
Article https://doi.org/10.1038/s41467-024-46796-6

The genetic architecture of multimodal
human brain age

Junhao Wen 1 , Bingxin Zhao 2, Zhijian Yang3, Guray Erus 3,
Ioanna Skampardoni3, Elizabeth Mamourian 3, Yuhan Cui3, Gyujoon Hwang 3,
Jingxuan Bao 4, Aleix Boquet-Pujadas5, Zhen Zhou 3, Yogasudha Veturi6,
Marylyn D. Ritchie 7, Haochang Shou 3, Paul M. Thompson8, Li Shen 4,
Arthur W. Toga 9 & Christos Davatzikos 3

The complex biological mechanisms underlying human brain aging remain
incompletely understood. This study investigated the genetic architecture of
three brain age gaps (BAG) derived from graymatter volume (GM-BAG), white
matter microstructure (WM-BAG), and functional connectivity (FC-BAG). We
identified sixteen genomic loci that reached genome-wide significance (P-
value < 5×10−8). A gene-drug-disease network highlighted genes linked to GM-
BAG for treating neurodegenerative and neuropsychiatric disorders and WM-
BAG genes for cancer therapy. GM-BAG displayed the most pronounced her-
itability enrichment in genetic variants within conserved regions. Oligoden-
drocytes and astrocytes, but not neurons, exhibited notable heritability
enrichment in WM and FC-BAG, respectively. Mendelian randomization iden-
tified potential causal effects of several chronic diseases on brain aging, such
as type 2 diabetes on GM-BAG and AD on WM-BAG. Our results provide
insights into the genetics of human brain aging, with clinical implications for
potential lifestyle and therapeutic interventions. All results are publicly avail-
able at https://labs.loni.usc.edu/medicine.

The advent of artificial intelligence (AI) has provided approaches to
investigate various aspects of human brain health1,2, such as normal
brain aging3, neurodegenerative disorders such as Alzheimer’s disease
(AD)4, and brain cancer5. Based onmagnetic resonance imaging (MRI),
AI-derived measures of the human brain age6–8 have emerged as a
valuable biomarker for evaluating brain health. More precisely, the
difference between an individual’s AI-predicted brain age and chron-
ological age – brain age gap (BAG) – provides a means of quantifying

an individual’s brain health bymeasuring deviation from thenormative
aging trajectory. BAG has demonstrated sensitivity to several common
brain diseases, clinical variables, and cognitive functions9, presenting
the promising potential for its use in the general population to capture
relevant pathological processes.

Brain imaging genomics10, an emerging scientific field advanced
by both computational statistics and AI, uses imaging-derived phe-
notypes (IDP11) from MRI and genetics to offer mechanistic insights
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into healthy and pathological aging of the human brain. Recent large-
scale genome-wide association studies (GWAS)11–17 have identified a
diverse set of genomic loci linked to gray matter (GM)-IDP from T1-
weighted MRI, white matter (WM)-IDP from diffusion MRI [fractional
anisotropy (FA), mean diffusivity (MD), neurite density index (NDI),
and orientation dispersion index (ODI)], and functional connectivity
(FC)-IDP from functional MRI. While previous GWAS18 have associated
BAG with common genetic variants [e.g., single nucleotide poly-
morphism (SNP)], they primarily focused on GM-BAG9,19–21 or did not
comprehensively capture the genetic architecture of the multimodal
BAG18 via post-GWAS analyses in order to biologically validate the
GWAS signals. It is crucial to holistically identify the genetic factors
associated with multimodal BAGs (GM, WM, and FC-BAG), where each
BAG reflects distinct and/or similar neurobiological facets of human
brain aging. Furthermore, dissecting the genetic architecture of
human brain aging may determine the causal implications, which is
essential for developing gene-inspired therapeutic interventions.
Finally, numerous risk or protective lifestyle factors and neurobiolo-
gical processes may also exert independent, synergistic, antagonistic,
sequential, or differential influences onhumanbrainhealth. Therefore,
a holistic investigation of multimodal BAGs is urgent to fully capture
the genetics of human brain aging, including the genetic correlation,
gene-drug disease network, and potential causality. In this study, we
postulate that AI-derived GM, WM, and FC-BAG can serve as robust,
complementary endophenotypes22—close to the underlying etiology—
for precise quantification of human brain health.

The present study sought to uncover the genetic architecture
of multimodal BAG and explore the causal relationships between
protective/risk factors and decelerated/accelerated brain age. To
accomplish this, we analyzed multimodal brain MRI scans from
42,089 participants from the UK Biobank (UKBB) study23 and used
119 GM-IDP, 48 FA WM-IDP, and 210 FC-IDP to derive GM, WM, and
FC-BAG, respectively. Refer to Method 1 for selecting the final fea-
ture sets for each BAG. We compared the age prediction perfor-
mance of different machine learning models using these IDPs. We
then performed GWAS to identify genomic loci associated with GM,
WM, and FC-BAG in the European ancestry population. In post-
GWAS analyses, we constructed a gene-drug-disease network, esti-
mated the genetic correlation with several brain disorders, assessed
their heritability enrichment in various functional categories or
specific cell types, and calculated the polygenic risk scores (PRS) of
the three BAGs. Finally, we performed Mendelian Randomization
(MR)24 to infer the potential causal effects of several clinical traits
and diseases on the three BAGs.

Results
We provide an overview of the main results from our experiments.
First, we objectively compared the age prediction performance of four
machine learningmethods using theGM,WM, and FC-IDPs (Fig. 1A). To
this end, we employed a nested cross-validation (CV) procedure in the
training/validation/test dataset (N = 4000); an independent test data-
set (N = 38,089)25,26 was held out – unseen until we finalized themodels
using only the training/validation/test dataset (Method 1). The GM,
WM, and FC-IDPs were derived from three MRI modalities (Method 2).
The four machine learningmodels included support vector regression
(SVR), LASSO regression, multilayer perceptron (MLP), and a five-layer
neural network (i.e., three linear layers and one rectified linear unit
layer; hereafter, NN)27 (Method 3). We then performed the three pri-
mary GWASs using the European ancestry population
(31,557 <N < 32,017) and extensively scrutinized the genetic signals in
seven quality check scenarios (Method 4A). Finally, we validated the
GWAS findings in several post-GWAS analyses, including genetic cor-
relation, gene-drug-disease network, partitioned heritability, PRS cal-
culation, and Mendelian randomization (Method 4).

GM, WM, and FC-BAG derived from three MRI modalities and
four machine learning models
Several findings were observed based on the results from the inde-
pendent test dataset (N = 38,089, Method 1). First, GM-IDP
(4.39 <mean absolute error (MAE) < 5.35; 0.64 < r < 0.66), WM-IDP
(4.92 <MAE < 7.95; 0.42 < r < 0.65), and FC-IDP (5.48 <MAE < 6.05;
0.43 <r < 0.46) achieved gradually a higher MAE and smaller Pearson’s
correlation (r) (Fig. 1B and C). Second, LASSO regression obtained the
lowest MAE for GM, WM, and FC-IDP; linear models obtained a lower
MAE than non-linear networks (Fig. 1B). Third, all models generalized
well from the training/validation/test dataset (N = 4000, Method 1) to
the independent test dataset. However, simultaneously incorporating
WM-IDP from FA, MD, NDI, and ODI resulted in severely overfitting
models (Supplementary table 1A). The observed overfitting may be
attributed to many parameters (N = 38,364) in the network or strong
correlations among the diffusion metrics (i.e., FA, MD, ODI, and NDI).
Fourth, the experiments stratified by sex did not exhibit substantial
differences, except for a stronger overfitting tendency observed in
females compared to males using WM-IDP incorporating the four dif-
fusion metrics (Supplementary table 1B). In all subsequent genetic
analyses, we reported the results using BAG derived from the three
LASSOmodels with the lowestMAE in eachmodality (Fig. 1A), with the
“age bias” corrected as in De Lange et al.28.

