assemble into stable hydrogels in H3BO3 solution after adding
Tris to avoid the hydrolysis of borate diesters in acidic solution (Sup-
plementary Fig. 14, Supplementary Discussion 1.2). The presence of
borate diester bonds was further confirmed by 11B nuclear magnetic
resonance (NMR) and Alizarin Red S (ARS) experiments (Fig. 6a, b,
Supplementary Figs. 28, 29). Thus, these results indicated that the
dynamic borate diester bonds helped form stable and self-healing
hydrogels in the absence of cations.

Considering G-quartets generally require stabilization by tem-
plating alkali metal cations, such as K+ 12, we further investigated
whether 6 and 8 didn’t self-assemble into G-quartets in the absence of
cations. First, the thioflavin T (ThT) assay demonstrated that
G-quartets exist in G-K+ hydrogels but not in 8AG-T and 8OHG-T
hydrogels (Fig. 6c, Supplementary Fig. 30, Supplementary Discus-
sion 1.3). Second, Fig. 6d illustrates that there might be no G-quartets’
stacking in the 8AG-T and 8OHG-T hydrogels based on the difference
of positive peaks and troughs between 8AG/8OHG-T hydrogels and
G-K+ hydrogels. Then, the g-factor (ratio between circular dichroism
and absorption intensities) was used to distinguish G-ribbon from
G-quartet because the g-factor of the former is smaller than that of the
latter. The ultraviolet (UV) spectra show that the g-factor values of the
8AG-T and 8OHG-T hydrogels were smaller than that of the G-K+

hydrogel (Supplementary Figs. 31, 32, Supplementary Table 4), indi-
cating that 6 and 8might not form G-quartets in the 8AG-T and 8OHG-
T hydrogels.

To investigate the self-assembly pattern of 6 and 8 at a molecular
level, a single crystal of 6 was successfully obtained from a 70%
dimethyl sulfoxide (DMSO) solution. Given the single molecule of 6 in
its single-crystal structure, only one conformer of anti was observed
(Fig. 6e). According to its hydrogen-bonding geometry (Supplemen-
tary Table 5), it is confined by six intramolecular hydrogen bonds
(HBs), which is rare for nucleoside crystals. Notably, 8-NH2 groups
contribute to the construction of half of the six intramolecular HBs
(N8-H8B···O4’, N8-H8B···O5’ and C2’-H2’···N8), which strengthen the
anti-conformation of 6 (Supplementary Table 6). Theoretical calcula-
tions were performed to calculate the free energy differences of the
anti/syn-conformations of 6 and 8. The relative energies of anti-8AG
relative to syn-8AG and anti-8OHG relative to syn-8OHG are −1.8 and
−2.7 kcalmol−1, respectively (Supplementary Figs. 33, 34), suggesting
that both 6 and 8 favor the anti-sugar base conformation. 1H–1H
nuclear overhauser effect (NOE) experiments also provided

unambiguous evidence concerning the anti-glycosidic bond pre-
ference of 6 as strong signal was observed between 2-NH2 and H1’ in
8AG-T hydrogels (Fig. 6f).

The conformations of anti and syn influence the self-assembling
of guanosine derivatives. In the anti-conformation, the N2 and N3
positions allow for the formation of intermolecular H-bonds to form
G-ribbons12, while these positions in the syn-conformation are blocked
by the sugar, which accelerates the formation of G-quartets and blocks
the formation of ribbons46. Therefore, we hypothesized that 6 and 8
might form G-ribbons but not G-quartets to self-assemble into cation-
independent hydrogels. The base-pair pattern of 6 in its single-crystal
structure was used to test this hypothesis. The base-pair pattern is
achieved by infinite chains of three intermolecular HBs (N8-H8A···O6,
N2-H2B···O6 and N1-H1···N7) with a bending angle of 5.25° (Fig. 6g,
Supplementary Fig. 35). Insteadof forming aG-quartet in the basepart,
the involvement of 8-NH2 in 6 enables the formation of multiple
ribbon-like base-pair layers. These layers are connected by solvent
molecules to form the final crystal structure of 6. The holistic single
crystal structures were shown in Fig. 6h, Supplementary Figs. 36–41,
Supplementary Table 7, and Supplementary Discussion 1.4. Theore-
tical calculations results show that the relative energy of the G-quartet
relative to the G-ribbon of 6 is 6.2 kcalmol-1 (Supplementary Fig. 42),
indicating that 6 favors forming a G-ribbon but not a G-quartet. Pow-
der X-ray diffractometry (PXRD) analysis was performed to determine
the stacking pattern of the hydrogels. The 8AG-T and 8OHG-T hydro-
gels displayed significant peaks at 2θ ≈ 28° (d = 3.3 Å; Fig. 6i), whichwas
in line with the π −π stacking of the benzene rings. In summary, we
speculate that the self-assembly processes of the cation-independent
8AG-T and 8OHG-T hydrogels are as follows (Fig. 6j): dynamic borate
ester bonds were initially formed. Later, the anti-glycosidic bond
preference of 6 and 8 helped them formG-ribbon not G-quartet bonds
due to intermolecular hydrogen bonds. The G-ribbon assembled via
π–π stacking and formed nanowires or rod-like structures. Finally,
nanofibers intertwined, and rod-like structures aggregated by holding
large amounts of water to eventually form the 8AG-T and 8OHG-T
hydrogels, respectively.

