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An analysis of the accuracy of retrospective
birth location recall using sibling data

Stephanie von Hinke 1,2,3 & Nicolai Vitt 1

Many surveys ask participants to retrospectively record their location of birth.
This paper examines the accuracy of such data in the UK Biobank using a
sample of full siblings. Comparison of reported birth locations for siblingswith
different age gaps allows us to estimate the probabilities of household moves
and ofmisreported birth locations. Our first contribution is to show that there
are inaccuracies in retrospective birth location data, showing a sizeable
probability of misreporting, with 28% of birth coordinates, 16% of local dis-
tricts and 6% of counties of birth being incorrectly reported. Our second
contribution is to show that such error can lead to substantial attenuation bias
when investigating the impacts of location-based exposures, especially when
there is little spatial correlation and limited time variation in the exposure
variable. Sibling fixed effect models are shown to be particularly vulnerable to
the attenuation bias. Our third contribution is to highlight possible solutions
to the attenuation bias and sensitivity analyses to the reporting error.

Retrospective data collection on residential locations is common in
secondary data sources. For example, many datasets include indivi-
duals’ residential location at birth or in early childhood, recollected by
survey participants in adulthood or older age (e.g. the US National
Longitudinal Survey of Youth 1979, the UK Biobank (UKB) and
Understanding Society, the German Socio-Economic Panel, the Dutch
Lifelines cohort and the Generation Scotland cohort). These location
data have in turn been used in a wide range of empirical applications,
such as those studying geographicmobility1,2, geographic stratification
and spatial correlation of genetic variation3–8, assortative mating and
social homogamy9,10, but they have also been used to capture regional
differences in infrastructure, health or economic circumstances, such
as the staggered roll-out of policy11. Similarly, they have allowed
researchers to include area of birth fixed effects to account for sys-
tematic differences between geographical areas12,13, and to merge in
external informationon (area-level) weather, health or socio-economic
information14–21. We discuss a number of high-profile studies that use
the birth location data in different empirical applications in Supple-
mentary Note 1. Despite much research in a wide range of applications
relying on these retrospectively recorded (birth) locations, very little
work has explored the accuracy of these data, especially considering
they often rely on individuals’ correct 30+ year recall. With that, there

is also little work on the consequences of such inaccuracies, as well as
how these depend on different (spatial and temporal) parameters of
the data-generating process. This is the aim of our paper.

We focus on the UKB, a large cohort study of half a million indi-
viduals aged 45–69 between 2006 and 2010. It includes detailed
environmental, lifestyle, health and genetic data, but has very limited
information on the environment in which individuals grew up and the
circumstances during their early childhood. It does, however, record
individuals’ location of birth. These data are based on the following
question which was asked by the interviewers to any participant who
indicated being born in England, Scotland orWales: “What is the town
or district you first lived in when you were born?” Based on the
respondent’s answer, the interviewer selected the correspondingplace
from a very long and detailed list of place names in the UK. The
birthplace was then converted into coordinates (eastings and north-
ings at a 1-km resolution) which are provided in the data. Supple-
mentary Background 1 illustrates how birth locations are mapped to
1-km coordinates.

The first contribution of this paper is to explore the accuracy of
these data. We exploit the fact that the UKB includes a sample of
approximately 40,000 full siblings which can be identified using the
genetic kinship matrix. We start by constructing a binary variable
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indicating whether two siblings reported different locations of birth.
Assuming that the siblings grewup together, their location of birth can
differ for two reasons. First, the family may have moved house
between the births of their two or more children (i.e. a ‘true’ change in
their birth location). Second, theremaybe anerror in thebirth location
recorded for (at least) one of the siblings. For the former, we assume
that a longer spacing between births linearly increases the probability
of a house move; something we test empirically below. The latter can
occur due to three reasons. First, a UKB participant could have incor-
rectly recalled their location of birth. Second, any differential record-
ing across interviewers can cause errors in the location (e.g. recorded
at different levels of detail). Third, itmayhave been caused by errors in
processing the reported birthplace to grid coordinates if siblings differ
in the precision of their reporting (holding constant the interviewer).
We refer to the latter three ‘location errors’ as measurement error.

We examine the relationship between the differences in siblings’
reported birth location and the age gap between the siblings. This
allows us to derive the probabilities of house moves as well as mis-
reporting. We explore heterogeneity in these probabilities across a
wide range of factors, including birth cohorts, district types, popula-
tion density, UKB assessment centre locations (at which the
birth location was recorded), region of birth, siblings’ sex, districts’
socio-economic composition and siblings’ polygenic index (PGI) for
education. We explore the robustness of our error probability esti-
mates using a subsample of UKB participants who reported their
birthplace twice, ruling out house moves and reducing any individual
reporting error.

The second contribution of this paper is to highlight the potential
implications of using retrospective birth locationdata for research. It is
well-known that conventional measurement error in explanatory
variables causes attenuation bias in the estimated coefficients in a
linear regression. To the extent that individuals’ recorded birth loca-
tions reflect conventionalmeasurement error, using birth locations (or
external data merged based on birth locations) as explanatory vari-
ables will lead to attenuation bias. Formany applications, however, the
measurement error is unlikely to be classical. Allowing for non-classical
measurement error, we explore the extent of this attenuation bias
using Monte Carlo simulations for measures of disease exposure,
demographic variables, and simulated spatial data with varying levels
of spatial correlation and time variation.

The third contribution is to discuss potential solutions to the
attenuation bias and possible sensitivity analyses to the reporting
error. Although any solution will depend on the empirical analysis and
the sample of interest, we discuss three possibilities, highlighting their
advantages as well as potential drawbacks.

Results
Differences in siblings’ birth location
We start by graphically presenting the unadjusted relationship
between the discordance of siblings’ birth locations and their age gap
in Fig. 1. Panels a–i show the relationship for different levels of birth
location accuracy. Panels a–c plot the share of sibling pairs reporting
different parishes, districts or counties of birth, respectively. This
shows that 28–30% of twins (i.e. siblings with an age gap of 0 years)
report coordinates in different parishes and districts, with 8% report-
ing birth coordinates that are located in different counties. Further-
more, the graphs show a clear increase in this discordance as the age
gap between siblings increases. This is expected since an increase in
birth spacing also increases the likelihood of a house move between
the two births.