Our age prediction results alignwith previous literatureusing low-
dimensional imaging features, but the convolutional neural network
(CNN) trained on voxel-wise MRI scans achieved a lower MAE. Other
studies29–32 have thoroughly evaluated age prediction performance
using different machine learning models and input features. More
et al.33 systematically compared the performance of age prediction of
128 workflows (MAE between 5.23–8.98 years) and showed that voxel-
wise feature representation (MAE approximates 5-6 years) out-
performed parcel-based features (MAE approximates 6-9 years) using
conventional machine learning algorithms (e.g., LASSO regression).
Using deep neural networks, Peng et al.29 and Leonardsen et al.30

reported a lowerMAE (nearly 2.5 years) with voxel-wise imaging scans.
However, we previously showed that a moderately fitting CNN
obtained significantly higher differentiation (a larger effect size) than a
tightly fitting CNN (a lower MAE) between the disease and health
groups34. In addition, we assessed the impact of a lower MAE using
GWAS summary statistics shared by Leonardsen et al.20 on the GWAS
results in the sensitivity check analyses (Supplementary note 1).

Finally, we calculated the phenotypic correlation (pc) between
GM,WM, and FC-BAG using Pearson’s correlation coefficient. GM-BAG
and WM-BAG showed the highest positive correlation (pc =0.38; P
value < 1 × 10−10; N = 30,733); GM-BAG (pc =0.09; P value < 1 × 10−10;
N = 30,660) and WM-BAG (pc = 0.10; P value < 1 × 10−10; N = 31,574)
showed weak correlations with FC-BAG (Fig. 1D).

GM, WM, and FC-BAG are associated with sixteen genomic loci
In the European ancestry populations, GWAS (Method 4A) revealed 6,
9, and 1 genomic loci linked to GM (N = 31,557), WM (N = 31,674), and
FC-BAG (N = 32,017), respectively (Fig. 2A). The top lead SNP and
mapped genes of each locus are presented in Supplementary Table 2.
The three BAGs were significantly heritable (P value < 1 × 10−10) after
adjusting formultiple comparisons using theBonferronimethod using
the genome-wide complex trait analysis (GCTA) software35. GM-BAG
showed the highest SNP-based heritability (h2 = 0.47 ± 0.02), followed
by WM-BAG (h2 = 0.46±0.02) and FC-BAG (h2 = 0.11 ± 0.02). Our GM-
BAG showed a higher SNP-based heritability than several previous GM-
BAG GWAS9,20,21 (0.19 < h2 < 0.27), which used the linkage dis-
equilibrium score regression (LDSC) software36. LDSC uses GWAS
summary statistics but not the individual genotype data as in GCTA.
This discrepancy may depend on the choice of methods, genetic data
employed, underlying statistical assumptions, and allele frequency37,38.
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We showed the robustness of our GWAS findings with several
different approaches. We first calculated the genomic inflation factor
(λ) and the LDSC intercept (b) for the GWAS of GM-BAG (λ = 1.118;
b = 1.0016 ±0.0078), WM-BAG (λ = 1.124; b = 1.0187 ± 0.0073), and FC-
BAG (λ = 1.046;b = 1.0039 ±0.006). All LDSC interceptswereclose to 1,
indicating no substantial genomic inflation. The individual Manhattan
andQQplots of the threeGWASs arepresented inSupplementaryFig. 1
and are publicly available at the MEDICINE knowledge portal: https://
labs.loni.usc.edu/medicine. We also checked the robustness of the
main GWASs using the European populations (Fig. 2A) via seven sen-
sitivity analyses (Method 4A). Overall, the primary GWASswere robust
across sexes (female vs.male), random splits, imaging features (ROI vs.
voxel-wise images), GWAS methods (linear vs. mixed linear model39),
and machine learning methods (Lasso regression vs. SVR vs. CNN20);
however, their generalizability to non-European populations
(4646 <N < 5091) and independent disease-specific populations (i.e.,
ADNI40, N = 1104) is limited potentially due to the small sample sizes.
It’s worth noting that their β values compared to the primary GWASs
were significantly correlated: r = 0.83 for ADNI and r =0.97–0.99 for

the non-European populations. (Supplementary note 1, Supplemen-
tarydata 1–7, and Supplementary Figs. 1–7). All subsequent post-GWAS
analyses were conducted using the main GWAS results of European
ancestry.

We performed a query in the GWAS Catalog41 for these genetic
variants within each locus to understand the phenome-wide associa-
tion of these identified loci in previous literature (Method4B).Notably,
the SNPs within each locus were linked to other traits previously
reported in the literature (Supplementary data 8). Specifically, the GM-
BAG loci were uniquely associated with neuropsychiatric disorders
such as major depressive disorder (MDD), heart disease, and cardio-
vascular disease.We also observed associations between these loci and
other diseases (e.g., anemia), as well as biomarkers from various
human organs (e.g., liver) (Fig. 2B). We then performed positional and
functional annotations tomapSNPs to genes associatedwith GM,WM,
and FC-BAG loci (Method 4C). Figure 2C-E showcased the regional
Manhattan plot of one genomic locus linked to GM, WM, and FC-BAG.
A detailed discussion of these exemplary loci, SNPs, and genes is
presented in Supplementary note 2.

Fig. 1 | Brain age prediction using three MRI modalities and four machine
learning models. A Multimodal brain MRI data were used to derive imaging-
derivedphenotypes (IDP) forT1-weightedMRI (119GM-IDP), diffusionMRI (48WM-
IDP), and resting-state functional MRI (210 FC-IDP). IDPs for each modality are
shown here using different colors based on predefined brain atlases or ICA for FC-
IDP. B Linear models achieved lower mean absolute errors (MAE) than non-linear
models using support vector regression (SVR), LASSO regression, multilayer per-
ceptron (MLP), and a five-layer neural network (NN). The MAE for the independent

test dataset is presented (N is shown in the figure), and the # symbol indicates the
model with the lowest MAE for each modality. We present the results using box
plots for themedian and jitter plots for underlyingMAEdistributions.C Scatter plot
for the predicted brain age and chronological age. Pearson’s correlation (r) and N
are presented for all feature and model combinations. D Phenotypic correlation
(pc) between the GM, WM, and FC-BAG using Pearson’s correlation coefficient (r).
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Finally, we calculated the genetic correlation (gc) between the
GM, WM, and FC-BAG using the LDSC software. GM-BAG and WM-
BAG showed the highest positive correlation (gc = 0.49; P
value < 1 × 10−10); GM-BAG (gc = 0.20; P value = 0.025) and WM-BAG
(gc = 0.29; P value = 0.005) showed weak correlations with FC-BAG
(Fig. 2F). We also verified that these genetic correlations exhibited
consistency between the two random splits (split1 and spit2:

15,778 < N < 16,008), sharing a similar age and sex distribution
(Supplementary Fig. 8).

