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PLMSearch: Protein language model powers
accurate and fast sequence search for remote
homology

Wei Liu 1, ZiyeWang 1, Ronghui You1, Chenghan Xie2, HongWei3, Yi Xiong 4,
Jianyi Yang 5 & Shanfeng Zhu 1,6,7,8,9

Homologous protein search is one of the most commonly used methods for
protein annotation and analysis. Compared to structure search, detecting
distant evolutionary relationships from sequences alone remains challenging.
Here we propose PLMSearch (Protein Language Model), a homologous pro-
tein search method with only sequences as input. PLMSearch uses deep
representations from a pre-trained protein language model and trains the
similarity prediction model with a large number of real structure similarity.
This enables PLMSearch to capture the remote homology information con-
cealed behind the sequences. Extensive experimental results show that
PLMSearch can search millions of query-target protein pairs in seconds like
MMseqs2 while increasing the sensitivity by more than threefold, and is
comparable to state-of-the-art structure search methods. In particular, unlike
traditional sequence search methods, PLMSearch can recall most remote
homology pairs with dissimilar sequences but similar structures. PLMSearch is
freely available at https://dmiip.sjtu.edu.cn/PLMSearch.

Homologous protein search is a key component of bioinformatics
methods used in protein function prediction1–6, protein–protein inter-
action prediction7, and protein-phenotype association prediction8. The
goal of homologous protein search is, for each query protein, homo-
logousproteins fromthe target dataset (generally a large-scale standard
dataset like Swiss-Prot9) are needed tobe found. The target proteinwith
ahigherprobability of homology shouldbe rankedhigher. According to
the type of input data, homologous protein search can be divided into
sequence search and structure search.

Due to the low cost and large scale of sequence data, the most
widely used homologous protein search methods are based on
sequence similarity, such as MMseqs210, BLASTp11, and Diamond12.

Despite the success of homology inference based on sequence simi-
larity, it remains challenging todetect distant evolutionary relationships
from sequences only13. Sequence profiles and profile hidden Markov
models (HMMs) are condensed representations of multiple sequence
alignment (MSAs), which specify for each position the probability of
observing each of the 20 amino acids in evolutionarily related proteins.
When the sequence identity is lower than 0.3,methods based on profile
HMMs such asHMMER14, HHsearch15, andHHblits16,17 are better tools for
homologous protein search.

In scenarios involving highly distant evolutionary relationships,
sequences may have diverged to such an extent that detecting their
relatedness becomes challenging. Since structures divergemuchmore
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slowly than sequences, detecting similarity between protein structures
by 3D superposition provides higher sensitivity18. Protein structure
search methods can be divided into (1) contact/distance map-based,
such as Map_align19, EigenTHREADER20, and DiscoVER21; (2) structural
alphabet-based, such as 3D-BLAST-SW22, CLE-SW23, Foldseek, and
Foldseek-TM24; (3) structural alignment-based, such as CE25, Dali26, and
TM-align27,28. Protein structure prediction methods (like AlphaFold2)
and AlphaFold Protein Structure Database (AFDB) have greatly
reduced the cost of obtaining protein structures29–31, which expands
the usage scenarios of the structure search methods. However, in the
vast majority of cases, the sequence search method is still faster and
more convenient. This is notably evident in scenarios involving a large
number of new sequences, such as metagenomic sequences32,
sequences generated by protein engineering33, and antibody variant
sequences34.

At the same time, protein language models (PLMs) such as
ESMs35–37 and ProtTrans38 only take protein sequences as input, trained
on hundreds of millions of unlabeled protein sequences using self-
supervised tasks such asmasked amino acid prediction. PLMs perform
well in various downstream tasks39, especially in structure-related tasks
like secondary structure prediction and contact prediction40. More
recently, ProtENN41 uses an ensemble deep learning framework that

generated protein sequence embeddings to classify protein domains
into Pfam families42; CATHe43 trains an ANN on embeddings from the
PLM ProtT538 to detect remote homologs for CATH44 superfamilies;
Embedding-based annotation transfer (EAT)45 uses Euclidean distance
between vector representations (initialized from ProtT5 embeddings)
of proteins to transfer annotations froma set of labeled lookupprotein
embeddings to query protein embeddings; DEDAL46, DeepBLAST47,
and latest pLM-BLAST48 obtain a continuous representation of protein
sequences that, combined with the Smith-Waterman (SW)49 or
Needleman-Wunsch (NW)50 algorithm, leads to a more accurate pair-
wise sequence alignment and homology detection method. These
methods apply representations generated by deep learning models to
protein domain classification, protein annotation, and pairwise
sequence alignment, fully demonstrating the advantage of deep
learning models in identifying remote homology. However, protein
language models are not fully utilized for the large-scale protein
sequence search.

To improve the sensitivity while maintaining the universality and
efficiency of sequence search, we propose PLMSearch (Fig. 1a-c).
PLMSearch mainly consists of the following three steps: (1) PfamClan
filters out protein pairs that share the same Pfam clan domain42.
(2) SS-predictor (Structural Similarity predictor) predicts the similarity