To explore what may be driving the relatively large proportion
reporting a different geographic area of birth for those born within a
small age gap, we examine the shares of siblings reporting birth loca-
tions more than 0, 5, 10, 20, 30 and 50 km apart in panels d–i. This
shows a similar positive relationship between the age gap and the

probability of siblings reporting different coordinates. In fact, we show
below that the slope coefficient in a linear regression is very similar
across specifications. Furthermore, we show that the discordance
between siblings is mainly driven by relatively small differences in
eastings and northings. Indeed, 42% of twins report birth location
coordinates that differ (i.e. aremore than0 km apart), but this reduces
to 21% when we define discordance as those who report locations at
least 5 km apart, 11% at 10 km and 6% at 20 km. From 30 km onwards,
the discordance share among twins is fairly stable at 3%.

We next quantify the relationship between the siblings’ age gap
and the discordance of their reported birth location further using a
linear regression. In addition to the estimated discordance for twins
(i.e. those with an age gap of zero; the constant), the top panel of
Table 1 shows that each additional year between the birth of two sib-
lings increases the probability of reporting different coordinates by
approximately 1 percentage point. While this estimate is very similar
across the different specifications, it does decrease with distance,
indicating that the probability of a long-distance move is lower than
the probability of any move.

Finally, we investigate potential non-linearities in the relationship
between the discordance of birth location and the siblings’ age gap.
Supplementary Table 1 shows that adding a quadratic term only mar-
ginally changes the estimated probabilities, suggesting that the linear
specification in Table 1 is appropriate.

Derived probabilities of household moves and
measurement error
The regression estimates in the top panel of Table 1 can be used to
derive the estimated annual probabilities of a household move, which
we define as bq (equivalent to the slope coefficient on the sibling age
gap in the toppanel), aswell as theprobability ofmeasurement error in
the reporting of an individual’s birth locations, denoted by bp (derived
using Equation (4) in the ‘Methods’ section). These derived prob-
abilities are shown in the bottom panel of Table 1. These derivations
rely on a number of simplifying assumptions: (1) if siblings report the
same birth location, we assume this is the true birth location, (2) bio-
logical siblings have grown up in the same household, (3) the move
probability increases linearlywith the age gapbetween the two siblings
and (4) errors in the birth location occur randomly with the same
probability across all participants, are independent within sibling pairs
and independent of the sibling age gap. A more detailed discussion of
these assumptions can be found in the ‘Methods’ section.

The probability of an error in participants’ birth coordinates (at a
1-km resolution; column 4) is estimated to be 28.4%. However, a large
share of these errors is due to small differences in the birth location
with the estimated error probability reducing to 13.7% and 8.3% for
differences of more than 5 and 10 km, respectively. Similarly, the
estimated probability of an error in a participant’s birth parish and
district are 16.8% and 15.8%, respectively. Errors with a large difference
in birth location are relatively rare, with an estimated error probability
of 6.3% for participants’ county of birth, and 3.4% for birth location
differences of more than 50 km.

In Supplementary Results 2 we explore heterogeneities in the
annual probability of a household move and the probability of mea-
surement error along several dimensions. We find that later (i.e.
younger) cohorts and those living in rural, lessdensely populated areas
exhibit more measurement error. Our results furthermore show that
mobility is higher among families initially living in rural and highly
educated areas. Finally, we observe substantial differences in mea-
surement error across the assessment centre locations at which par-
ticipants completed their initial interview, as well as individuals’
regions of birth.

In Supplementary Results 3 we conduct a supplementary analysis
of the measurement error in birth location using a UKB sub-sample of
participants who were asked to report their birth location more than
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once. This allows us to distinguish between variation driven by house
moves (which can be ruled out in repeated reports of birth location)
and measurement error (which cannot). Similar to the sibling
approach, the error probability estimated in this sub-sample captures
interviewer effects, since it is likely that interviewers differed between
siblings and between repeat interviews. Additionally, the repeat mea-
sures will also capture time-varying individual-reporting errors, which
in turn may also lead to processing errors. Time-invariant individual
reporting errors, however,will not be captured in the analysis of repeat
measures.

Ourfindings show that the errorprobabilities in participants’birth
locations that are based on the repeat measures are lower than those
based on the sibling comparison in Table 1. For small error distances
up to 5 km as well as for parish and district errors, the difference in
probabilities to the sibling comparison is relatively small (e.g. 24.6% vs
28.4% for any error distance). However, for larger error distances the
error probabilities derived from the repeat location reports are sub-
stantially lower (e.g. 1.2% vs 3.4% for error distances over 50 km). Thus,
our results suggest that short-distance errors are mostly driven by the
interviewer, time-varying individual reporting and processing effects

(which are captured to a similar degree by both approaches). Long-
distance errors, on theother hand, aremore likely to bedriven by time-
invariant individual reporting errors (which are only captured in the
sibling comparisons).

Attenuation bias
Measurement error in birth locations may lead to attenuation bias
when investigating the impact of birth location-based variation in
exposures. The bias is increasing in the variance of the measurement
error, which is driven (i) by the probability of an error in the birth
location, (ii) by thedifference in the exposurebetween the true and the
reported place of birth and (iii) by the share of the variation in the
exposure that is driven by temporal (vs spatial) variation. Environ-
mental measures at a more granular, less aggregated level (e.g. at the
precise coordinate level) are subject to a higher probability of error in
the birth location, which will increase themeasurement error and thus
the attenuation bias. High levels of spatial correlation in the early life
environment reduce the consequences of errors in individuals’ birth
location reports and with that the resulting attenuation bias. In con-
trast, low levels of spatial correlation increase attenuation bias, since
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Fig. 1 | Differences in siblings’birth location and their age gap. a–iBirth location
differences at different levels of location accuracy as indicated above each panel.
Points are the share of sibling pairs reporting different birth locations among sib-
ling pairs with the given (rounded) age gap. Vertical bars represent 95% confidence
intervals. The dashed line is a linearfit for the relationship between the discordance

share and the age gap. Source data are provided as a source data file. The graph is
basedon a sample size ofn = 18,314 sibling pairs. Due to the small number of sibling
pairs with an age gap of 15.5 years or above (165 pairs), these are omitted from
this graph.
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small errors in birth locations can have large consequences for the
measurement error in the exposure variable. Temporal variation in the
early life environment is not affected by the measurement error of
birth locations, thus the larger the share of variation in the exposure
that is driven by temporal (as opposed to spatial) variation, the smaller
the susceptibility to the attenuation bias.