Thegene-drug-diseasenetworkhighlights disease-specificdrugs
that bind to genes associated with GM and WM-BAG
After mapping the SNPs to genes (Method 4C), we investigated the
potential “druggable genes42” by constructing a gene-drug-disease
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network (Method 4D). The network connects genes with drugs (or
drug-like molecules) targeting specific diseases currently active at any
stage of clinical trials.

We revealed four and six mapped genes associated with GM-BAG
and WM-BAG currently used in clinical trials. The GM-BAG genes were
linked to clinical trials for treating heart, neurodegenerative, neu-
ropsychiatric, and respiratory diseases. On the other hand, the WM-
BAG genes were primarily targeted for various cancer treatments and
cardiovascular diseases (Fig. 3). For example, the GM-BAG-associated
MAPT gene was involved in several drugs or drug-like molecules cur-
rently being evaluated for treating AD. Semorinemab (RG6100), an
anti-tau IgG4 antibody, was being investigated in a phase-2 clinical trial

(trial number: NCT03828747), which targets extracellular tau in AD, to
reduce microglial activation and inflammatory responses43. Another
drug is the LMTM (TRx0237)—a second-generation tau protein
aggregation inhibitor currently being tested in a phase-3 clinical trial
(trial number: NCT03446001) for treating AD and frontotemporal
dementia44. Regarding WM-BAG genes, they primarily bind with drugs
for treating cancer and cardiovascular diseases. For instance, thePDIA3
gene, associated with the folding and oxidation of proteins, has been
targeted for developing several zinc-related FDA-approved drugs for
treating cardiovascular diseases. Another example is theMAP1A gene,
which encodes microtubule-associated protein 1 A. This gene is linked
to the development of estramustine, an FDA-approved drug for

Fig. 2 | Genome-wide associations of multimodal brain age gaps. A Genome-
wide associations identified sixteen genomic loci associated with GM (6), WM (9),
and FC-BAG (1) using a genome-wide P value threshold [–log10(P value) > 7.30]. The
top lead SNP and the cytogenetic region number represent each locus.B Phenome-
wide association query from GWAS Catalog41. Candidate SNPs inside each locus
were largely associated with many traits. We further classified these traits into
several trait categories, including biomarkers from multiple body organs (e.g.,
heart and liver), neurological disorders (e.g., Alzheimer’s disease and Parkinson’s
disease), and lifestyle risk factors (e.g., alcohol consumption).C Regional plot for a
genomic locus associated with GM-BAG. Color-coded SNPs are decided based on
their highest r2 to one of the nearby independent significant SNPs. Gray-colored

SNPs are below the r2 threshold. The top lead SNP, lead SNPs, and independent
significant SNPs are denoted as dark purple, purple, and red, respectively.Mapped,
orange-colored genes of the genomic locus are annotated by positional, eQTL, and
chromatin interaction mapping (Method 4C). D Regional plot for a genomic locus
associatedwithWM-BAG.EThegenomic locus associatedwithFC-BAGdid notmap
to any genes. We used the Genome Reference Consortium Human Build 37
(GRCh37) in all genetic analyses. For Figure (C–E), the two-sided P-value was
derived from the linear regression used in our GWAS. F Genetic correlation (gc)
between the GM, WM, and FC-BAG using the LDSC software. Abbreviation: AD
Alzheimer’s disease, ASD autism spectrum disorder, PD Parkinson’s disease, ADHD
attention-deficit/hyperactivity disorder.
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Fig. 3 | Gene-drug-disease network of multimodal brain age gaps. The gene-
drug-disease network derived from the mapped genes revealed a broad spectrum
of targeted diseases and cancer, including brain cancer, cardiovascular system
diseases, Alzheimer’s disease, and obstructive airway disease, among others. The

thickness of the lines represented the P values −log10) from the brain tissue-specific
gene set enrichment analyses using theGTEx v8dataset.Wehighlight several drugs
under the blue-colored and bold text. Abbreviation: ATC Anatomical Therapeutic
Chemical, ICD International Classification of Diseases.
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prostate cancer (Fig. 3). Detailed results are presented in Supplemen-
tary data 9.

Multimodal BAG is genetically correlated with AI-derived sub-
types of brain diseases
We showed specific phenome-wide associations of the three BAGs at
the single variant level (Fig. 2B). Here, we calculated the genetic cor-
relation using the GWAS summary statistics to examine genetic cov-
ariance between the multimodal BAGs and 16 clinical traits. The
selection procedure and quality checkof the GWAS summary statistics
are detailed in Method 4E. These traits encompassed common brain
diseases and their AI-derived disease subtypes, as well as education
and intelligence (Fig. 4A and Supplementary Table 3). The AI-
generated disease subtypes were established in our previous studies
utilizing semi-supervised clusteringmethods45 and IDP from brainMRI
scans. To illustrate this, AD1 and AD2 distill the neuroanatomical het-
erogeneity of Alzheimer’s disease into two distinct imaging patterns:
AD1 represents a widespread brain atrophy pattern, while AD2 exhibits
a focal atrophy pattern in the medial temporal lobe4. These subtypes,
in essence, capture more homogeneous disease effects than the con-
ventional “unitary” disease diagnosis, hence serving as robust
endophenotypes22.

Our analysis revealed significant genetic correlations between
GM-BAG and AI-derived subtypes of AD (AD14), autism spectrum dis-
order (ASD) (ASD1 and ASD346), schizophrenia (SCZ147), and obsessive-
compulsive disorder (OCD)48; WM-BAG and AD1, ASD1, SCZ1, and
SCZ2; and FC-BAG and education49 and SCZ1. Detailed results for rg
estimates are presented in Supplementary data 10. Furthermore, we
found that the WM BAG (gc = −0.23 ± 0.10; P value = 0.02; N = 28,967
European ancestry) was negatively associated with longevity, defined
as cases surviving at or beyond the age corresponding to the 99th
survival percentile50.

Multimodal BAG shows specific enrichment of heritability in
different functional categories and cell types
As the three BAGs showed significant SNP-based heritability estimates,
we conducted a partitioned heritability analysis51 to investigate further
the heritability enrichment of these genetic variants in the 53 func-
tional categories and specific cell types (Method 4F).

ForGM-BAG, the regions conserved acrossmammals, as indicated
by the label “conserved” in Fig. 4B, displayed the most notable
enrichment of heritability: ~2.61% of SNPs were found to explain
0.43 ±0.07 of SNP heritability (P value = 5.80 × 10−8). Additionally,
transcription start site (TSS)52 regions employed 1.82% of SNPs to
explain 0.16 ± 0.05 of SNP heritability (P value = 8.05 × 10−3). TSS initi-
ates the transcription at the 5′ end of a gene and is typically embedded
within a core promoter crucial to the transcription machinery53. The
heritability enrichment of Histone H3 at lysine 4, as denoted for
“H3K4me3_peaks” in Fig. 4B, andhistoneH3at lysine 9 (H3K9ac)54were
also found to be large and were known to highlight active gene
promoters55. ForWM-BAG, 5′untranslated regions (UTR)used0.54%of
SNPs to explain 0.09 ±0.03 of SNP heritability (P value = 4.24×10−3).
The 5′UTR is a crucial region of a messenger RNA located upstream of
the initiation codon. It is pivotal in regulating transcript translation,
with varying mechanisms in viruses, prokaryotes, and eukaryotes.

