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The potential of urban irrigation for
counteracting carbon-climate feedback

Peiyuan Li 1,2, Zhi-Hua Wang 1 & Chenghao Wang 3,4

Global climate changes, especially the rise of global mean temperature due to
the increased carbon dioxide (CO2) concentration, can, in turn, result in higher
anthropogenic and biogenic greenhouse gas emissions. This potentially leads
to a positive loop of climate–carbon feedback in the Earth’s climate system,
which calls for sustainable environmental strategies that can mitigate both
heat and carbon emissions, such as urban greening. In this study, we investi-
gate the impact of urban irrigation over green spaces on ambient tempera-
tures and CO2 exchange across major cities in the contiguous United States.
Our modeling results indicate that the carbon release from urban ecosystem
respiration is reduced by evaporative cooling in humid climate, but promoted
in arid/semi-arid regions due to increased soilmoisture. The irrigation-induced
environmental co-benefit in heat and carbon mitigation is, in general, posi-
tively correlated with urban greening fraction and has the potential to help
counteract climate–carbon feedback in the built environment.

Urban areas, covering only about 3% of global land surfaces, accom-
modate 56% of human population, consumeover two-thirds of world’s
energy, and produce more than 70% of global carbon dioxide (CO2)
emissions1,2. Practically speaking, the sustainable future of human
societies depends largely on urban sustainability. Today, the global
urbanization, with concomitant burgeoning anthropogenic activities,
has been the primary and the most irreversible driver to climate
changes3,4. Critical challenges faced by cities in the context of global
climate change include excessive heat stress, air pollution, public
health risks, and degraded ecosystems, to name a few5,6. In particular,
many urban environmental issues are strongly correlated with the
warming at urban cores, a phenomenon known as the urban heat
island (UHI) effect7–9.

In addition, most anthropogenic heat emissions, such as those
from vehicular and building operations, are also significant con-
tributors to concentrated greenhouse gas (GHG) emissions, especially
the anthropogenic CO2 (AnCO2)

10,11, which is the dominant source of
GHG forcing to climate changes12. The increasing CO2 concentration
produces rising global mean temperature, which in turn results in
higher AnCO2 and biogenic CO2 emissions by, e.g., more fossil fuel
consumption for electricity generation during warm seasons13 and

higher soil respiration rate14, potentially leading to a positive loop of
climate–carbon feedback in the Earth’s climate system15. This high-
lights the critical importance for sustainable engineering solutions
being capable of mitigating the compound environmental impact of
coupled heat and carbon emissions16, in order to effectively counteract
the positive feedback loop.

In past decades, climate-resilient urban infrastructure designs,
especially nature-based solutions, have been extensively studied aim-
ing to mitigate the adverse environmental impacts concomitant with
global urbanization17,18. In particular, urban greening, e.g., the use of
lawns, trees, green roofs/walls, and urban irrigation, has been widely
adopted in cities’ climate action plans tomitigate heat stress as well as
to reduce carbon emissions19,20. Despite the tremendous research
effort, quantifying the comprehensive impact of urban greeningon the
Earth’s climate, especially on heat and CO2 emissions, remains chal-
lenging to researchers given the large spatiotemporal uncertainties of
biogenic CO2 exchange (i.e., CO2 uptake and release via photosynth-
esis and respiration processes, respectively)21–23 and the very limited
urban observations on biogenic sectors at global scale24. Recent
reviews also found significant gaps in implementing nature-based
solutions, such as the uncertainties on the effectiveness of the
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solution25 and lack of public awareness and trustworthy information26,
which cause operational barriers for stakeholders. Overcoming these
challenges requires a comprehensive understanding of the interplays
between urban vegetation and its surroundings. This further leads to
the necessity of investigating the compound environmental feedback
of urban green spaces16.

CO2 exchange of urban greenery is passively influenced by
warming from UHI27 and CO2 fertilization effect28 from anthropogenic
emissions. These factors, as concluded in prior studies, generally
enhance the growth of urban plants, and thus improve carbon
sequestration29,30. In addition, active landscaping management on
urban greenery, such as irrigation, affects CO2 exchange as well.
Observational-based studies showed unintended CO2 release due to
irrigation, especially over-managed green spaces such as lawns, gar-
dens, and golf courses31–33, whereas a recentmodeling study suggested
the potential environmental co-benefits in heat mitigation and carbon
reduction34. These contrasting findings imply the critical role of irri-
gation in controlling the direction of CO2 fluxes and its significant
spatial variability. Despite these insights regarding the irrigation-
induced impact on CO2 fluxes, the aforementioned studies were con-
sidered inadequate compared with the extensively studied irrigation-
induced cooling35,36.Moreover, urban irrigation accounts for half of the
residential water use37, and this number can escalate to 80% in semi-
arid/arid regions like some cities in California38. Many cities have
demonstrated their determinations in reducing outdoor water use via
water conservation programs39. However, it is equally important to not
neglect other environmental benefits from irrigation beyond cooling.
As of now, the underlying mechanisms that govern the
water–heat–carbon dynamics, along with the drastic spatial variations
of the irrigation-induced impacts, remain largely obscure. This
knowledge gap hinders the evidence-based decision-making process,
which motivates further investigations on the impact of urban irriga-
tion on a larger spatial scale.

In this study, we develop a modeling framework by resolving the
dynamics of biogenic CO2 exchange in the built environment based on
the Weather Research and Forecasting (WRF) model40,41 and an
advanced urban canopy scheme, viz. the Arizona Single-Layer Urban
canopy Model (ASLUM)42. This new modeling tool is then applied to
unravel the complex interactions between heat and carbon dynamics
in the urban environment. In particular, we aim to investigate the
impact of urban irrigation, as one of the most popular and widely
studied climate mitigation strategies, on modifying urban climate as
well as the response of urban ecosystem exchange in different climate
regions in the U.S. under real meteorological conditions. In addition,
we unravel the mechanistic pathways that control the biogenic fluxes
over urban green spaces, which enables urban researchers and policy
makers to identify the potential tradeoffs in the compound
heat–carbon exchange processes, and to achieve a net environmental
co-benefit towards more sustainable climate change mitigation.