Sibling fixed effects models may be particularly vulnerable to
attenuation bias as they rely on differences in exposure between sib-
lings. Such differences in exposure may be due to siblings’ differences
in their location or date of birth. In cases where the exposure mainly
captures spatial (rather than temporal) variation, sibling differences in
the exposure will be largely driven by measurement error. Based on
our estimates in Table 1 and the average age gap between siblings of
4.5 years, we conclude that approximately 80–85% of birth location
differences are driven by misreporting and only 15–20% are due to
housemoves. In other words, variation due to measurement error will
dominate true variation in themeasured exposurewhen time variation
in the exposure is low.With higher levels of time variation, the share of
true variation in the measure of exposure will increase, and the
attenuation bias will reduce.

We quantify the size of the attenuation bias using Monte Carlo
simulations for a variety of exposures with varying levels of spatial
correlation and temporal variation and for linear regression (ordinary
least squares; OLS) as well as sibling fixed effect specifications. Figure 2
shows the size of the attenuation bias for simulated spatial data at the
district-of-birth level (we repeat this exercise at coordinate and parish
levels of geographical aggregation in Supplementary Results 4). Panel a
gives the percentage attenuation bias of the slope coefficient in a
bivariate linear regression. For exposure variables without spatial cor-
relation and time variation, the bias is predicted to be approximately
16.5%. As the spatial correlation increases, the consequences of mea-
surement error in the birth location for the exposure variable are
reduced and the attenuation bias shrinks. As the share of time variation
increases, a smaller share of the overall variance in the exposure is
subject to measurement error and the attenuation bias is reduced.
Exposures with 100% variance due to time variation are no longer
subject to any bias, as spatial measurement errors no longer have any
consequences on the exposure. Themaximumbias for exposures at the
birth coordinate (Supplementary Fig. 4) and parish level (Supplemen-
tary Fig. 5) is 28% and 17%, respectively, and again the bias decreases as
spatial correlation and time variation of the exposure increases.

In Fig. 3wepresent the simulated attenuation bias for examples of
previously studied or otherwise relevant district-level exposure vari-
ables with different levels of spatial and temporal variation (from
alternative data sources; see note to figure), where each exposure has
been standardised to havemean zero and standard deviation one. The
predicted bias of OLS estimates ranges from 5.6% for the exposure to
the infant mortality rate during the first year of life to 23% for the time-
invariant share of social class III from the 1951 census. Note that the
bias of OLS estimates for some of these examples exceeds the bias for
simulated district-level exposures in Fig. 2. While the simulated
exposures assume identical distributions of exposures for sibling pairs
reporting the same birth location and sibling pairs who do not, this
does not hold for all examples and can lead to a larger attenuation bias
if the variance of an exposure is larger among sibling pairs reporting
different birth locations.

Panel b of Fig. 2 reports the attenuation bias in sibling fixed effect
models for simulated district-level exposures. We find a very large
attenuation bias of 87–88% when the exposure variable does not vary
over time. For data at the birth coordinate (Supplementary Fig. 4) and
parish level (Supplementary Fig. 5) the bias is up to 90% and 88%,
respectively. Even an increase in spatial correlation does not reduce
this bias substantially in the absence of any time variation, since the
true variation in the exposure from household moves and the false
variation from measurement error decrease at the same rate. ForTa
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exposures that do vary over time and space, an increase in spatial
correlation does reduce the bias. Furthermore, increases in the tem-
poral variation reduce the bias substantially, shrinking it to zero for
exposures driven solely by time variation. For the examples of district-
level exposure variables (Fig. 3), the attenuation bias in a sibling fixed
effectsmodel is substantially larger than in bivariate linear regressions.
The predicted bias ranges from 10% for exposure to highly time-
varying measles rates to 87–88% for the census-based demographic
measures as they are (by construction) time-invariant. These findings
are in line with the measurement error literature22,23 which show that
fixedeffects estimationsmay aggravate the attenuationbias, especially
in cases where the signal is highly correlated over time (i.e. little time
variation in the true exposure) but the error is not (i.e. no or little
correlation between siblings’ birth location errors).

Bias in analyses controlling for district of birth fixed effects
Even if the variable of interest is measured without error, the corre-
sponding regression coefficient may be subject to omitted variable
bias when control variables (including birth location fixed effects) are
subject to measurement error, thereby omitting part of the true con-
trol variable24–26. In other words, measurement error in the birth
location data may lead to bias in the coefficient of interest in analyses
that rely on birth location fixed effects as control variables27. This bias
differs in important aspects from the attenuation bias when the vari-
able of interest (i.e. not the control variable) is measured with error. In
the case of classical measurement error in a control variable, the
resulting “partially omitted variable bias” in the variable of interest will
be smaller inmagnitude and in the samedirection as the bias from fully
omitting the control variable. Thus, measurement error of control
variables will not necessarily cause attenuation bias in the coefficient
of interest but indeed can lead to bias away from zero. Unlike classical
attenuation bias, the “partially omitted variable bias” is not propor-
tional to the coefficient of interest and can therefore arise even when
the variable of interest has no impact on the outcome.

We useMonte Carlo simulations to quantify the size of this bias in
estimations controlling for district of birth fixed effects when the
variable of interest is correctly observed but the district of birth is
subject to measurement error. Supplementary Fig. 6 shows the size of
the bias for different spatial autocorrelations (ρ) in the district fixed
effects and different correlations between the fixed effects and the
variable of interest. Our simulations show the bias to be proportional
to the ratio of the standard deviation of the district fixed effects
to that of the variable of interest (σμ/σX). We therefore pool the
simulation results for different standard deviations and express the
bias in units of σμ/σX.

The direction of the bias corresponds to the sign of the correla-
tion between the variable of interest and the fixed effects: if they are
positively (negatively) correlated, the bias is positive (negative). Simi-
lar to the bias from fully omitted control variables, the magnitude of
the bias is increasing in the correlation of the variable of interest and
the control variable, in this case, the district fixed effects. A higher
spatial autocorrelation in the district fixed effects reduces the size of
the bias, with errors in the district of birth having smaller con-
sequences for the fixed effects.

Hence, in summary, our simulations show that measurement
error in birth locations may lead to substantial bias in regressions that
control for place of birth fixed effects, even when the variable of
interest ismeasured accurately. Thebiaswill beparticularly large in the
presence of substantial fixed effects relative to the variation in the
variable of interest (i.e. a large value for σμ/σX), when the variable of
interest is strongly correlated with the fixed effects and when there is
little spatial correlation in the fixed effects.