Additionally, we examined the heritability enrichment of the three
BAG in three different cell types (Fig. 4C). WM-BAG (P
value = 1.69 × 10−3) exhibited significant heritability enrichment in oli-
godendrocytes, one type of neuroglial cells. FC-BAG (P
value = 1.12 × 10−2) showed such enrichment in astrocytes, the most
prevalent glial cells in the brain. GM-BAG showed no enrichment in any
of these cells. Our findings are consistent with understanding the
molecular and biological characteristics of GM and WM. Oligoden-
drocytes are primarily responsible for forming the lipid-rich myelin
structure, whereas astrocytes play a crucial role in various cerebral

functions, such as brain development and homeostasis. Convincingly,
a prior GWAS14 on WM-IDP also identified considerable heritability
enrichment in glial cells, especially oligodendrocytes. Detailed results
for the 53 functional categories and cell-specific analyses arepresented
in Supplementary data 11.

Prediction ability of the polygenic risk score of the
multimodal BAG
We aim to derive an individual-level biomarker (i.e., PRS) to quantify
overall brain health’s genetics susceptibility/liability. To this end, we
derived the PRS for GM,WM, and FC-BAG using the conventional C + T
(clumping plus P value threshold) approach56 via PLINK and a Bayesian
method via PRS-CS57 (Method 4G).

We found that theGM,WM, and FC-BAG-PRSderived fromPRS-CS
significantly predicted the phenotypic BAGs in the test data (split2
GWAS, 15,697 <N < 15,940), with an incremental R2 of 2.17%, 1.85%, and
0.19%, respectively (Fig. 4D). Compared to the PRS derived from PRS-
CS, the PLINK approach achieved a lower incremental R2 of 0.81%,
0.45%, and 0.14% for GM, WM, and FC-BAG, respectively (Supple-
mentary Fig. 9). Overall, the predictive power of PRS is not high, in line
with earlier discoveries involving raw imaging-derived phenotypes, as
demonstrated in ref. 13. The authors developed PRSs for seven selec-
tive brain regions, which explained roughly 1.18–3.93% of the pheno-
typic variance associated with these traits.

The potential causal relationships between GM and WM-BAG
and other clinical traits
Our genetic correlation results motivated us to investigate the
potential causal effects of several risk factors (i.e., exposure variable)
on multimodal BAG (i.e., outcome variable) using a bidirectional two-
sample MR approach58 (Method 4H). We hypothesized that several
diseases and lifestyle risk factors (Supplementary Table 4) might
contribute to accelerating or decelerating human brain aging.

We found putative causal effects of triglyceride-to-lipid ratio in
very large very-low-density lipoprotein (VLDL)59 [P value = 5.09 × 10−3,
OR (95% CI) = 1.08 (1.02, 1.13), number of SNPs = 52], type 2 diabetes60

[P value = 1.96 × 10−2, OR (95% CI) = 1.05 (1.01, 1.09), number of
SNPs = 10], and breast cancer61 [P value = 1.81 × 10−2, OR (95% CI) = 0.96
(0.93, 0.99), number of SNPs = 118] on GM-BAG (i.e., accelerated brain
age). We also identified causal effects of AD62 [P value = 7.18 × 10−5, OR
(95% CI) = 1.04 (1.02, 1.05), number of SNPs = 13] onWM-BAG (Fig. 5A).
We subsequently examined the potential inverse causal effects of
multimodal BAG (i.e., exposure) on these risk factors (i.e., outcome).
However, owing to the restricted power [number of instrumental
variables (IV) < 6], we did not observe any significant signals (Supple-
mentary Fig. 10 and File 10).

Sensitivity analyses for Mendelian randomization
AsMendelian randomization is sensitive to underlying IV assumptions
(Method 4H), we performed sensitivity analyses to investigate poten-
tial violations. To illustrate this, we showcased the sensitivity analysis
results for the causal effect of the triglyceride-to-lipid in VLDL ratio on
GM-BAG (Fig. 5B–E). In a leave-one-out analysis, we found that no
single SNP overwhelmingly drove the overall effect (Fig. 5B). Therewas
evidence for the presence ofminor heterogeneity63 of the causal effect
amongst SNPs (Cochran’s Q value = 76.06, P value = 5.09×10−3). Some
SNPs exerted opposite causal effects compared to the model using all
SNPs (Fig. 5C). The scatter plot (Fig. 5D) indicated one obvious SNP
outlier (rs11591147), and the funnel plot showedminor asymmetrywith
only an outlier denoted in Fig. 5E (rs4507142). Finally, the MR Egger
estimator allows for pleiotropic effects independent of the effect on
the exposure of interest (i.e., the InSIDE assumption64). Our results
from the Egger estimator showed a small positive intercept
(5.21 × 10−3 ± 2.87 × 10−3, P value = 0.07) and a lower OR [inverse-var-
ianceweighted (IVW): 1.08 (1.02, 1.13) vs. Egger: 1.01 (0.93, 1.10)], which
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may indicate the presence of directional horizontal pleiotropy for
some SNPs. We present sensitivity analyses for other significant
exposure variables in Supplementary Fig. 11.

To investigate the potential directional pleiotropic effects, we
re-analyzed the MR Egger regression by excluding the two outliers

identified in Fig. 5D (rs11591147) and E (rs4507142), which led to a
slightly increased OR [1.04 (0.96, 1.12)] and a smaller positive
intercept (4.41 × 10−3 ± 2.65 × 10−3, P value = 0.09). Our findings
support that these two outlier SNPs may have a directional pleio-
tropic effect on GM-BAG. Nevertheless, given the complex nature of
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Fig. 4 | Genetic correlation, partitioned heritability enrichment, and PRS pre-
diction accuracy on multimodal brain age gaps. A Genetic correlation (gc)
between GM, WM, and FC-BAG and 16 clinical traits. These traits include neuro-
degenerative diseases (e.g., AD) and their AI-derived subtypes (e.g., AD1 and AD24),
neuropsychiatric disorders (e.g., ASD) and their subtypes (ASD1, 2, and 346), intel-
ligence, and education. After adjusting for multiple comparisons using the FDR
method, the * symbol denotes statistical significance (two-sided P value < 0.05).
Supplementary table 3 and data 10 presents the sample size and P value. B The
proportion of heritability enrichment for the 53 functional categories51. We only
show the functional categories that survived the correction for multiple compar-
isons using the FDRmethod. C Cell type-specific partitioned heritability estimates.
We included gene sets from Cahoy et al.104 for three main cell types (i.e., astrocyte,
neuron, and oligodendrocyte). After adjusting for multiple comparisons using the
FDRmethod, the * symbol denotes statistical significance (P value <0.05). Detailed

results, including P-values, are presented in Supplementary data 11. LDSC resulted
in an empirical covariance matrix of coefficient estimates and tested whether the
per-SNP heritability is greater in the category/cell type thanout of the category/cell
type (i.e., one-sided). For Figure (A–C), data are presented as the mean value of the
estimated parameters and error bars representing the standard error of the esti-
mated parameters. D The incremental R2 of the PRS derived by PRC-CS to predict
the GM, WM, and FC-BAG in the target/test data (i.e., the split2 GWAS). The y-axis
indicates the proportions of phenotypic variation (GM, WM, and FC-BAG) that the
PRS can significantly and additionally explain. The x-axis lists the seven P value
thresholds considered. Abbreviation: AD Alzheimer’s disease, ADHD attention-
deficit/hyperactivity disorder, ASD autism spectrum disorder, BIP bipolar disorder,
MDD major depressive disorder, OCD obsessive-compulsive disorder, SCZ
schizophrenia.
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brain aging, many other biological pathways may also contribute to
human brain aging. For instance, the SNP (rs11591147) was largely
associated with other blood lipids, such as LDL cholesterol65, and
heart diseases, such as coronary artery disease66. Detailed results
obtained from all five MR methods are presented in Supplementary
data 12.