Results and discussion
The cooling effect of urban irrigation
The impact of urban irrigation is quantified from the difference
between the irrigation case and the baseline case. In our model, urban
irrigation is conducted during 21:00–22:00 local time every day and
will cease once the soil water content reaches a prescribed threshold
(see Method). Irrigation-induced cooling effect is manifest with a
modest spatial variation. Figure 1 shows the change of daily mean
2-meter air temperature (dT2m) over the contiguous U.S. (CONUS) and
12 major metropolitan regions. On average, urban irrigation cools the
cities and their surrounding area by 0.26 °C, with the most pro-
nounced cooling effect in Salt Lake City, UT (−0.59 °C), followed by
Dallas-Fort Worth, TX (−0.50 °C) and Phoenix, AZ (−0.48 °C). During
the simulation period, there are two regional heatwaves on record in
the US, namely the 2013 Southwest heatwave (June 29th to July 2nd)

and 2015 Northwest heatwave (June 26th to June 28th). The cooling
effect from irrigation ismore significant during heatwaves thannormal
summer days (CONUS: −0.32 °C; Salt Lake City, UT: −0.74 °C; Dallas-
Fort Worth, TX: −0.6 °C; Phoenix, AZ: −0.73 °C). In contrast, surface
soil cooling by irrigation (dTsoil) is more substantial comparedwith the
cooling of air (Supplementary Fig. 1 cf. Fig. 1). The average soil tem-
perature drops 1.84 °C over urban areas and the reduction varies
across the CONUS. The most significant soil cooling happens in Salt
Lake City, UT (−4.66 °C), followed by Los Angeles, CA (−4.08 °C) and
Phoenix, AZ (−3.97 °C).

It is noteworthy that the relatively conservative irrigation applied
in this study (seeMethod) will not generate surface runoff or excessive
soil water. This treatment mimics the operation of on-demand irriga-
tion system for water conservation. Air cooling in this baseline sce-
nario is subtle due to the positive correlations between the cooling
magnitude and irrigation amount36,43,44. The spatial variations of air
cooling are rather limited as well. The surface and soil cooling, on the
other hand, is more pronounced and comparable to the previous
study43. We observe that cities in arid climate regions generally have
more noticeable soil cooling, owing to the high atmospheric demand
in the arid environment36.

The levels of air and soil cooling collectively affect carbon balance
over urban vegetation through intricate soil–plant–atmosphere
interactions (Fig. 2a). Qualitatively, photosynthesis process in plant
leaves is directly affected by the change of air temperature (Fig. 2b);
while the change of soil temperaturemainly influences the respiration
processes occurring in plant roots and soil (Fig. 2c). Under normal
climate without extreme heat or drought conditions, irrigation-
induced cooling will likely cause the photosynthesis and respiration
processes to depart from their optimum reaction conditions, leading
to the decreases of the urban gross primary productivity (GPPu), i.e.,
the sum of CO2 uptake via photosynthesis, and the urban ecosystem
respiration (Ru), i.e., the sum of CO2 release via respiration processes.
Meanwhile, the different degrees of cooling in the air and soil will lead
to more drastic changes of Ru than GPPu. On the contrary, apart from
cooling, irrigation enriches soil moisture and promotes the reaction
rates of photosynthesis and respiration. Interestingly, the cooling and
moisturizing effects influence CO2 exchange in opposite ways, gov-
erned by a pair of adverse mechanisms. Urban net ecosystem
exchange (NEEu) is then highly dependent on the various pathway and
synthesis of temperature–moisture–carbon interactions (Fig. 2d). The
actual outcome is a complex function of prevailing anthropogenic,
geographic, and climatic conditions in the built environment with
strong locality.

The impact of urban irrigation on CO2 exchange
Figure 3 shows the irrigation-induced change of net ecosystem
exchange (dNEEu) over CONUS and 12 major urbanized regions. Sur-
prisingly, additional 0.22 gm−2 d−1 CO2 is released to the atmosphere
from irrigated urban greenery over CONUS, leading to an overall
negative impact. Nevertheless, the spatial distribution of dNEEu exhi-
bits distinctive patterns over the east–west extent. Most cities in
western U.S. show increases in dNEEu, while eastern cities generally
show decreases with a few exceptions such as Boston, MA, Charlotte,
NC, and Pittsburgh, PA.

When examining the two components in dNEEu, i.e., the changes
of GPPu (dGPPu, Fig. 4) and Ru (dRu, Fig. 5), we find that the daily mean
GPPu and Ru over CONUS increase by 0.19 gCO2m

−2 d−1 and
0.41 gCO2m

−2 d−1, respectively, but with different spatial patterns. The
changeofGPPu is evenly distributed across theCONUSwith a relatively
small variation from 0.05 gCO2 m−2 d−1 (Phoenix, AZ) to
0.52 gCO2m

−2 d−1 (Seattle, WA) among the 12 major urbanized regions
(Fig. 4). We also notice that dGPPu is positively correlated with vege-
tation fractions. Cities with large increase of GPPu, such as Seattle, WA
(0.52 gCO2m

−2 d−1), Houston, TX (0.41 gCO2m
−2 d−1), and Portland, OR
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(0.33 gCO2m
−2 d−1), have vegetation coverage over 55%. This correla-

tion is also reflected within the metropolitan regions, represented by
the declining gradients of dGPPu in Los Angeles, CA, Phoenix, AZ,
Chicago, IL, andDetroit,MI from their urbancores to the city outskirts.