M amino acids

Query

Protein
Language

M
odel

NW
Target

N amino acids

d PLMAlign
Per-residue embeddings

Subs�tu�on matrix

Get pairs

a PfamClan b Similarity predic�on
Queries TargetsQuery 1

Query 2

Query 3

PfamScan

Query 1 Query 3Query 2 Similarity
0.5
2

0.9
1

0.7
1

0.4
2

0.6
1

-0.2
4

0.3
2

-0.1
3

-0.3
5

Protein pairs

Output

Queries
MSMSQPTETVSDAP…

For
all pairs

Targets
MEEEEDVNFKPGSN…

Protein Language Model

Average Pooling Layer

SS-predictor

Query Embeddings Target Embeddings

Similarity

c Search result

0.60.9 0.5 -0.20.7 0.30.4 -0.1 -0.3

Fig. 1 | Overview of the PLMSearch pipeline. a PfamClan. Initially, PfamScan54

identifies the Pfam clan domains of the query protein sequences, which are
depicted in different color blocks. Subsequently, PfamClan searches the target
dataset for proteins sharing the same Pfam clan domain with the query proteins.
Notably, the last query protein lacks any Pfam clan domain, and therefore, its all
pairs with target proteins are retained. b Similarity prediction. The protein lan-
guage model generates deep sequence embeddings for query and target proteins.
Subsequently, SS-predictor predicts the similarity of all query-target pairs. c Search
result. Finally, PLMSearch selects the similarity of the protein pairs pre-filtered by

PfamClan, sorts these protein pairs basedon their predicted similarity, and outputs
the search results for each query protein separately. d PLMAlign. PLMAlign utilizes
per-residue embeddings as input to compute a substitution matrix. This substitu-
tion matrix is then employed to replace the static substitution matrix in the Smith-
Waterman (SW)49 or Needleman-Wunsch (NW)50 algorithm, enabling the local or
global sequence alignment. The global alignment is illustrated in the figure, where
the length of the query protein is 105, the length of the target protein is 123, and the
embedding dimension of ProtT5-XL-UniRef50 used by PLMAlign is 1024.
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between all query-target pairs with embeddings generated by the pro-
tein language model. PLMSearch will not lose much sensitivity without
structures as input, because it uses the protein language model to
capture remote homology information from deep sequence embed-
dings. In addition, the SS-predictor used in this step uses the structural
similarity (TM-score) as the ground truth for training. This allows
PLMSearch to acquire reliable similarity even without structures as
input. (3) PLMSearch sorts the pairs pre-filtered by PfamClan based on
their predicted similarity and outputs the search results for each query
protein accordingly. Subsequently, PLMAlign provides sequence align-
ments and alignment scores for top-ranked protein pairs retrieved by
PLMSearch (Fig. 1d). Search tests onSCOPe40-test andSwiss-Prot reveal
that PLMSearch is always oneof the bestmethods andprovides the best
tradeoff between accuracy and speed. Specifically, PLMSearch can
search millions of query-target protein pairs in seconds like MMseqs2,
but increases the sensitivitybymore than threefold, andapproaches the
state-of-the-art structure search methods. The improvement in sensi-
tivity is particularly apparent in remote homology pairs.

Results
PLMsearch reaches similar sensitivity as structure search
methods
We benchmarked the sensitivity of SS-predictor, PLMSearch,
PLMSearch + PLMAlign, five other sequence search methods
(MMseqs2, Blastp, HHblits, EAT, and pLM-BLAST), four structural
alphabet-based search methods (3D-BLAST-SW, CLE-SW, Foldseek,
and Foldseek-TM), and three structural alignment-based search
methods (CE, Dali, and TM-align). We performed search tests on
SCOPe40-test and Swiss-Prot after filtering homologs from the
training dataset (see “Datasets”, “Metrics", and “Baselines" Sections).
In the SCOPe40-test dataset (2207 proteins), we performed an all-
versus-all search test. Therefore, a total of 4,870,849 query-target
pairs were tested for all themethods. Figure 2a–c shows the results of
the 11 most competitive methods in sensitivity and speed. Supple-
mentary Fig. 1a–c shows the results of the other two structural
alphabet-based and two structural alignment-based search methods.
In the Swiss-Prot search test, we randomly selected 50 queries from

Fig. 2 | PLMsearch reaches similar sensitivity as structure search methods.
a–c The all-versus-all search test on SCOPe40-test. For family-level, superfamily-
level, and fold-level recognition, TPsweredefined as same family, same superfamily
but different family, and same fold but different superfamily, respectively. Hits
fromdifferent folds are FPs. After sorting the search result of each query according
to similarity, we calculated the sensitivity as the fraction of TPs in the sorted list up
to thefirst FP. aWe took themean sensitivity over all queries asAUROC. In addition,

the total search time for the all-versus-all search test with a 56-core Intel(R) Xeon(R)
CPU E5-2680 v4 @ 2.40 GHz and 256 GB RAM server is shown on the legend.
b Precision-recall curve. cMAP, P@1, and P@10. d Evaluation on new proteins (see
“New protein search test" Section). Supplementary Table 2 and Supplementary
Table 4 record the specific values of each metric. Source data are provided as a
Source Data file.
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Swiss-Prot and 50 queries from SCOPe40-test (a total of 100 query
proteins) and searched for 430,140 target proteins in Swiss-Prot.
Therefore, a total of 43,014,000 query-target pairs were tested for
the six most efficient methods on searching large-scale datasets
(Supplementary Fig. 2, Supplementary Table 1).

Supplementary Table 2 records the specific values of each metric
for the all-versus-all search test on SCOPe40-test. PLMSearch performs
well onmostmetrics, especially at the superfamily-level and fold-level,
which are shallower and have less significant similarity between pro-
tein sequences. PLMSearch is 3, 16, and 219 times exceeding MMseqs2
in AUROC of the family-level (from 0.318 to 0.928), superfamily-level
(from 0.050 to 0.826), and fold-level (from 0.002 to 0.438), respec-
tively. Supplementary Table 3 indicates that the primary reason for the
improvement is that PLMSearch is more robust and makes the rank of
the first FP (False Positive) lower, increasing the number of total TPs
(True Positives) up to the first FP (38 times exceeding MMseqs2, from
2.74 to 104.78). PLMSearch + PLMAlign uses PLMAlign to align protein
pairs with a similarity exceeding 0.3 from PLMSearch. The alignment
score is then used to rerank, which improves the precision rate,
especially on the search test for new proteins that fail to scan out any
Pfamdomain (Fig. 2d, Supplementary Fig. 1d, Supplementary Table 4).
Accordingly, the exclusion of pairswith a similarity below0.3 leads to a
marginal decrease in the recall rate.