Discussion
The present study harnessed brain imaging genetics from a cohort of
42,089 participants in UKBB to investigate the underlying genetics of
multimodal BAG.Our approach commencedwithobjectively assessing

brain age prediction performance, encompassing various imaging
modalities (T1-weighted, diffusion, and resting-state MRI), feature
types (ROI vs. voxel), and machine learning algorithms. Subsequently,
we conducted genome-wide associations, demonstrating the robust-
ness of identified genetic signals in individuals of European ancestry
across diverse factors. Lastly, our study encompassed several post-
GWAS analyses, validating the GWAS results, shedding light on the
intricate biological processes involved, and uncovering the multi-
faceted interplay between human brain aging and various health
conditions and clinical traits. Our findings unveiled shared genetic
factors andunique characteristics– varyingdegrees of phenotypic and
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Fig. 5 | Causal inference of multimodal brain age gaps. Causal inference was
performed using a two-sample Mendelian Randomization (MR, Method 4H)
approach for seven selected exposure variables on three outcome variables (i.e.,
GM, WM, and FC-BAG). The symbol * denotes statistical significance (two-sided P
value) after correcting for multiple comparisons using the FDRmethod (N = 7); the
symbol # denotes the tests passing the nominal significance threshold (P value <
0.05) but not surviving the multiple comparisons. Shapes (circles, triangles, and
rectangles) represent odds ratios (OR), and error bars show 95% confidence
intervals (CI). B) Leave-one-out analysis of the triglyceride-to-lipid ratio on GM-
BAG. Eachdot represents theMR effect (logOR), and the error bar displays the 95%
CI by excluding that SNP from the analysis. The red line depicts the IVW estimator
using all SNPs. C) Forest plot for the single-SNPMR results. Each dot represents the
MR effect (log OR)), and the error bar displays the 95% CI for the triglyceride-to-
lipid ratio onGM-BAGusing only one SNP; the red line shows theMR effect using all
SNPs together. D) Scatter plot for the MR effect sizes of the SNP-triglyceride-to-

lipid ratio association (x-axis, SD units) and the SNP-GM-BAG associations (y-axis,
log OR) with standard error bars. The slopes of the purple and green lines corre-
spond to the causal effect sizes estimated by the IVW and the MR Egger estimator,
respectively. We annotated a potential outlier. E) Funnel plot for the relationship
between the causal effect of the triglyceride-to-lipid ratio on GM-BAG. Each dot
represents MR effect sizes estimated using each SNP as a separate instrument
against the inverse of the standard error of the causal estimate. The sample size for
the 7 clinical traits is presented in Supplementary Table 4. The vertical red line
shows the MR estimates using all SNPs. We annotated a potential outlier. Abbre-
viation: AD Alzheimer’s disease, AST aspartate aminotransferase, BMI body mass
index, VLDL very low-density lipoprotein, CI confidence interval, OR odds ratio, SD
standard deviation, SE standard error. Interpreting these potential causal rela-
tionships should be cautiously undertaken despite our efforts to performmultiple
sensitivity checks to evaluate the possible violations of underlying assumptions.
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genetic correlation – within BAG across three distinct imaging
modalities.

Genetic architecture of GM-BAG
Our genetic results from GM-BAG substantiate that many diseases,
conditions, and clinical phenotypes share genetic underpinnings with
brain age, perhaps driven by macrostructural changes in GM (e.g.,
brain atrophy). The locus with the most significant signal (the top lead
SNP rs534114641 at 17q21.31) showed substantial association with the
traits mentioned above and was mapped to numerous genes asso-
ciated with various diseases (Fig. 2C). Several previous GM-BAG
GWAS19,21 also identified this locus. Among these genes, the MAPT
gene, known to encode a protein called tau, is a prominent AD hall-
mark and implicated in approximately 30 tauopathies, including pro-
gressive supranuclear palsy and frontotemporal lobar degeneration67.
Our gene-drug-disease network also showed several drugs, such as
Semorinemab43, in active clinical trials currently targeting treatment
for AD (Fig. 3). The heritability enrichment of GM-BAG was high in
several functional categories, with conserved regions being the most
prominent. The observed higher heritability enrichment in conserved
regions compared to coding regions68 supports the long-standing
hypothesis regarding the functional significance of conserved
sequences. However, the precise role of many highly conserved non-
coding DNA sequences remains unclear69. The genetic correlation
results of GM-BAG with subtypes of common brain diseases highlight
the promise for the AI-derived subtypes, rather than the “one-for-all”
unitary disease diagnosis, as robust endophenotypes22. These findings
strongly support the clinical implications of re-evaluating pertinent
hypotheses using the AI-derived subtypes in patient stratification and
personalized medicine.

The elevated triglyceride-to-lipid ratio in VLDL, an established
biomarker for cardiovascular diseases70, is causally associated with
higher GM-BAG (accelerated brain age). Therefore, lifestyle interven-
tions that target this biomarker might hold promise as an effective
strategy to enhance overall brain health. In addition, we revealed that
one unit-increased likelihood of type 2 diabetes has a causal effect on
GM-BAG increase. Research has shown that normal brain aging is
accelerated by approximately 26% in patients with progressive type 2
diabetes compared with healthy controls71. The protective causal
effect of breast cancer on GM-BAG is intriguing in light of existing
literature adversely linking breast cancer to brain metastasis72 and
chemotherapy-induced cognitive impairments, commonly known as
“chemo brain”. In addition, it’s important to exercise caution when
considering the potential causal link between breast cancer and GM-
BAG, asMR analyses are susceptible to population selection bias73 due
to the high breast cancer mortality rate.

Genetic architecture of WM-BAG
The genetic architecture of WM-BAG exhibits strong correlations with
cancer-related traits, AD, and physical measures such as BMI, among
others. Our phenome-wide association query largely confirms the
enrichment of these traits in previous literature. In particular, the
DNAJC1 gene, annotated from the most polygenic locus on chromo-
some 10 (top lead SNP: rs564819152), encodes a protein called heat
shock protein 40 (Hsp40) and plays a role in protein folding and the
response to cellular stress. This gene is implicated in various cancer
types, such as breast, renal, and melanoma (Supplementary Fig. 12). In
addition, several FDA-approved drugs have been developed based on
these WM-BAG genes for different types of cancer in our gene-drug-
disease network (Fig. 3). Our findings provide insights into the genetic
underpinnings of WM-BAG and their potential relevance to cancer.

Remarkably, one unit-increased likelihood of AD was causally
associated with increased WM-BAG. Our Mendelian randomization
analysis confirmed the abundant association evidenced by the
phenome-wide association query (Fig. 2B). Dementia, such as AD, is

undeniably a significant factor contributing to the decline of the aging
brain. Evidence suggests that AD is not solely a GM disease; significant
microstructural changes can be observed in WM before the onset of
cognitive decline74. We also identified a nominal causal significance of
BMI [risk effect; P-value = 4.73×10−2, OR (95% CI) = 1.03 (1.00, 1.07)] on
WM-BAG. These findings underscore the potential of lifestyle inter-
ventions andmedications currently being tested in clinical trials forAD
to improve overall brain health.