The spatial variation of the change in Ru is much greater than that
in GPPu across the CONUS (Fig. 5). We find west coast cities have the
largest Ru increase after irrigation, such as Los Angeles, CA
(2.33 gCO2m

−2 d−1), San Jose, CA (2.11 gCO2m
−2 d−1), and Seattle, WA

(1.23 gCO2m
−2 d−1). The increase of Ru is less apparent in southwest and

south cities, such asHouston, TX (1.03 gCO2m
−2 d−1), Salt Lake City, UT

(0.86 gCO2m
−2 d−1), and Phoenix (0.67 gCO2m

−2 d−1). In contrast, some
eastern cities show decreases of Ru, such as Philadelphia, PA
(−0.44 gCO2m

−2 d−1), New York, NY (−0.34 gCO2m
−2 d−1), and Chicago,

IL (−0.26 gCO2m
−2 d−1). Although the magnitude of these decreases is

not as notable as that of the increases, the green spaces in these cities
release less CO2 after irrigation, making positive contributions to
carbon reduction. It is worth mentioning that the increased Ru in
Boston, MA (0.53 gCO2m

−2 d−1) and Phoenix, AZ (0.67 gCO2m
−2 d−1)

agree with previous literature31,33. The greater variation of dRu, as well
as its larger mean value, contributes to the notable change of NEEu

over the CONUS. Therefore, we see similar spatial patterns between
dRu and dNEEu (Figs. 3 and 5).

Due to the major role of Ru in the overall carbon exchange, we
further investigate the governing processes of dRu in different cities.
For example, Phoenix, AZ experiences significant soil cooling in our
experiment (Supplementary Fig. 1), which theoretically suppresses
respiration rate. But the additional soil moisture from irrigation pro-
motes the biochemical reactions and offset carbon reduction from
cooling. For clarity, we treat Ru as a partial function of soil temperature
and soil water content (Fig. 2e). We then define the terms ∂Ru/∂SWC
and ∂Ru/∂Tsoil to represent the change of Ru induced by the change of
soil water content, and the change of Ru by the change of soil tem-
perature, respectively. By definition, both terms are positive
throughout the range of the variables in this discussion. If ∂Ru/
∂SWC> ∂Ru/∂Tsoil, Ru will be mainly influenced by soil water content
and will tend to increase after irrigation (soil water dominant process)
(Fig. 2c). Otherwise, Ru will be determined by soil cooling and will
decrease after irrigation (temperature dominant process). Among 20
majorUS cities, eleven have increasedRu (dRu >0, red circles in Fig. 2e)
after irrigation, while the rest nine have decreased Ru (dRu <0, yellow

Fig. 1 | Changes of simulated daily mean 2-meter temperature (dT2m) after
applying urban irrigation. Subplots around the CONUSmap show the details over
12 metropolitan regions. SEA-POR: Seattle, WA and Portland, OR; CHI: Chicago, IL;
DT-CLE: Detroit, MI and Cleveland, OH; BOS: Boston, MA; NYC-PHI: New York, NY

and Philadelphia, PA; ATL: Atlanta, GA; FL: Cities around the coast of Florida; HOU:
Houston, TX; DAL-FW: Dallas and Fort Worth, TX; PHX-TUC, Phoenix and Tucson,
AZ; LA-SD: Los Angeles and San Diego, CA; SF: San Francisco, CA.
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circles in Fig. 2e). Phoenix, for instance, experiences a soil water
dominant process (∂Ru/∂SWC> ∂Ru/∂Tsoil), meaning that the Ru

improved by soil water outpaces the Ru reduced by cooling. However,
other cities, such as Chicago, IL, New York, NY, Philadelphia, PA, and
Baltimore, MD, have the temperature dominant process (∂Ru/∂SWC
<∂Ru/∂Tsoil), leading to the overall decrease of Ru (Fig. 2e). For cities
like Atlanta, GA and Miami, FL, ∂Ru/∂SWC, and ∂Ru/∂Tsoil are roughly
the same, thus the change of Ru is minor (Fig. 5).

Environmental co-benefit or tradeoff
We find that urban irrigation affects NEEu primarily via its impact on
respiration rate, which is governed by either soil water or temperature
dominant process. With the ubiquitous cooling, cities with reduced
NEEu experience environmental co-benefit from irrigation. However,
the general trend in CONUS indicates that greater cooling happens
with the cost of additional CO2 release as an environmental tradeoff.
Figure 6a, b shows dependence of the change inNEEu on air (dT2m) and
soil cooling (dTsoil) over US cities, respectively. The overall relation-
ships exhibit tradeoff effects. With the prescribed irrigation, the
regression over the 20 major cities indicates additional
4.15 gCO2m

−2 d−1 will be released per 1 °C of air cooling (dark blue
dashed line in Fig. 6a). This number drops to 0.71 gCO2m

−2 d−1 °C−1 for
soil temperature because of the higher efficiency of irrigation on soil
cooling (black dashed line in Fig. 6b). Both tradeoff relations are sta-
tistically significant (p <0.005, R2 > 0.40). On the contrary, the
dependence of dNEEu on dT2m over-all urban areas in CONUS is less
significant with R2 = 0.02 (red dashed line in Fig. 6a). We observemany

points densely clustered in the co-benefit quadrant between
dT2m> −0.4 °C and −2 gCO2m

−2 d−1 < dNEEu < 0 in Fig. 6a. These points
also correspond to the clusters in Fig. 6b between −4 °C < dTsoil < −2 °C
and −2 gCO2m

−2 d−1 < dNEEu < 0. Despite subtle cooling and carbon
reduction, these regions exhibit environmental co-benefit. This phe-
nomenon is rarely observed when soil temperature drop is
beyond −4 °C.

Meanwhile, we find significant positive relation between dNEEu
and the change of soil water content (dSWC) (Fig. 6c), indicating the
positive contribution from the rich soil water to additional CO2 release
from urban greenery. NEEu can be sensitive to the moisturizing effect
as 1.46 gCO2m

−2 d−1 will be released per 0.1 unit increase of SWC (dark
dashed line in Fig. 6c). For example, although Chicago, IL and Boston,
MA have similar air and soil cooling, Boston, MAhas a relatively higher
percentage increase of SWC after irrigation (Fig. 2e). Therefore, irri-
gation causes a co-benefit in Chicago, IL but a tradeoff in Boston, MA.