Consequences of discordance in siblings’ birth location for the
spatial correlation of genetic principal components
Principal components of genotype data are spatially correlated within
the United Kingdom4,7. Measurement error in birth location data and
household mobility is therefore expected to affect the strength of
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Fig. 2 | Attenuation bias for district-level data with different levels of spatial
correlation and time variation. aBias in ordinary least squares estimations, b bias
in sibling fixed effects estimations. The attenuation bias values shown are themean
bias (in %) from simulations of OLS and sibling fixed effects estimations with
r = 1000 repetitions and sample sizes of n = 36,940 individuals each. For each level
of spatial autocorrelation (ρ), ten district-level variables were simulated and
merged into the sibling sample. The district-level spatial variables were combined

with normally distributed year–month of birth fixed effects to simulate time-
varying spatial exposures. The columns of the tables correspond to different ratios
of spatial to temporal variationwhen simulating the exposure variable, as indicated
by the share of the exposure variancedue to time variation. Each simulated variable
was then used in 100 simulations of the attenuation bias based on an error prob-
ability for the district of birth p =0.158 and a move probability q =0.009. Source
data are provided as a source data file.
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these spatial correlations. We explore this in the following. Supple-
mentary Fig. 7 confirms the strong levels of spatial correlation for the
first five principal components in the UKB (based on principal com-
ponent analysis for a homogeneous population of white British UKB
respondents; Moran’s I >0.8 at the district level). We find much less
spatial correlation for the sixth principal component and therefore do
not focus our discussion on the latter.

The vertical axis of Fig. 4 shows the correlation of each genetic
principal component between individuals in the sibling sample and the
mean among individuals in the non-sibling sample who reported the
same birth location, including their 95% error bars. We estimate these
correlations separately for siblings with different levels of discordance
in their reported birth location, measured along the horizontal axis.
Correlations between siblings without any discordance in birth loca-
tion and others reporting the same birth location are above 0.35 for
the first five principal components, with some as high as 0.6. As the
distance between siblings’ reported birth location increases in Fig. 4,
the correlation with others reporting the same birth location reduces.

Indeed, when comparing siblings who reported being born more than
200 km apart (3.6% of sibling pairs) to those without any discordance,
the correlation coefficients decrease by more than 40% for all five
spatially structured principal components. These are significant dif-
ferences for each of the first five principal components. Note that the
figures look similar when we separately plot them for first- and later-
borns. These results illustrate the impact of household mobility and
measurement error on the estimation of the spatial structure of
genetic data.

Possible solutions
What can we do to investigate the robustness of estimates that exploit
the retrospectively reported birth location data? Although any solu-
tion will depend on the empirical analysis and the sample of interest,
we here discuss three possible solutions, highlighting their advantages
as well as potential drawbacks. First, for analyses that do not focus on
within-sibling variation, a potential sensitivity analysis is to limit the
sample to siblings who reported the same birth location. While this
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ability for the district of birth p =0.158 and a move probability q =0.009. The
individual sample sizes used in the simulations differ between the different

exposure variables and are provided in the source data. Disease data are from the
Registrar General’s Weekly Reports39,40, demographic data are from the Registrar
General’s Statistical Reviewof England andWales41 and 1951 census34,42. Source data
are provided as a source data file.
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means omitting non-siblings as well as siblingswho experienced house
moves in childhood from the analysis, it allows focusing on a sub-
samplewithmore reliable (i.e. with less error in the) birth locationdata.
In Supplementary Analysis 1 we apply this sensitivity check to replicate
someof the analysis of a high-profile study that uses birth locationdata
in the UKB4.

Second, one could use siblings’ reported birth location as an
instrument for the imperfectly measured birth location of an indivi-
dual. This can be used to address themeasurement error and resulting
attenuation bias in the estimates, e.g. using an Obviously Related
Instrumental Variables (ORIV28), approach similar to research using
this to deal with measurement error in polygenic indices29. The
downside, however, is that the measurement error in retrospectively
recorded birth locations is non-classical. In such cases, ORIV estimates
are unlikely to overcome the bias23. Indeed, our simulations show that
ORIV estimates remain biased.

Finally, if the interest lies in estimating causal gene–environment
(G × E) interactions (an increasingly popular application of sibling data
since the random within-sibling variation in genes allows a causal
interpretation30) we recommend using an alternative approach to a
sibling fixed effects specification due to the large attenuation bias in
thesemodels.More specifically, if the environmentalmeasure (based
on birth date and place) is exogenous both within and between sib-
lings (i.e. when the sibling fixed effects are not required for a causal
interpretation of the environmental effect), it is better to use the
deviation of a sibling’s genetic measure from the mean of the sibling
pair (or group) as an exogenous source of genetic variation in the
sibling sample14,21, but use both within- and between-sibling variation
in the environmental measure to avoid attenuation bias from mea-
surement error in the birth location. Instead of using this sibling
mean deviation, one can alternatively control for the (imputed)
parental genotypes31.

Discussion
A large number of data surveys ask participants to retrospectively
record their residential location of birth. This information has been
used in many research papers across a wide range of empirical appli-
cations. Despite their frequent use, there is little information on how
accurate these data are, especially since they often rely on individuals’
accurate 30+ year recall. To address this, we explore the accuracy of
retrospectively recorded birth location data by studying the sample of
full siblings in the UKB. Our paper makes three distinct contributions.
First, assuming that siblings grewup together, our analysis allows us to
decompose the discordance in birth location into two components
and quantify the importance of both: household moves and mea-
surement error. Our estimates suggest that householdmobility during
the early childhood period was low, with an estimated average annual
move probability of 1.2%. Although our results show substantial mea-
surement error in participants’ birth location, in the majority of cases,
participants report nearby locations,meaning thatmost errors are of a
short distance.

Our second contribution is to discuss the implications of mea-
surement error in reported birth locations. We show that the con-
sequences depend on what the birth location data are used for. We
focus on the attenuation bias that results from the use of external data
merged based on individuals’ location and date of birth as explanatory
variables in a regression. We quantify the size of this bias using Monte
Carlo simulations for a variety of exposure variableswith varying levels
of spatial correlation and time variation, including disease exposures
and demographic variables.