PLMSearch searches millions of query-target pairs in seconds
We first compared the total search time of different methods for the
all-versus-all search test on SCOPe40-test (2,207 proteins, 4,870,849
query-target pairs). To ensure fairness, we used the same computing
resources (a 56-core Intel(R) Xeon(R) CPU E5-2680 v4@ 2.40 GHz and
256 GB RAM server) when implementing different methods in the
evaluation. For HHblits, pLM-BLAST, TM-align, and various other par-
allelizable methods, we utilized all 56 cores by default. Moreover,
almost all methods need to preprocess the target dataset in advance.
This part of the time is not required while searching, so we did not
include the preprocessing time in the search time statistics. As shown
in the legend of Fig. 2a, by using SS-predictor to predict the similarity
instead of calculating the structural similarity (TM-score) of all protein
pairs, SS-predictor (10 s) and PLMSearch (4 s) are among the fastest
methods, and more than four orders of magnitude faster than TM-
align (11,303 s).

PLMSearch can achieve similar efficiency on our publicly available
web serverwith CPUonly (64 * Intel(R) Xeon(R)CPUE5-2682 v4@2.50
GHz and 512 GB RAM). Searching a query against Swiss-Prot (568K
proteins) and UniRef50 (53.6M proteins)9 and employing PLMAlign to
align the query with the Top-10 targets requires approximately
0.15 min and 1.1 min, respectively (Supplementary Table 5). In fact,
when searching a query against Swiss-Prot (568K proteins), PLMAlign
takes up 0.12 min (more than 80% of the total time), and PLMSearch
only takes about 0.03 minutes (Supplementary Table 6). This is
because PLMSearch generates and preloads the embeddings of all
target proteins in advance. This strategy helps to save much time by
avoiding repeated forward propagations of the protein language
model with a large number of parameters and saves the time for
loading embeddings from disk to RAM. As a result, just one forward
pass through the SS-predictor network is required to predict the
similarity of millions of query-target pairs.

PLMSearch accurately detects remote homology pairs
Remote homology pairs generally refer to homologous protein pairs
with dissimilar sequences but similar structures51. Such protein pairs
have low sequence similarity, so their homology is difficult to
be detected by sequence alignment-based methods (MMseqs2,
Blastp), but can be detected by structure-based search methods
(Foldseek, Foldseek-TM, TM-align) (Fig. 3a). In this study, pairs with
similar sequences and similar structures are defined as sequence

identity > 0.351 and TM-score > 0.552,53 and are called “easy pairs"; pairs
with dissimilar sequences but similar structures are defined as
sequence identity < 0.3 but TM-score > 0.5 and are called “remote
homologypairs".We conducted a specific analysis of recalledpairs and
missed pairs (defined in Fig. 3b). We calculated the TM-score and the
sequence identity (see “Sequence alignment" Supplementary Section)
of the recalled/missed pairs and projected them onto a 2D scatter plot
(Fig. 3c–h).

Compared with easy pairs (the first quadrant in Fig. 3c–h), remote
homology pairs (the fourth quadrant in Fig. 3c–h) in the “twilight zone"
of protein sequence homology aremore difficult to detect51. Among the
six methods (Supplementary Table 7), even the least sensitive methods
MMseqs2 and Blastp recall all the easy pairs (574/574), but perform
poorly on remote homology pairs (MMseqs2: 183/1105, Blastp: 203/
1105). In contrast, poweredby the protein languagemodel, SS-predictor
and PLMSearch search out most of the remote homology pairs (SS-
predictor: 1022/1105, PLMSearch: 1087/1105, six times exceeding
MMseqs2), and the recall rate exceeds Foldseek, which directly uses
structural data as input (Foldseek: 934/1105, Foldseek-TM: 940/1105).

Ablation experiments: PfamClan, SS-predictor, and PLMAlign
make PLMSearch more robust
To evaluate PLMSearch without the PfamClan component, we screened
a total of 110 queries from the 2207 queries in SCOPe40-test, which
failed to scan any Pfam domain (see “New protein search test" Section).
As expected, the performance of PLMSearch is exactly the same as that
of SS-predictor, because PfamClan does not filter out any protein pair,
whereas PLMSearch still achieves relatively sensitive search results (MAP
= 0.612, P@1 = 0.845, P@10 = 0.712, see Supplementary Fig. 3e, Sup-
plementary Table 4). Using PLMAlign to align and rank based on align-
ment scores significantly enhances precision. This improvement stems
from the fact that, unlike SS-predictor, PLMAlign employs per-residue
embeddings rather than per-protein embeddings as input and uses
pairwise alignment insteadof large-scale similarityprediction. Besides, it
is noteworthy that both SS-predictor + PLMAlign and PLMSearch +
PLMAlign only align pairs from SS-predictor and PLMSearch pre-filter
results with a similarity exceeding 0.3 (totaling 1,591,492 and 379,707
pairs, respectively), in contrast to aligning all pairs like PLMAlign/pLM-
BLAST (4,870,849 pairs). This streamlined approach significantly redu-
ces the alignment time (nearly 16 times) while maintaining comparable
precision, underscoring the benefits of leveraging SS-predictor and
PLMSearch to pre-filter (Supplementary Fig. 3b).