Moreover, we classify the cities into 5 categories according to the
changes of NEEu (Fig. 2d). Cities like Philadelphia, PA, and Baltimore,
MD exhibit strong co-benefit effect, resulting from the simultaneous
increase of GPPu and decrease of Ru (black solid lines in Fig. 2d); while
Los Angeles, CA and San Jose, CA release themost CO2 after irrigation,
exhibiting strong tradeoff (red dash lines in Fig. 2d). Cities with mod-
erate changes of NEEu that result from various mechanistic pathways
showweak co-benefit orweak tradeoff dependingon the contributions
from the increase of GPPu and the decrease of Ru. For example, both
Atlanta, GA, and Chicago, IL show weak co-benefit, but dGPPu con-
tributes 79% of the dNEEu in Atlanta, meaning the cooling and

NEEu = Ru - GPPu
(net exchange)

GPPu
(capture)

Ru
(release)

Irriga�on

(a) Carbon exchange of urban greenery

(d) dNEEu

T2m

SWC

Tsoil

SWC

(b) dGPPu (c) dRu

Neutral

Strong co-benefit
Weak co-benefit

Weak tradeoff
Strong tradeoff

Neutral

Very posi�ve impact
Posi�ve impact

Nega�ve impact
Very nega�ve impact

(e) Major control factors of urban respira�on 

Cities:
1-Sea�le, WA; 22-Portland, OR; 33-Los Angeles, CA; 44-Phoenix, AZ; 55-Dallas, TX; 
6-Houston, TX; 77-Atlanta, GA; 88-Miami, FL; 99-Boston, MA; 110-New York, NY; 
11-Philidelphia, PA; 112-Washington, DC; 113-Bal�more, MD; 114-Detroit, MI; 
15-Chicago, IL; 116-Kansas City, MO; 117-Salt Lake City, UT; 118-Denver, CO; 
19-San Jose, CA; and 220-Minneapolis, MN.

Fig. 2 | Governing mechanisms on carbon exchange of urban greenery. a A
diagram showing carbon exchange of plants in the built environment with UHI,
higher background CO2 concentration, and management (irrigation). b Irrigation-
induced change of urban gross primary productivity (dGPPu), led by decrease of air
temperature and increase of soil water content. c Irrigation-induced change of
urban ecosystem respiration (dRu), led by decrease of soil temperature and
increase of soil water content. d Irrigation-induced change of urban net ecosystem

exchange (dNEEu), resulting from the combinations of dGPPu and dRu. e Urban
ecosystem respiration as a function of soil temperature and soil water content. The
light gray lines in b–d show all possible combinations lead to various types of
outcomes. The black solid lines indicate pathway to the strong co-benefit effect.
The red dashed lines indicate the pathway to the strong tradeoff effect. Circles in
(e) indicate the average Ru before (hollow) and after (solid) irrigation. Arrows
indicate the direction of change.
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moisturizing effects nearly offset each other when affecting Ru. The
contribution fromdGPPudrops to 29% inChicago, indicating theoffset
mainly happens in GPPu. On the contrary, weak tradeoff occurs when a
minor increase of GPPu is offset by a significant increase of Ru, such as
Los Angeles, CA and Phoenix, AZ. The other pathway leading to tra-
deoff effect requires significant decrease of GPPu, which is not
observed in our simulation.

It is noteworthy that the occurrence of environmental co-benefit
is conditioned on the cooling magnitude, irrigation amount, pre-
existing soil water, etc., represented by various mechanistic pathways
and the large spatial variabilities in the outcomes over the CONUS. To
avoid unintended carbon release and achieve strong co-benefit effect,
one needs to precisely tune the irrigation according to the local cli-
matic and landuse characteristics to increase the carbon sequestration
from GPPu while suppressing Ru (black solid lines in Fig. 2d). Specifi-
cally, irrigation should promote GPPu via moisturizing but also avoid
the reduction on GPPu due to air cooling; on the other hand, it is also
possible to control Ru by improving soil cooling efficiency while
keeping respiration change as a “temperature dominant process”.
Nonetheless, the climate of regions with high cooling efficiency is
usually warm and arid. Their carbon environment tends to be more

sensitive to the change of soil water. In this case, additional urban
greenery strategies, such as shading trees and lawn expansion, will
cool the environment and add biomass for photosynthesis, thus are
more efficient in achieving the co-benefit34. For more humid regions
that suffer less from water stress, urban irrigation needs to be rigor-
ously regulated to avoid excessive soil water, especially during the wet
season. It is recommended to equip the irrigation system with soil
moisture sensors in residential yards, urban parks, and other main-
tained landscapes to optimize water use for conservation and carbon
reduction purposes.

Implications for carbon reduction
The result shows that irrigation reduces the net sequestration rate from
urban vegetation by 0.22 gCO2m

−2 d−1, primarily due to the unintended
increase of soil respiration. This irrigation-induced change in CO2 flux is
very significant, in comparison to the latest estimate of the posterior
5-year annual mean global land atmospheric CO2 growth rate of
0.41 gCO2m

−2 d−1 (5.35 PgC yr−1 over global land area)45. In particular, the
change is more notable when comparing it with the ongoing carbon
reduction effort in the anthropogenic sector. For example, replacing a
gasoline vehicle by a battery electric vehicle (BEV) can save 4.4 tons CO2

SEA-POR CHI DTW-CLE BOS

NYC-PHI

ATL

PHX-TUC DAL-FW HOU FL

SF

LA-SD

-2.0 -1.0 0 1.0 2.0

dNEEu (g m-2d-1)

Fig. 3 | Change of daily mean urban net ecosystem exchange (dNEEu) after
irrigation. Subplots around the CONUS map show the dNEEu over 12 major
metropolitan regions with the same acronyms as Fig. 1. The color bar is set to show

positive environmental impacts in cool colors (green and blue), while negative
impacts are shown in warm colors (yellow and red).
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per year46 due to the reducedon-road emission (i.e., without accounting
the carbon emissions embedded in EV manufacturing and charging
infrastructures). In this case, assuming 20%of the total urban land in the
US implements irrigation as modeled, the unintended release will
accumulate to 8.9 × 103 tons CO2 per day or 1.1 × 106 tons CO2 per
summer, which offsets the effort of replacing a quarter million gasoline
cars with BEVs (see Method). Conversely, cities with increased seques-
tration rates such as Chicago, IL, and Atlanta, GA, can benefit sig-
nificantly from urban irrigation, which are equivalent to the carbon
reductions from adopting ~8800 and 16,100 BEVs, respectively. Note
that the annual BEV sales in US are 0.6 million and 0.8 million units in
2021 and 2022. Despite the significant effort to incentivize EV adoption
at both the city and federal levels, there is still no consensus on the
crucial role of urban green spaces in carbon budgeting.

