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DELVE: feature selection for preserving
biological trajectories in single-cell data

Jolene S. Ranek1,2,Wayne Stallaert 3, J. JustinMilner 4,5, Margaret Redick 1,2,
Samuel C. Wolff1,2, Adriana S. Beltran1,6, Natalie Stanley 2,7 &
Jeremy E. Purvis 1,2

Single-cell technologies can measure the expression of thousands of
molecular features in individual cells undergoing dynamic biological
processes. While examining cells along a computationally-ordered
pseudotime trajectory can reveal how changes in gene or protein
expression impact cell fate, identifying such dynamic features is chal-
lenging due to the inherent noise in single-cell data. Here, we present
DELVE, an unsupervised feature selection method for identifying a
representative subset of molecular features which robustly recapitulate
cellular trajectories. In contrast to previous work, DELVE uses a bottom-
up approach to mitigate the effects of confounding sources of variation,
and instead models cell states from dynamic gene or protein modules
based on core regulatory complexes. Using simulations, single-cell RNA
sequencing, and iterative immunofluorescence imaging data in the con-
text of cell cycle and cellular differentiation, we demonstrate how DELVE
selects features that better define cell-types and cell-type transitions.
DELVE is available as an open-source python package: https://github.
com/jranek/delve.

High-throughput single-cell technologies, such as flow and mass
cytometry1–3, single-cell RNA sequencing4–7, and imaging-based profil-
ing techniques8–11 have transformed our ability to study how cell
populations respond and dynamically change during processes like
cellular differentiation12–16, cell cycle17–19, and immune response20–22. By
profilingmany features (e.g., proteins or genes) formany thousands of
cells from a biological sample, these technologies provide high-
dimensional snapshot measurements that can be used to gain funda-
mental insights into the molecular mechanisms that govern pheno-
typic or pathological changes.

Trajectory inference methods23 have been developed to model
dynamic biological processes from snapshot single-cell data. By

assuming cells are asynchronously changing over time such that a
profiled biological sample from a single experimental time point
describes a range of the underlying dynamic process, computational
trajectory inference approaches have leveraged minimum spanning
tree approaches24–26, curve-fitting27,28, graph-based techniques12,29,30,
probabilistic approaches31–33, or optimal transport34,35 to order cells
based on their similarities in feature expression. Once a trajectory
model is fit, regression36–38 can be performed along estimated pseu-
dotime (e.g., distance through the inferred trajectory from a start cell)
to identify specific cell state changes associated with differentiation or
disease trajectories. Moreover, these inferred cellular trajectories have
the potential to elucidate higher-order gene interactions39, gene
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regulatory networks40, predict cell fate probabilities32, or find shared
mechanisms of expression dynamics across disease conditions or
species41,42.

While trajectory analysis has proven useful in the context of
single-cell biology, the identification of characteristic genes or pro-
teins that drive continuous biological processes relies on having
inferred accurate cellular trajectories, which can be challenging,
especially when trajectory inference is performed on the original full
unenriched dataset. Single-cell data are noisy measurements that suf-
fer from limitations in detection sensitivity, where dropout43, low sig-
nal-to-noise, or sample degradation44 can result in spurious signals that
can overwhelm true biological differences. Furthermore, all profiled
sources of feature variation contribute to the cell-to-cell distances that
define the inferred cellular trajectory; thus, including confounding
sources of biological variation (e.g., cell cycle, metabolic state) or
irrelevant features (e.g., extracted imagingmeasurements that contain
low signal-to-noise ratio) candistort ormask the intended trajectory of
study45,46. With the accumulation of large-scale single-cell data and
multi-modal measurements47, appropriate filtering of noisy, informa-
tion-poor, or irrelevant features can serve as a crucial and necessary
step for cell type identification, inference of dynamic phenotypes, and
identification of punitive driver features (e.g., genes, proteins).

Feature selection methods48 are a class of supervised or unsu-
pervised approaches that can remove redundant or information-poor
features prior to performing trajectory inference, and therefore, they
have great potential for improving the interpretation of downstream
analysis, while easing the computational burden by reducing dataset
dimension. In the supervised-learning regime, classification-based49 or
information-theoretic approaches50,51 have been used to evaluate fea-
tures according to their discriminative power or association with cell
types. Despite having great power to detect biologically-relevant fea-
tures, these methods rely on expensive or laborious manual annota-
tions (e.g., cell types) which are often unavailable52 thus precluding
them from use. In the unsupervised-learning regime, computational
approaches often aim to identify relevant features based on intrinsic
properties of the complete dataset; however, these methods have
some limitations with respect to retaining features that are useful for
defining cellular trajectories. Namely, although unsupervised variance-
based approaches53,54, which effectively sample features based on their
overall variation across cells, have been extensively used to identify
features that define cell types without the need for ground truth

annotations, (1) they can be overwhelmed by noisy or irrelevant fea-
tures that dominate data variance, and (2) are insensitive to lineage-
specific features (e.g., transcription factors) that have a small variance
and gradual progression of expression. Alternatively, unsupervised
similarity-based29,55,56 or subspace-learning57,58 feature selection meth-
ods evaluate features according to their association with a cell-
similarity graph defined by all features or the underlying structure of
the data (e.g., pairwise similarities defined by uniform manifold
approximation and projection (UMAP)59, eigenvectors of the graph
Laplacian matrix60). While these approaches have the potential to
detect smoothly varying genes or proteins that define cellular transi-
tions, they rely on the cell-similarity graph fromthe full dataset and can
fail to identify relevant features when the number of noisy features
outweighs the number of informative ones61,62.

To address these limitations, we developed DELVE (dynamic
selection of locally covarying features), an unsupervised feature
selection method for identifying a representative subset of molecular
features that robustly recapitulate cellular trajectories. In contrast to
previous work29,53,55–58, DELVE uses a bottom-up approach to mitigate
the effect of unwanted sources of variation confounding feature
selection and trajectory inference, and insteadmodels cell states from
dynamic feature modules that constitute core regulatory complexes.
Features are then ranked for selection according to their association
with the underlying cell trajectory graph using data diffusion techni-
ques. We demonstrate the power of our approach for improving
inference of cellular trajectories through achieving an increased sen-
sitivity to detect diverse and dynamically expressed features that
better delineate cell types and cell type transitions from single-cell
RNA sequencing and protein immunofluorescence imaging data.
Overall, this feature selection framework provides an alternative
approach for uncovering co-variation amongst features along a bio-
logical trajectory.

Results
Overview of the DELVE algorithm
We propose DELVE, an unsupervised feature selection framework for
modeling dynamic cell state transitions using graph neighborhoods
(Fig. 1). Our approach extends previous unsupervised similarity-
based29,55,56 or subspace-learning feature selection58 methods by com-
puting the dependence of each gene on the cellular trajectory graph
structure using a two-step approach. Inspired by the molecular events
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Fig. 1 | Schematic overviewof theDELVE pipeline. Feature selection is performed
in a two-step process. In step 1, DELVE clusters features according to their
expression dynamics along local representative cellular neighborhoods defined by
a weighted k-nearest neighbor affinity graph. Neighborhoods are sampled using a
distribution-focused sketching algorithm that preserves cell-type frequencies and
spectral properties of the original dataset69. A permutation test with a variance-
based test statistic is used to determine if a set of features are (1) dynamically

changing (dynamic) or (2) exhibiting randompatterns of variation (static). In step 2,
dynamicmodules are used to seed or initialize an approximate cell trajectory graph
and the trajectory is refinedby ranking and selecting features that best preserve the
local structure using the Laplacian Score55. In this study, we comparedDELVE to the
alternative unsupervised feature selection approaches on how well-selected fea-
tures preserve cell type and cell type transitions according to several metrics.
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that occur during differentiation, where the coordinated spatio-
temporal expression of key regulatory genes govern lineage
specification63–66, we reasoned that we can approximate cell state
transitions by identifying groups of features that are temporally co-
expressed or co-regulated along the underlying dynamic process.

In step one, DELVE identifies dynamicmodules of features that are
temporally co-expressed by clustering features according to their
average pairwise change in expression across prototypical cellular
neighborhoods (See Fig. 1 Step 1, Step 1: dynamic seed selection). As
has been done previously67,68, we model cell states using a weighted k-
nearest neighbor (k-NN) affinity graph, where nodes represent cells
and edges describe the transcriptomic or proteomic similarity
amongst cells according to all profiled features. Here, DELVE uses a
distribution-focused sketching method69 to effectively sample cellular
neighborhoods across all cell types. This sampling approach has three
main advantages: (1) cellular neighborhoods aremore reflective of the
distribution of cell states, (2) redundant cell states are removed, and
(3) fewer cellular neighborhoods are required to estimate feature
dynamics resulting in increased scalability. Following feature cluster-
ing, eachmodule contains a set of featureswith similar local changes in
co-variation across prototypical cell states along the cellular trajectory.
Feature-wise permutation testing is then used to assess dynamic
expression variation across grouped features as compared to random
assignment. By identifying and excluding modules of features that
have static, random, or noisy patterns of expression variation, DELVE
effectively mitigates the effect of unwanted sources of variation con-
founding feature ranking and selection, and subsequent trajectory
inference.

In step two, DELVE leverages modules of features with temporal
co-expression variation to approximate the underlying cellular tra-
jectory by constructing a new affinity graph between cells, where
cell similarity is now redefined according to a core set of dynamically
expressed regulators. All profiled features are then ranked
according to their association with the underlying cellular trajectory
graph using graph signal processing techniques70,71 (See Fig. 1 Step 2,
Step 2: feature ranking).More concretely, a graph signal is any function
that has a real defined value on all of the nodes. In this context, we
consider all features as graph signals and rank them according to their
total variation in expression along the cellular trajectory graph using
the Laplacian Score (LS)55. Intuitively, DELVE retains features that are
considered to be globally smooth, or have similar expression values
amongst similar cells along the approximate cellular trajectory graph.
In contrast, DELVE excludes features that have a high total variation in
signal, or expression values that are rapidly oscillating amongst
neighboring cells, as these features are likely noisy or not involved in
the underlying dynamic process that was seeded. The output of DELVE
is a ranked set of features that best preserve the local trajectory
structure. For amoredetaileddescriptionon theproblem formulation,
the mathematical foundations behind feature ranking, and the impact
of nonsense features on trajectory inference, see DELVE in the Meth-
ods section.

DELVE outperforms existing feature selection methods in
representing cellular trajectories in the presence of single-cell
RNA sequencing noise
Although feature selection is a common preprocessing step in single-
cell analysis72 with the potential to reveal cell-type transitions that
would have been masked in the original high-dimensional feature
space45, there has been no systematic evaluation of feature selection
method performance on identifying biologically-relevant features for
trajectory analysis in single-cell data, especially in the context of noisy
data that contain biological or technical challenges (e.g., low total
mRNA count, low signal-to-noise ratio, or dropout). In this study, we
compared DELVE to eleven other feature selection approaches and
evaluatedmethods on their ability to select features that represent cell

types and cell type transitions by performing twosimulated single RNA
sequencing studies where the ground truth was known. In the sections
below, we will describe an overview of the feature selection methods
considered and outline the simulation designs and evaluation criteria
in more detail. We will then provide qualitative and quantitative
assessments of how noise impacts feature selection method perfor-
mance and subsequent inference of cellular trajectories.

Overview of feature selection methods. We performed a systematic
evaluation of twelve feature selection methods for preserving cellular
trajectories in noisy single-cell data. Methods were grouped into five
general categories prior to evaluation: supervised, similarity, sub-
space-learning, variance, and baseline approaches. Formore details on
the feature selectionmethods implemented and hyperparameters, see
Benchmarked feature selection methods and Supplementary Table 1.

Supervised approaches. To illustrate the performance of ground-
truth feature selection that could be obtained through supervised
learning on expert annotated cell labels, weperformedRandomForest
classification. Random Forest classification49 is a supervised ensemble
learning algorithm that uses an ensemble of decision trees to partition
the feature space such that all of the cells with the same cell type label
are grouped together. Here, each decision or split of a tree was chosen
byminimizing theGini Impurity score73. This approachwas included to
provide context for unsupervised feature selection method
performance.