Since themajority of errors are of a short distance, analyses at the
coordinate level aremore strongly affected thananalyses at thedistrict
or parish level. We show that, as the share of temporal variation aswell
as the spatial correlation in the variable of interest increases,
attenuation bias reduces. Hence, the estimated impacts of exposures
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Fig. 4 | Correlation of siblings’ genetic principal components with others
reporting the same birth location. The figures show the correlation between the
genetic principal components of individuals in our sibling sample (n = 33,229
individuals) and the mean genetic principal components of non-sibling UKB par-
ticipants who reported the same birth coordinates. Vertical bars represent 95%
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locations of the individuals and their siblings. Principal components are based on
principal component analysis conducted on unrelated white british individuals in
theUKB. SNPswere filtered basedonminor allele frequency >0.01 and clumped for
linkage disequilibrium based on minor allele frequency (R2 > 0.1). Long-range link-
age disequilibrium regions were removed. Source data are provided as a source
data file.
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that show substantial temporal variation, such as disease or infant
mortality rates, are substantially less attenuated compared to the
impact of exposures that are time-invariant, such as census-based
measures of socio-economic composition. We show that sibling fixed
effect specifications, only exploiting variation in the outcomes and
variables of interest within families (between siblings), are particularly
vulnerable to the attenuation bias, with the bias exceeding 80% when
using time-invariant exposure variables. We thus recommend caution
when using the UKB birth location data, especially when estimating
sibling fixed effects models where the variable of interest has limited
time variation and thus a low ratio of signal to error.

Our third contribution is to highlight possible solutions to the
attenuation bias. Although these will depend on the sample of interest
(e.g. siblings, non-siblings), the variation used (e.g. within vs between
family variation) and the estimate of interest (e.g. the effect of envir-
onmental exposure at birth or gene–environment interplay), we
highlight three possible sensitivity analyses. This will allow the
researcher to explore the importance of the attenuation bias and
robustness to alternative specifications.

More generally, the results in this paper highlight the impact of
measurement error in birth location data on regression estimates that
exploit this information. We show substantial attenuation bias that is a
function of the spatial correlation and temporal variation of the vari-
able of interest. Finally, we show that the measurement error also
impacts on the spatial structure of the genetic data.

Methods
UK Biobank sibling sample
The UKB is a large-scale, mostly biomedical database of over 500,000
individuals living in the UK. It has received ethical approval from the
NHS North West Centre for Research Ethics Committees (references:
11/NW/0382, 16/NW/0274, 21/NW/0157).We focus on the sampleof full
siblings, identified using their genetic data, which includes 41,441 UKB
participants. TheUKBdid not explicitly sample families or households,
but nevertheless does contain a substantial number of related indivi-
duals. Family relationships to other participants were not recorded in
the interviews, but we can identify biological relatives based on their
genetic relatedness. By using the kinshipmatrixprovidedby theUKB32,
we can identify related participants and derive their relationship. The
kinship matrix contains relatives up to the third degree and was con-
structed using the KING software33. A kinship coefficient of approxi-
mately 0.25 (interval: 0.1770–0.3540) suggests that the individuals are
either parent-offspring pairs or full siblings. One can then distinguish
between these two types of relationships by using the identity by state
(IBS0) coefficient: a coefficient above 0.0012 suggests that the pair of
individuals are siblings rather than parent and offspring.

Themain variables of interest in our analysis are individuals’ east
and north coordinates of birth (field IDs 129 and 130), reported at a
1-km resolution. We restrict the sample to families with at least two
siblings born in England, Wales and Scotland (3388 participants
dropped) and use the birth coordinates to identify their parish, local
government district (henceforth: district) and county of birth, using
the regional boundaries in 195134,35. Keeping the boundaries fixed
over time ensures that any regional boundary changes cannot drive
any differences in (e.g.) the parish or the district of birth. Our sibling
sample covers 2518 parishes, 1363 districts and 98 counties.We focus
on birth location data in the form of 1 km grid coordinates as well as
historical parishes, districts and counties sincemost applications use
information aggregated to these geographical identifiers (e.g. to
merge external data or as control variables). Furthermore, analysing
the actual grid coordinates allows us to examine errors before the
mapping to historical areas may introduce additional processing
errors.

Additionally, we restrict the sample to the oldest two siblings
observed in each family (1095 participants dropped). Our final sample

comprises 36,958 siblings from 18,479 families. Supplementary
Table 11 presents some descriptive statistics on our sibling sample,
showing that the age gap between siblings varies between 0 and 27
years, with a mean of 4.5 years. The data comprises 227 pairs of twins,
and 57.7% of the sibling sample are female. On average, siblings report
being born 22 km apart, though this is highly skewed, ranging from 0
to 1060 km. The sibling sample is relatively similar in individual and
district characteristics compared to the full UKB sample (see Supple-
mentary Table 12), with 63–66% having an upper secondary qualifica-
tion and 84–86% being born in an urban or municipal district.

Polygenic indices
We explore the heterogeneity of our results with respect to the sib-
lings’ genetic predisposition for educational attainment. For this pur-
pose, we use the PGI for education provided in the PGI repository36 to
split the sample into quartiles and below-/above-median sub-samples.
Specifically, we use the single-trait PGI provided in the repository for
(what they call) the first partition of theUKBwhich includes all siblings.
This PGI is based on a discovery sample of N = 984,323 which includes
the other two partitions of the UKB as well as other datasets such as
23andMe, AddHealth and HRS. In line with the current genetics lit-
erature, we restrict our sample in estimations involving PGIs to those
of European ancestry. Thus the sample size reduces from 18,479 sib-
ling pairs in ourmain estimations to 18,048 sibling pairs in estimations
with the PGI. In this sample, the PGI for educational attainment has an
incremental R2 of 10.9%.

Comparison of siblings’ birth locations
We start by constructing a binary variable indicating whether the sib-
lings reported being born in a different location. The variable ys equals
one if either the north or east coordinates differ between the two full
siblings of family s. We then estimate the following linear probability
model:

Pðys = 1jagegapsÞ=α + β× agegaps ð1Þ

where agegaps is the age gap (in years) between the two siblings in
family s. Hence, this assumes that the discordance in reported birth
location is driven by two processes: (1) ‘true’ differences due to house
moves and (2) reporting/measurement error. The extent to which
agegaps can explain variation in ys captures the former; the intercept α
captures the latter. We explore potential non-linearities in this
relationship in Supplementary Results 1. We furthermore estimate
linear probability models as described by Equation (1) for a variety of
alternative definitions of ys: different parishes of birth, different
districts of birth, different counties of birth and different birth
locations that are more than 5/10/20/30/50 km apart.