Urban greenery and its irrigation amount a popular form of
nature-based solutions for promoting environmental quality, which is
also envisioned to work synergistically with local and regional envir-
onmental determinants to achieve optimal efficacy. However, we find
that neither the potential for carbon reduction is fully explored, nor
are the unintended consequences well recognized. The results of this
study call for further effort to optimize irrigation schemes to

counteract the climate–carbon feedback by maximizing the environ-
mental co-benefit or reducing the tradeoff of heat–carbon mitigation.
In addition to the ambient temperatures and biogenic carbon
exchange considered in this study, a holistic measure of urban
greening and irrigation should include other relevant environmental
and sustainable indicators, such as the efficiency of water and energy
uses, air quality, human thermal comfort and health risks, and eco-
system services16. Yet, disentangling the coupled dynamics of heat,
moisture, and carbon exchanges in the built environment imposes
significant challenges upon the prevailing modeling and operational
frameworks that are often exclusively designed to evaluate a singular
strategy (heat mitigation in particular) at a time. It is therefore
imperative to improve the capabilities of the physically-based urban
models for a more comprehensive representation of the built envir-
onment, for the holistic evaluation of compound environmental
impacts, especially those attributable to the climate–carbon feedback
and responsible for anthropogenically-induced climate changes.

Limitations and future work
Findings from the proposed modeling framework in this study can
be informative for the evidence-based decision-making towards

SEA-POR CHI DTW-CLE BOS

NYC-PHI

ATL

PHX-TUC DAL-FW HOU FL

SF

LA-SD

-0.6 -0.3 0 0.3 0.6

dGPPu (g m-2d-1)

Fig. 4 | Change of daily mean urban gross primary productivity (dGPPu) after
irrigation. Subplots around the CONUS map show the dGPPu over 12 major
metropolitan regions with the same acronyms as Fig. 1. The direction of color bar is

adjusted from Fig. 3 to consistently show positive environmental impacts in cool
colors (green and blue), while negative impacts are shown in warm colors (yellow
and red).
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sustainable city development. Nevertheless, we reckon a few caveats
of this study, primarily caused by the constraints of data availability
and computational resources. More specifically, the lack of
observation-based datasets on urban ecosystem services imposes
great challenges to estimate long-term urban biogenic CO2 exchange
at a large spatial scale and hinders the validation of such numerical
models. The scarcity of urban data on biogenic sectors is partially
due to the difficulties of measurement in the highly heterogeneous
urban environment. It is more likely, however, led by the lack of
consensus on the significance role of urban vegetation and the
impact of anthropogenic forcings on green spaces. The dearth of
urban data further hinders the modeling endeavor to accurately
quantify the biogenic carbon exchange in cities, making it evenmore
difficult to simulate the plant response under the controls of the built
environment. Our modeling framework, albeit at its infancy, con-
tributes to filling this research gap, which can further aid the overall
evaluation of the efficacy of nature-based solutions and guide the
execution of city-level climate action plans. Based on the key findings
of this study, with caveat, we recommend the urban research com-
munity to devote more effort on urban observation and data synth-
esis over biogenic sectors.

On the other hand, urban green spaces can be highly fragmented,
which need to be simulated at a much finer spatial scale. The realistic
parameterization and assessment of nature-based solutions inevitably
involves high dimensionality of physical and modeling spaces due to
the complexity of dynamic processes and the spatiotemporal hetero-
geneity of geographic and climate conditions. For a process-based
model, it is of vital importance to balance the model complexity and
feasibility, sometimes with the sacrifice of neglecting secondary pro-
cesses such as plant fertilization or excluding the variances led by
different plant species. The current simulationmay not be able to fully
capture these detailed heterogeneity and processes due to the lack of
information to fine-tune the model parameters for different cities
across the US. This will inevitably lead to uncertainties of themodeling
results. However, in the face of a changing climate, more complex
urban system dynamics as well as the optimization of its environ-
mental solutions must be considered; therefore, it requires a new
system-based, rather than process-based, paradigm in future genera-
tion of urban climate models. The development of such a paradigm
should include, for example, complex network analysis (e.g., to iden-
tify the clustering or core–periphery structure of CONUS urban
networks47), physical emergence (e.g., to identify abrupt and

SEA-POR CHI DTW-CLE BOS

NYC-PHI

ATL

PHX-TUC DAL-FW HOU FL

SF

LA-SD

-3.0 -1.5 0 1.5 3.0

dRu (g m-2d-1)

Fig. 5 | Change of daily mean urban ecosystem respiration (dRu) after irriga-
tion. Subplots around the CONUS map show the dRu over 12 major metropolitan
regionswith the same acronymsas Fig. 1. The color bar is set to be the same as Fig. 3

to consistently show positive environmental impacts in cool colors (green and
blue), while negative impacts are shown in warm colors (yellow and red).
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potentially catastrophic transitions in nonlinear the climate system48),
advanced machine learning techniques (e.g., for optimizing multiple
environmental measures simultaneously49), to name a few. These
system-based approaches are largely data-driven, andwill benefit from
the growing availability of datasets from measurements and re-analy-
sis, such as the street-level monitoring networks, aerial imaging (such
as LiDAR), high-resolution remote sensing, campaigns, and surveys.