To evaluate PLMSearchwithout the SS-predictor component, we
first clustered the SCOPe40-test and Swiss-Prot datasets based on
PfamClan (Supplementary Fig. 4, Supplementary Table 8). Specifi-
cally, proteins belonging to the same Pfam clan are clustered. The
clustering results show a significant long-tailed distribution. After
pre-filteringwith PfamClan,more than 50%of the pre-filtered protein
pairs (orange rectangles in the picture) come from the largest 1–2
clusters (big clusters), accounting for only a minor fraction of the
overall clusters (SCOPe40-test: 0.231%; Swiss-Prot: 0.032%). There-
fore, big clusters will result in a significant number of irrelevant
protein pairs in the pre-filtering results, reducing accuracy, andmust
be further sorted and filtered based on similarity, which is what the
SS-predictor does.

Furthermore, among all similarity-based search methods (See
“Baselines”), we further compared the correlation between the pre-
dicted similarity and TM-score (Supplementary Fig. 3a). The correla-
tion between the similarity predictedby Euclidean (COS) andTM-score
is not high, resulting in a large number of actually dissimilar protein
pairs ranking first. The similarity predicted by the SS-predictor ismore
correlated with TM-score (with a higher Spearman correlation coeffi-
cient). This is why SS-predictor outperforms other similarity-based
search methods with the same embeddings as input (Supplementary
Fig. 3b-e, Supplementary Table 2, Supplementary Table 4).
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Fig. 3 | PLMSearch accurately detects remote homology pairs. aCase study. The
sequence identity between the blue structure and the green structure is low
(0.216 < 0.3) but they share similar structures. Foldseek, Foldseek-TM, TM-align,
and PLMSearch recall the remote homology pair that is missed by MMseqs2 and
Blastp. b Definition diagram. Legend a marks three pairs with a TM-score> 0.5,
usually assumed to have the same fold52,53. Legend b marks six pairs with a TM-
score between 0.2 and 0.5. Legend cmarks six pairs with a TM-score < 0.2, usually
assumedas randomly selected irrelevant pairs52,53.Legenddmarks sixfilteredpairs.
Legend emarks the pair at (3,3) with a TM-score > 0.5 but is not filtered out, which
is a “Missed" pair. Correspondingly, protein pairs in (1,4) and (2,2) are “Recalled"
pairs.Legend fmarks thepair at (3,5)with a TM-score < 0.2 but isfiltered out, which
is a “Wrong" pair. c–h From the search results of five randomly selected queries to

avoid oversampling (with Swiss-Prot as the target dataset, a total of 2,150,700
query-target pairs), we selected the 5000 pairs with the highest similarity for dif-
ferent search methods and counted the recalled and missed pairs: c MMseqs2.
dBlastp. e Foldseek. f Foldseek-TM. g SS-predictor.h PLMSearch. For recalled pairs
(left) and missed pairs (right) in each subplot, the TM-score (x-axis) and sequence
identity (y-axis) are shown on the 2D scatter plot. The thresholds, sequence
identity = 0.351 and TM-score =0.552,53, are shown by dashed lines. All methods
successfully recall the easy pairs in the first quadrant. But for remote homology
pairs in the fourth quadrant, SS-predictor & PLMSearch did the best, followed by
Foldseek & Foldseek-TM, and MMseqs2 & Blastp were the worst. Supplementary
Table 7 records the specific values of each metric. Source data are provided as a
Source Data file.
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Discussion
We study the use of protein language models for large-scale homo-
logous protein search in this work. We propose PLMSearch, which
takes only sequences as input and searches for homologous proteins
using the protein language model and Pfam sequence analysis, allow-
ing PLMSearch to extract remote homology information buried
behind sequences. Subsequently, PLMAlign is used to align protein
pairs retrieved by PLMSearch and obtain the alignment scores.
Experiments reveal that PLMSearch outperformsMMseqs2 in terms of
sensitivity and is comparable to the state-of-the-art structural search
approaches. The improvement is especially noticeable in remote
homology pairs. PLMSearch, on the other hand, is one of the fastest
searchmethods in comparison toother baselines, capable of searching
millions of query-target protein pairs in seconds. We also summarized
the 11 most competitive approaches based on their input and perfor-
mance in Supplementary Table 9.

We discuss the differences between search methods (like
PLMSearch) and alignmentmethods (like pLM-BLAST and PLMAlign) in
detail in Supplementary Table 10. It is noteworthy that residue
embedding-based alignment methods, such as PLMAlign and pLM-
BLAST48, achieve respectable sensitivity. However, a primary limitation
lies in the maximum size of the target dataset. This is particularly evi-
dent in two key aspects: (1) Residue embedding-based alignment
necessitates retaining the embeddings of all residues for eachprotein in
the target dataset, denoted as N*Li*D (where N is the number of pro-
teins, Li is the length of the protein, andD is the embedding dimension).
In contrast, PLMSearchonly requires retainingper-protein embeddings,
expressed as N*1*D. This results in a size difference exceeding three
orders ofmagnitude, posing a significant challengewhen implementing
a dataset with the size of UniRef50, which contains 53.6 million
proteins9. (2) Residue embedding-based alignment determines the
similarity between protein pairs through pairwise global (local) align-
ments. In contrast, PLMSearchonly needs a single forwardpass through
the SS-predictor network to predict the similarity of millions of query-
target pairs. However, it is important to note that PLMSearch can solely
predict the similarity of protein pairs without any alignment sugges-
tions. To this end, PLMSearch + PLMAlign provides alignment for pro-
tein pairs filtered by PLMSearch with a similarity higher than 0.3. This
approach not only compensates for PLMSearch’s limitations but also
avoids numerous low similarity and meaningless alignments, thereby
maintaining high efficiency. In the future, we intend to explore the
mutual attention between query and target per-residue embeddings to
provide better global and local sequence alignment results.