Similarity approaches. We considered four similarity-based
approaches as unsupervised feature selection methods that rank
features according to their association with a cell similarity graph
defined by all profiled features (e.g., LS, neighborhood variance,
hotspot) or dynamically-expressed features (e.g., DELVE). First, the
Laplacian Score55 is an unsupervised locality-preserving feature
selection method that ranks and selects features according to (1)
the total variation in feature expression across neighboring cells using
a cell similarity graph defined by all features and (2) a feature’s
global variance. Next, neighborhood variance29 is an unsupervised
feature selection method that selects features with gradual changes in
expression for building biological trajectories. Here, features
are selected if their variance in expression across local cellular
neighborhoods is smaller than their global variance. Hotspot56 per-
forms unsupervised feature selection through a local autocorrelation
test statistic that measures the association of a gene’s expression with
a cell similarity graph defined by all features. Lastly, DELVE (dynamic
selection of locally covarying features) is an unsupervised feature
selection method that ranks features according to their association
with the underlying cellular trajectory graph. First, features are clus-
tered into modules according to changes in expression across local
representative cellular neighborhoods. Next, modules of features with
dynamic expression patterns (denoted as dynamic seed) are used to
construct an approximate cellular trajectory graph. Features are then
ranked according to their association with the approximate cell tra-
jectory graph using the LS55. Given that DELVE is a model-free feature
selection approach, we evaluated the robustness of DELVE by gen-
erating a distribution of accuracy scores across multiple runs of the
method.

Subspace learning approaches. We considered two subspace-
learning feature selection methods as unsupervised methods that
rank features according to how well they preserve the overall cluster
structure (e.g., multi-cluster feature selection (MCFS)) or manifold
structure (e.g., SCMER) of the data. First, MCFS58 is an unsupervised
feature selection method that selects features that best preserve the
multi-cluster structure of data by solving an L1 regularized least
squares regression problem on the spectral embedding defined by all

Article https://doi.org/10.1038/s41467-024-46773-z

Nature Communications |         (2024) 15:2765 3



profiled features. The optimization is solved using the least angles
regression algorithm74. Next, single-cell manifold-preserving feature
selection (SCMER)57 is an unsupervised feature selection method that
selects a subset of features that best preserves the pairwise similarity
matrix between cells defined in uniform manifold approximation and
projection59 based on all profiled features. To do so, it uses elastic net
regression to find a sparse solution that minimizes the KL divergence
between a pairwise similarity matrix between cells defined by all fea-
tures and one defined using only the selected features.

Variance approaches. We considered two variance-based feature
selection approaches (e.g., highly variable genes53, max variance) as
unsupervised methods that use global expression variance as a metric
for ranking feature importance. First, highly variable gene selection
(HVG)53 is an unsupervised feature selection method that selects fea-
tures according to a normalizeddispersionmeasure. Here, features are
binned based on their average expression. Within each bin, genes are
then z-score normalized to identify features that have a large variance,
yet a similar mean expression. Next, max variance is an unsupervised
feature selection method that ranks and selects features that have a
large global variance in expression.

Baseline approaches. We considered three baseline strategies (e.g.,
all, random, dynamic seed) that provide context for the overall per-
formance of feature selection. First, all features illustrate the perfor-
mance when feature selection is not performed and all features are
included for analysis. Second, random features represent the perfor-
mance quality when a random subset of features are sampled. Lastly,
dynamic seed features indicate the performance from dynamically-
expressed features identified in step 1 of the DELVE algorithm prior to
feature ranking and selection.

Splatter single-cell RNA sequencing simulation study. To validate
our approach and benchmark feature selection methods on selecting
genes that represent cellular trajectories, we simulated a total of 90
single-cell RNA sequencing datasets (1500 cells and 500 genes) with
three trajectory structures (e.g., linear, bifurcation, tree) using Splat-
ter. Here, for each trajectory structure, we generated 30 datasets.
Splatter75 simulates single-cell RNA sequencing data with various tra-
jectory structures (e.g., linear, bifurcation, tree) using a gamma-
Poisson hierarchical model. Importantly, this approach provides
ground truth reference information (e.g., cell type annotations, dif-
ferentially expressed genes per cell type and trajectory, and a latent
vector that describes an individual cell’s progression through the tra-
jectory) that we can use to robustly assess feature selection method
performance, as well as quantitatively evaluate the limitations of fea-
ture selection strategies for trajectory analysis. Moreover, to com-
prehensively evaluate feature selection methods under common
biological and technical challenges associated with single-cell RNA
sequencing data, we added relevant sources of single-cell noise to the
simulated data. First, we simulated low signal-to-noise ratio by enfor-
cing a mean-variance relationship amongst genes; this ensures that
lowly expressed genes are more variable than highly expressed genes.
Next, we modified the total number of profiled mRNA transcripts, or
library size. This has been shown previously to vary amongst cells
within a single-cell experiment and can influence both the detection of
differentially expressed genes76, as well as impact the reproducibility
of the inferred lower-dimensional embedding77. Lastly, we simulated
the inefficient capture of mRNA molecules, or dropout, by under-
sampling gene expression from a binomial distribution; this increases
the amount of sparsity present within the data. Formore details on the
splatter simulation, see Splatter simulation. For each simulated tra-
jectory, we performed feature selection according to all described
feature selection strategies, and considered the top 100 ranked fea-
tures for downstream analysis and evaluation.

Qualitative assessment of feature selection method performance.
Prior to evaluating feature selection method performance quantita-
tively, we began our analysis with a qualitative assessment of the
importance of feature selection for representing cellular trajectories
when the data contain irrelevant or noisy genes. First, we visually
compared the cellular trajectories generated from a feature selection
strategy with PHATE (potential of heat diffusion for affinity-based
transition embedding). PHATE78 is a nonlinear dimensionality reduc-
tionmethod that has been shown to effectively learn and represent the
geometry of complex continuous andbranched biological trajectories.
As an illustrative example, Fig. 2a shows the PHATE embeddings for
simulated linear differentiation trajectories generated from four fea-
ture selection approaches (all, DELVE, Laplacian Score (LS), and ran-
dom) when subjected to a decrease in the signal-to-noise ratio. Here,
we simulated a reduction in the signal-to-noise ratio and stochastic
gene expression by modifying the biological coefficient of variation
(BCV) parameter within Splatter75. This scaling factor controls the
mean-variance relationship between genes, where lowly expressed
genes are more variable than highly expressed genes (See Splatter
simulation). Under low noise conditions where the data contained a
high signal-to-noise ratio, we observed that excluding irrelevant fea-
tures with DELVE or the Laplacian Score (LS) produced a much
smoother, denoised visualization of the linear trajectory, where cells
weremore tightly clustered according to cell type. This was compared
to the more diffuse presentation of cell states obtained based on all
genes. We then examined how noise influences the quality of selected
features from a feature selection strategy. As the signal-to-noise ratio
decreased (high, medium, low), we observed that the linear trajectory
became increasingly harder to distinguish, whereby including both
irrelevant and noisy genes often masked the underlying trajectory
structure (Fig. 2a all genes, medium to low signal-to-noise ratio). Fur-
thermore, we found that unsupervised similarity-based or subspace
learning feature selection methods that initially define a cell similarity
graph according to all irrelevant, noisy, and informative genes often
selected genes that produced noisier embeddings as the amount of
noise increased (e.g., Fig. 2a LS: medium signal-to-noise ratio), as
compared to DELVE (e.g., Fig. 2a DELVEmedium signal-to-noise ratio).
We reason that this is due to spurious similarities amongst cells,
reduced clusterability, and increased diffusion times. Thesequalitative
observations were consistent across different noise conditions (e.g.,
decreased signal-to-noise, decreased library size, increased dropout)
and trajectory types (e.g., linear, bifurcation, tree) (See Supplementary
Figs. 1–9). Although a qualitative comparison, this example illustrates
how including irrelevant or noisy genes candefine spurious similarities
amongst cells, which can (1) influence a feature selection method
ability to identify biologically-relevant genes and (2) impact the overall
quality of an inferred lower dimensional embedding following selec-
tion. Given that many trajectory inference methods use lower dimen-
sional representations in order to infer a cell’s progression through a
differentiation trajectory, it is crucial to remove information-poor
features prior to performing trajectory inference in order to obtain
high quality embeddings, clustering assignments, or cellular orderings
that are reproducible for both qualitative interpretation and down-
stream trajectory analysis.

Quantitative assessment of feature selectionmethodperformance.
We next quantitatively examined how biological or technical chal-
lenges associatedwith single-cell RNA sequencing datamay influence a
feature selection method’s ability to detect the particular genes that
define cell types or cell type transitions. To do so, we systematically
benchmarked the 12 described feature selection strategies on their
capacity to preserve trajectories according to three sets of quantitative
comparisons. Method performance was assessed by evaluating if
selected genes from an approach were (1) differentially expressed
within a cell type or along a lineage, (2) could be used to classify cell
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types, and (3) could accurately estimate individual cell progression
through the cellular trajectory. Figure 2b–d shows feature selection
method performance for simulated linear differentiation trajectories
when subjected to the technical challenge of having a reduction in the
signal-to-noise ratio.

First, we assessed the biological relevancy of selected genes, as
well as the overall recovery of relevant genes as the signal-to-noise
ratio decreased by computing a precision score. Precision@k is a
metric that defines the proportion of selected genes (k) that are known
to be differentially-expressed within a cell type or along a lineage (See
Precision@k). Overall, we found that DELVE achieved the highest
precision@k score between selected genes and the ground truth,
validating that our approach was able to select genes that are differ-
entially expressed and was the strongest in defining cell types and cell
type transitions (See Fig. 2b). Importantly, DELVE’s ability to recover
informative genes was robust to the number of genes selected (k) and
to the amount of noise present in the data. In contrast, variance-based,
similarity-based, or subspace-learning approaches exhibited com-
parativelyworse recoveryof cell type and lineage-specificdifferentially
expressed genes.

Given that a key application of single-cell profiling technologies is
the ability to identify cell types or cell states that are predictive of
sample disease status, responsiveness to drug therapy, or are corre-
lated with patient clinical outcomes68,79–82, we then assessed whether
selected genes from a feature selection strategy can correctly classify
cells according to cell type along the underlying cellular trajectory; this
is a crucial and necessary step of trajectory analysis. Therefore, we
trained a k-nearest neighbor (k-NN) classifier on the selected feature

set (see k-nearest neighbor classification) and compared the predic-
tions to the ground truth cell type annotations by computing a cell
type classification accuracy score. Across all simulated trajectories, we
found that DELVE selected genes that often achieved the highest
median k-NN classification accuracy score (high signal-to-noise ratio:
0.937, medium signal-to-noise ratio: 0.882, low signal-to-noise ratio:
0.734) and produced k-NN graphs that were more faithful to the
underlying biology (See Fig. 2c). Moreover, we observed a few results
that were consistent with the qualitative interpretations. First,
removing irrelevant genes with DELVE, LS, or MCFS achieved higher k-
NN classification accuracy scores (e.g., high signal-to-noise ratio;
DELVE =0.937, LS = 0.915, and MCFS =0.955, respectively) than was
achieved by retaining all genes (all = 0.900). Next, DELVE out-
performed the Laplacian Score, suggesting that using a bottom-up
framework and excluding noisy features prior to performing ranking
and selection is crucial for recovering cell-type specific genes that
would have beenmissed if the cell similarity graphwas initially defined
based on all genes. Lastly, when comparing the percent change in
performance as the amount of noise corruption increased (e.g., high
signal-to-noise ratio to medium signal-to-noise ratio) for linear trajec-
tories, we found that DELVE often achieved the highest average clas-
sification accuracy score (0.905) and lowest percent decrease in
performance (−6.398%), indicating that DELVE was the most robust
unsupervised feature selection method to noise corruption (See Sup-
plementary Fig. 10a). In contrast, the existing unsupervised similarity-
based or subspace learning feature selection methods that achieved
high to moderate average k-NN classification accuracy scores (e.g.,
MCFS =0.905, LS = 0.874) had larger decreases in performance (e.g.,
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Fig. 2 | Comparison of feature selection methods on preserving linear trajec-
tories when subjected to a reduction in the signal-to-noise ratio. a Example
PHATE78 visualizations of simulated linear trajectories using four feature selection
approaches (all features, DELVE, Laplacian Score (LS)55, and random selection)
when subjected to a reduction in the signal-to-noise ratio (high, medium, low).
Here, we simulated a reduction in the signal-to-noise ratio and stochastic gene
expression by modifying the biological coefficient of variation (bcv) parameter
within Splatter75 that controls the mean-variance relationship between genes,
where lowly expressed genes are more variable than highly expressed genes (high:
bcv =0.1, medium: bcv =0.25, low: bcv =0.5). d indicates the total number of
genes (d = 500) and p indicates the number of selected genes following feature
selection (p = 100). (b–d) Performance of twelve different feature selection

methods: random forest49, DELVE, dynamic seed features, LS55, neighborhood
variance29, hotspot56, multi-cluster feature selection (MCFS)58, single-cell manifold
preserving feature selection (SCMER)57, max variance, highly variable gene selec-
tion (HVG)53, all features, random features. Following feature selection, trajectory
preservation was quantitatively assessed according to several metrics: (b) the
precision of differentially expressed genes at k selected genes, (c) k-NN classifica-
tion accuracy, and (d) pseudotime correlation to the ground truth cell progression
across 10 random trials. Error bands represent the standard deviation over n = 10
simulation datasets. Barplots show the mean± the standard deviation over
n = 10 simulation datasets. * indicates the method with the highest median score.
For further details across other trajectory types and noise conditions, see Supple-
mentary Figs. 1–9. Source data are provided in a Source Data file.