Methods
Urban biogenic CO2 exchange modeling
We adopt Arizona Single-Layer Urban canopy Model (ASLUM) version
4.0 in this study as the land surface scheme for the estimations of
microclimate conditions and biogenic CO2 exchange in the built
environment42. ASLUM integrates the urban thermal and hydrological
processes using a single-layer urban canopy scheme50, and is under
continuous development in the past decade51–54. In ASLUM, the urban
area is represented as a two-dimensional (2D) street canyon, consisting
of two arrays of buildings separated by a road, with infinite long-
itudinal dimensions. The geometric dimensions are configured by
canyon width (w), building height (h), and building roof width (r).
Combinedwith the land useportfolio, these parameters determine the
redistribution of surface available energy and thus the in-canyon
microclimate. ASLUM version 4 is capable of resolving a holistic set of
urbanCO2uptake andemission arising fromvarious sources, including
human, building, and vehicular CO2 emissions, plant biogenic CO2

fluxes, and ecosystem respiration, via a data fusion approach42. The
biogenic CO2 exchange, including CO2 exchange from urban green
spaces, is parameterized in ASLUM to resolve the interplay between
physical environment and biochemical processes. The urban gross
primary productivity (GPPu) in a calculation unit is formulated as

GPPu = f V

Z LAI

0
FGPP PAR,T sk, CO2

� �
,U,θ

� �
dL, ð1Þ

where function FGPP is the Ag-rs-type plant photosynthesis model in
ASLUM; fV is vegetation fraction (-); LAI is the leaf area index (m2m−2);
PAR is photosynthetically activated radiation (Wm−2); Tsk is leaf skin

temperature (°C); [CO2] is near-surfaceCO2 concentration level (ppm);
U is the near-surface wind speed, and θ is the normalized soil moisture
in urban green spaces (-). The special integral sums leaf-level carbon
assimilation rate to canopy-level primary production when consider-
ing the light extinction insideof the canopy, defined inEq. (7) and (8) in
ref. 42. In-canyon ecosystem respiration (Ru) is calculated as

Ru = f sFR T soil,θ,LAI
� �

, ð2Þ

whereFR is the temperature-dependent respiration function inASLUM;
fs is soil fraction; and Tsoil is temperature of the surface layer of soil
(°C). The detailed formulation of FGPP and FR is described in refs. 42,55.

Each calculation unit in ASLUM represents a certain type of urban
land surface, with the land use portfolio derived from the WRF con-
figuration. To reflect the heterogeneity within a grid cell, ASLUM fur-
ther divides each grid into low, medium, and high-density developed
fractions, with the GPPu and Ru calculated as the linear summation of
those fractions, as

GPPu = f u,LGPPu,L + f u,MGPPu,M + f u,HGPPu,H , ð3Þ

where the fu is the urban fractions and subscripts, L,M, andH represent
low, medium, and high-density developed area, respectively. The
urban net ecosystem exchange (NEEu) is calculated as

NEEu =Ru � GPPu: ð4Þ

NEEu is directional. A positive value means a net release of CO2

from urban green spaces, while a negative value means net CO2

sequestration. The input variables to drive ASLUM, including street
and ground level meteorological conditions, land use fractions, vege-
tation properties, are derived fromWRF output and external datasets,
which are described in the following subsections.

WRF urban modeling framework
Weather Research and Forecasting (WRF) model is a fully compres-
sible, non-hydrostatic numerical weather prediction and atmospheric

Fig. 6 | Dependences of urban net ecosystem exchange (dNEEu) on tempera-
tures and soil water content in CONUS. aDependence of dNEEu on the change of
2-meter air temperature (dT2m). b On the change of soil temperature (dTsoil). c On
the change of soil water content (dSWC). The background scatters in (a–c) show
relation in all urban cells from the model. The cyan solid circles show the average
over 20 major cities in CONUS (see Fig. 2e for city number). The red dashed lines
show the linear regression of the background scatters: a dNEEu = −0.57 dT2m −0.08,
R2 = 0.02, p <0.0001; b dNEEu = −0.60 dTsoil −1.87, R2 = 0.48, p <0.0001;

c dNEEu = 15.59 dSWC −0.72,R2 = 0.68, p <0.0001. The dark blue dashed lines show
the linear regression over the 20 cities: a dNEEu = −4.15 dT2m −1.02, R2 = 0.41,
p =0.0034;bdNEEu = −0.71 dTsoil−1.87,R2 = 0.65,p <0.0001; cdNEEu = 14.62dSWC
−0.75, R2 = 0.79, p <0.0001. In aCity 3-Los Angeles, CA is excluded as an outlier. All
other regressions use all data. p-values indicate the significance of the regression
coefficient. The histograms above and on the right show the distributions of dT2m,
dTsoil, dSWC, and dNEEu, respectively.
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simulation system, which is usually used for regional and global
applications56. WRF/urban modeling framework40 includes urban
canopy schemes to better represent the three-dimensional morphol-
ogy and heterogeneity in urban land surface. We adopt WRF-model
version 4.041 with the Advanced ResearchWRF dynamical solver as the
numerical tool in this study with the single-layer urban canopy scheme
enabled. The simulation domain is configured to cover the entire
CONUS and its surrounding regions in Canada andMexico, with a 5-km
grid size in horizontal directions and 32 model eta levels in vertical
direction. We select a set of customized and well-tested physics
options for this set of numerical experiments36. We also adopt the
spectral analysis nudging option, with the topwave numbers 4 and 3 in
x and y directions, respectively. The land cover types and fractions in
CONUS are derived from National Land Cover Dataset (NLCD) 2011 at
original 9-arc-second spatial resolution and aggregated to match the
domain setup. We use the default leaf area index (LAI) data in WRF-
model that derives from MODIS land use. The land surface processes
are simulated using the unified Noah land surface model (Noah-LSM)
for non-urban cells and non-urban portion in urban cells, and the
single-layer urban canopy model for urban cells and urban portion in
urban cells. Each urban cell is further divided into three categories,
with the street canyon geometry defined inWRF v4.0 urbanparameter
table. WRF uses a “tiling approach” to reflect the surface heterogeneity
and calculate the meteorological condition, such as temperature, as
the weighted average of urban and non-urban portion within urban
cells40. The selection of physics and nudging options is based on a
previous study over CONUS to evaluate the impact from urban irri-
gation on surface and air cooling36. These configurations were also
adopted in refs. 57,58. for the assessment of heat mitigation strategies
and pedestrian heat exposure at various spatiotemporal resolutions.