Birth date variables in the UKB are recorded at the year–month
level rather than at the daily level. This rounding introduces some
classical measurement error to the age gap variable used in our esti-
mations. The expected attenuation bias from this measurement error
can be derived to be 0.01% and thus should not have any substantial
impact on our estimates. Further measurement error in the reported
birthdate variable (and thus in the agegapbetween siblings) is likely to
be small. Suggestive evidence of the reliability of the birth date and age
gap variable is thatwe do not observe any sibling pairs with an age gap
of 1–8 months, as would be expected based on the length of human
gestation.

Deriving probabilities of household moves and
measurement error
We use the regression estimates of Equation (1) to derive the prob-
ability of a householdmove during childhood aswell as the probability
of measurement error in the location of birth. To derive these prob-
abilities, we make the following assumptions:
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Assumption 1. If both siblings in a sibling pair report the same birth
location, we assume this is the true birth location for both.

Assumption 1 recognises that we cannot identify misreporting of
birth locations if both siblings report the same incorrect birth
locations. Ignoring these unlikely cases will downward bias the
derived error probability. We furthermore cannot identify household
moves in cases where the siblings incorrectly report the same birth
location.

Assumption 2. We assume that biological siblings grew up in the same
household.

Assumption 2 ignores adoptions shortly after birth and other events
that may result in biological siblings growing up in different house-
holds. However, the frequency of such events in the UK during
1940–70 was likely low, and thus any resulting upward bias in the
derived error probability will be small.

Assumption 3. We assume that the probability of a move between the
birth of two siblings is a linear function of the age gap between them.

We empirically test Assumption 3 in Supplementary Results 1 by
allowing for non-linearities in the relationship between the sibling age
gap and the probability of house moves. While we find minor non-
linearities, these only affect the derived error probabilities to a small
degree.

Assumption 4. We assume that measurement error occurs randomly
with the same probability for any participant and that these errors are
independent within sibling pairs and independent of the age gap
between siblings.

Assumption 4 is unlikely to hold in reality. Indeed, we show in Sup-
plementary Results 2 that certain participant characteristics affect the
probability of housemoves andmeasurement errors. It is furthermore
likely that error occurrence is positively correlated among siblings, but
our data does not allow us to quantify this. Ignoring such a positive
within-sibling correlation will downward bias the derived error prob-
ability. However, simulations show that a very strong sibling correla-
tion is required to create substantial bias.

Under the above assumptions, the probability of a difference in
the reported birth location between two siblings can be written as:

Pðlocationsib1 ≠ locationsib2Þ= Pðmovesib1,sib2Þ +Pðerrorsib1 ∪ errorsib2Þ
= q× agegapsib1,sib2 + Pðerrorsib1 ∪ errorsib2Þ

ð2Þ

where q denotes the annual probability of a household moving to a
different location. The probability of an error in the birth location of
either sibling can be written as:

Pðerrorsib1 ∪ errorsib2Þ= Pðerrorsib1Þ+ Pðerrorsib2Þ � Pðerrorsib1 \ errorsib2Þ
=p+p� p2 = 2p� p2

ð3Þ

We use this to derive the probability p of an error in the birth location
of any respondent, defined as:

p= 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pðerrorsib1 ∪ errorsib2Þ

p
ð4Þ

Attenuation bias
Measurement error in the birth location data may have consequences
for the use of birth location-based explanatory variables in regression
analyses. “Classical” measurement error in explanatory variables

causes coefficient estimates in a linear regression to be biased towards
zero23,37. In Supplementary Note 2 we discuss this attenuation bias in
the presence of classical measurement error. Our application is unli-
kely to show classicalmeasurement error. For one, with themajority of
siblings reporting the same birth location, there is a spike at zero. Even
when ignoring the zeros, the normality of themeasurement errorsmay
not hold in our setting. In Supplementary Fig. 10, we show that the
distribution of errors in our district-level simulations is approximately
normal when spatial autocorrelations are small. Large levels of spatial
correlation, however, can lead to a leptokurtic distribution. Further-
more, one would expect a negative correlation between the true
explanatory variable and themeasurement error: if an exposure is high
(low) for the true birth location, it is more likely that the exposure in
themisreported birth location is below (above) the true exposure level
due to regression to the mean. We confirm this expectation in Sup-
plementary Tables 13 and 14, which show large negative correlations
between the true explanatory variable and the measurement error in
our district-level simulations; in particular when focusing on observa-
tions with non-zero measurement error.

We use Monte Carlo simulations to quantify the size of the
attenuation bias in linear regression (OLS) and sibling fixed effect
estimations for simulated data at the coordinate, parish and district
level with varying levels of spatial correlation and temporal variation,
as well as for several district-level measures of disease exposure and
demographics. The simulations are based on the birth location dif-
ferences observed in the data and therefore do not assume classical
measurement error.

Simulation of time-varying spatially correlated data. We begin by
simulating time-invariant spatially correlateddata at thedistrict, parish
and coordinate level based on a spatial autoregressive model with
spatial autocorrelation parameter ρ that ranges from −1 to 1 (if the
spatial weightingmatrix is row-standardised).A positiveρ corresponds
to spatial clustering, with larger values of ρ indicating stronger spatial
clustering. A negative ρ indicates spatial dispersion and ρ equals zero
when there is no spatial autocorrelation. We use the sim_sar com-
mand of the geostan package (for parish- and district-level data) and
the powerWeights command of the spatialreg package (for
coordinate-level data) in R to simulate 10 variables Sa,ρ for each spatial
aggregation level a (coordinate-, parish- and district-level) and spatial
autocorrelation parameter ρ∈ [0.00, 0.05, 0.10,…, 0.90, 0.95, 0.975].
We simulate ten variables (rather than one) to ensure that our simu-
lation results are not driven by an “outlier” in the spatial simulations,
which is particularly important when the number of spatial units is
relatively small.

To add time variation to the spatial data, we draw year–month of
birth fixed effects from a standard normal distribution (without any
temporal autocorrelation). We simulate a year–month of birth fixed
effect variable T for each of the simulated spatially correlated time-
invariant variables Sa,ρ. Finally, we create time-varying spatially corre-
lated variables for different shares of variance due to temporal varia-
tion k∈ [0.0, 0.2, 0.4, 0.6, 0.8, 1.0] by combining the standardised
time-invariant spatial variables and the standardised birth date fixed
effects as follows:

Va,ρ,k =
ffiffiffi
k

p
*T +

ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
*Sa,ρ ð5Þ

We standardise the resulting time-varying spatially correlated Va,ρ,k to
have a mean of zero and a standard deviation of one.