Article https://doi.org/10.1038/s41467-024-46773-z

Nature Communications |         (2024) 15:2765 5



MCFS = −9.673%, LS = −8.390%) as the amount of noise increased. This
further highlights the limitations of current feature selection methods
on identifying cell type-specific genes from noisy single-cell
omics data.

Lastly, when undergoing dynamic biological processes such as
differentiation, cells exhibit a continuumof cell statesmarkedby linear
andnonlinear changes ingene expression83–85. Therefore, weevaluated
how well feature selection methods could identify genes that define
complex differentiation trajectories and correctly order cells along the
cellular trajectory in the presenceof noise. To infer cellular trajectories
and to estimate cell progression, we used the diffusion pseudotime
algorithm31 on the selected gene set from each feature selection
strategy, as this approach has been shown previously23 to perform
reasonably well for inference of simple or branched trajectory types
(See Trajectory inference and analysis). Method performancewas then
assessed by computing the Kendall rank correlation between esti-
mated pseudotime and the ground truth cell progression. We found
that DELVE approaches more accurately inferred cellular trajectories
and achieved the highest median pseudotime correlation to the
ground truth measurements, as compared to alternative methods or
all features (See Fig. 2d). Furthermore, similar to the percent change in
classification performance, we found that DELVE was the most robust
unsupervised feature selection method in estimating cell progression,
as it often achieved the highest average pseudotime correlation
(0.645) and lowest percent decrease in performance (−22.761%) as the

amount of noise increased (See Supplementary Fig. 10b high to med-
ium signal-to-noise ratio). In contrast, the alternative methods incor-
rectly estimated cellular progression and achieved lower average
pseudotime correlation scores (e.g., MCFS = 0.602, LS =0.526) and
higher decreases in performance as the signal-to-noise ratio decreased
(MCFS = −38.884%, LS = −40.208%).

We performed this same systematic evaluation across a range of
trajectory types (e.g., linear, bifurcation, tree) and biological or tech-
nical challenges associated with single-cell data (See Supplementary
Figs. 1–12). Figure 3displays theoverall rankedmethodperformanceof
feature selection methods on preserving cellular trajectories when
subjected to different sources of single-cell noise (pink: decreased
signal-to-noise ratio, green: decreased library size, and blue: increased
dropout). Ranked aggregate scores were computed by averaging
results across all datasets within a condition; therefore, this metric
quantifies how well a feature selection strategy can recover genes that
define cell types or cell type transitions underlying a cellular trajectory
when subjected to that biological or technical challenge (See Aggre-
gate scores). Across all conditions, we found that DELVE often
achieved an increased recovery of differentially expressed genes,
higher cell type classification accuracy, higher correlation of estimated
cell progression, and lower percent change in performance in noisy
data. While feature selection method performance varied across bio-
logical or technical challenges, we found that the LS and MCFS per-
formed reasonably well under low amounts of noise corruption and
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Fig. 3 | DELVE outperforms existing feature selectionmethods on representing
trajectories in the presence of single-cell RNA sequencing noise. Feature
selection methods were ranked by averaging their overall performance across
datasets from different trajectory types (e.g., linear, bifurcation, tree) when sub-
jected to noise corruption (e.g., decreased signal-to-noise ratio, decreased library
size, and increased dropout). Several metrics were used to quantify trajectory
preservation, including, precision of dynamically-expressed geneswith 50 selected
genes (p@50), precision at 100 selected genes (p@100), precision at 150 selected
genes (p@150), k-NN classification accuracy of cell type labels (acc), and pseudo-
time correlation (pst). Here, higher-ranked methods are indicated by a longer

lighter bar, and the star illustrates our approach (DELVE) aswell as theperformance
from dynamic seed features of step 1 of the algorithm. DELVE often achieves the
highest precision of lineage-specific differentially expressed genes, the highest
classification accuracy, and highest pseudotime correlation across noise conditions
and trajectory types. Of note, random forest was included as a baseline repre-
sentation to illustrate feature selection method performance when trained on
ground truth cell type annotations; however, it was not ranked, as this study is
focused on unsupervised feature selection method performance on trajectory
preservation.

Article https://doi.org/10.1038/s41467-024-46773-z

Nature Communications |         (2024) 15:2765 6



are often the second and third-ranked unsupervised methods. Alto-
gether, this first simulation study with Splatter demonstrates that
DELVE more accurately recapitulates cellular dynamics and can be
used to effectively interrogate cell identity and lineage-specific gene
expression dynamics from noisy single-cell data.

SymSim single-cell RNA sequencing simulation study. Given that
single-cell RNA sequencing simulation software has the potential to
generate parameters or distributions of counts that can fail to capture
biologically-relevant data or the extent of technical limitations (e.g.,
efficiency of mRNA capture), we’ve additionally benchmarked feature
selection methods on larger scale single-cell data using a secondary
simulation approach SymSim86. This approach has been shown in a
recent benchmarking study87 to be amongst the top-ranking methods
for reasonably simulating single-cell RNA sequencing data, as mea-
sured by the accuracy in estimating data properties (e.g., library size,
TMM, mean expression, scaled variance, fractions of zeros, cell and
gene correlation), as well as the ability to preserve biological signals
(e.g., differentially expressed genes, differentially variable genes).

In this second study, we simulated five tree differentiation tra-
jectories containing 10,000 cells, 20,000 genes, and 4 cell types by
modifying the mean mRNA capture efficiency rate in SymSim (See
SymSim simulation). Here, we aimed to evaluate how well feature
selectionmethods could identify genes that define cellular trajectories
when subjected to a reduction in the total mRNA count. Moreover, for
each feature selection method, we additionally assessed the effect of
selecting different numbers of features on trajectory preservation.
Similar to the Splatter simulation study, overall, we found that
similarity-based feature selection methods, DELVE, Laplacian score,
and Hotspot outperformed the alternative feature selection methods
and achieved higher cell type classification accuracy scores and higher
correlations of estimated pseudotime to the ground truth cell pro-
gression (See Supplementary Fig. 13). Moreover, we observed that
variance-based approaches (e.g., max variance, highly variable gene
selection) required more features (e.g., 2000 genes) to obtain similar
cell type classification accuracy and pseudotime correlation scores. In
contrast, DELVE, Laplacian score, and Hotspot achieved higher scores
with smaller representative subsets of features (e.g., 100 genes) and
were more robust to the number of selected genes (See Supplemen-
tary Fig. 13). Furthermore, neighborhood variance and SCMER identi-
fied the smallest number of genes (e.g., 50 genes), and they were often
biologically predictive. Overall, these results suggest that unsu-
pervised similarity-based feature selection methods outperform
variance-based approaches in preserving cellular trajectories when
evaluated on simulated single-cell RNA sequencing data.

Revealing molecular trajectories of proliferation and cell
cycle arrest
Recent advances in spatial single-cell profiling technologies8–11,88–92

have enabled the simultaneous measurement of transcriptomic or
proteomic signatures of cells, while also retaining additional imaging
or array-derived features that describe the spatial positioning or
morphological properties of cells. These spatial single-cell modalities
have provided fundamental insights into mammalian
organogenesis92,93 and complex immune responses linked to disease
progression21,94. By leveraging imaging data to define cell-to-cell simi-
larity, DELVE can identify smoothly varying spatial features that are
strongly associated with cellular progression, such as changes in cell
morphologyor protein localization,while excluding information-poor,
noisy, or irrelevant imaging-derived features that can obfuscate the
underlying cellular trajectory.

To demonstrate this, we applied DELVE to an integrated live cell
imaging and protein iterative indirect immunofluorescence imaging
(4i) dataset consisting of 2759 human retinal pigmented epithelial cells
(RPE) undergoing the cell cycle (See RPE analysis). In a recent study17,

we performed time-lapse imaging on an asynchronous population of
non-transformed RPE cells expressing a PCNA-mTurquoise2 reporter
to record the cell cycle phase (G0/G1, S, G2,M) and age (time since last
mitosis) of each cell. We then fixed the cells and profiled them with 4i
to obtain measurements of 48 core cell cycle effectors. The resultant
dataset consisted of 241 imaging-derived features describing the
expression and localization of different protein markers (e.g., nucleus,
cytoplasm, perinuclear region—denoted as ring), as well as morpho-
logical measurements from the images (e.g., size and shape of the
nucleus). Given that time-lapse imaging was performed prior to cell
fixation, this dataset provides the unique opportunity to rigorously
evaluate feature selection methods on a real biological system (cell
cycle) with technical challenges (e.g., many features with low signal-to-
noise ratio, autofluorescence, sample degradation). Moreover, it’s
important to note that although all profiled proteins in this study were
indeed cell-cycle specific, many were not expressed within all regions
of the cell, and many of the extracted imaging-derived features were
not relevant or biologically predictive of cell cycle progression17. Thus,
the goal of this evaluation is to assess if feature selection methods can
be used to identify proteomic-imaging derived features that are
strongly associated with cell cycle progression from a feature list that
contains all extracted imaging measurements (noisy or otherwise).

We first tested whether DELVE can identify a set of dynamically-
expressed cell cycle-specific imaging-derived features to construct an
approximate cellular trajectory graph for feature selection. Overall, we
found that DELVE successfully identified dynamically-expressed seed
features (p = 13 out of 241 total imaging-derived features) that are
known to be associated with cell cycle proliferation (e.g., increase in
DNA content and area of the nucleus) and captured key mechanisms
previously shown to drive cell cycle progression (Fig. 4a right),
including molecular events that regulate the G1/S and G2/M transi-
tions. For example, the G1/S transition is governed by the phosphor-
ylation of RBby cyclin:CDKcomplexes (e.g., cyclinA/CDK2 andcyclinE/
CDK2), which control the expression of E2F transcription factors that
regulate Sphasegenes95.We also observed an increase in expressionof
Skp2, which reduces p27-mediated inhibition of E2F1 target genes96,97.
In addition, our approach identified S phase events that are known to
be associated with DNA replication, including an accumulation of
PCNA foci at sites of active replication98 and a DNA damage marker,
pH2AX, which becomes phosphorylated in response to double-
stranded DNA breaks in areas of stalled replication99,100. Lastly, we
observed an increase in expression of cyclin B localized to different
regions of the cell, which is a primary regulator of G2/M transition
alongside CDK1101,102. Of note, phosphorylation of RB also controls cell
cycle re-entry and is an important biomarker that is often used for
distinguishing proliferating from arrested cells103,104. Furthermore, by
ordering the average pairwise change in expression of features across
ground truth phase annotations, we observed that DELVE dynamically-
expressed seed features exhibited non-randompatterns of expression
variation that gradually increased throughout the canonical phases of
the cell cycle (Fig. 4a), and were amongst the top-ranked features that
were biologically predictive of cell cycle phase and age measurements
using a random forest classification and regression framework,
respectively (See Random forest, Fig. 4a right, Supplementary Fig. 16).
Collectively, these results illustrate that the dynamic feature module
identified by DELVE represents a minimum cell cycle feature set
(Fig. 4b dynamic seed) that precisely distinguishes individual cells
according to their cell cycle progression status and can be used to
construct an approximate cellular trajectory for ranking feature
importance.

We then comprehensively evaluated feature selectionmethodson
their ability to retain imaging-derived features that define cell cycle
phases and resolve proliferation and arrest cell cycle trajectories. We
reasoned that cells in similar stages of the cell cycle (as defined by the
cell cycle reporter) should have similar cell cycle signatures (4i
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features) and should be located near one another in a low-dimensional
projection. Figure 4b shows the PHATE embeddings from each feature
selection strategy. Using the DELVE feature set, we obtained a con-
tinuous PHATE trajectory structure that successfully captured the
smooth progression of cells through the canonical phases of the cell
cycle, where cells were tightly grouped together according to ground
truth cell cycle phase annotations (Fig. 4b). Moreover, we observed

that the two DELVE approaches (i.e., DELVE and dynamic seed), in
addition to hotspot and HVG selection, produced qualitatively similar
denoised lower-dimensional visualizations comparable to the super-
vised random forest approach that was trained on ground truth cell
cycle phase annotations. In contrast, similarity-based approaches such
as LS and neighborhood variance, which define a cell similarity graph
according to all features, showed more diffuse presentations of cell
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states. Variance-based (max variance) or subspace-learning approa-
ches (SCMER, MCFS) produced qualitatively similar embeddings to
that produced using all features.