Inspired by the molecular chaperones of G-quartet hydrogels,
which could dock in a planar conformation to G-quartets and thus
exhibit strong fluorescence47–50, we explored whether the dyes could
bind to the G-ribbon of 8AG-T and 8OHG-T hydrogels specifically.
Interestingly, the 8AG-T and 8OHG-T hydrogels could quench the
fluorescence of rhodamine 123 (Rho123), while G-K+ hydrogels hardly
quenched the fluorescence of Rho123 (Fig. 7a, b, Supplementary
Figs. 43–45), indicating that Rho123 might specifically bind to the
G-ribbons of 8AG-T and 8OHG-T hydrogels. Based on the cation-
independent feature of 8AG-T and 8OHG-T hydrogels, we investigated
whethermetal cations couldbind to the cation-independent hydrogels
specifically to explore potential applications. The responses of 8AG-T
and 8OHG-T hydrogels to ions including Li+, Na+, K+, Cs+, Rb+, Ag+, Ca2+,
Mg2+, Ba2+, Zn2+, Cu2+, Cr3+, and Al3+ were observed. The results show
that these ions triggered no change in the 8AG-T hydrogel (Supple-
mentary Fig. 46). The 8OHG-T hydrogel collapsed after 10min for Ag+,
24 h for Cr3+, and 48 h for Al3+, while there was no response to other
ions (Fig. 7c). The stoichiometric titration experiments were per-
formed to preliminarily investigate whether Ag+ binds with 8OHG-T
hydrogel. Supplementary Fig. 47 demonstrate there might be three
binding sites of Ag+ and 8OHG-T hydrogel through the weak interac-
tion, and 1H NMR results suggest the Ag+ binding sites of the 8OHG-T
hydrogel might be N1H, N7H, and 2-NH2 groups (Fig. 7d, e and Sup-
plementary Fig. 48). The specific mechanisms need further in-
depth study.

Ag+ is a wide range of contaminants with serious toxicity and
easily accumulated in the humanbody through the food chain, causing
the increases in the risk of neurodegenerative, oncological, and car-
diovascular diseases51. Cysteine plays an important role in life
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activities, and its concentration fluctuation is closely related to many
diseases, such as neurodegenerative diseases52. Their traditional
detection methods rely on expensive and large-scale instrument as
well as specially trainedpersonnel53,54. It is important todevelop simple
and rapid detectionmethods. As Ag+ specifically triggered the collapse
of the 8OHG-T hydrogel quickly, we attempted to apply it to rapid
detection. Figure 7f illustrates the process of the detection of Ag+ and
cysteine based on the 8OHG-T hydrogel. 8OHG-T turned off the
fluorescence of Rho123, and the fluorescence was restored by the
addition of Ag+ at a concentration of 10μM in 10min. Then, the
fluorescence could be quenched again with the addition of 10μM
cysteine in 10min because cysteine is a strong Ag+-binder. These
results indicate that the 8OHG-T hydrogel can be used for rapid visual
detection ofAg+ and cysteine. The visual detectionmethod is simple to
operate with rapid measurement and eliminates the reliance on

professional personnel and large equipment, thus having potential
application in portable detection equipment for Ag+ or cysteine
detection in the future.

For the final part, the self-assembly mechanism of the hydrogels
was investigated systematically and show that dynamic borate ester
bonds and G-ribbon structure play an important role in the process of
hydrogel self-assembly. Furthermore, the cation-independent hydro-
gel shows potential application in rapid visual detection for Ag+ or
cysteine.