In summary, we believe that PLMSearch has removed the low
sensitivity limitations of sequence searchmethods. Since the sequence
is more applicable and easier to obtain than structure, PLMSearch is
expected to become a more convenient large-scale homologous pro-
tein search method.

Methods
PLMSearch pipeline
PLMSearch consists of three steps (Fig. 1a-c). (1) PfamClan. Initially,
PfamScan54 identifies the Pfam clan domains of the query protein
sequences. Subsequently, PfamClan searches the target dataset for
proteins sharing the same Pfam clan domain with the query proteins.
In addition, a limited number of query proteins lack any Pfam clan
domain, or their Pfam clans differ from any target protein. To prevent
such queries from yielding no results, all pairs between such query
proteins and target proteins will be retained. (2) Similarity prediction.
Theprotein languagemodel generates deep sequence embeddings for
query and target proteins. Subsequently, SS-predictor predicts the
similarity of all query-target pairs. (3) Search result. Finally, PLMSearch
selects the similarity of theprotein pairs pre-filteredbyPfamClan, sorts
the protein pairs based on their similarity, and outputs the search
results for each query protein separately.

For the top-rankedquery-targetpairs, PLMAlign is used togenerate
local or global alignments and alignment scores. In addition, we also
added parallel sequence-based Needleman-Wunsch alignment and
structure-based TM-align at the end of our pipeline for users to choose.

PfamClan
PfamClan filters out protein pairs that share the same Pfam clan
domain (Fig. 1a). It is worth noting that the recall rate is more impor-
tant in the initial pre-filtering. PfamClan is based on a more relaxed
standard of sharing the same Pfam clan domain, instead of sharing the
same Pfam family domain (what PfamFamily does). This feature allows
PfamClan to outperform PfamFamily in recall rate (Fig. 4) and suc-
cessfully recalls high TM-score protein pairs that PfamFamily misses
(Supplementary Table 11).

Similarity prediction
Based on the protein language model and SS-predictor, PLMSearch
performs further similarity prediction basedon the pre-filtering results
of PfamClan (Fig. 1b). The motivation is that the clustering results
based on PfamClan show a significant long-tailed distribution (Sup-
plementary Fig. 4). As the size of the dataset increases, the number of
proteins contained in big clusters will greatly expand, further leading
to a rapid increase in the number of pre-filtered protein pairs

Fig. 4 | The pre-filtering results of PfamFamily & PfamClan. a We evaluated the
pre-filtering results of PfamFamily & PfamClan on the SCOPe40-test, Swiss-Prot to
Swiss-Prot, and SCOPe40-test to Swiss-Prot search tests (see “Datasets"). PfamClan
achieves a higher recall rate. b Same(1) or Different(0) fold on SCOPe40-test.
c–d TM-score distributions using kernel density estimation (smoothed histogram
using a Gaussian kernel with the width automatically determined). c Swiss-Prot to
Swiss-Prot; d SCOPe40-test to Swiss-Prot. The distribution of PfamFamily is overall
to the right, because the requirements of PfamFamily are stricter than PfamClan, so
the protein pair it recalls has a higher probability of being in the same fold and
sharing a higher TM-score. However, this also leads to PfamFamily having a lower
recall rate andmissing some homologous protein pairs as shown in Supplementary
Table 11. It is worth noting that the recall rate is more important in the initial pre-
filtering. Source data are provided as a Source Data file.
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(Supplementary Table 8). The required computing resources are
excessive with TM-align used for all the filtered pairs. Instead,
PLMSearch employs SS-predictor to predict similarity, which increases
speed and eliminates reliance on structures.

As shown in Fig. 5a, the input protein sequences arefirst sent to the
protein language model (ESM-1b here) to generate per-residue
embeddings (m*d, where m is the sequence length and d is the
dimension of the vector), and the per-protein embedding (1*d) is
obtained through the averagepooling layer. Subsequently, SS-predictor
predicts the structural similarity (TM-score) betweenproteins througha
bilinear projection network (Fig. 5b). However, it is difficult for the
predicted TM-score to directly rank protein pairs with extremely high
sequence identity (often differing by only a few residues). This is
because SS-predictor was trained on SCOPe40-train and CATHS40,
where protein pairs share sequence identity <0.4, so cases with extre-
mely high sequence identity were not included. At the same time, COS
similarity performs well in cases with extremely high sequence identity
(see P@1 in Supplementary Fig. 3d-e) but becomes increasingly insen-
sitive to targets after Top-10. Therefore, the final similarity predicted by
SS-predictor is composed of the predicted TM-scores and the COS
similarity to complement each other. We studied the reference simi-
larity of COS similarity in SCOPe40-train (Supplementary Fig. 5a-b,
Supplementary Table 12).We assemble the predicted TM-scorewith the
topCOS similarity as follows.WhenCOS similarity > 0.995, SS-predictor
similarity equals COS similarity. Otherwise, SS-predictor similarity
equals the predicted TM-score multiplied by COS similarity.