To quantitatively assess if selected features from a feature selec-
tion strategy were biologically predictive of cell cycle phases, we
performed three complementary analyses.Wefirst focused on the task
of cell state classification, where our goal was to learn the ground truth
cell cycle phase annotations from the selected feature set. Todo so,we
trained a support vector machine (SVM) classifier and compared the
accuracy of predictions to their ground truth phase annotations (See
Support Vector Machine). We performed nested tenfold cross-
validation to obtain a distribution of predictions for each method.
Overall, we found that DELVE achieved the highest median classifica-
tion accuracy (DELVE =0.960) obtaining a similar performance to the
random forest classifier trained on cell cycle phase annotations (ran-
dom forest = 0.957), and outperforming existing unsupervised
approaches (e.g., hotspot = 0.935, max variance = 0.902, HVG=0.889,
MCFS =0.870, SCMER =0.797, LS = 0.770), as well as all features
(0.946), suggesting that selected features with DELVE were more
biologically predictive of cell cycle phases (Fig. 4d). We next aimed to
assess howwell a feature selectionmethod could identify and rank cell
cycle phase-specific features according to their representative power.
To test this, we trained a random forest classifier on the ground truth
phase annotations using nested 10-fold cross validation (See Random
forest). We then compared the average ranked feature importance
scores from the random forest to the selected features from a feature
selection strategy using the precision@k metric. Strikingly, we found
that DELVE achieved the highest median precision@k score (DELVE
p@30 =0.800) and appropriately ranked features according to their
discriminative power of cell cycle phases despite being a completely
unsupervised approach (Fig. 4d). This was followed by hotspot with a
precision@k scoreof (hotspot p@30 =0.633) and highly variable gene
selection (HVG p@30 = 0.500). In contrast, the Laplacian Score and
max variance obtained low precision scores (p@30 =0.367 and 0.333
respectively), whereas neighborhood variance and subspace-learning
feature selection methods MCFS and SCMER were unable to identify
cell cycle phase-specific features from noisy 4i data and exhibited
precision scores near random (p@30 =0.267, 0.267, and 0.233,
respectively). Lastly, we assessed if selected image-derived features
could be used for downstream analysis tasks like unsupervised cell
population discovery. To do so, we clustered cells using the KMeans++
algorithm105 on the selected feature set and compared the predicted
labels to the ground truth annotations using a normalized mutual
information (NMI) score over 25 random initializations (See Unsu-
pervised clustering). We found that hotspot, DELVE, and dynamic seed
features were better able to cluster cells according to cell cycle phases
and achieved considerably higher median NMI scores (0.615, 0.599,
0.543, respectively), as compared to retaining all features (0.155)

(Fig. 4d). Moreover, we found that clustering performance was similar
to that of the random forest trained on cell cycle phase annotations
(0.626). In contrast, variance-based approaches achieved moderate
NMI clustering scores (HVG:0.421,maxvariance: 0.361) and alternative
similarity-based and subspace learning approaches obtained low
median NMI scores (~0.2) and were unable to cluster cells into
biologically-cohesive cell populations. Of note, many trajectory infer-
encemethods use clusters when fitting trajectorymodels27,28,30,106, thus
accurate cell-to-cluster assignments following feature selection is
crucial for both cell type annotation and discovery, as well as for
accurate downstream trajectory analysis interpretation. Collectively,
these results highlight that feature selection with DELVE identifies
imaging-derived features from noisy protein immunofluorescence
imaging data that aremore biologically predictive of cell cycle phases.

We then focused on the much harder task of predicting an indi-
vidual cell’s progression through the cell cycle. A central challenge in
trajectory inference is the destructive nature of single-cell technolo-
gies, where only a static snapshot of cell states is profiled. To move
toward a quantitative evaluation of cell cycle trajectory reconstruction
following feature selection, we leveraged the ground truth age mea-
surements determined from time-lapse imaging of the RPE-PCNA
reporter cell line.Wefirst evaluatedwhether selected features couldbe
used to accurately predict cell cycle age by training an SVM regression
framework using nested tenfold cross-validation (See Support Vector
Machine). Method performance was subsequently assessed by com-
puting the rootmean squared error (RMSE) between the predicted and
the ground truth age measurements. Overall, we found that DELVE
achieved the lowest median RMSE (1.806 h), outperforming both
supervised (random forest = 1.815 h) and unsupervised approaches
(e.g., second-best performer hotspot = 1.911 h) suggesting that selec-
ted features more accurately estimate the time following mitosis
(Fig. 4c). Crucially, this highlights DELVE’s ability to learn new
biologically-relevant features thatmight bemissed when performing a
supervised or unsupervised approach. Lastly, we assessed whether
selected imaging features could be used to accurately infer prolifera-
tion and arrest cell cycle trajectories using common trajectory infer-
ence approaches (Fig. 4d). Briefly, we constructed predicted cell cycle
trajectories using the diffusion pseudotime algorithm31 under each
feature selection strategy (See Trajectory inference and analysis). Cells
were separated into proliferation or arrest lineages according to their
average expression of pRB, and cellular progression was estimated
using ten random root cells that had the youngest age. Feature
selection method performance on trajectory inference was then
quantitatively assessed by computing the Kendall rank correlation
between estimated pseudotime and the ground truth age measure-
ments. We found that DELVE achieved the highest median correlation
of estimated pseudotime to the ground truth age measurements
(proliferation: 0.656, arrest: 0.405) as compared to alternative

Fig. 4 | DELVE recovered signatures of proliferation and arrest in noisy protein
immunofluorescence imaging data. a DELVE identified one dynamic module
consisting of 13 seed features that represented aminimum cell cycle. (a left) UMAP
visualization of image-derived features where each point indicates a dynamic or
static feature identified by the model. (a middle) The average pairwise change in
expression of features within DELVE modules ordered across ground truth cell
cycle phase annotations. (a right top) Simplified signaling schematic of the cell
cycle highlighting the role of DELVE dynamic seed features within cell cycle pro-
gression. (a right bottom) Heatmap of the standardized average expression of
dynamic seed features across cell cycle phases. b Feature selection was performed
to select the top (p = 30) ranked features from the original (d = 241) feature set
according to a feature selection strategy. PHATE visualizations illustrating the
overall quality of low-dimensional cell cycle trajectories following feature selection.
Cells were labeled according to cell cycle phase annotations from time-lapse ima-
ging. c PHATE visualizations following DELVE feature selection, where cells were
labeled according to cell cycle trajectory (top) or age measurements (bottom).

d Performance of feature selection methods on representing the cell cycle
according to several metrics, including cell phase classification accuracy, normal-
ized mutual information (NMI), precision of phase-specific features, root mean
squared error (RMSE) betweenpredicted and ground truth age, and the correlation
between estimated pseudotime to the ground truth age measurements following
trajectory inference. All error bands represent the standard deviation. All boxplots
show themedian (middle line), the interquartile range (upper and lower bounds of
the box), and the minimum and maximum of the distributions (whiskers) over
n = 10 randomsplits, seeds, or root cells. DELVE, dynamic seed, and random feature
selection were run over n = 20 random trials to show reproducibility of the
approach. * indicates the method with the highest median score. DELVE achieved
the highest classification accuracy, highest p@k score, high NMI clustering score,
lowest RMSE, and highest correlation of estimated pseudotime to the ground truth
age indicating robust prediction of cell cycle transitions. Source data are provided
in a Source Data file.
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methods (second best performer hotspot; proliferation: 0.632, arrest:
0.333) or all features (proliferation: 0.330, arrest: 0.135), indicating
that our approachwas better able to resolve both proliferation and cell
cycle arrest trajectories where other approaches failed (Fig. 4d). Of
note, DELVE was robust to the choice in hyperparameters and
obtained reproducible results across a range of hyperparameter
choices (See Guidelines on parameter selection, Supplemen-
tary Fig. 15).

To further investigate the differences in performance between
similarity-based feature selection methods DELVE, Hotspot, and the
Laplacian score on 4i data in more detail, we evaluated the ability for
feature selection methods to recover cell cycle-defining features from
immunofluorescence imaging data with different amounts of noisy
variables (See Supplementary Fig. 17). To do so, we generatedmultiple
RPE immunofluorescence imaging datasets, where each dataset was
initialized with the same set of ground truth phase-specific features
(i.e., the top 30 predictive features of phase by training a random
forest classifier on phase labels from time-lapse imaging). We then
added a fixed amount of noisy variables (ranging from j = 100–500) to
each dataset by randomly sampling features from the experimental
RPE dataset with replacement. For each dataset and feature selection
method, we selected the top 30 ranked features and compared the
performance of DELVE, Hostpot, and the Laplacian score on various
trajectory tasks. Overall, DELVE achieved the highest recovery of
phase-specific features, cell population recovery (NMI between cluster
labels and ground truth phase annotations), and trajectory recovery
(highest correlation between estimated pseudotime and ground truth
age annotations). In contrast, as the amount of noisy variables
increased, Hotspot and the Laplacian score identified less phase-
specific features and more noisy features, which resulted in worse cell
population and trajectory recovery. These results demonstrate the
necessity of using a bottom-up approach when performing feature
selection from noisy proteomic imaging data and showcases the
robustness of DELVE on creating a representation of the data that is
faithful to underlying cellular trajectory structure.

As a secondary validation, we applied DELVE to nine pancreatic
adenocarcinoma (PDAC) cell lines (e.g., BxPC3, CFPAC, MiaPaCa,
HPAC, Pa01C, Pa02C, PANC1, UM53) profiled with 4i (See PDAC ana-
lysis) and performed a similar evaluation of cell cycle phase and phase
transition preservation (See Supplementary Figs. 19–27). Across all cell
lines and metrics, we found that DELVE approaches and hotspot con-
siderably outperformed alternative methods on recovering the cell
cycle from noisy 4i data and often achieved the highest classification
accuracy scores, clustering scores, and the highest correlation of cel-
lular progression along proliferative and arrested cell cycle trajectories
(See Supplementary Figs. 18, 28). Notably, DELVE was particularly
useful in resolving cell cycle trajectories from the PDAC cell lines that
had numerous imaging measurements with low signal-to-noise ratio
(e.g., CFPAC, MiaPaCa, PANC1, and UM53), whereas the alternative
strategies were unable to resolve cell cycle phases and achieved scores
near random (See Supplementary Figs. 20, 22, 26, 27).

Identifying molecular drivers of CD8+ T cell effector and
memory formation
To demonstrate the utility of our approach in a complex differentia-
tion setting consisting of heterogeneous cell subtypes and shared and
distinct molecular pathways, we applied DELVE to a single-cell RNA
sequencing time series dataset consisting of 29,893mice splenic CD8+
T cells responding to acute viral infection107. Here, CD8+ T cells were
profiled over 12-time points following infection with the Armstrong
strain of lymphocytic choriomeningitis virus (LCMV): Naive, d3-, d4-,
d5-, d6-, d7-, d10-, d14-, d21-, d32-, d60-, and d90- post-infection (See
CD8+ T cell differentiation analysis). During an immune response to
acute viral infection, naive CD8+ T cells undergo a rapid activation and
proliferation phase, giving rise to effector cells that can serve in a

cytotoxic role to mediate immediate host defense, followed by a
contraction phase giving rise to self-renewing memory cells that pro-
vide long-lasting protection and aremaintained by antigen-dependent
homeostatic proliferation108–110. Despite numerous studies detailing
the molecular mechanisms of CD8+ T cell effector and memory fate
specification, the molecular mechanisms driving activation, fate
commitment, or T cell dysfunction continue to remain unclear due to
the complex intra- and inter-temporal heterogeneity of the CD8+T cell
response during infection. Therefore, we applied DELVE to the CD8+ T
cell dataset to resolve the differentiation trajectory and investigate
transcriptional changes that are involved in effector and memory
formation during acute viral infection with LCMV.