Genetic architecture of FC-BAG
The genetic signals for FC-BAG were weaker than those observed for
GM and WM-BAG, which is consistent with the age prediction perfor-
mance andpartially corroboratesCheverud’s conjecture: using genetic
correlations (Fig. 2F) as proxies for phenotypic correlations (Fig. 1E)
when collecting individual phenotypes is expensive and unavailable. A
genomic locus on chromosome 6 (6q.13) harbors an independent
variant (rs1204329) previously linked to insomnia75. The top lead SNP,
rs5877290, associated with this locus is a deletion-insertion mutation
type: no known association with any human disease or gene mapping
has been established for this SNP. The genetic basis of FC-BAG covaries
with educational performance and schizophrenia subtypes. Specifi-
cally, parental education has been linked to cognitive ability, and
researchers have identified a functional connectivity biomarker
between the right rostral prefrontal cortex and occipital cortex that
mediates the transmission of maternal education to offspring’s per-
formance IQ76. On the other hand, schizophrenia is a highly heritable
mental disorder that exhibits functional dysconnectivity throughout
the brain77. AD was causally associated with FC-BAG with nominal
significance [risk effect for per unit increase; P value = 4.43 × 10−2, OR
(95% CI) = 1.02 (1.00, 1.03), number of SNPs = 13] (Fig. 5A). The rela-
tionship between functional brain networks and the characteristic
distribution of amyloid-β and tau inAD78 provides evidence that AD is a
significant factor in the aging brain, underscoring its role as a primary
causative agent.

The comparative trend of genetic heritability among GM, WM,
and FC-BAG is also consistent with previous large-scale GWAS of
multimodal brain IDP. Zhao et al. performedGWASonGM13,WM14, and
FC-IDP17, showing that FC-IDP is less genetically heritable than others.
Similar observations were also demonstrated by ref. 11 in the large-
scale GWAS using multimodal IDP from UKBB. The weaker genetic
signal observed in FC-BAG can be attributed to many factors. One of
themain reasons is the lower signal-to-noise ratio in FCmeasurements
due to the dynamic and complex nature of brain activity, which can
make it difficult to accurately measure and distinguish between the
true signal and noise. Social-environmental and lifestyle factors can
also contribute to the “missing heritability” observed in FC-BAG. For
example, stress, sleep patterns, physical activity, and other environ-
mental factors can impact brain function and connectivity79. In con-
trast, GM and WM measurements are more stable and less influenced
by environmental factors, whichmay explainwhy they exhibit stronger
genetic signals and higher heritability estimates.

Limitations
This study has several limitations. We can employ deep learning on
voxel-wise imaging scans to enhance brain age prediction perfor-
mance. Nevertheless, it warrants additional exploration to determine
whether the resulting reduction in MAE translates into more robust
genome-wide associations, as our previous work has demonstrated
that BAGs derived from a CNN with a lower MAE did not exhibit
heightened sensitivity to disease effects such as AD34. Second, the
generalization ability of the GWAS findings to non-European ancestry
is limited, potentially due to small sample sizes and cryptic population
stratification. Future investigations can be expanded to encompass a
broader spectrum of underrepresented ethnic groups, diverse disease
populations, and various age ranges spanning the entire lifespan. This
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expansion can be facilitated by leveraging the resources of large-scale
brain imaging genetic consortia like ADNI40, focused on Alzheimer’s
disease, and ABCD80, which centers on brain development during
adolescence. Third, it’s important to exercise caution when interpret-
ing the results of this study due to the various assumptions associated
with the statistical methods employed, including LDSC andMR. Lastly,
it’s worth noting that brain age represents a residual score encom-
passing measurement error. A recent study81 has underscored the
significance of incorporating longitudinal data when calculating brain
age. Future research should be conducted once the longitudinal scans
from the UK Biobank become accessible to explore this impact
on GWASs.

Outlook
In summary, our multimodal BAG GWASs provide evidence that the
aging process of the humanbrain is a complex biological phenomenon
intertwined with several organ systems and chronic diseases. We
digitized the human brain from multimodal imaging and captured a
complete genetic landscapeof humanbrain aging. This opens research
avenues for drug repurposing/repositioning and aids in identifying
modifiable protective and risk factors that can ameliorate humanbrain
health.

Methods
Method 1: Study populations
UKBB is a population-based study of more than 50,000 people
recruited between 2006 and 2010 from Great Britain. The current
study focused on participants from the imaging-genomics population
who underwent both an MRI scan and genome sequencing (genotype
array data and the imputed genotype data) under application number
35148. The UKBB study has ethical approval, and the ethics committee
is detailed here: https://www.ukbiobank.ac.uk/learn-more-about-uk-
biobank/governance/ethics-advisory-committee. The study design,
phenotype and genetic data availability, and quality check have been
published and detailed elsewhere23. Supplementary table 5 shows the
study characteristics of the present work.

To train the machine learning model and compare the perfor-
mance of the multimodal BAG, we defined the following two datasets:

• Training/validation/test dataset: To objectively compare the age
prediction performance of different MRI modalities and machine
learning models, we randomly sub-sampled 500 (250 females)
participants within each decade’s range from 44 to 84 years old,
resulting in the same 4000 participants for GM, WM, and FC-IDP.
This dataset was used to train machine learning models. In
addition, we ensured that the training/validation/test splits were
the same in theCVprocedure. AsUKBB is a general population,we
explicitly excluded participants with common brain diseases,
including mental and behavioral disorders (ICD-10 code: F;
N = 2678; Data-Field = 41270) and diseases linked to the central
nervous system (ICD-10 code: G group; N = 3336).

• Independent test dataset: The rest of the population for each MRI
modality (N = 38089) was set as independent test datasets—
unseen until we finalized the training procedure82.

The GM-IDP includes 119 GM regional volumes from the MUSE
atlas, consolidated by the iSTAGING consortium. We studied the
influence of different WM-IDP features: i) 48 FA values; ii) 109 TBSS-
based83 values fromFA,MD,ODI, andNDI; iii) 192 skeleton-basedmean
values from FA, MD, ODI, and NDI. For FC-IDP, 210 ICA-derived func-
tional connectivity components were included. The WM and FC-IDP
were downloaded from UKBB (Method 2B and C).

Method 2: Image processing
(A): T1-weightedMRI processing: The imaging quality check is detailed
in Supplementary Method 1. All images were first corrected for

magnetic field intensity inhomogeneity.84 A deep learning-based skull
stripping algorithm was applied to remove extra-cranial material. In
total, 145 IDPs were generated in gray matter (GM, 119 ROIs), white
matter (WM, 20 ROIs), and ventricles (6 ROIs) using a multi‐atlas label
fusionmethod85. The 119GMROIswere fit to the fourmachine learning
models to derive the GM-BAG.