Simulation of attenuation bias. In our simulations of the attenuation
bias, the simulated time-varying spatially correlated variables Va,ρ,k as
well as a variety of standardised district-level measures of disease
exposure and demographics are merged with the sibling sample used
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in our main estimations to construct for each simulation run (i) the
observed exposures X *

s,i and (ii) the true exposures Xs,i.
We begin by merging the time-varying area-level variables to the

sibling sample based on each individual’s reported birth date and birth
location; the resulting variable is defined as Xt,ownloc, where ownloc
indicates the individual’s reported birth location. Additionally, we
merge these variables based on each individual’s reported birth date
and their sibling’s reported birth location (Xt,sibloc), as well as the geo-
graphic midpoint between the two birth locations reported by the two
siblings (Xt,midloc). If the geographic midpoint between the two birth
locations is not on land, the closest UK land location to the midpoint
is used.

For each sibling pair with different birth locations (defined at the
coordinate, parish or district level) we compute the predicted prob-
ability of an error in the reported birth location conditional on dif-
ferent locations being reported:

P̂ðerrorsib1 ∪ errorsib2jlocationsib1 ≠ locationsib2Þ =
P̂ðerrorsib1 ∪ errorsib2Þ

P̂ðlocationsib1≠locationsib2Þ

=
2bp� p̂2

bq*agegapsib1,sib2 + 2bp� p̂2

ð6Þ
based on the estimates bp and bq from themain analysis (Table 1) and the
siblings’ age gap.

For each variable we then simulate the attenuation bias using 1000
repetitions. For the simulated time-varying spatially correlated variables
Va,ρ,k, we run 100 repetitions for each variable. With ten variables for
each level of aggregation a, autocorrelation ρ and temporal variance
share k, this corresponds to 1000 simulations. Each repetition of the
Monte Carlo simulation proceeds as follows: For sibling pairs with dif-
ferent reported birth coordinates/districts/parishes, we draw a Bernoulli
random variable Es indicating whether an error occurred (Es= 1) using
the error probability P̂ðerrorsib1 ∪ errorsib2jlocationsib1 ≠ locationsib2Þ
computed above. For sibling pairs with the same reported birth coor-
dinates/district/parish, we set Es=0. A second Bernoulli variable Bs is
then drawn for those sibling pairs with Es= 1 to indicate whether both
sibling birth locations are subject to an error, based on the conditional
probability P̂ðerrorsib1 \ errorsib2jerrorsib1 ∪ errorsib2Þ= p̂2

=ð2bp� p̂2Þ. If
only one of the birth locations is incorrect (Es= 1, Bs=0), then one of the
two siblings is chosen at random for the error.

The true exposure in our simulations is defined as follows:

Xs,i =

Xt,sibloc if error in this siblingonly

Xt,midloc if error in both siblings

Xt,ownloc otherwise

8><
>: ð7Þ

Irrespective of any errors to the reported birth location, the exposure
Xs,i is always defined based on the individual’s reported date of birth t.
If only one sibling in a sibling pair is simulated to have an incorrect
birth location, their sibling’s reported birth location sibloc is used to
compute the exposure. If both siblings in a sibling pair are simulated to
have an incorrect birth location, we use the mid-pointmidloc between
their reported birth locations. In the absenceof any information on the
true birth location in these cases, the midpoint between the two
reported locations sets a lower bound on the average geographic
distance between the true and the observed birth locations. For all
individuals who are not simulated to have an incorrect birth location,
we use their own reported birth location ownloc.

The observed exposure in our simulations is defined as

X *
s,i =Xt,ownloc ð8Þ

for all individuals and thus subject to measurement error due to mis-
reported birth locations.

We simulate an outcome Ys,i which is affected by the true expo-
sure as follows:

Y s,i =Xs,i + εs,i with εs,i ∼Nð0,1Þ ð9Þ

The exposures Xs,i in our simulations are standardised to have a mean
of zero and a standard deviation of one. We then calculate the OLS
attenuation bias by comparing the coefficients estimated for the fol-
lowing two OLS equations:

Ys,i =α1 +β1Xs,i + e1,s,i ð10Þ

Ys,i =α2 +β2X
*
s,i + e2,s,i ð11Þ

The difference between bβ1 in the estimations using the true exposure
and cβ2 in the estimations using the observed exposure is the OLS
attenuation bias. Similarly, we calculate the attenuation bias in sibling
fixed effects estimations by comparing the coefficient estimates bγ1 andbγ2 for the following two equations:

Ys,i =μs,1 + γ1Xs,i +u1,s,i ð12Þ

Ys,i =μs,2 + γ2X
*
s,i +u2,s,i ð13Þ

Bias in analyses controlling for district of birth fixed effects
We use Monte Carlo simulations to quantify the size of the bias in
estimations controlling for district of birth fixed effects when the
variable of interest is correctly observed but the district of birth is
subject to measurement error. We simulate data at the district level
with varying levels of spatial correlation and correlations between the
variable of interest and the district of birth fixed effects. In our simu-
lations, we consider the following model:

Y i,d = βXi,d +μd + εi,d with εi,d ∼Nð0,1Þ ð14Þ

where outcome Yi,d is a function of the variable of interest Xi,d and the
district of birth fixed effects μd. We furthermoremodel the correlation
between Xi,d and μd as follows:

Xi,d = ðr
μd

σμ
+

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
ηiÞ*σx with ηi ∼Nð0,1Þ ð15Þ

where r is the correlation between Xi,d and μd, σμ is the standard
deviation of the fixed effects μd and σx is the standard deviation of Xi,d.
In our simulations we examine the bias for different correlations
r∈ [−0.95, −0.75, −0.50, −0.25, 0.00, 0.25, 0.50, 0.75, 0.95] and ratios
of the standard deviations σμ/σx∈ [0.1, 0.5, 1.0, 5.0]. If there is mea-
surement error in individuals’ district of birth d, estimates of μdwill be
attenuated. Thus not all district-level variation in Yi,dwill be controlled
for and estimates of β will be subject to omitted variable bias if r ≠0.

We simulate spatially correlated district of birth fixed effects μd,ρ
based on a spatial autoregressive model with spatial autocorrelation
parameterρ∈ [0.00, 0.05, 0.10,…, 0.90, 0.95, 0.975]. These simulated
districts of birth fixed effects are then merged with the sibling sample
used in ourmain estimations based on each individual’s reported birth
location (μownloc), the birth location reported by each individual’s sib-
ling (μsibloc), as well as the geographic midpoint between the two birth
locations (μmidloc).