Following unsupervised seed selection, we found that DELVE
successfully identified three gene modules constituting core reg-
ulatory complexes involved in CD8+ T cell viral response and had
dynamic expression patterns that varied across experimental time
following viral infection (Fig. 5a–c). Namely, dynamic module 0 con-
tained genes involved in early activation and interferon response (e.g.,
Ly6a, Bst2, Ifi27l2a)111,112, and proliferation (e.g., Cenpa, Cenpf, Ccnb2,
Ube2c, Top2a, Tubb4b, Birc5, Cks2, Cks1b, Nusap1, Hmgb2, Rrm2,
H2afx, Pclaf, Stmn1, Lbr, Smc2, Cdc20, Hmgn2, Cbx3, Ube2s, Mki67,
Cdk1, Ptma)113. Dynamicmodule 1 contained genes involved in effector
formation, including interferon-γ cytotoxic molecules, such as per-
forin/granzyme pathway (e.g., Gzma, Gzmk), integrins (e.g., Itga4,
Itgax, Itgb1), killer cell lectin-like receptor family (e.g., Klrg1, Klrd1,
Klrk1, Klrc1, klrc2), cytokine and chemokine receptors (e.g., Il18r1,
Cxcr3, Cxcr6, Ccr2), and canonical transcription factors involved in
terminal effector formation (e.g., Id2, Klf2, Klf3, Zeb2)114–117. Lastly,
dynamic module 2 contained genes involved in long-term memory
formation (e.g., Bcl2, Il7r, Ltb, Tcf7, Btg1, Btg2)118–121. To quantitatively
examine if genes within a dynamic module were meaningfully asso-
ciated with one another, or had experimental evidence of co-regula-
tion, we constructed gene association networks using experimentally-
derived association scores from the STRING database122. Here, a per-
mutation testwas performed to assess the statistical significanceof the
observed experimental association amongst genes within a DELVE
module as compared to randomgene assignment (See Protein-protein
interaction networks). Notably, across all three dynamic modules,
DELVE identified groups of genes that had statistically significant
experimental evidence of co-regulation (p-value = 0.001), where
DELVEnetworkshada larger averagedegreeof experimentally-derived
edges than the null distribution (Fig. 5b: dynamic modules). Degree
centrality is a simple measurement of the number of edges (e.g.,
experimentally derived associations between genes) connected to a
node (e.g., gene); therefore, in this context, networks with a high
average degree may contain complexes of genes that are essential for
regulating a biological process. In contrast, genes identified by DELVE
that exhibited randomor noisy patterns of expression variation (static
module) had little to no evidence of co-regulation (p value = 1.0) and
achieved a much lower average degree than networks defined by
random gene assignment (Fig. 5b).

Next, we evaluated if the dynamically-expressed genes that had
experimental evidence of co-regulation from DELVE could be used to
improve the identification ofmolecular pathways associatedwith long-
term CD8+ T cell memory formation following trajectory inference, as
compared to the standard approach of highly variable gene selection.
To do so, we reconstructed the CD8+ T cell differentiation trajectory
using either the diffusion pseudotime algorithm31 or Slingshot28 on the
top 500 ranked genes from a feature selection strategy (Fig. 5d–e,
Supplementary Fig. 29a–b). Here, we considered both similarity-based
feature selection approaches (e.g., DELVE, Laplacian score, and Hot-
spot), as well as highly variable gene selection. We then performed a
regression analysis for each gene along estimated pseudotime using a
negative binomial generalized additive model (GAM). Genes were
considered to be differentially expressed along the memory lineage if

Article https://doi.org/10.1038/s41467-024-46773-z

Nature Communications |         (2024) 15:2765 10



they had a q value < 0.05 following Benjamini-Hochberg false dis-
covery rate correction123 (See Trajectory inference and analysis).
Overall, we found that ordering cells according to similarities in
selected gene expression using similarity-based feature selection
methods such as DELVE, Laplacian score, and Hotspot were more
reflective of long-term memory formation and achieved an increased
recovery of memory lineage-specific genes, as directly compared to
the standard approach of highly variable gene selection (Fig. 5d–f,
Supplementary Fig. 29).

To determine the biological relevance of these memory lineage-
specific genes, we performed gene set enrichment analysis on the
temporally-expressed genes specific to each feature selection strategy

using EnrichR124. Here, DELVE, Laplacian score, and Hotspot obtained
higher significance scores and identified more terms involved in
immune regulation and memory CD8+ T cell formation, including, T
cell differentiation, T cell activation, regulation of cell cycle, regulation
of cytokine production, regulation of type II interferon production,
negative regulation if T cell-mediated immunity (see DELVE as com-
pared to HVG in Fig. 5f, Supplementary Fig. 29c).

Characterizing human embryonic stem cell differentiation into
the definitive endoderm
During cellular differentiation, cells exhibit a continuum of cell states
with fate transitions marked by external stimuli, cell-cell interactions,
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formation. a DELVE identified three dynamic modules representing cell cycle and
early activation (dynamic 0), effector formation and cytokine signaling (dynamic 1),
and long-term memory formation (dynamic 2) during CD8+ T cell differentiation
response to viral infection with lymphocytic choriomeningitis virus (LCMV). UMAP
visualization of (d = 2000) genes where each point indicates a dynamic or static
gene identified by the model. b A permutation test was performed using
experimentally-derived association scores from the STRING interaction database122

to assess whether genes within DELVE dynamic modules had experimental evi-
dence of co-regulation as compared to random assignment. (b top) STRING asso-
ciation networks, where nodes represent genes from a DELVE module and edges
represent experimental evidence of association. (b middle) Average pairwise
change in expression amongst genes within a module ordered by time following
infection. Error bands represent the standard deviation. (b bottom) Histograms
showing the distribution of the average degree of experimentally-derived edges of
gene networks from R = 1000 random permutations. The dotted line indicates the

observed average degree from genes within a DELVE module. p values were com-
puted using a one-sided permutation test. c Heatmap visualization of the stan-
dardized average expression of dynamically-expressed genes identified by DELVE
ordered across time following infection.dDiffusionmapvisualizations of the CD8+
T cell memory lineage for four feature selection strategies (DELVE, Laplacian score,
Hotspot, highly variable gene (HVG) selection). Cells were colored according to
(top) time following infection (bottom) estimated pseudotime using the diffusion
pseudotime algorithm31. eGeneswere regressed along estimatedpseudotimeusing
a generalized additive model to determine lineage-specific significant genes. The
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Benjamini Hochberg multiple testing hypothesis correction. Source data are pro-
vided in a Source Data file.
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and linear and nonlinear gene expression83–85. Given the recent
advances in computational methods for inferring gene expression
dynamics125,126, we next sought to understand whether DELVE can be
used to identify known dynamic regulators or transcription factors
driving cell fate specification. Towards this objective, we applied
DELVE to a multiplexed single-cell RNA sequencing dataset consisting
of 5397 human embryonic stem cells differentiating into the defintive
endoderm, an early lung precursor cell type.

Although single-cell RNA sequencing is a powerful method for
capturing a variety of nuanced cell states, characterizing differentia-
tion trajectories typically requires the use of multiple samples, which
can be fraught with confounding variables like sample-specific batch
effects127. To overcome this limitation andmore rigorously investigate
the transcriptional changes that occur during directed definitive
endoderm differentiation, we adapted a multiplexed single-cell RNA
sequencing approach128 to profile the differentiation trajectory along
three key stages, including, pluripotency, primitive streak, and defi-
nitive endoderm (DE). Briefly, H9 hESCs were differentiated into the
definitive endoderm by inducing the TGFβ and WNT signaling path-
ways with small molecules Activin A and CHIR99021 over a two-day
time course129 (See Fig. 6a). Next, cell surface proteins were chemically
labeled with unique timepoint-specific oligo barcodes using click
chemistry. Lastly, labeled cells were pooled prior to cDNA library
preparation and single-cell RNA sequencing using the 10X Genomics
Chromium platform (See DE differentiation analysis).

Following unsupervised seed selection, we found that DELVE
successfully identified two dynamic gene modules involved in the loss
of pluripotency and formation of the primitive streak (dynamic 0), as
well as the specification of the definitive endoderm (dynamic 1)
(Fig. 6b–d). More specifically, dynamic module 0 contained genes
involved in the regulation of pluripotency (POU5F1, SOX2, UTF1,
LECT1, EPCAM, UCHL1, FGF2, ESRP1, DIAPH2)130–132, cell cycle
(CCND1)133, and primitive streak formation (CDH1)134. In contrast,
dynamic module 1 contained genes involved in early mesendoderm
(e.g., MIXL1, GSC, MESP1, EOMES, LHX1, FST)135–137, mesoderm (e.g.,
BMP4, IRX3, HAND1)138,139, and definitive endoderm formation (e.g.,
GATA6, SOX17, LEFTY1, LEFTY2, CER1, RHOC, CYP26A1, APLNR,
SFRP1)140–142. Similar to the previous analysis, we then quantitatively
examined if the genes with each dynamic module had experimental
evidence of co-regulation by (1) constructing gene association net-
works using the experimentally-derived association scores from the
STRINGdatabase122 and (2) performing apermutation test to assess the
statistical significance of observed experimental associations. We
found that DELVE identified groups of genes with significant experi-
mental evidence of association (p value = 0.033, p value = 0.001),
where DELVE networks had larger average degrees of experimentally-
derived edges as compared to the null distribution (Fig. 6c: dynamic
modules). Moreover, noisy genes identified by DELVE had little to no
experimental evidenceof co-regulation (p value = 0.997) (Fig. 6c: static
module). Overall, these results highlight DELVE’s sensitivity in cap-
turing a core set of gene regulatory complexes involved in plur-
ipotency and cell fate specification.

We next sought to quantify continuous gene expression dynamics
associated with definitive endoderm fate commitment. To do so, we
performed trajectory inference using either the diffusion pseudotime
algorithm31 or Slingshot28 on the top 500 ranked genes from each
feature selection strategy. Here, we compared similarity-based feature
selectionmethods (DELVE, Laplacian score, Hospot) to variance-based
selection (HVG), as well as the top-ranked likelihood genes from RNA
velocity. By modeling the conversion between unspliced pre mRNA
and spliced mature mRNA molecules in a transcription-based kinetic
model, RNA velocity125,126 has been used to predict future gene
expression changes in individual cells. Here, the dynamical model of
RNA velocity computes a likelihood for each gene, where genes are
then ranked according to their goodness of fit. This is used to identify

genes that exhibit splicing dynamics and might be candidate reg-
ulators of the underlying dynamic process126. Following feature selec-
tion,weperformed a regression analysis for eachgene along estimated
pseudotime using a negative binomial generalized additive model,
where genes were considered to be differentially expressed if they had
a q value < 0.05 following Benjamini-Hochberg false discovery rate
correction123 (See Trajectory inference and analysis).

Overall, we found that similarity-based feature selectionmethods
(DELVE, Laplacian score, Hotspot) identified more genes involved in
definitive endoderm specification, as directly compared to both highly
variable gene selection and RNA velocity ranked likelihood genes (See
Supplementary Figs. 30–31). When comparing gene set enrichment
analysis results for the temporally-expressed genes specific to DELVE,
HVG, or RNA velocity using EnrichR124, we found that DELVE obtained
much higher significance scores and identified more gastrulation and
definitive endoderm pathway-related terms, including endoderm for-
mation, differentiation, and development; regulation of cell migration;
negative regulation of canonicalWNT signaling; gastrulation; anterior/
posterior axis specification; and regulation of cell population pro-
liferation (See DELVE as compared to HVG and RNA velocity in
Fig. 6e–f). Moreover, of those temporally expressed genes, DELVE
identified ~30%more lineage-specific transcription factors (See Fig. 6g)
than HVG selection and RNA velocity. Strikingly, when comparing the
transcription factors specific to each feature selection approach using
the AnimalTFDB transcription factor database143, we found that RNA
velocity often failed to appropriately model and identify key tran-
scription factors driving definitive endoderm differentiation, as they
exhibited more switch-like or transient kinetic behavior (See Fig. 6h).
In contrast, DELVE was able to successfully identify these dynamic
transcription factors involved the (1) core pluripotency network
(SOX2, POU5F1)130,144,145, (2) organization and formation of theprimitive
streak and mesendoderm (CDX1, CDX2, EOMES, GSC, OTX2, MESP1,
MESP2, LHX1)63,137,146–150, and (3) known regulators involved in DE cell
fate specification (SOX17, FOXA2)151–153 (See Fig. 6h).

Discussion
Computational trajectory inference methods have transformed our
ability to study the continuum of cellular states associated with
dynamic phenotypes; however, current approaches for reconstructing
cellular trajectories can be hindered by biological or technical noise
inherent to single-cell data45,46. To mitigate the effect of unwanted
sources of variation confounding trajectory inference, we designed a
bottom-up unsupervised feature selection method that ranks and
selects features that best approximate cell state transitions from
dynamic feature modules that constitute core regulatory complexes.
The key innovation of this work is the ability to parse temporally co-
expressed features from noisy information-poor features prior to
performing feature selection; in doing so, DELVE constructs cell simi-
larity graphs that are more reflective of cell state progression for
ranking feature importance.

In this study, we benchmarked twelve feature selection
methods29,49,53,55–58 on their ability to identify biologically relevant fea-
tures for trajectory analysis from single-cell RNA sequencing data and
proteomic imaging data. In the context of simulated single-cell RNA
sequencing data where the ground truth was known, we found that
similarity-based feature selection methods (e.g., DELVE, Laplacian
score, and Hotspot) achieved the highest recovery of differentially
expressed genes within a cell type or along a cellular lineage, highest
cell type classification accuracy, and most accurately estimated indi-
vidual cell progression across a variety of trajectory topologies and
biological or technical challenges. Furthermore, through a series or
qualitative and quantitative comparisons, we illustrated how noise
(e.g., stochasticity, sparsity, low library size) and information-poor
features can create spurious similarities amongst cells and con-
siderably impact the performance of existing subspace learning-based

Article https://doi.org/10.1038/s41467-024-46773-z

Nature Communications |         (2024) 15:2765 12



or variance-based feature selection methods on identifying
biologically-relevant features.