In conclusion, an optimal MLmodel with 71% accuracy is themost
effective prediction model of nucleoside hydrogel-forming ability
developed to date. The optimal model was tested with external data-
base, twenty-four nucleoside derivatives were selected for experi-
mental validation, and the accuracy is 83.33% (20/24). In addition, two
rarely reported cation-independent hydrogels, 8AG-T and 8OHG-T

Fig. 6 | Self-assembly mechanism of the cation-independent hydrogels. a 11B
nuclear magnetic resonance (NMR) spectra of 8AG-T and 8OHG-T hydrogels.
b Fluorescence intensity of Alizarin Red S (ARS) in 8AG-T and 8OHG-T hydrogels.
c Thioflavin T (ThT) assay of 8AG-T and 8OHG-T hydrogels. d Circular dichroism
spectra of 8AG-T and 8OHG-T hydrogels. e The chemical structure and single
crystal structure of 6. f 1H–1H nuclear overhauser effect (NOE) of 8AG-T hydrogels.

g The single crystal structure of the base-pair pattern. h The schematic diagram of
the single crystal of 6. The red dashed box includes the interactions between
dimethyl sulfoxide (DMSO) and 8AG. i The Powder X-ray diffractometry (PXRD)
spectrumof 8AG-T and8OHG-Thydrogels. j Schematic illustration of the formation
of an 8AG-T hydrogel.
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were found. The investigation of their self-assembly mechanisms
shows the dynamicborate ester bonds andG-ribbonmay contribute to
formhydrogels. Furthermore, the 8OHG-T hydrogel was found to have
potential applications in rapid visual detection of Ag+ and cysteine.
Although the limited number of known nucleoside hydrogels

constrains the accuracy of the prediction model, we believe that
increasing the diversity of nucleoside hydrogel information will
improve the predictive accuracy of the model. This study represents a
step towards using ML as a tool to predict and excavate nucleoside-
based hydrogels.

Fig. 7 | Detection of Ag+ and cysteine based on the 8OHG-T hydrogel. a, b The
fluorescence of the 8AG-T (a) and 8OHG-T (b) hydrogels after adding Rho123.
c Photographs of the 8OHG-T hydrogels after adding ionic solutions. d 1H nuclear
magnetic resonance (NMR) spectrophotometric titration of the 8OHG-T hydrogel

with increasing Ag+. The peaks represent N1H of 8. e 1H NMR spectrophotometric
titration of the 8OHG-Thydrogelwith increasingAg+. Thepeaks representN7Hof8.
f The process of the detection of Ag+ and cysteine based on the 8OHG-T hydrogel.
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Methods
Model construction
Literature review. Medical Subject Headings (MeSH) were used to
collect all subjects and free terms for nucleosides (uridine, thymidine,
adenosine, guanosine, and cytidine) and their derivatives, and a
system-wide search was conducted on Medline, Web of Science, and
SciFinder for all nucleoside-related studies. The specific information
on the search strategy is shown in Supplementary Data 9.

The initial search identified 882 articles, and after excluding
duplicate studies and searching titles and abstracts, according to the
inclusion criteria, 79 articles remained. After further reading of the full
text and excluding the duplicate structures, 18 articles with 71 mole-
cules were included.

The inclusion criteria for the publications were as follows:
(i) A clear definitionof gelator/non-gelator and the analysis results to

determine gelation, such as the detailed results of tube-inversion
tests or rheological tests were provided.

(ii) The exact chemical structure was provided in the study.
(iii) The solvent was pure water or an aqueous solution.
(iv) Nucleosides and their derivatives were included; however, base

derivatives or nucleotide derivatives were excluded.

Finally, a dataset was constructed based on the 71 nucleoside
derivatives collected. This dataset including the structures of nucleo-
side derivatives and whether they have the hydrogel-forming ability
was used to build the prediction models in the subsequent work.

Definition of gelators. Groupings were definition based on gelator/
non-gelator, as clearly defined in the study. In the study, some sub-
stances used as a reference and a control are often not explicitly spe-
cified as to whether they are a gelator or not. If the analytical results
such as tube-inversion tests or rheological measurements were pro-
vided, then the groupings were determined based on the analytical
results. We considered nucleoside derivatives to be hydrogel-forming
ability if they formed gels under arbitrary conditions in pure water or
aqueous solutions; in addition, results containing organic solvents
were excluded. Since gelatormolecules tend to be the focus of studies,
with few cases of non-gelators reported, to facilitate training accuracy,
we combined structures in non-gelator cases such as solution and
precipitation into the non-gelator group. Then the grouping was
determined according to the test results.

Forming the dataset. The molecular structures of the 71 nucleoside
derivatives were redrawn by ChemDraw (version 20.0) to let them
present and characterized uniformly, and the nucleoside derivative
structures were converted to SMILES (Simplified Molecular Input Line
Entry System) strings using ChemDraw33,55. Then, molecular descrip-
tors of the nucleoside derivatives were calculated.