To test the irrigation-induced changes in urban ecosystem ser-
vices, we perform numerical simulations over three summers (May
1st–Aug 31st) during 2013–2015, and conduct controlled experiments
with and without urban irrigation. Irrigation is conducted during
21:00–22:00 local timeeveryday and stops once the soil water content
reaches the field capacity. This scheme mimics the typical municipal
and recommended residential outdoor use of water59–61. As the goal of
this study is to illustrate the newly proposedmodeling framework and
to showcase the impact from irrigation on biogenic CO2 exchange as
an example, for the sake of simplicity, no special treatment on irriga-
tion scheme is included. Urban irrigation modifies the soil moisture
directly, and affects energy redistribution via surface hydroclimate
processes.

At each calculation timestep (30 s), WRF simulates surface level
temperatures, air pressure, humidity, incoming solar radiation, soil
moisture, etc. and aggregates to hourly outputs. These variables are
then used in ASLUM as the meteorological forcings to drive photo-
synthesis and respiration models. The hourly outputs of GPPu and Ru

are recorded in both irrigated and non-irrigated cases.

External dataset
Apart from the timeseries of near-surface meteorological conditions
from WRF, Carbon Tracker 2019B (CT2019) from Global Monitoring
Laboratory (GML) is used to provide background CO2 concentration
for this modeling framework62. CT2019 gridded dataset contains
atmospheric CO2 concentration at different vertical levels at 1 degree
over North America with a 3-h temporal interval. The CO2 concentra-
tion from CT2019 at the lowest atmospheric level is further inter-
polated to 5-km grid to match the WRF domain setup, serving as an
additional forcing for ASLUM.

Dailymean air temperaturemeasured by groundweather stations
in the Global Historical Climatology Network daily (GHCNd) from the
National Centers for Environmental Information (NCEI) are used to
validate the WRF simulation regarding the fundamental weather
conditions63. Supplementary Fig. 2a shows urban fractions and the

spatial distribution of the selected 428 stations across the CONUS.
Those stations have continuous records throughout the three sum-
mers and are located in urban cells in the WRF simulation.

Model validation for urban GPPu and Ru over large spatial scale
(i.e., CONUS) is technically difficult, mainly due to the lack of obser-
vation of ecosystem services in urban areas. There are several gridded
datasets with wide spatial coverage and moderate spatiotemporal
resolution available. Most of the products focus on natural biomes
rather than the urban ecosystem. For example, MODIS GPP data
(MOD17A2H) excludes urban and built-up areas64. FluxCom, based on
machine learning methods, integrates FLUXNET site-level observa-
tions, satellite remote sensing, and meteorological data65, but fails to
provide estimations over cities because of the very limited number of
urban stations in FLUXNET database.

On the other hand, some gridded products provide data in built-
up regions, though their underlying algorithms are not dedicated to
urban ecosystems. FluxSat, derived using FLUXNET eddy covariance
tower data and coincident satellite data (MODIS) via advanced data-
driven techniques, extrapolates urban GPP from observations over
natural land66. With the temporal consistence between measured GPP
and solar-induced chlorophyll fluorescence (SIF) in megacities67,
making the products derived from SIF a promising candidate to vali-
date GPP in cities, such as Orbiting Carbon Observatory-2-based
SIFGPP (SIFGPP68), and urban biogenic CO2 fluxes from SMUrF24,
though SMUrF assumes cloud-free conditions all year around. Vege-
tation Photosynthesis Model GPP (VPMGPP69) uses photosynthetically
activated radiation (PAR) data to estimate photosynthesis rate across
different biomes and provides gridded data in cities. We select
VPMGPP as the reference to compare the GPPu calculated over the
urban cells in this study, as it has a similar type of the underlying
algorithm to our model and very good performance against in situ
measurement.

Similar situation applies to soil/ecosystem respiration data. The
Soil Respiration Database (SRDB) compiles field measurement data
reported from literature worldwide70, and provides respiration rates at
sparse locations between 1961 and 2017. In the 10366 reported data
points, only 22 were measured in urban area or urban lawns, with 5 of
them in CONUS. SRDB provides global annual soil respiration maps in
2004 and 2006 derived from the complied data using two different
algorithms71. They become the only available spatial gridded produc-
tions for the referenceof respiration rate. It is noteworthy that the time
window of soil respirationmaps does notmatch the simulation period
in this study, nor does the respiration-related variable (soil respiration
in SRDB versus ecosystem respiration in our study). Other available
field data on ecosystem respiration dedicated to urban area can be
found in literature and have been used in the modeling process, such
as residential sites in Phoenix, AZ72, and Boston, MA31, although these
campaign datasets are of little value in this study due to their limited
spatial coverage.

It noteworthy that although the aforementioned gridded datasets
have values over urban area, it does not mean the values are the
ground truth for GPPu or Ru. Most of the algorithms do not resolve the
meteorological conditions inside of the urban street canyon, and are
usually validated using measurement sites outside of urban areas. We
select these datasets as a reference for our model based on the data
coverage, resolution, and underlying algorithms. The proposed fra-
mework in this study aims to disentangle the temporal dynamics of
biogenic CO2 exchange. Therefore, we only focus on the match of
spatial patterns or the order of magnitude when comparing themodel
results against the selected gridded data.

Model validation
Daily mean temperature 2 meters above the ground (T2m) from WRF
simulation is aggregated from the original hourly output and compare
against themeasureddailymeanair temperature fromground stations
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(Supplementary Fig. 2b). The root mean square error (RMSE), defined
as

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
X sim � Xobs

� �2
n

s
ð5Þ

is calculated for each year and over the entire simulation period.
During summer months in 2013–2015, the model RMSE values are
2.1 °C, 2.3 °C, and 2.2 °C, respectively. The overall RMSE is 2.2 °C during
the entire simulation period. The model accuracy is comparable to a
previous study using 135 GHCN weather stations over CONUS36.
Modeling results from WRF with an RMSE around 2 °C is commonly
accepted as accurate. In this case, we conclude the model reproduces
reliable meteorological conditions for the subsequent photosynthesis
and respiration modeling.