(B): Diffusion MRI processing: UKBB has processed diffusion MRI
(dMRI) data and released several WM tract-based metrics for the Dif-
fusion Tensor Imaging (DTI) model (single-shell dMRI) and Neurite
Orientation Dispersion and Density Imaging (NODDI86) model (multi-
shell dMRI). The Eddy87 tool corrected raw images for eddy currents,
head motion, and outlier slices. The mean values of FA, MD, ODI, and
NDI were extracted from the 48 WM tracts of the “ICBM-DTI-81 white-
matter labels” atlas88, resulting in 192 WM-IDP (category code:134). In
addition, a tract-skeleton (TBSS)83 and probabilistic tractography
analysis89 were employed to derive weighted-mean measures within
the 27majorWM tracts, referred to as the 108 TBSSWM-IDP (category
code: 135). Finally, since we observed overfitting—an increase of MAEs
from the cross-validated test results to the independent test results—
when incorporating features from FA,MD, ODI, and NDI (as detailed in
Supplementary Table 1A), we chose to use only the 48 FA WM-IDPs to
train the models for generating GM-BAG.

(C):Resting-state functionalMRI processing: For FC-IDPs, we used
the 21 × 21 resting-state functional connectivity (full correlation)
matrices (data-field code: 25750) from UKBB90,91. UKBB processed
rsfMRI data and released 25 whole-brain spatial independent compo-
nent analysis (ICA)-derived components92; four components were
removed due to artifactual components. This resulted in 210 FC-IDP
quantifying pairwise correlations of the ICA-derived components.
Details of dMRI and rsfMRI processing are documented here: https://
biobank.ctsu.ox.ac.uk/crystal/crystal/docs/brain_mri.pdf.

Method 3: Multimodal brain age prediction using machine
learning models
GM,WM, and FC-IDPwerefit into fourmachine learningmodels (linear
and non-linear) to predict brain age as the outcome. Specifically, we
used SVR, LASSO regression,MLP, and a five-layer neural network (NN:
three linear layers and one rectified linear unit layer; Supplemen-
tary Fig. 13).

To objectively and reproducibly compare the age prediction
performance using different machine learning models and MRI mod-
alities, we adopted a nested CV procedure and included an indepen-
dent test dataset26. In detail, the outer loopCVwas conductedwith 100
repeated random splits: 80% of the data served for training and vali-
dation, while the remaining 20% was allocated for testing. In the inner
loop, if applicable, a 10-fold CV was performed for a grid search for
hyperparameter tuning of the machine learning models. In addition,
we concealed an independent test dataset—unseen for testing until we
finished fine-tuning the machine learning models82 (e.g., hyperpara-
meters for SVR). To compare the results of different models and
modalities, we showed MAE’s mean and empirical standard deviation
instead of performing any statistical test (e.g., a two-sample t-test).
This is because no unbiased variance estimate exists for complex CV
procedures (refer to notes from ref. 93).

Method 4: Genetic analyses
Imputed genotype data were quality-checked for downstream ana-
lyses. Our quality check pipeline (see below) resulted in 33,541 Eur-
opean ancestry participants and 8,469,833 SNPs. After merging with
the multimodal MRI populations, we included 31,557 European parti-
cipants for GM-BAG, 31,749 participants for WM-BAG, and 32,017
participants for FC-BAG GWAS. Details of the genetic protocol94 are
described elsewhere95,96. We summarize our genetic QC pipeline as
below. First, we excluded related individuals (up to 2nd-degree) from
the complete UKBB sample using the KING software for family
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relationship inference97. We then removed duplicated variants from all
22 autosomal chromosomes. Individuals whose genetically identified
sex did not match their self-acknowledged sex were removed. Other
excluding criteria were: i) individuals with more than 3% of missing
genotypes; ii) variants with minor allele frequency of less than 1%; iii)
variants with larger than 3% missing genotyping rate; iv) variants that
failed the Hardy-Weinberg test at 1 × 10−10. To adjust for population
stratification98, we derived the first 40 genetic principle components
(PC) using the FlashPCA software99.

(A): Genome-wide association analysis: For GWAS, we ran a linear
regression using Plink100 for GM, WM, and FC-BAG, controlling for
confounders of age, dataset status (training/validation/test or inde-
pendent test dataset), age × squared, sex, age × sex interaction, age-
squared × sex interaction, total intracranial volume, the brain position
in the scanner (lateral, transverse, and longitudinal), and the first 40
genetic principal components. The inclusion of these covariates is
guided by pioneer neuroimaging GWAS conducted by refs. 11, 13. We
adopted the genome-wide P-value threshold (5 × 10−8) and annotated
independent genetic signals considering linkage disequilibrium (see
below). We then estimated the SNP-based heritability using GCTA35

using the individual-level genotype data with the same covariates
in GWAS.

To check the robustness of our GWAS results using European
ancestry, we performed seven sensitivity checks, including i) split-
sample GWAS by randomly dividing the entire population into two sex
and age-matched splits, ii) sex-stratified GWAS for males and females,
iii) non-European GWAS, iv) fastGWA39 for a mixed linear model that
accounts for cryptic population stratification, v) machine learning-
specific GWAS, vi) feature type-specific GWAS, and vii) independent
GWAS using whole-genome sequencing (WGS) from ADNI (the quality
check steps are detailed elsewhere4 and also in the caption of Sup-
plementary Fig. 7).

(B): Phenome-wide association query for genomic loci associated
withother traits in the literature:Wequeried the candidate SNPswithin
each locus in the GWAS Catalog (query date: January 10th, 2023 via
FUMA version: v1.5.0) to determine their previously identified asso-
ciations with other traits. For these associated traits, we further map-
ped them into several high-level categories for visualization
purposes (Fig. 2B).

(C): Annotation of genomic loci and genes: The annotation of
genomic loci and mapped genes was performed via FUMA101

(https://fuma.ctglab.nl/, version: v1.5.0). For the annotation of
genomic loci, we first defined lead SNPs (correlation r2 ≤ 0.1, dis-
tance <250 kilobases) and assigned them to a genomic locus (non-
overlapping); the lead SNP with the lowest P value (i.e., the top lead
SNP) was used to represent the genomic locus. For gene mappings,
three different strategies were considered. First, positional map-
ping assigns the SNP to its physically nearby genes (a 10 kb window
by default). Second, eQTL mapping annotates SNPs to genes based
on eQTL associations. Finally, chromatin interaction mapping
annotates SNPs to genes when there is a significant chromatin
interaction between the disease-associated regions and nearby or
distant genes.101 The definition of top lead SNP, lead SNP, inde-
pendent significant SNP, and candidate SNP can be found in Sup-
plementary Method 2.

(D): Gene-drug-disease network construction: We curated data
from the Drug Bank database (v.5.1.9)102 and the Therapeutic Target
Database (updated by September 29th, 2021) to construct a gene-
drug-diseasenetwork. Specifically, we constrained the target to human
organisms and included all drugs with active statuses (e.g., patented
and approved) but excluded inactive ones (e.g., terminated or dis-
continued at any phase). To represent the disease, we mapped the
identified drugs to the Anatomical Therapeutic Chemical (ATC) clas-
sification system for the Drugbank database and the International
ClassificationofDiseases (ICD-11) for the Therapeutic Target Database.