A total of 5666 molecular descriptors were calculated for 71
nucleoside derivatives using the Python (Version 3.9.12) package
alvaDescCLIWrapper (Version 1.1.1) in this study, the alvaDescCLI-
Wrapper package was used to access the functionalities of alvaDesc
software56 (Version 2.0.12). And 4175 molecular descriptors were kept
for subsequent analysis by removing 1491 descriptors with missing
values.

Taken together, the dataset included the molecular structures,
SMILES, information about whether form hydrogel, and molecular
descriptors of 71 nucleoside derivatives.

Machine learning models. LR37, RF38, XGBoost39, and DT40 were
implemented using Scikit-learn57 (Version 1.1.1) by Python. Hyper-
parametric optimizationwasperformedusing the training dataset on a
high-performance computing server. Due to the limited size of the
training dataset (n = 71), we used a fivefold stratified cross-validation to
estimate the 95% confidence intervals of the five evaluation indexes.

Divided the data into five equal parts by maintaining the ratio of
gelators to non-gelators and took four of them as the training set to
train the model and the other one as the test set, training the model 5
times without repetition58. On top of this, 10 times of random fivefold
stratified cross-validation was performed to estimate parameters59,60.
The model was first trained using the training set and then evaluated
using the test set to determine its ability to predict unseen data. Thus,
the training and test scores for each model are the average of 10
crossovers. The probability threshold was 50% was used for the
training and testing of the MLmodels. For supervised ML, the training
process aims to fit and modify the models by parameter tuning to
minimize the cost function (the difference between the predicted and
actual values).

Sensitivity analysis. A sensitivity analysis was performed by dividing
the data set into training set and test set61. We use 5-fold cross vali-
dation to train and hyperparameter the model on the training set and
evaluate themodel’s generalization ability on an additional test set. To
ensure that the test set covers the same area as the training set, we
stratified sampling based on the results of clustering and hydrogel-
forming ability, dividing nucleoside derivatives into 80% as training set
(n = 56) and 20% as test set (n = 15).

Feature selection of molecular descriptors. We performed a three-
step feature selection for molecular descriptors59,60.

Firstly, the rank-sum test was used as univariate difference ana-
lysis. The results demonstrated that there are significant differences
(P < 0.05) between the gelator (n = 38) and non-gelator (n = 33) group,
which means it may have potential association with the hydrogel-
forming ability. In this study, 144 descriptors were obtained by
removing the 4031 of 4175 descriptors which have no significant
association with hydrogel-forming ability. In this study, P-value < 0.05
was considered significant.

Secondly, the Spearman correlation coefficient was calculated
between the 144 descriptors in pairs. Then, the pair of descriptors
whose correlation coefficient is higher than 0.8 (Rho > 0.8) was
selected, and one of the pair was excluded to avoid collinearity. After
this step, 40 descriptors were kept for subsequent model training.

Finally, we used ML algorithm based RFE to obtain the optimal
combination of descriptors and maximize model performance. Four
ML algorithmsmentioned above were utilized in this step. For the four
ML algorithms, the training process aims to fit and modify the models
by parameter tuning tominimize the cost function. For themodel with
molecular descriptors, we used 10 times fivefold stratified cross-
validation to perform the RFE of the model.

In addition, we also used Least Absolute Shrinkage and Selection
Operator (LASSO)62 and Multiple linear regression with expectation
maximization (MLREM)61,63 for feature selection as the comparison to
test the effectiveness of the feature selection methods. LASSO and
MLREM as the feature selection methods did not yield better results
than above three-step feature selection (Supplementary Table 8).

Feature importance of molecular descriptors. The regression coef-
ficients of 4175 molecular descriptors in the model were calculated
using LASSO regression62, and the features whose regression coeffi-
cients were greater than the Scikit-learn recommended threshold 1e-5
were screened out. Finally, the feature importance of 70 molecular
descriptors was obtained. The regression coefficients of the 24 mole-
culardescriptors are the feature importanceof theoptimalmodel. And
the PFI method was used to train the model for 1000 times, and the
Meanand SEM formean accuracy decreasewas obtainedwhen a single
feature value was randomly excluded.

Hyperparameter optimization. Bayesian optimization works by con-
structing a posterior distribution of functions (Gaussian process) that
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best describes the function to be optimized64. The hyperparameters of
all models were optimized using Bayesian optimization by Python
package Optuna64 (Version 3.1.0), and each step was conducted 10
times with fivefold stratified cross-validation. Using bayesian optimi-
zation, we can explore the parameter space more smartly and thus
reduce the time required to perform this process. All data and code are
included in the GitHub repository linked to the work.