We also studied the reference similarity of SS-predictor similarity
(Fig. 6) in SCOPe40-train. There is a clear phase transition occurring
around the similarity of 0.3–0.7. Supplementary Table 12 shows that
for SS-predictor, protein pairs with a similarity lower than 0.3 are
usually assumed as randomly selected irrelevant protein pairs. In the
ridge plot Fig. 6b, as expected, the protein pairs in the same fold and
different folds are well grouped in two different similarity ranges, i.e.
the protein pairs in the same fold have a higher similarity and the
protein pairs in different folds have a lower one. However, since
similarity and SCOP fold do not have a one-to-one correspondence,
there is a small overlap. Furthermore, unlike Foldseek, which focuses
on local similarity, the similarity of SS-predictor, like TM-score, focuses
on global similarity (Supplementary Table 13).

PLMAlign
For the retrieved protein pairs, PLMAlign takes per-residue embeddings
as input to obtain specific alignments and alignment scores (Fig. 1d).
PLMAlign subsequently uses alignment scores to rerank, which
improves the ranking results further. Specifically, inspired by pLM-
BLAST48, PLMAlign calculates the substitutionmatrix by dot producting
the per-residue embeddings of the query-target protein pair. The sub-
stitution matrix is then used in the SW/NW algorithm to perform local/
global alignment, and the algorithm is accelerated through the linear
gap penalty. Compared with traditional SW/NW using a fixed substitu-
tionmatrix, the substitutionmatrix calculatedbyPLMAlignuses protein
embeddinggenerated fromthe sequencecontext, thus containingdeep
evolutionary information. Comparedwith pLM-BLAST, by using the dot
product and the linear gap penalty, PLMAlign can better align remote
homology pairs while reducing the algorithm complexity to O(mn) to
ensure high efficiency (Supplementary Table 14). Therefore, PLMAlign
performs better on remote homology alignment (using “Malisam and
Malidup" datasets as benchmarks, see Supplementary Fig. 6, Supple-
mentary Table 15). Also, see “Remote homology alignment" Supple-
mentary Section for detailed settings of PLMAlign and the evaluation of
alignment results. The reference score of PLMAlign is provided in
Supplementary Fig. 5c, d and Supplementary Table 12. PLMAlign in the
main text uses global alignment to generate alignment scores.

Datasets
The data volumes and uses of each dataset are summarized in Sup-
plementary Table 16.

SCOPe40. The SCOPe40 dataset consists of single domains with real
structures. Clustering of SCOPe 2.0155,56 at 0.4 sequence identity yielded
11,211 non-redundant protein domain structures (SCOPe40). As done in
Foldseek, domains from SCOPe40 were split 8:2 by fold into SCOPe40-
train and SCOPe40-test, and then domains with a single chain were
reserved. It is worth mentioning that each domain in SCOPe40-test
belongs to a different fold from all domains in SCOPe40-train, so the
difference between training and testing data is much larger than that of
pure random division. We also studied the max sequence identity of
each protein in SCOPe40-test relative to the training dataset (Supple-
mentary Fig. 7). From the figure, we can draw a similar conclusion that
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the sequences in SCOPe40-test and the training dataset are quite dif-
ferent, and most of the max sequence identity is between 0.2 and 0.3.
PLMSearch performs well in SCOPe40-test (Fig. 2a–c, Supplementary
Fig. 1a–c, Supplementary Table 2), implying that PLMSearch learns
universal biological properties that are not easily captured by other
sequence search methods13.

New protein search test. In real-world scenarios, newly discovered
and unclassified proteins often play a crucial role in innovative
research. To assess the effectiveness of various methods in searching
these proteins, we introduced an additional search test exclusively
comprising query proteins that failed to scan any Pfam domain. Spe-
cifically, we screened a total of 110 queries from the 2207 queries in the
SCOPe40-test, which failed to scan any Pfam domain. In the all-versus-
all search test on the SCOPe40-test dataset, we counted theMAP, P@1,
and P@10metrics with only new proteins as queries (110 proteins) and
SCOPe40-test as targets (2207 proteins).

Swiss-Prot. Unlike SCOPe, the Swiss-Prot dataset consists of full-length,
multi-domain proteins with predicted structures, which are closer to
real-world scenarios. Because the throughput of experimentally
observed structures is very lowand requires a lot of humanandfinancial
resources, the number of real structures in datasets like PDB57–59 tends
to be low. AlphaFold protein structure database (AFDB) obtains protein
structure through deep learning prediction, so it contains the entire
protein universe and gradually becomes the mainstream protein
structure dataset. Therefore, in this set of tests, we used Swiss-Prot with
predicted structures from AFDB as the target dataset.

Specifically, we downloaded the protein sequence from UniProt9

and the predicted structure from the AlphaFold Protein Structure
Database31. A total of 542,317proteinswithboth sequencesandpredicted
structures were obtained. For these proteins, we dropped low-quality
proteins with an avg. pLDDT lower than 70, and left 498,659 proteins. In
order to avoid possible data leakage issues, like SCOPe40, we used
0.4 sequence identity as the threshold to filter homologs in Swiss-Prot
from the training dataset. Specifically, we used the previously screened
498,659 proteins as query proteins and SCOPe40-train as the target
dataset. We first pre-filtered potential homologous protein pairs with
MMseqs2 and calculated the sequence identity between all these pairs.
The query protein from Swiss-Prot will be discarded if the sequence
identity between the query protein and any target protein is greater than
or equal to 0.4. Finally, 68,519 proteins were deleted via homology

filtering, leaving 430,140 proteins in Swiss-Prot, which we employed in
our experiments. We also studied the max sequence identity of each
protein in Swiss-Prot relative to the training dataset (Supplementary
Fig. 7) and found that the vast majority of them were below 0.3.