(E): Genetic correlation: We used LDSC36 to estimate the pairwise
genetic correlation (rg) betweenGM,WM, and FC-BAG and several pre-
selected traits (Supplementary Table 3) by using the precomputed LD
scores from the 1000 Genomes of European ancestry. The following
pre-selected traits were included: Alzheimer’s disease (AD), autism
spectrum disorder (ASD), attention-deficit/hyperactivity disorder
(ADHD), OCD, major depressive disorder (MDD), bipolar disorder
(BIP), schizophrenia (SCZ), education and intelligence, as well as the
AI-derived subtypes for AD (AD1 and AD24), ASD (ASD1, ASD2, and
ASD346), and SCZ (SCZ1 and SCZ247). To ensure the suitability of the
GWAS summary statistics, we first checked that the selected study’s
population was of European ancestry. We then guaranteed amoderate
SNP-based heritability h2 estimate and excluded the studies with
spurious lowh2 (<0.05).Notably, LDSC corrects for sample overlap and
provides an unbiased estimate of genetic correlation103. The h2 esti-
mate from LDSC is generally lower than that of GCTA because LDSC
uses GWAS summary statistics and pre-computed LD information and
has slightly different model assumptions across different software.

(F): Partitioned heritability estimate: Partitioned heritability ana-
lysis estimates the percentage of heritability enrichment explained by
annotated genome regions51. First, the partitioned heritability was
calculated for 53 main functional categories. The 53 functional cate-
gories are not specific to any cell type, including coding, UTR, pro-
moter, and intronic regions. Details of the 53 categories are described
elsewhere51 and are also presented in Supplementary data 11A. Sub-
sequently, cell type-specific partitioned heritability was estimated
using gene sets from ref. 104 for three main cell types (i.e., astrocyte,
neuron, and oligodendrocyte) (Supplementary data 11B).

(G):PRSprediction:We calculated the PRS using theGWAS results
from the split-sample analyses. The weights of the PRS were defined
based on split1 data (training/base data), and the split2 GWAS sum-
mary statistics were used as the test/target data. The QC steps for the
base data are as follows: i) removal of duplicated and ambiguous SNPs
for the base data; ii) clumping the base GWAS data; iii) pruning to
remove highly correlated SNPs in the target data; iv) removal of high
heterozygosity samples in the target data; v) removal of duplicated,
mismatching and ambiguous SNPs in the target data. After rigorous
QC, we employed two methods to derive the three BAG-PRS in the
split2 population: i) PLINK with the classic C + T method (clumping +
thresholding) and ii) PRS-CS57 with a Bayesian approach.

To determine the “best-fit” PRS P-value threshold, we performed a
linear regression using the PRS calculated at different P value thresh-
olds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5), controlling for age, sex, total
intracellular volume, brain position during scanning (lateral, trans-
verse, and longitudinal), and the first forty genetic PCs. A null model
was established by including only the abovementioned covariates. The
alternative model was then constructed by introducing each BAG-PRS
as an extra independent variable.

(H): Two-sample Mendelian Randomization: We investigated
whether the clinical traits previously associated with our genomic loci
(Fig. 2B) were a cause or a consequence of GM,WM, and FC-BAG using
a bidirectional, two-sample MR approach. GM, WM, and FC-BAG are
the outcome/exposure variables in the forward/inverse MR, respec-
tively. We applied five different MRmethods using the TwoSampleMR
R package58, including the inverse variance weighted (IVW), MR
Egger105, weighted median106, simple mode, and weighted mode
methods. We reported the results of IVW in the main text and the four
others in Supplementary data 10. MR relies on a set of crucial
assumptions to ensure the validity of its results. These assumptions
include the requirement that the chosen genetic instrument exhibits a
strong association with the exposure of interest while remaining free
fromdirect associations with confounding factors that could influence
the outcome. Additionally, the genetic variant used in MR should be
independently allocated during conception and inheritance, guaran-
teeing its autonomy from potential confounders. Furthermore, this
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genetic instrument must affect the outcome solely through the
exposure of interest without directly impacting alternative pathways
that could influence the outcome (no horizontal pleiotropy). The five
MR methods handle pleiotropy and instrument validity assumptions
differently, offering various degrees of robustness to violations. For
example, MR Egger provides a method to estimate and correct for
pleiotropy, making it robust in the presence of horizontal pleiotropy.
However, it assumes that directional pleiotropy is the only form of
pleiotropy present.

To ensure an unbiased selection of exposure variables, we fol-
lowed a systematic procedure guided by the STROBE-MR Statement107.
We pre-selected exposure variables across various categories based on
our phenome-wide association query. These variables encompassed
neurodegenerative diseases (e.g., AD), liver biomarkers (e.g., AST),
cardiovascular diseases (e.g., the triglyceride-to-lipid ratio in VLDL),
and lifestyle-related risk factors (e.g., BMI). Subsequently, we con-
ducted an automated query for these traits in the IEU GWAS
database108, which provides curated GWAS summary statistics suitable
for MR, using the available_outcomes() function. We ensured the
selected studies used European ancestry populations and shared the
same genome build as our GWAS (HG19/GRCh37). Additionally, we
manually examined the selected studies to exclude any GWAS sum-
mary statistics overlapping with UK Biobank populations to prevent
bias stemming from sample overlap109. This process yielded a set of
seven exposure variables, comprising AD, breast cancer, type 2 dia-
betes, renin level, triglyceride-to-lipid ratio, aspartate aminotransfer-
ase (AST), and BMI. The details of the selected studies for the
instrumental variables (IVs) are provided in Supplementary Table 4.

We performed several sensitivity analyses. First, a heterogeneity
test was performed to check for violating the IV assumptions. Hor-
izontal pleiotropy was estimated to navigate the violation of the IV’s
exclusivity assumption63 using a funnel plot, single-SNP MR approa-
ches, and MR Egger estimator105. Moreover, the leave-one-out analysis
excluded one instrument (SNP) at a time and assessed the sensitivity of
the results to individual SNP.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This study used the UK Biobank resource under Application Number
35148. No software was used for data collection. The GWAS summary
statistics generated from our analyses are publicly available at the
MEDICINE portal: https://labs.loni.usc.edu/medicine/organ_systems/
brain. The raw imaging data are restricted to registered researchers
and are protected and unavailable due to data privacy laws; access can
be obtained at https://www.ukbiobank.ac.uk/. The gene-drug-disease
network used data from the Drug Bank database (v.5.1.9: https://go.
drugbank.com/) and the Therapeutic Target Database (updated by
September 29th, 2021: https://idrblab.net/ttd/). Our genetic analyses
also used GWAS summary statistics from the IEU OpenGWAS database
(https://gwas.mrcieu.ac.uk/) (Supplementary Table 3) and GWAS Cat-
alog (https://www.ebi.ac.uk/gwas/) (Supplementary Table 4).

Code availability
The software and resources used in this study are all publicly available:
MLNI: https://anbai106.github.io/mlni/, brain age prediction (v0.1.2),
MEDICINE: https://labs.loni.usc.edu/medicine, knowledge portal for
dissemination and GWAS summary statistics sharing, MUSE: https://
www.med.upenn.edu/cbica/sbia/muse.html, image preprocessing for
GM-IDP (v0.0.1), PLINK: https://www.cog-genomics.org/plink/, GWAS
and PRS (plink 2.0), FUMA: https://fuma.ctglab.nl/, gene mapping,
genomic locus annotation (v1.5.0), GCTA: https://yanglab.westlake.
edu.cn/software/gcta/#Overview, heritability estimates, and fastGWA

(v1.94.1), LDSC: https://github.com/bulik/ldsc, genetic correlation,
partitioned heritability, and heritability estimates (git version:
aa33296), TwoSampleMR: https://mrcieu.github.io/TwoSampleMR/
index.html, MR (v0.5.6), PRS-CS: https://github.com/getian107/
PRScs, PRS (Aug 10, 2023).
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