For the validation of gross primary productivity, we compare the
daily averagedGPPu from themodel outputwithVPMGPPgriddeddata
(Supplementary Fig. 3). The result shows general agreementwith those
gridded data on spatial distribution and magnitude. The model RMSE
is 6.5 gCO2m

−2 d−1 (1.7μmolm−2 s−1), which is comparable to the prior
process-based modeling studies on biogenic carbon fluxes24,73. To
better understand the model bias, we calculate the model mean bias
(MB) and mean absolute bias (MAB), as

MB=

P
X sim � Xobs

� �
n

, ð6Þ

and

MAB=

P
X sim � Xobs

�� ��
n

ð7Þ

The MB and MAB are −3.8 gCO2m
−2 d−1 (−1.0μmolm−2 s−1) and

4.5 gCO2m
−2 d−1 (1.2 μmolm−2 s−1), respectively. The model bias is

highly correlated with vegetation parameters such as leaf area index
(LAI) and vegetation coverage (fv) with linear and geometric corre-
lations with LAI and fv, respectively (Supplementary Fig. 4a, b).
Though the MAB can reach 17.7 gCO2m

−2 d−1 (4.7 μmolm−2 s−1) in the
1% urban cells with the lowest performance, themodel performs well
in the vast majority of urban areas with an MAB less than
3.8 gCO2m

−2 d−1 (1.0 μmolm−2 s−1). It is noteworthy that the vegeta-
tion parameters used in WRF are estimated from a land cover data-
base (NLCD) and aggregated to the desired spatiotemporal
resolution, which potentially contributes to the observed model
biases. For example, large discrepancies exist between the vegetation
data in WRF and other datasets with high spatiotemporal resolution,
such as the LAI and fv from 10-day 300m Copernicus Global Land
Service (CGLS) data (Supplementary Fig. 4c, d). The magnitude of
discrepancies generally increases with the value of LAI and fv, cor-
responding to the increasing model bias. We also notice there is no
meaningful correlation between the bias and other model inputs,
indicating the high sensitivity of model outputs to vegetation para-
meters. Therefore, it is recommended to use high-resolution land
cover and vegetation data for future implementations of themodel in
urban areas74.

Similar to the estimation of GPPu, the estimation of Ru shows
agreement with those gridded data in terms of spatial distribution
and magnitude (Supplementary Fig. 5). The modeled respiration
rate is noticeably higher than values from SRDB in the eastern
CONUS. One main reason is that daily values from SRDB is calcu-
lated from the annual total respiration, whereas here we focus on Ru

during summer months. Since respiration is sensitive to ambient
temperature, it will be much higher in summer months, especially
in densely vegetated regions. As mentioned in Section 2.3, the
SRDB gridded dataset is derived from point-scale observations

mostly over natural biomes. For data consistency, SRDB inten-
tionally removes experimental data in cities due to their high CO2

efflux71,75, leading to the possible underestimation of Ru in the urban
environment. Also, the gridded map of SRDB estimates respiration
rate in 2004 and 2006, which are not the same as the simulation
period of this study. This will also contribute to the observed
discrepancies.

Overall, the model produces reasonable results with explainable
discrepancies as compared with existing datasets, indicating its cap-
ability of capturing the dynamics of hydroclimate and plant physio-
logical activities in urban areas.

Comparison to EV adoption
To put the irrigation-induced change of NEEu into context, we
compare it with the carbon reduction from the electrification of
traffic, which is a popular andmajor action to reduce anthropogenic
emissions. From the estimation of U.S. Department of Energy, a
typical gasoline passenger vehicle emits 15.7 kgCO2 per day, while a
full electric vehicle (i.e., BEV) emits 3.5 kgCO2 per day. These
amount to a saving of 12.2 kgCO2 per day or 4.4 tons of CO2 per year
by replacing one gasoline car with a BEV. Note that these emission
data only include the on-road energy consumption based on
national average annualmileage, fuel efficiency of gasoline cars, and
national level power mix46. In our simulation, the total urban areas
in the lower 48 states of CONUS76 are 2.7 × 1011 m2, which is in line
with the other statistics (2.8 × 1011 m2 from ref. 77). The estimation
assumes 15% of the total urban areas in CONUS implement irrigation
as modeled. The 0.22 gCO2m

−2 d−1 additional release accumulates
to 8.9 × 103 tons CO2 per day (0.22 gCO2m

−2 d−1 × 15% × 2.7 ×
1011 m2 × 10−6 ton/g). We further assume the change of NEEu only
happens during warm months as modeled (May 1st–Aug 31st,
123 days), while the vehicle is used all year (365 days). In this case,
the total additional release due to irrigation (1.1 × 106 tons CO2)
offsets the effort of replacing 0.25million gasoline cars to BEVs. The
estimation is very conservative as the calculation may overestimate
carbon savings from BEV by neglecting the carbon emissions
embedded in EV manufacturing and the construction of charging
infrastructures. The calculation may also underestimate the urban
area that implementing irrigation considering the urban outdoor
water use accounts for one-third to half of the residential water
use78, while the residential lands dominate the urban areas. It is also
noteworthy that the estimation will vary across the CONUS
depending on the state-level power mix. Similarly, the irrigation-
induced change of NEEu varies across climate zones, which will
either sequester or release CO2 from their urban green spaces.

Data availability
All the datasets used in this study are publicly available: CT2019B data
is available at https://gml.noaa.gov/ccgg/carbontracker/. GHCNd
dataset is available at https://www.ncei.noaa.gov/products/land-
based-station/global-historical-climatology-network-daily. VPMGPP
dataset at https://doi.org/10.6084/m9.figshare.c.3789814. And
SRDBv5 dataset is available at https://daac.ornl.gov/SOILS/guides/
SRDB_V5.html. Soil respiration derived from SRDBv3 at: https://daac.
ornl.gov/CMS/guides/CMS_Global_Soil_Respiration.html. The pro-
cessed data generated in this study have been deposited in the Zenodo
database under the Creative Commons Attribution 4.0 International
license and can be accessed from https://doi.org/10.5281/zenodo.
10723633.

Code availability
The community Weather Research & Forecasting (WRF) model is
available at https://github.com/wrf-model/WRF (https://doi.org/10.
5065/1dfh-6p97). Other computer codes are available from the
authors upon request.
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