The specific selection of nucleoside derivative structures from
PubChem. The nucleoside derivative structures were selected from
PubChem65 (https://pubchem.ncbi.nlm.nih.gov). Firstly, we searched
five basic nucleosides (uridine, thymidine, adenosine, guanosine, and
cytidine) from PubChem. Then obtained derivatives for the five
nucleosides based on 3D similarity by using PubChem3D and chose
chemical vendors available66. We used shape-Tanimoto (ST) and color-
Tanimoto (CT) as indexes for 3D similarity.Only nucleoside derivatives
with 3D similarity for the five basic nucleosides of ST ≥0.80 and CT ≥
0.50 were included. A total of 11,406 structures were initially incor-
porated (uridine, n = 1023; thymidine, n = 3269; adenosine, n = 2760;
guanosine, n = 1840; cytidine, n = 2514). Finally, 7257 structures
remained after excluding duplicate structures.

Experimental verification
General experimental. All the chemicals were commercially available
and of analytical grade. 1-[3,4-dihydroxy-5- (hydroxymethyl) oxolan-2-
yl]-1,3,5-triazinane-2,4,6-trione (1; DTT; 95%) was purchased from Hit-
gen (Chengdu, China). Xanthosine (2; XTS; 95%) was obtained from
Alfa Aesar (Shanghai, China). Guanine 5’-monophosphate (3; GMP;
98%), inosine 5′-monophosphate (4; IMP; 98%), 5-fluorouridine (5; 5-
FUR; 98%), and gemcitabine (20; GCTB; 98%) were obtained from TCI
Shanghai (Shanghai, China). 8-aminoguanosine (6; 8-AG; 98%) and 2’-
deoxyguanosine 5’-monophosphate (7; dGMP; 98%) were obtained
from Yuanye (Shanghai, China). 8-hydroxyguanosine (8; 8-OHG; 97%),
2’-O-methylguanosine (12; 2’-OMe-dG; 98%), 5,6-dichlor-
obenzimidazole riboside (13; DRB; 99.73%), 9-(2-tetrahydropyranyl)
adenine (14; 9-THPA; 97%), 9-(2-tetrahydrofuryl)adenine (15; 9-THFA;
99.74%), 2’,5’-dideoxyadenosine (18; 2’,5’-DA; 99.68%), 2-chloro-9-(2-
tetrahydropyranyl)adenine (22; 2-Cl-9-THPA; 95%), 7-deaza-2’-C-
methyladenosine (23; 7-D-2’-MeA; 95%), 2’-C-methylcytidine (24; 2’-
MeC; 99.69%), and inosine (10a; 98%)were purchased fromBidepharm
(Shanghai, China). 8-azaguanosine (9; 8-azaG; 95%) was purchased
from Chempartner (Shanghai, China). Inosine-5’-carboxylic acid (10; I-
5’-CA; 95%) was synthesized out according to the reference67, and the
synthesis methods in detail were shown later. 2’-amino-2’-deox-
yguanosine (11; 2’-NH2-dG; 98%) was obtained from Fluorochem
(Derbyshire, England). 2-thiocytidine (16; 2-TC; 95%) was purchased
from Target Molecule (Boston, USA). 2’,3’-dideoxy-2’,3’-didehy-
droadenosine (17; 2’,3’-DA; 97%) and 2-chloro-2’,3’-O-iso-
propylideneadenosine-5’-N-ethylcarboxamide (21; 2-ClA; 95%) were
obtained from Jiangsu Aikon (Nanjing, China). 2’-C-methyladenosine
(19; 2’-MeA; 99.63%) was obtained from Haohong (Shanghai, China).
Deionized water was purified using theMilli-Q Plus System. Guanosine
(G) was purchased from Sigma‒Aldrich (St Louis, USA). Deionized
water was purified using the Milli-Q Plus System. All reagents and
materials were used as received unless otherwise noted.

Synthesis of Inosine 5’- carboxylic acid. The synthesis route refers to
Middleton RJ, et al. (Supplementary Fig. 49)67.