Next, we applied DELVE to a variety of biological contexts and
demonstrated improved recovery of cellular trajectories over existing
unsupervised feature selection strategies. Specifically, in the context
of studying the cell cycle from protein imaging data17, we illustrated
how DELVE identified proteomic imaging-derived features that were
strongly associated with cell cycle progression and were more

biologically predictive of cell cycle phase and age, as compared to the
alternative unsupervised feature selection methods. Importantly,
DELVE often achieved similar or better performance to the supervised
Random Forest classification approach without the need for training
on ground truth cell cycle labels. Moreover, we illustrated how lever-
aging a bottom-up approach with DELVE was crucial for parsing cell
cycle progression-specific features from noisy extracted imaging
measurements profiled with 4i, where DELVE often outperformed the
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Fig. 6 | Characterizing human embryonic stem cell differentiation into the
definitive endoderm. a Schematic of the definitive endoderm differentiation
single-cell RNA sequencing design. Human embryonic stem cells (hESC) were dif-
ferentiated into the definitive endoderm (DE) over a two day time course. b DELVE
identified two dynamic modules representing the pluripotency to primitive streak
(PS) transition (dynamic 0) and DE formation (dynamic 1). UMAP visualization of
(d = 2000) genes where each point indicates a dynamic or static gene identified by
the model. c A permutation test was performed using experimentally-derived
association scores from the STRING database122 to assess whether genes within
DELVE dynamic modules had evidence of co-regulation. (c top) STRING networks,
where nodes represent genes from a DELVE module and edges represent experi-
mental evidence of association. (c middle) Average pairwise change in expression
amongst genes within a module ordered by induction time. Error bands represent
the standard deviation. (c bottom) Histograms showing the distribution of the
average degree of experimentally-derived edges of gene networks from R = 1000
randompermutations. The dotted line indicates the observed average degree from

genes within a DELVE module. p values were computed using a one-sided permu-
tation test. d Heatmap visualization of the expression of dynamically-expressed
genes identified byDELVE ordered across estimated pseudotime. A subset of genes
were labeled for readability. e PHATE visualizations of the DE differentiation tra-
jectory for three feature selection approaches. Barplots show the mean ± standard
deviation for the top 15 gene set enrichment terms associated with the temporally-
expressed gene lists specific to each feature selection strategy following trajectory
inference with n = 10 random root cells. p-values were computed using a Fisher
exact test and adjusted with Benjamini Hochberg correction. f The venn diagram
illustrates the overlap of DE genes across feature selection strategies. g Barplots
indicate mean± standard deviation of the number of transcription factors identi-
fied following trajectory inference using n = 10 random root cells for each feature
selection approach. h Pseudotime traces of example hESC, PS, or DE-specific
transcription factors identified by DELVE and missed by RNA velocity. Source data
are provided in a Source Data file.
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alternative unsupervised similarity-based feature selection methods
Laplacian score andHotspot. In the context of studyingheterogeneous
CD8+Tcell response to viral infection fromsingle-cell RNA sequencing
data107, we showed how DELVE identified gene complexes that had
experimental evidence of co-regulation and were strongly associated
with CD8+ T cell differentiation. Furthermore, we showed how per-
forming feature selection with DELVE prior to performing trajectory
inference improved the identification and resolution of geneprograms
associated with long-term memory formation that would have been
missed by the standard unsupervised highly variable gene selection.
Lastly, in the context of studying human embryonic stem cell differ-
entiation into the definitive endoderm from single-cell RNA sequen-
cing data, we showed how DELVE improved the recovery of gene
programs involved in pluripotency, gastrulation, and definitive endo-
derm specification, and identified more known transcription factors
and master regulators missed by HVG and RNA velocity.

This study highlights how DELVE can be used to improve infer-
ence of cellular trajectories in the context of noisy single-cell omics
data; however, it is important to note that feature selection can greatly
bias the interpretation of the underlying cellular trajectory45, thus
careful consideration should be made when performing feature
selection for trajectory analysis. Furthermore, we provided an unsu-
pervised framework for ranking features according to their association
with temporally co-expressed features, although we note that DELVE
can be improved by using a set of previously established regulators.
Moreover, in this study we leveraged all dynamic modules equally for
constructing the approximate cellular trajectory; however, we note
that is possible to extend this framework to exclude unwanted
dynamic modules of interest prior to ranking feature performance.
Future work could focus on extending this framework for applications
such as (1) deconvolving cellular trajectories using biological system-
specific seed graphs or (2) studying complex biological systems such
as organoid models or spatial microenvironments.

Methods
DELVE
DELVE identifies a subset of dynamically-changing features that pre-
serve the local structure of the underlying cellular trajectory. In this
section, we will (1) describe computational methods for the identifi-
cation and ranking of features that have non-random patterns of
dynamic variation, (2) explain DELVE’s relation to previous work, and
(3) provide context for the mathematical foundations behind dis-
carding information-poor features prior to performing trajectory
inference.

Problem formulation. Let X= fxigni = 1 denote a single-cell dataset,
where xi 2 Rd represents the vector of d measured features
(e.g., genes or proteins) measured in cell i. We assume that the data
have an inherent trajectory structure, or biologically-meaningful
ordering, that can be directly inferred by a limited subset of p fea-
tures where p≪ d. Therefore, our goal is to identify this limited set of p
features from the original high-dimensional feature set that best
approximate the transitions of cells through each stage of the under-
lying dynamic process.

Step 1: Dynamic seed selection
Graphconstruction. Our approachDELVEextends previous similarity-
based29,55,56 or subspace-learning58 feature selection methods by com-
puting the dependence of each gene on the underlying cellular tra-
jectory. In step 1, DELVE models cell states using a weighted k-nearest
neighbor affinity graph of cells (k = 10), where nodes represent cells
and edges describe the transcriptomic or proteomic similarity
amongst cells according to the d profiled features encoded in X. More
specifically, let G = ðV,EÞ denote a between-cell affinity graph, where V
represents the cells and the edges, E, are weighted according to a

Gaussian kernel as,

wij =
exp �kxvi

�xvj
k2

2σ2
i

� �
, if vj 2 N i

0, otherwise :

8<
: ð1Þ

Here,W is a n × n between-cell similaritymatrix, where cells vi and
vj are connectedwith an edgewith edgeweightwij if the cell vj is within
the set of vi’s neighbors, as denoted by notation N i. Moreover, σi,
specific for a particular cell i, represents the Gaussian kernel band-
width parameter that controls the decayof cell similarity edgeweights.
We chose a bandwidth parameter as the distance to the 3rd nearest
neighbor as this has been shown previously in refs. 56,154 to provide
reasonable decay in similarity weights.

Identification of featuremodules. To identify groups of features with
similar co-expression variation, DELVE clusters features according to
changes in expression across prototypical cell neighborhoods. First,
cellular neighborhoods are defined according to the average expres-

sion of each set of k nearest neighbors (N i) as, Z= fzi 2 Rdgni = 1, where
each zi =

1
k

P
N i
xi represents the center of the k nearest neighbors for

cell i across all measured features. Next, DELVE leverages Kernel
Herding sketching69 to effectively sample m representative cell
neighborhoods, or rows, from the per-cell neighbor averaged feature

matrix, Z, as ~Z= f~zi 2 Rdgmi = 1. This sampling approach ensures that
cellular neighborhoods are more reflective of the original distribution
of cell states, while removing redundant cell states to aid in the scal-
ability of estimating expression dynamics. DELVE then computes the
average pairwise change in expression of features across representa-
tive cellular neighborhoods, Δ, as,

Δ=
1

m� 1

Xm
i= 1

~Z� jm~z
T
i

� �
, ð2Þ

where jm is a column vector of ones with lengthm, such that jm 2 Rm.
Here, Δ is a m × d neighborhood by feature matrix, where each row
corresponds to a neighborhood and contains the average pairwise
change in expression for that neighborhood across all features. Lastly,
features are clustered according to the transpose of their average
pairwise change in expression across the representative cellular
neighborhoods, ΔT, using the KMeans + + algorithm105. In this context,
each DELVE module contains a set of features with similar local chan-
ges in co-variation across cell states along the cellular trajectory.

Dynamic expression variation permutation testing. To assess whe-
ther modules of features have coordinated or noisy expression varia-
tion, we compare the average sample variance of features within a
DELVE module to random assignment using a permutation test as
follows. Let �S

2
c Pc

� �
denote the average sample variance of the average

pairwise change in expression acrossm cell neighborhoods for the set
of p features (a set of features denoted as Pc) within a DELVE cluster c
as,

�S
2
c Pc

� �
=

1
jPcj

XjPc j

p= 1

Xm
i = 1

Δi,p � �Δp

� �2

m� 1
: ð3Þ

Moreover, let Rq denote a set of randomly selected features
sampled without replacement from the full feature space d, such that
∣Pc∣ = ∣Rq∣, and ~S

2
c ðRqÞ denote the average sample variance of randomly
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selected feature sets averaged across t random permutations as,

~S
2
c ðRqÞ=

1
t

Xt

q= 1

�S
2
c ðRqÞ: ð4Þ

Here, DELVE considers a module of features as being
dynamically-expressed if the average sample variance of the change
in expression of the set of features within a DELVE cluster (or speci-
fically feature set Pc), is greater than random assignment, Rq, across
randomly permuted trials as,

�ScðPcÞ> ~ScðRqÞ: ð5Þ

In doing so, this approach is able to identify and excludemodules
of features that have static, random, or noisy patterns of expression
variation, while retaining dynamically expressed features for ranking
feature importance. Given that noisy or irrelevant features can con-
found inference of the underlying cellular trajectory45,46 and have been
shown to corrupt the graph Laplacian for feature selection61,62, this
exclusion step is crucial prior to performing for feature selection. Of
note, given that KMeans++ clustering is used to initially assign features
to a group, feature-to-cluster assignments can tend to vary due to
algorithm stochasticity. Therefore, to reduce the variability and find a
core set of features that are consistently dynamically-expressed, this
process is repeated across ten random clustering initializations and
the set of dynamically-expressed features are defined as the intersec-
tion across runs.

Step 2: Feature ranking. Following dynamic seed selection, in step
two, DELVE ranks features according to their association with the
underlying cellular trajectory graph. First, DELVE approximates the
underlying cellular trajectory by constructing a between-cell affinity
graph, where the nodes represent the cells and edges are now re-
weighted according to a Gaussian kernel between all cells based on the
core subset of dynamically expressed regulators from step 1, such that
~X= f~xi 2 Rpg where p≪ d as,

~wij =
exp �k~xvi

�~xvj
k2

2σ2
i

� �
, if vj 2 N i

0, otherwise :

8<
: ð6Þ

Here, ~W is a n × n between-cell similaritymatrix, where cells vi and
vj are connected with an edge with edge weight ~wij if the cell is within
the set of vi’s neighbors, denoted as N i. Moreover, as previously
mentioned, σi represents theGaussian kernel bandwidth parameter for
a particular cell i as the distance to the 3rd nearest neighbor.

Features are then ranked according to their association with the
underlying cellular trajectory graph using graph signal processing
techniques55,70,71. By modeling data as a set of signals on a weighted
graph, graph signal processing techniques have led to the develop-
ment of new machine learning models for improved biological pre-
diction, including regression or classification70,155, identification of
prototypical cells associated with experimental perturbations82, or
inference of cell signaling dynamics156. A graph signal f is any function
that has a real defined value on all of the nodes, such that f 2 Rn and fi
gives the signal at the ith node. Intuitively, in DELVE, we consider all
features as graph signals and rank them according to their variation in
expression along the approximate cell trajectory graph to see if they
should be included or excluded from downstream analysis. Let L
denote theunnormalizedgraphLaplacian,withL=D� ~W, whereD is a
diagonal degree matrix with each element as dii =

P
j ~wij . The local

variation in the expression of feature signal f can thenbedefined as the

weighted sum of differences in signals around a particular cell i as,

Lfð ÞðiÞ=
X
j

~wij f ðiÞ � f ðjÞð Þ: ð7Þ

This metric effectively measures the similarity in expression of a
particular node’s graph signal, denoted by the feature vector, f, around
its k nearest neighbors. By summing the local variation in expression
across all neighbors along the cellular trajectory, we can define the
total variation in expression of feature graph signal f as,

fTLf =
X
ij

~wij f ðiÞ � f ðjÞð Þ2: ð8Þ

Otherwise known as the Laplacian quadratic form71,157,158, in this
context, the total variation represents the global smoothness of
the particular graph signal encoded in f (e.g., expression of a particular
gene or protein) along the approximate cellular trajectory
graph. Intuitively, DELVE aims to retain features that have a low total
variation in expression, or have similar expression values amongst
similar cells along the approximate cellular trajectory graph. In con-
trast, DELVE excludes features that have a high total variation in
expression, or those which have expression values that are rapidly
oscillating amongst neighboring cells, as these features are likely noisy
or not involved in the underlying dynamic process that was initially
seeded.