Subsequently, we randomly selected 50 queries from Swiss-Prot
and 50 queries from SCOPe40-test as query proteins (a total of 100
queryproteins) and searched for 430,140 target proteins in Swiss-Prot.
Therefore, a total of 43,014,000 query-target pairs were tested. The
search test for 50 query proteins from Swiss-Prot and SCOPe40-test
are called “Swiss-Prot to Swiss-Prot" and “SCOPe40-test to Swiss-Prot",
respectively.

CATHS40. The SCOPe40-train dataset includes 8953proteins andTM-
scores for all protein pairs were calculated for training. As themajority
of these pairs had TM-scores below 0.5, only 504,553 pairs (among
80,156,209 in total) had a TM-score above 0.5 for model training. To
enhance the model’s generality, we supplemented it with high-quality
protein pairs extracted from the curatedCATHdomain dataset44,47. We
began with the CATHS40 non-redundant dataset of protein domains,
which exhibits no more than 0.4 sequence similarity. Domains
exceeding 300 residues were filtered out, leaving 27,270 domains. To
prevent potential data leakage issues, akin to SCOPe40, we applied a
0.4 sequence identity threshold to filter homologs in CATHS40 from
the testing dataset (SCOPe40-test and Swiss-Prot). Finally, 21,474
proteins in CATHS40 were left for training, and the max sequence
identity of the test dataset to the new training dataset is still less than
0.4 (Supplementary Fig. 7). We then undersampled CATHS40 domain
pairs from different folds to acquire a substantial amount of training
pairswithTM-scores above0.5. Specifically,we sampled theTM-scores
of 28,440,312 protein pairs for training, of which 7,813,946 pairs had a
TM-score above 0.5 (Supplementary Table 16).

Target datasets on the web server. We currently have the following
four target datasets on theweb server for users to search: (1) Swiss-Port
(568K proteins)9, the original dataset without filtering; (2) PDB (680K
proteins)57–59; (3) UniRef50 (53.6M proteins)9. UniRef50 is built by
clustering UniRef90 seed sequences that have at least 50% sequence
identity to and 80% overlap with the longest sequence in the cluster;
(4) Self (the query dataset itself).

Malisam and Malidup. We employed two gold-standard benchmark
datasets, Malisam60 and Malidup61, to establish a robust reference

Fig. 6 | Reference similarity. a The posterior probability of proteins with a given
similarity being in the same fold or different folds in SCOPe40-train. b Similarity
distribution of the same and different folds protein pairs using kernel density
estimation (smoothed histogram using a Gaussian kernel with the width auto-
matically determined). The similarity of protein pairs belonging to the sameprotein

pair is significantly higher than that of protein pairs belonging to different folds.
The posterior probability corresponding to the similarity is shown in Supplemen-
tary Table 12. See “Reference similarity" Supplement Section for more details.
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for alignment. These sets rigorously select structural alignments,
emphasizing difficult-to-detect, low-sequence-identity remote
homology. Malidup contains pairwise structure alignments, specifi-
cally targeting homologous domains within the same chain, thereby
exemplifying structurally similar remote homologs. Malisam con-
tains pairs of analogous motifs.

Metrics
We evaluated different homologous protein searchmethods using the
following four metrics: AUROC, AUPR, MAP, and P@K.

• AUROC24: The mean sensitivity over all queries, where the sensi-
tivity is the fraction of TPs in the sorted list up to the first FP, all
excluding self-hits.

• AUPR24: Area under the precision-recall curve.

• MAP62: Mean average precision (MAP) for a set of queries is the
mean of the average precision scores for each query.

MAP =

PQ
q= 1 AvePðqÞ

Q
ð1Þ

where Q is the number of queries.

• P@K20: For homologous protein search, as many queries have
thousands of relevant targets, and few users will be interested in
getting all of them. Precision at k (P@k) is then a useful metric
(e.g., P@10 corresponds to the number of relevant results among
the top 10 retrieved targets). P@K here is the mean value for
each query.

On SCOPe40-test, we performed an all-versus-all search test,
which means both the query and the target dataset were SCOPe40-
test. To make a more objective comparison, the settings used in the
all-versus-all search test are exactly the same as those used in
Foldseek24. Specifically, for family-level, superfamily-level, and fold-
level recognition, TPs were defined as the same family, same super-
family but different family, and same fold but different superfamily,
respectively. Hits from different folds are FPs. After sorting the
search result of each query according to similarity (described in
Supplementary Table 17), we calculated the sensitivity as the fraction
of TPs in the sorted list up to the first FP to better reflect the
requirements for low false discovery rates in automatic searches. We
then took the mean sensitivity over all queries as AUROC. Addition-
ally, we plotted weighted precision-recall curves (precision = TP/(TP
+FP) and recall = TP/(TP+FN)). All counts (TP, FP, FN) were weighted
by the reciprocal of their family, superfamily, or fold size. In this way,
families, superfamilies, and folds contribute linearly with their size
instead of quadratically14. MAP and P@K were calculated according
to the TPs and FPs defined by fold-level.

On search tests against Swiss-Prot, without the human manual
classification on SCOPe as the gold standard, proteins require a
reference annotation method. Therefore, TPs were defined as pairs
with aTM-score > 0.5, otherwiseFPs.MAPandP@Kare then calculated
accordingly.

Baselines
Previously proposed methods. (1) Sequence search: MMseqs210,
BLASTp11, HHblits16,17, EAT45, and pLM-BLAST48. (2) Structure search—
structural alphabet: 3D-BLAST-SW22, CLE-SW23, Foldseek, and Foldseek-
TM24. (3) Structure search—structural alignment63: CE25, Dali26, and TM-
align27,28. For the specific introduction and settings of these proposed
methods, see “Baseline details" Supplementary Section.