Synthesis of 2’,3’-O-Isopropylideneinosine (10b). To a suspension of
inosine (10a; 5 g, 18.64mmol, 1 eq.) in 100mL of acetone was added
perchloric acid (2.24mL, 37.28mmol, 2 eq.), and the reaction mixture
was stirred at room temperature for 24 h (TLC monitoring). Add
saturated NaHCO3 (100mL) and stir the solution for another 2 h. Filter
the suspension andwash the product with cold water (3 ×150mL). The

reaction mixture was filtered, and the white solid was dried over
vacuum. Yield: 4.77 g (83.0%).1H NMR (400MHz, DMSO-d6) δ 12.45 (s,
1H, NH), 8.31 (s, 1H, C2-H), 8.10 (s, 1H, C8-H), 6.10 (d, J = 2.9 Hz, 1H, C1’-
H), 5.26 (dd, J = 6.2, 2.9Hz, 1H, C2’-H), 5.14 (t, J = 5.3 Hz, 1H, C5’-OH),
4.93 (dd, J = 6.2, 2.5 Hz, 1H, C3’-H), 4.22 (td, J = 4.8, 2.6Hz, 1H, C4’-H),
3.54 (t, J = 5.0Hz, 2H, C5’-H), 1.52 (s, 3H, CH3), 1.31 (s, 3H, CH3).

13C NMR
(101MHz, DMSO-d6) δ 156.59, 147.83, 146.11, 138.81, 124.49, 113.14,
89.65, 86.69, 83.86, 81.30, 61.49, 27.05, 25.19. HRMS (ESITOF) m/z:
calcd for C13H16N4O5 [M+H+] 309.1199, found 309.1193 (Supplemen-
tary Figs. 50–52).

Synthesis of 2’,3’-O-Isopropylideneinosine 5’-carboxylic acid (10c).
To a suspension of 2’,3’-O-Isopropylideneinosine (2 g, 6.49mmol, 1
eq.), 2,2,6,6-tetramethyl-1-piperidinyloxy free radical (TEMPO)
(508mg, 3.25mmol, 0.5 eq.), iodobenzene diacetate (BAIB) (4.8 g,
14.93mmol, 2.3 eq.) in acetonitrile/water (1:1, v/v, 30mL), The reaction
mixture was stirred at room temperature for 6 h. Filter and wash the
residue with ether and acetone. Dry under vacuum to obtain white
solid product. Yield: 1.50 g (72.0%). 1H NMR (400MHz, DMSO-d6) δ
12.39 (s, 1H, NH), 8.21 (s, 1H, C2-H), 8.01 (s, 1H, C8-H), 6.32 (s, 1H, C1’-H),
5.50 – 5.44 (m, 1H, C2’-H), 5.42 (d, J = 6.0Hz, 1H, C3’-H), 4.71 (d,
J = 1.7 Hz, 1H, C4’-H), 3.54 (d, J = 4.6Hz, 1H, C5’-H), 1.50 (s, 3H, CH3), 1.34
(s, 3H, CH3).

13C NMR (101MHz, DMSO-d6) δ 170.80, 156.60, 148.04,
145.62, 139.85, 124.32, 112.75, 89.73, 85.46, 83.76, 83.59, 26.44, 24.88.
HRMS(ESITOF) m/z: calcd for C13H14N4O6 [M+H+] 323.0992, found
323.0987 (Supplementary Figs. 53–55).

Synthesis of inosine-5’- carboxylic acid (10). To a suspension of 2’,3’-
O-Isopropylideneinosine 5’-carboxylic acid (1 g, 3.10mmol, 1 eq.) in 1 N
HCl (20mL) under argon atmosphere, the reactionmixturewas stirred
at room temperature for 2 h. The solution was cooled and then drip-
ped into acetone to precipitate. The solid was filtered and dried by
freeze-drying machine to yield a white powder. Yield: 746mg (85.2 %).
1H NMR (400MHz, DMSO-d6) δ 12.46 (s, 1H, NH), 8.44 (s, 1H, C8-H),
8.10 (s, 1H, C2-H), 6.02 (d, J = 6.4Hz, 1H, C1’-H), 4.48 (dd, J = 6.4, 4.5Hz,
C2’-H), 4.42 (d, J = 2.5 Hz, 1H, C4’-H), 4.30 (dd, J = 4.4, 2.6Hz, 1H, C3’-H).
13C NMR (101MHz, DMSO-d6) δ 172.06, 156.56, 148.70, 146.28, 138.39,
123.96, 87.09, 82.70, 74.41, 73.37. HRMS (ESITOF) m/z: calcd for
C10H10N4O6 [M +H+] 283.0679, found 283.0674 (Supplementary
Figs. 56–58).