For each sibling pair with different districts of birth, we compute
the predicted probability of an error conditional on different districts
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being reported:

P̂ðerrorsib1 ∪ errorsib2jdistrictsib1 ≠districtsib2Þ =
P̂ðerrorsib1 ∪ errorsib2Þ

P̂ðdistrictsib1 ≠districtsib2Þ

=
2p̂� p̂2

q̂*agegapsib1,sib2 + 2p̂� p̂2

ð16Þ
based on the estimates bp and bq from themain analysis (Table 1) and the
siblings’ age gap.

Each repetition of the Monte Carlo simulation proceeds as follows:
For sibling pairs with different reported birth districts, we draw a Ber-
noulli random variable Es indicating whether an error occurred (Es= 1)
using the error probability P̂ðerrorsib1 ∪ errorsib2jdistrictsib1 ≠districtsib2Þ
computed above. For sibling pairs with the same reported birth district,
we set Es=0. A second Bernoulli variable Bs is then drawn for those
siblingpairswith Es= 1 to indicatewhether both siblingbirthdistricts are
subject to an error, based on the conditional probability
P̂ðerrorsib1 \ errorsib2jerrorsib1 ∪ errorsib2Þ= p̂2

=ð2bp� p̂2Þ. If only one of
the birth districts is incorrect (Es= 1, Bs=0), then one of the two siblings
is chosen at random for the error.

The true district of birth fixed effects in our simulations are
defined as follows:

μd =

μsibloc if error in this siblingonly

μmidloc if error in both siblings

μownloc otherwise

8><
>: ð17Þ

If only one sibling in a sibling pair is simulated to have an incorrect
district of birth, their sibling’s reported birth location sibloc is used to
compute their fixed effect. If both siblings in a sibling pair are simu-
lated to have an incorrect district of birth, we use themid-pointmidloc
between their reported birth locations. In the absence of any
information on the true birth location in these cases, the midpoint
between the two reported locations sets a lower bound on the average
geographic distance between the true and the observed birth
locations. For all individuals who are not simulated to have an
incorrect district of birth, we use their own reported birth location
ownloc.

The observed district of birth in our simulations is defined as

d*
i =downloc ð18Þ

for all individuals and thus is subject to measurement error due to
misreported birth locations.

We then calculate the bias by comparing the coefficients esti-
mated for the following two fixed effects equations:

Y i,d =β1Xi,d + γd + e1,i,d ð19Þ

Y i,d =β2Xi,d + γd* + e2,i,d ð20Þ

The difference between cβ2 in the estimations using the observed dis-
tricts of birth and bβ1 in the estimations using the true districts of birth
is the bias. We simulate the bias using 250 repetitions for each ρ, r and
σμ/σx (25 repetitions for each of the ten simulated district fixed effects
variables μd,ρ).

Principal component analysis
We examine the impact of measurement error in the reported birth
locations and of household mobility on the strength of spatial cor-
relations in genetic principal components. For these analyses, we
conduct principal component analyses using the big_randomSVD
command of the bigstatsr package. We restrict the sample to

unrelated white British individuals in the UKB and remove genetic
outliers38, resulting in a sample size of N = 276,279. SNPs are
filtered based on minor allele frequency >0.01 and clumped for
linkage disequilibrium based on minor allele frequency (R2 > 0.1).
Long-range linkage disequilibrium regions are removed. This results
in a set of 108,251 SNPs used in the principal component analysis. We
predict the resulting principal component vectors in the estimation
sample of unrelatedwhite British individuals described above, as well
as in the sibling sample (N = 33, 741 after removing any genetic
outliers).

Analysis of repeat birth location reports
A subset of UKB participants have reported their birth locations more
than once. 18,975 participants gave an additional birth location report
during a first repeat assessment visit in 2012/13 and 9374 participants
during imaging visits between 2014 and 2022. In a supplementary
analysis, we examine the share of participants who report different
birth locations in these follow-up interviews compared to their initial
interviews. For participants with more than one repeat birth location
report, we only compare the first repeat report with the initial inter-
view. Our sample for this comparison comprises 24,838 participants.
While this comparison does not allow us to derive probabilities of
householdmoves, we can derive the probability ofmeasurement error
in the location of birth in a similar way to the sibling comparisons
described in the ‘Methods’ above. To derive the error probability we
make the following assumptions:

Assumption 1’. If a participant reports the same birth location in the
initial and follow-up interview, we assume this is their true birth
location.

Assumption 2’. We assume that measurement error occurs randomly
with the same probability for any participant and interview, and that
these errors occur independently in the two interviews of the same
participant.

Under these assumptions, the probability of a difference in the
reported birth location between a participant’s two interviews can be
written as:

Pðlocationi,t = 1 ≠ locationi,t = 2Þ=Pðerrori,t = 1 ∪ errori,t = 2Þ
=Pðerrori,t = 1Þ+Pðerrori,t = 2Þ � Pðerrori,t = 1 \ errori,t = 2Þ
=p+p� p2 = 2p� p2

ð21Þ

We use this to derive the probability p of an error in the birth location
of any respondent, defined as:

p= 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Pðerrori,t = 1 ∪ errori,t = 2Þ

q
ð22Þ

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
This research has been conducted using data from UK Biobank32, a
major biomedical database (Project ID: 74002). UK Biobank data are
available following anapplication procedure described athttps://www.
ukbiobank.ac.uk/enable-your-research. This research is furthermore
based on data provided through www.VisionofBritain.org.uk34 and
uses historical material which is copyright of the Great Britain Histor-
ical GIS Project and the University of Portsmouth. Data on boundaries
of historic parishes, districts and counties in 1951 have previously been
made available by the Vision of Britain project. For details on the
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current or future availability of the boundary data, please see https://
www.visionofbritain.org.uk/data/. District-level demographic data
from the Registrar General’s Statistical Review of England and Wales41

are available via the UK data service at https://doi.org/10.5255/UKDA-
SN-9035-1. District-level data on housing density, social class and
education from the 1951 census42 are available via the UK data service
at https://doi.org/10.5255/UKDA-SN-4554-2, https://doi.org/10.5255/
UKDA-SN-4561-2 and https://doi.org/10.5255/UKDA-SN-4552-2. Dis-
ease data are from the Registrar General’s Weekly Reports39,40. Source
data for figures are provided with this paper.

Code availability
The code to conduct the data analyses is available under https://doi.
org/10.5281/zenodo.1063152943.
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