In this work, we ranked features according to their association
with the cell-to-cell affinity graph defined by a core set of dynamically
expressed regulators from DELVE dynamic modules using the Lapla-
cian score55. Thismeasure takes into account both the total variation in
expression, as well as the overall global variance. For each of the ori-
ginal d measured features, or graph signals encoded in f with f 2 Rn,
the Laplacian score Lf is computed as,

Lf =
~f
T
L~f

~f
T
D~f

: ð9Þ

Here, L represents the unnormalized graph Laplacian, such that

L=D� ~W,D is a diagonal degree matrix with the ith element of the

diagonal dii as dii =
P

j ~wij ,
~f represents the mean centered expression

of feature f as ~f = f � fTD1
1TD1

, and 1 = [1,…, 1]T. By sorting features in

ascending order according to their Laplacian score, DELVE effectively
ranks features that best preserve the local trajectory structure (e.g., an
ideal numerator has a small local variation in expression along neigh-
boring cells), as well as best preserve cell types (e.g., an ideal
denominator has large variance in expression for dis-
criminitive power).

Guidelines on parameter selection. In this section, we provide
practical recommendations for selecting hyperparameters in DELVE
and describe DELVE’s sensitivity to choices in hyperparameters for
both simulated single-cell RNA sequencing data and proteomic ima-
ging data. We recommend standard quality control preprocessing
prior to performing feature selection.

Number of nearest neighbors (k). DELVE uses a k-nearest neighbor
between-cell affinity graph to (1) identify dynamic modules of features
and (2) rank features according to their associationwith theunderlying
cellular trajectory. The choiceof number of nearest neighbors, k, in the
k-nearest neighbor graph construction directly influences the con-
nectivity of the graph. Selecting a small value of k prioritizes local
relationships amongst cells, whereas selecting a large value of k con-
nects more dissimilar cells together and prioritizes global relation-
ships. Since DELVE ranks features by summing the differences in
feature expression around nearest neighbors along the cellular
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trajectory graph (See Equation 8), the choice of number of nearest
neighbors, k, may influence the overall resolution of feature dynamics
and feature ranking. Overall, we recommend selecting a small number
of nearest neighbors, such that the local connectivity of similar cell
states are preserved. Moreover, we recommend constructing a k-
nearest neighbors graph based on Euclidean distances in principal
component space for single-cell RNA sequencing datasets that have
not been variance-filtered or contain many more genes than cells,
p≫ n72,159.

Number of subsampled neighborhoods (m). We have previously
shown that selecting a small representative subset of cells with Kernel
Herding sketching (1) preserves the original distribution of cell states,
(2) achieves the same fidelity of downstream performance with far
fewer cells, and (3) results in improved scalability and faster
runtimes69. However, it is important to note that selecting too small of
a sketch size (i.e., too few subsampled neighborhoods, m≪ n) has the
potential to neglect rare cell states. This may impact the identification
of associated feature dynamics. Therefore, we recommend selecting a
larger number of subsampledneighborhoods from theoriginal dataset
to retain expected rare cell populations that occur at a small
frequency.

Number of modules (c). To identify modules of features similar
expression dynamics, DELVE clusters features according to their
average pairwise change in expression across prototypical cellular
neighborhoods using the K-means++ algorithm. The number of clus-
ters, c, should be chosen according to the number and granularity of
desired dynamic and static modules. Selecting too few clusters (e.g.,
c < 3) can result in modules of features with more heterogeneity in
their expression and/or retention of correlated noisy features. More-
over, as the number of clusters becomes very large proportionally to
the total number of features, clusters will contain far fewer features,
which may result in reduced power to detect grouped feature
dynamics in the permutation test. Of note, for particularly noisy ima-
ging datasets with many correlated features (e.g., PDAC 4i cell cycle),
we found that selecting more modules (c = 10) improved the separa-
tion and retention of a core set of dynamic cell cycle features from
noisy correlated modules.

DELVE’s sensitivity to parameter choices. To evaluate DELVE’s sen-
sitivity to choices in hyperparameters, we varied the number of
neighbors per cell (k = 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100), the
number of subsampled neighborhoods (m = 250, 500, 1000, 1500,
2000), and the number of KMeans++ clusters in dynamic module
identification (c = 3, 4, 5, 6, 7, 8, 9, 10). Feature selection method per-
formance was assessed on datasets with ground truth reference
information (i.e., 4i RPE cell cycle dataset using 30 selected proteomic
features, SymSim simulated single-cell RNA sequencing dataset using
1000 selected genes) by computing several metrics of trajectory pre-
servation, including (1) k nearest neighbor classification accuracy
betweenpredicted andground truth cell type labels, (2)NMI clustering
score between predicted and ground truth cell type labels, and (3)
Kendall rank correlation between estimated pseudotime and the
ground truth measurements using either the diffusion pseudotime
algorithm31 or Slingshot28 for trajectory inference. Results were com-
puted across 20 random trials for each dataset and parameter con-
figuration. Overall, we found DELVE was robust to choices in
hyperparameters (Supplementary Figs. 14, 15). However, we note that
parameter choices should be selected according to the profiled
dataset.

Benchmarked feature selection methods
In this section, we describe the twelve feature selection methods
evaluated for representing biological trajectories. For more details on

implementation and hyperparameters, see Supplementary Table 1 and
Guidelines on parameter selection.

Random forest. To quantitatively compare feature selection approa-
ches onpreservingbiologically relevant genes or proteins,we aimed to
implement an approach that would leverage ground truth cell type
labels to determine feature importance. Random forest classification49

is a supervised ensemble learning algorithm that uses an ensemble of
decision trees topartition the feature space such that all of the samples
(cells) with the same class (cell type labels) are grouped together. Each
decision or split of a tree was chosen by minimizing the Gini impurity
score as,

GðmÞ=
XC
i= 1

pmið1� pmiÞ: ð10Þ

Here, pmi is the proportion of cells that belong to class i for a
feature node m, and C is the total number of classes (e.g., cell types).
We performed random forest classification using the scikit-learn
v0.23.2 package in python. Nested 10-fold cross-validation was per-
formed using stratified random sampling to assign cells to either a
training or test set. The number of trees was tuned over a grid search
within each foldprior to training themodel. Feature importance scores
were subsequently determined by the average Gini importance
across folds.

Max variance. Max variance is an unsupervised feature selection
approach that uses sample variance as a criterion for retaining dis-
criminative features, where Ŝ

2
f represents the sample variance for

feature f 2 Rn as,

S2f =
1

n� 1

Xn
i = 1

ðf i � �f Þ2, ð11Þ

where fi indicates the expression value of feature f in cell i. We per-
formed max variance feature selection by sorting features in des-
cending order according to their variance score and selecting the topp
maximally varying features.

Neighborhood variance. Neighborhood variance29 is an unsupervised
feature selection approach that uses a local neighborhood variance
metric to select gradually-changing features for building biological

trajectories. Namely, the neighborhood variance metric ~S
2
f quantifies

how much feature f varies across neighboring cells as,

~S
2
f =

1
nkc � 1

Xn
i= 1

Xkc

j = 1

ðf i � fN ði,jÞ
Þ2: ð12Þ

Here, fi represents the expression value of feature f for cell i,N ði,jÞ
indicates the j nearest neighbor of cell i, and kc is theminimumnumber
of k-nearest neighbors required to form a fully connected graph.
Features were subsequently selected if they had a smaller neighbor-
hood variance ~S

2
f than global variance S2f ,

S2f
~S
2
f

> 1: ð13Þ

Highly variable genes. Highly variable gene selection53 is an unsu-
pervised feature selection approach that selects features according to
a normalized dispersion measure. First, features are binned based on
their average expression. Within each bin, genes are then z-score
normalized to identify features that have a large variance, yet a similar
mean expression. We selected the top p features using the highly
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variable genes function in Scanpy v1.9.3 (flavor = Seurat, bins = 20,
n_top_genes = p).

Laplacian score. Laplacian score (LS)55 is a locality-preserving unsu-
pervised feature selection method that ranks features according to (1)
how well a feature’s expression is consistent across neighboring cells
defined by a between-cell similarity graph define by all profiled fea-
tures and (2) the feature’s global variance. First, a weighted k-nearest
neighbor affinity graph of cells (k = 10) is constructed according to
pairwise Euclidean distances between cells based on all features, X.
More specifically, let G= ðV,EÞ, where V represents the cells and edges,
E, are weighted using a Gaussian as follows. Specifically, edge weights
between cells i and j can be defined as,

wij =
exp �kxvi

�xvj
k2

2σ2
i

� �
, if vj 2 N i

0, otherwise :

8<
: ð14Þ

HereW is a n × n between-cell similarity matrix, where cells vi and
vj are connectedwith an edgewith edgeweightwij if the cell vj is within
the set of vi’s neighbors, N i. Moreover, as previously described, σi
represents the bandwidth parameter for cell i defined as the distance
to the 3rd nearest neighbor. For each feature f, where f 2 Rn repre-
sents the value of the feature across all n cells, we compute the
Laplacian score, Lf as,

Lf =
~f
T
L~f

~f
T
D~f

: ð15Þ

Here, L represents the unnormalized graph Laplacian, with L =
D −W,D is a diagonal degree matrix with the ith element of the diag-

onal dii as dii =
P

jwij ,
~f represents the mean centered expression of

feature f as ~f = f � fTD1
1TD1

, and 1 = [1,…, 1]T. We performed feature selec-

tion by sorting features in ascendingorder according to their Laplacian
score and selecting the top p features.

MCFS. Multi-cluster feature selection (MCFS)58 is an unsupervised
feature selection method that selects for features that best preserve
the multi-cluster structure of data by solving an L1 regularized least
squares regression problem on the spectral embedding. Similar to the
Laplacian score, first k-nearest neighbor affinity graph of cells (k = 10)
is computed to encode the similarities in feature expression between
cells i and j using a Gaussian kernel as,

wij =
exp �kxvi

�xvj
k2

2σ2
i

� �
, if vj 2 N i

0, otherwise :

8<
: ð16Þ

Similar to previous formulations above,W is an n × n between cell
affinitymatrix,where apair of cells vi and vj are connectedwith anedge
withweightwij if cell vj is within the set of vi’s neighbors,N i. Further, σi
represents the kernel bandwidth parameter chosen to be the distance
to the thirdnearestneighbor fromcell i. Next, to represent the intrinsic
dimensionality of the data, the spectral embedding160 is computed
through eigendecomposition of the unnormalized graph Laplacian L,
where L =D −W as,

Ly = λDy: ð17Þ

Here, Y= fygKk = 1 are the eigenvectors corresponding to the K
smallest eigenvalues, W is a symmetric affinity matrix encoding cell
similarity weights, and D represents a diagonal degree matrix with
each element as dii =∑jwij. Given that eigenvectors of the graph
Laplacian represent frequency harmonics71 and low frequency eigen-
vectors are considered to capture the informative structure of the

data, MCFS computes the importance of each feature along each
intrinsic dimension yk by finding a relevant subset of features by
minimizing the error using an L1 norm penalty as,

min
ak

kyk � XTakk2 s:t: kakk1 ≤ γ: ð18Þ

Here, the non-zero coefficients, ak, indicate the most relevant
features for distinguishing clusters from the embedding space, yk and
γ controls the sparsity and ensures the least relevant coefficients are
shrunk to zero. The optimization is solved using the least angles
regression algorithm74, where for every feature, the MCFS score is
defined as,

MCFSðjÞ= max
k

kak,jk : ð19Þ

Here, j and k index feature and eigenvector, respectively. We
performed multi-cluster feature selection with the number of eigen-
vectors K chosen to be the number of ground truth cell types present
within the data, as this is the traditional convention in spectral
clustering60 and the number of nonzero coefficients was set to the
number of selected features, p.

SCMER. Single-cell manifold-preserving feature selection (SCMER)57

selects a subset of p features that represent the embedding structure
of the data by learning a sparse weight vector w by formulating an
elastic net regression problem that minimizes the KL divergence
between a cell similaritymatrix defined by all features and one defined
by a reduced subset of features. More specifically, let P denote a
between-cell pairwise similarity matrix defined in UMAP59 computed
with the full data matrix X 2 Rn×d and Q denote a between-cell pair-
wise similarity matrix defined in UMAP computed with the dataset
following feature selection Y 2 Rn×p, where Y =Xw and p≪ d. Here,
elastic net regression is used to find a sparse and robust solution of w
that minimizes the KL divergence as,

KL P k Qð Þ=
X
i

X
j

pij log
pij

qij
: ð20Þ

Features with non-zero weights in w are considered useful for
preserving the embedding structure and selected for downstream
analysis. We performed SCMER feature selection using the scmer
v.0.1.0a3 package in python by constructing a k-nearest neighbor
graph (k = 10) according to pairwise Euclidean distances of cells based
on their first 50principal components and using the default regression
penalty weight parameters (lasso = 3.87e − 4, ridge = 0).