Procedure for hydrogel preparation. The nucleoside derivative was
precisely weighed and dissolved in 0.4mL solvent and heated to a
transparent liquid. The concentrations of the nucleoside derivatives
and solvents are as follows: The concentrations of G, 6, and 8 were
100mmol. The concentrations of 1 - 5, 7, 9 - 24 were 50mmol. The
concentrations of KCl, NaCl, and AgNO3 were 0.2M. The quantity
addition of H3BO3, Tris, KB(OH)4, and NaB(OH)4 were the half of the
equimolar quantities of nucleoside derivatives. Then, the sample was
cooled to room temperature to form the hydrogels and subjected to a
tube-inversion test. Hydrogel formation was confirmed if no sample
flowwasobservedupon inversion of the tube. 8AG-T, 8OHG-T, andG-T
hydrogels were respectively prepared by 6, 8 and G in Tris and H3BO3

solutions. 8AG/8OHG/G-Na+ hydrogels and 8AG/8OHG/G-K+ hydrogels
were respectively prepared by 6, 8, and G in NaB(OH)4 or KB(OH)4
solutions, respectively.

Rheology measurements. Rheology measurements were performed
using anMCR302 rheometer (Anton Paar, Graz, Austria) equippedwith
plate-plate geometry (25mm in diameter, 1mm gap). The hydrogel
was heated until it became liquid andwas immediately transferred to a
plate to be measured. Silicone oil was added along the plate to reduce
the evaporation of water during testing. The plate was preheated to
75 °C in case the samples gelledbefore rheologymeasurements. A time
sweep test was performed at a temperature from 75 °C to 25 °C, an

Article https://doi.org/10.1038/s41467-024-46866-9

Nature Communications |         (2024) 15:2603 12

https://pubchem.ncbi.nlm.nih.gov


angular frequency (ω) of 10 rad s−1, and a strain (γ) of 0.1%. A frequency
sweep test was performed with ω from 100 to 0.1 rad s−1 at γ =0.1%. A
strain-dependent test was performed under γ from 0.1% to 150% at
ω = 10 rad s−1. A shear strain test was conducted to record gel viscosity
at γ from 0.1% to 100%. Tests with γ values of 0.1% and 100% were
conducted to determine the self-healing ability of the samples.

Scanning electron microscopy (SEM). The hydrogel samples were
prepared and then freeze-dried to form xerogels. The xerogel was
attached to the silica wafer and coated with gold. SEM measurements
were performed using an Inspect F50 scanning electron microscope
(FEI, USA).

Atomic force microscopy (AFM). The hydrogel samples were pre-
pared and then diluted with water. 5μL of diluted samples were
dropped onto mica plates and dried in air at room temperature. AFM
images were obtained using an SPM-9700 scanning probemicroscope
(Shimadzu, Japan).

Variable-temperature small-angle X-ray scattering (VT-SAXS). The
hydrogel samples were placed in a Hilgenberg quartz capillary with an
outside diameter of 2mm and a wall thickness of 0.01mm. The
exposure time of samples was 30min. VT-SAXS measurement was
performedby aNanoStar instrument (Bruker, Germany)withCu target
(50Kv/50mA). The detector used was VÅNTEC-2000 2D. The systems
used were Montel-P multilayer optics with a pinhole collimation sys-
tem and low background collimation system with SCATEX two-
pinhole setup.

Mechanism and application
Nuclear magnetic resonance (NMR). The hydrogel samples were
prepared and then freeze-dried to xerogel. 8OHG-T/Na+/K+ and G-T/
Na+/K+ xerogels was dissolved in D2O. 8AG-T/Na

+/K+ and G-T/Na+/K+

xerogels were dissolved in DMSO-d6. The concentrations of samples
for 11B NMR and 1H–1H Nuclear Overhauser Effect (NOE) experiments
were 40mgmL−1. 0.5mL samples were transferred into NMR tubes.
The 11B NMR spectra were obtained using an AV II spectrometer (Bru-
ker, Germany) at 600MHz. NOE experiments were performed on an
Avance III-800 MHz spectrometer with a Quadruple Cryo Inverse
probe at 25 °C (Bruker company).

Alizarin Red S experiment. The hydrogel samples were prepared and
mixed with Alizarin Red S (ARS) solution. Samples were detected by a
Cary Eclipse fluorescence spectrophotometer (Agilent, USA) with
excitation/emission wavelengths at 500/530 nm.

Thioflavin T experiment. 200μL hydrogelwasheated to a transparent
liquid andmixed with 2μL Thioflavin T (ThT) solution (1mmol). Then,
the sample was cooled to room temperature to form hydrogels. The
fluorescence of the sample was observed at 365 nm by a dark-box
ultraviolet analyzer (JY02S, Beijing Junyi, China), and detected by a
Cary Eclipse fluorescence spectrophotometer (Agilent, USA) with
excitation/emission wavelengths at 450/485 nm.