Similarity-based search methods. These methods predict and sort
the similarity between all query-target pairs (Fig. 5c). Different search

methods are distinguished according to the way they predict
similarity.

• Euclidean: Use the reciprocal of the Euclidean distance between
embeddings.

similarityðp,qÞ= 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i = 1 pi � qi
� �2

q

+ 1
ð2Þ

• COS:Use theCOSdistancebetween embeddings. ϵ is a small value
to avoid division by zero.

similarityðp,qÞ= p � q
max p

�
�

�
�
2 � q

�
�

�
�
2,ϵ

� � ð3Þ

• SS-predictor: Combine the predicted TM-score with the top COS
similarity. Unlike PLMSearch, which predicts pre-filtered pairs
from PfamClan, SS-predictor extends its prediction to all
protein pairs.

Experiment settings
Pfam result generation. We obtained the Pfam family domains of
proteins by PfamScan (version 1.6)54 and Pfam dataset (Pfam36.0,
2023-09-12)42. For PfamClan, we query the comparison table Pfam-
A.clans.tsv and replace the family domain with the clan domain it
belongs to. For the family domain that has no corresponding clan
domain, we treat it as a clan domain itself.

Protein language model. ESMs are a set of protein language models
that have been widely used in recent years. We used ESM-1b (650M
parameters)35, a SOTA general-purpose protein language model, to
efficiently generate per-protein embeddings for PLMSearch.

For PLMAlign, the more extensive ProtT5-XL-UniRef50 (3B para-
meters) is used to generate per-residue embeddings. We conducted a
detailed evaluation and analysis of the results fromESM-1b and ProtT5-
XL-UniRef50 embeddings, as elaborated in “Remote homology align-
ment” Supplementary Section (Supplementary Fig. 8, Supplementary
Table 15). Basedon the analysis, for PLMAlign, ProtT5-XL-UniRef50was
selected.

SS-predictor training. We used the deep learning framework PyTorch
(version 1.7.1), ADAM optimizer, with MSE as the loss function to train
SS-predictor. The batch size was 100, and the learning rate was 1e-6 on
200 epochs. The training ground truth was the TM-score calculated by
TM-align. The datasets used for training (Supplementary Table 16)
include (1) All protein pairs from SCOPe40-train (8953 proteins;
80,156,209 query-target pairs). (2) Undersampled protein pairs from
CATHS40 (21,474 proteins; 28,440,312 query-target pairs). The para-
meters in ESM-1b were frozen and only the parameters in the bilinear
projection network were trained.

Experimental environment. We conducted the experiments on a
server with a 56-core Intel(R) Xeon(R) CPU E5-2680 v4@2.40GHz and
256 GB RAM. The environment of our publicly available web server is
64 * Intel(R) Xeon(R) CPU E5-2682 v4 @ 2.50 GHz and 512 GB RAM.

Statistics and reproducibility
The experiments were not randomized.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The sequences and structures of the SCOPe40 dataset are available at
https://scop.berkeley.edu. The sequences of the Swiss-Prot and Uni-
Ref50 dataset are freely available under the Creative Commons Attri-
bution (CC BY 4.0) License at https://www.uniprot.org. The predicted
structures are freely available from the AlphaFold Protein Structure
Database at https://alphafold.ebi.ac.uk/download. CATH domain
sequences and structures are publicly available at http://www.cathdb.
info. Malidup can be found at http://prodata.swmed.edu/malidup;
Malisam can be found at http://prodata.swmed.edu/malisam. Pfam is
freely available under the Creative Commons Zero (‘CC0’) license at
https://pfam.xfam.org. For PfamClan, we query the comparison table
Pfam-A.clans.tsv at https://ftp.ebi.ac.uk/pub/databases/Pfam/current_
release/Pfam-A.clans.tsv.gz. ESM-1b protein language model is avail-
able at https://github.com/facebookresearch/esm. ProtT5-XL-
UniRef50 protein language model is available at https://github.com/
agemagician/ProtTrans. The sequences of the PDB dataset are avail-
able at https://www.rcsb.org. Sourcedata of ourwork is provided at: (1)
PLMSearch: https://dmiip.sjtu.edu.cn/PLMSearch/static/download/
plmsearch_data.tar.gz. (2) PLMAlign: https://dmiip.sjtu.edu.cn/
PLMAlign/static/download/plmalign_data.tar.gz. Source data are pro-
vided with this paper.

Code availability
PLMSearch is freely available at https://dmiip.sjtu.edu.cn/PLMSearch.
PLMAlign is freely available at https://dmiip.sjtu.edu.cn/PLMAlign.
PLMSearch and related tutorials are freely available to the public
at GitHub https://github.com/maovshao/PLMSearch/blob/main/
pipeline.ipynb. Reproducing our results and regenerating the main
and Supplementary Figs. requires only one file at GitHub https://
github.com/maovshao/PLMSearch/blob/main/main.ipynb. The results
of PLMSearch can also be reproduced through the capsule published
on Code Ocean https://doi.org/10.24433/CO.8325548.v164 or source
code on Figshare https://doi.org/10.6084/m9.figshare.2325463765.
Run PLMAlign and reproduce the alignment experiment in “Remote
homology alignment" Supplementary Section at GitHub https://
github.com/maovshao/PLMAlign. Structure visualizations were cre-
ated in Pymol v.2.4.0 (https://github.com/schrodinger/pymol-open-
source). For our PLMSearch data visualizations, we used Python ver-
sion 3.8.16, Seaborn Version 0.12.2, and matplotlib-base Version 3.6.2.
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