Circular dichroism (CD) Spectra. The hydrogel samples were pre-
pared and diluted to a certain ratio according to the limitation of the
detection range of the instrument. The CD spectra between 200 and
400nm were recorded by a CD spectrometer (J-810, JASCO, Japan) at
25 °C. The CD spectra were obtained by the average of six consecutive
scans. The scan rate was 100 nmmin−1, and the scan bandwidth
was 2.0 nm.

Ultraviolet (UV) Spectra. The hydrogel samples were prepared and
diluted to a certain ratio according to the limitation of the detection
range of the instrument. The UV spectra between 200 and 400nm

were recorded by a Cary Series UV-Vis spectrophotometer
(Agilent, USA).

Single Crystal X-ray Diffraction. The results of X-ray diffractions for
single crystal of 6 were obtained at 100(2) K on a D8 VENTURE dif-
fractometer (Bruker, Germany) using Mo-Kα radiation (λ =0.71073 Å).
SAINT program was used to obtain the integration and scaling of
intensity data. SADABS was used to correct the data for the effects of
absorption. The structures of single crystal were solved by direct
method, and they were carried out by a full-matrix least-squares
method using SHELX-2014 software. All the non-hydrogen atoms in
single crystal were refined with anisotropic displacement parameters.
All the hydrogen atoms in single crystal were placed in calculated
positions and refined with a standard riding model. The results of the
Hirshfeld surface analysis and intermolecular interaction energy cal-
culations for the single crystal were performed by CrystalExplorer
software68–70.

Theoretical calculation. Density-functional theory (DFT) calcula-
tions were conducted using the Gaussian 09 program71. The
B3LYP72,73 /6-31 G(d)73 computational models were used to optimize
structures. Then, single point energy calculations were carried out at
the B3LYP-D3 /6-311 + + G(d, p) theoretical level for optimized
structures74. In addition, the Solvation Model Based on Density
(SMD)74 was used to reduce the influence of solvent on the energy
when calculating the single point energy. The atomic coordinates of
the optimized computational models were provided in Supplemen-
tary Data 10.

Powder X-ray diffractometry (PXRD). The hydrogel samples were
prepared and then freeze-dried to xerogel. Xerogel powder was ana-
lyzed by a PXRD diffractometer (X’Pert Pro MPD, Netherlands). The
voltage was 40kV. The current was 40mA. The PXRD pattern of
samples were recorded from 3° to 60° (2θ).

The fluorescence detection of hydrogels with dyes. 200μL hydro-
gel was heated to a transparent liquid andmixedwith 2μL dye solution
(1mmol). The dyes were rhodamine 123 (Rho123), rhodamine B, rho-
damine 6G, fluorescein, safranin O, fluorescein, thiazole orange,
crystal violet, rosolic acid, basic fuchsin, thioflavin T, methylene blue,
and rose bengal. Then, the sample was cooled to room temperature to
form hydrogels. The fluorescence of the sample was observed at
365 nm by a dark-box ultraviolet analyzer (JY02S, Beijing Junyi, China).
Hydrogels with Rho123 were detected by a Cary Eclipse fluorescence
spectrophotometer (Agilent, USA) with excitation/emission wave-
lengths at 507/529 nm.

The responses of hydrogels to ions. 200μL hydrogel was prepared in
a vial. 50μL solutions of metal ion (50mmol) were added to the
hydrogel. The ion solutions were LiCl, NaCl, KCl, CsCl, RbCl, AgNO3,
CaCl2, MgSO4, BaCl2, ZnSO4, CuSO4, Cr(NO3)3, and AlCl3. The
responses of hydrogels to metal ions were observed for one week.

Data availability
All relevant data supporting the key findings of this study are available.
The existing datasets analyzed as well as datasets generated during the
study also have been made available in GitHub (https://github.com/
leescu/NHGPM). The chemical information of 71 nucleoside deriva-
tives is available at https://www.nhgpm.com. The X-ray crystal-
lographic coordinates for structures reported in this study have been
deposited at the Cambridge Crystallographic Data Centre (CCDC),
under deposition numbers 2253566. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre via www.
ccdc.cam.ac.uk/data_request/cif. Source data to re-create figures has
been deposited on zenodo: https://doi.org/10.5281/zenodo.10723552.
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Code availability
All codes used in this study are available git repositories https://github.
com/leescu/NHGPM (https://doi.org/10.5281/zenodo.10723747)75.
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