Hotspot. Hotspot56 is an unsupervised gene module identification
approach that performs feature selection through a test statistic that
measures the association of a gene’s expression with the between-cell
similarity graph defined based on the full feature matrix, X. More
specifically, first, a k-nearest neighbor cell affinity graph (k = 10) is
definedbasedonpairwiseEuclideandistances between all pairs of cells
using a Gaussian kernel as,

wij =
exp � kxvi

�xvi j
k2

σ2
i

� �
, if vj 2 N i

0, otherwise :

8<
: ð21Þ

Here, cells vi and vj are connected with an edge with edge weight
wij if the cell vj is within the set of vi’s neighbors such that ∑jwij = 1 for
each cell and σi represents the bandwidth parameter for cell i defined
as the distance to the k

3 neighbor. For a given feature f 2 Rn, repre-
senting expression across all n cells where fi is the mean-centered and
standardized expression of feature f in cell i according to a null dis-
tribution model of gene expression, the local autocorrelation test
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statistic representing the dependence of each gene on the graph
structure is defined as,

Hf =
X
i

X
j≠i

wijf if j: ð22Þ

Hotspot was implemented using the hotspotsc v1.1.1 package in
python, where we selected the top p features by sorting features in
ascending order according to their significance with respect to a null
model. For the single-cell RNA sequencing datasets where count data
were available (splatter simulation, SymSim simulation, DE differ-
entiation datasets), or for the the indirect immunofluorescence ima-
ging datasets (RPE, PDAC), the null model of counts was defined by a
negative binomial distribution. For the single-cell RNA sequencing
datasets where only log normalized data were available (CD8 differ-
entiation), the null model of normalized counts was defined as a nor-
mal distribution.

All features. To consider a baseline representation without feature
selection, we evaluated performance using all features from each
dataset following quality control preprocessing.

Random features. As a second baseline strategy, we simply selected a
subset of random features without replacement. Results were com-
puted across twenty random initializations for each dataset.

DELVE. DELVE was run as previously described. Here, we constructed a
weighted k-nearest neighbor affinity graph of cells (k= 10), and 1000
neighborhoods were sketched to identify dynamic seed feature clusters
(c =3 for the Splatter simulateddatasets, c= 5 for the SymSim simulated,
RPE cell cycle, CD8T cell differentiation, andDE differentiation datasets,
or c= 10 for the PDAC cell cycle datasets). For practical guidelines on
parameter selection, see Guidelines on parameter selection.

Datasets
We evaluated feature selection methods based on how well retained
features could adequately recoverbiological trajectories under various
noise conditions, biological contexts, and single-cell technologies.

Splatter simulation. Splatter75 is a single-cell RNA sequencing simu-
lation software that generates count data using a gamma-Poisson
hierarchical model with modifications to alter the mean-variance
relationship amongst genes, the library size, or sparsity. We
used splatter to simulate a total of 90 ground truth datasets with
different trajectory structures (e.g., 30 linear datasets, 30 bifurcation
datasets, and 30 tree datasets). First, we estimated simulation para-
meters by fitting the model to a real single-cell RNA sequencing
dataset consisting of human pluripotent stem cells differentiating
into mesoderm progenitors138. We then used the estimated para-
meters (mean_rate = 0.0173, mean_shape = 0.54, lib_loc = 12.6,
lib_scale = 0.423, out_prob = 0.000342, out_fac_loc = 0.1, out_-
fac_scale = 0.4, bcv = 0.1, bcv_df = 90.2, dropout = None) to simu-
late a diverse set of ground truth reference trajectory datasets with
the splatter paths function (python wrapper scprep SplatSimulate
v1.2.3 of splatter v1.18.2). Here, a reference trajectory structure (e.g.,
bifurcation) was used to simulate linear and nonlinear changes in the
mean expression of genes along each step of the specified differ-
entiation path. We simulated differentiation datasets (1500 cells, 500
genes, 6 clusters) for each trajectory type (linear, bifurcation, tree)
by modifying (1) the probability of a cell belonging to a cluster by
randomly sampling from a Dirichlet distribution with six categories
and a uniform concentration of one and (2) the path skew by ran-
domly sampling from a beta distribution (α = 10, β = 10). The
output of each simulation is a ground truth reference consisting of
cell-to-cluster membership, differentially expressed genes per

cluster or path, as well as a latent step vector that indicates the
progression of each cell within a cluster. Lastly, we modified the step
vector to be monotonically increasing across clusters within the
specified differentiation path to obtain a reference pseudotime
measurement.

To estimate how well feature selection methods can identify
genes that represent cell populations and are differentially expressed
along a differentiation path in noisy single-cell RNA sequencing data,
we added relevant sources of biological and technical noise to the
reference datasets.
1. Biological Coefficient of Variation (BCV): To simulate the effect of

stochastic gene expression, wemodified the biological coefficient
of variation parameter within splatter (BCV =0.1, 0.25, 0.5). This
scaling factor controls the mean-variance relationship between
genes, where lowly expressed genes aremore variable than highly
expressed genes, following a γ distribution. This corresponded to
an approximate mean coefficient of variation 1.55, 1.60, and 1.75
when averaged across all genes andmax coefficient of variation of
2.90, 2.95, and 3.10.

2. Library size: The total number of profiled mRNA transcripts per
cell, or library size, can vary between cells within a single-cell RNA
sequencing experiment and can influence the detection of
differentially expressed genes76, as well as impact the reproduci-
bility of the lower-dimensional representation of the data77. To
simulate the effect of differences in sequencing depth, we
proportionally adjusted the gene means for each cell by
modifying the location parameter (lib_loc = 12, 11, 10) of the
log-normal distribution within splatter that estimates the library
size scaling factors. This corresponded to an average library size
of approximately 3e4, 1.7e4 and 9e3.

3. Technical dropout: Single-cell RNA sequencing data contain a
large proportion of zeros, where only a small fraction of total
transcripts are detected due to capture inefficiency and amplifica-
tion noise161. To simulate the inefficient capture of mRNA
molecules and account for the trend that lowly expressed genes
are more likely to be affected by dropout, we undersampled
mRNA counts by sampling from a binomial distribution with the
scale parameter or dropout rate proportional to the mean
expression of each gene as previously described in ref. 162 as,

ri = exp �λμ2
i

� �
: ð23Þ

Here, μi represents the log mean expression of gene i, and λ is a
hyperparameter that controls the magnitude of dropout
(λ =0, 0.05, 0.1). This corresponded to an approximate undersampling
percentage of 0, 10, and 20 percent when averaged across all cells for
all genes.

In our subsequent feature selectionmethod analyses, we selected
the top p = 100 features under each feature selection approach.

SymSim simulation. SymSim86 is a single cell RNA sequencing simu-
lation software that uses a kinetic model of gene expression followed
by library preparation and sequencing simulation to model intrinsic,
extrinsic, and technical variability in single-cell RNA sequencing data.
This approach was shown in a recent benchmarking study87 to be
amongst the top rankingmethods for reasonably simulating single-cell
RNA sequencing data asmeasured by their accuracy in estimating data
properties (e.g., library size, TMM, mean expression, scaled variance,
fractions of zeros, cell and gene correlations) and their ability to pre-
serve biological signals (e.g., differentially expressed genes, differen-
tially variable genes). We used SymSim v0.0.0.9000 in R v4.1.1 to
simulate tree differentiation trajectories with 10000 cells, 20000
genes, and 4 cell types. Simulation parameters (σ = 0.6, 0.4, α_mean =
(0.01, 0.02, 0.03, 0.04, 0.05), α_sd =0.02, evf_type = continuous,
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protocol = UMI, vary = s, nevf = 1.5%total genes, n_de_evf = 1% -
total genes, depth_mean = 5e5, depth_sd = 3e4) were chosen from
Table 2 in ref. 87, as this table contained simulation parameters that
achieved the most similar distributions of statistics to real single-cell
RNA sequencing data. To evaluate how well feature selectionmethods
could identify genes that define cellular trajectories when subjected to
a reduction of the total mRNA count, we performed two experiments
where we simulated five differentiation trajectories by modifying the
mean mRNA capture efficiency rate α_mean = (0.01, 0.02, 0.03, 0.04,
0.05) for cells with a high within population variability (σ =0.6) and
low within population variability (σ = 0.4). The output of each simu-
lated dataset was a ground truth reference trajectory containing cell-
to-cluster membership, as well as a latent pseudotime vector that
indicated cell progression along each population in the trajectory. In
our subsequent feature selectionmethod analyses, we first performed
principal components analysis (n_pcs = 50) and then selected the top
p = 2000, 1000, 500, 250, 100, or 50 features under each feature
selection approach.

RPE analysis. The retinal pigmented epithelial (RPE) dataset17 is an
iterative indirect immunofluorescence imaging (4i) dataset consisting of
RPE cells undergoing the cell cycle. Here, time-lapse imaging was per-
formed on an asynchronous population of non-transformed human
retinal pigmented epithelial cells expressing a PCNA-mTurquoise2
reporter in order to record the cell cycle phase (G0/G1, S, G2, M) and
age (time since last mitosis) of each cell. Following time-lapse imaging,
cells were fixed and 48 core cell cycle effectors were profiled using 4i8.
For preprocessing, we min-max normalized the data and performed
batch effect correction on the replicates using the ComBat163 function in
Scanpy v1.9.3. Lastly, to refine phase annotations and distinguish G0
from G1 cells, we selected cycling G1 cells according to the bimodal
distribution of pRB/RB expression as described in ref. 17. Of note, cells
were excluded if they did not have ground truth phase or age annota-
tions. The resultant dataset consisted of 2759 cells × 241 imaging-
derived features describing the expression and localization of different
proteinmarkers. For our subsequent analysis, we selected the top p= 30
imaging-derived features for each feature selection approach.

PDAC analysis. The pancreatic ductal adenocarcinoma (PDAC) cell
cycle dataset164 is an iterative indirect immunofluorescence imaging
dataset that profiled 63 core cell cycle effectors in 9 human PDAC
cell lines: BxPC3, CFPAC, HPAC, MiaPaCa, Pa01C, Pa02C, Pa16C, PANC1,
UM53. Each dataset resulted in d=253 imaging-derived
features representing the expression and localization of different pro-
tein markers. For each cell line (e.g., BxPC3) under control conditions,
we min-max normalized the data. Cell cycle phases (G0, G1, S, G2, M)
were annotated a priori based on manual gating cells according to the
abundance of core cell cycle markers. Phospho-RB (pRB) was used to
distinguish proliferative cells (G1/S/G2/M, high pRB) from arrested cells
(G0, low pRB). DNA content, E2F1, cyclin A (cycA), and phospho-p21 (p-
p21) were used to distinguish G1 (DNA content = 2C, low cycA), S (DNA
content = 2-4C, high E2F1), G2 (DNA content = 4C, high cycA), and M
(DNA content = 4C, high p-p21). For our subsequent analysis, we
selected the top p=30 features for each feature selection approach.

CD8+ T cell differentiation analysis. The CD8+ T cell differentiation
dataset107 is a single-cell RNA sequencing dataset consisting of mouse
splenic CD8+ T cells profiled over 12-time points (d=day) following
infectionwith the Armstrong strain of the lymphocytic choriomeningitis
virus: Naive, d3-, d4-, d5-, d6-, d7-, d10-, d14-, d21-, d32-, d60-, d90- post-
infection. Spleen single-cell RNA sequencing data were accessed from
the Gene Expression Omnibus using the accession code GSE131847 and
concatenated into a single matrix. The dataset was subsequently quality
control filtered according to the distribution of molecular counts. To
remove dead or dying cells, we filtered cells that had more than twenty

percent of their total reads mapped tomitochondrial transcripts. Genes
that were observed in less than three cells or had less than 400 counts
were also removed. Following cell and gene filtering, the data were
transcripts-per-million normalized, log+1 transformed, and variance fil-
tered using highly variable gene selection, such that the resulting
dataset consisted of 29893 cells × 2000 genes (See Highly variable
genes). When evaluating feature selection methods, we first performed
principal components analysis n_pcs = 50, and then selected the top
p= 500 features for each feature selection approach.

DE differentiation analysis. The DE differentiation dataset is a multi-
plexed single-cell RNA sequencing dataset consisting of human
embryonic stem cells (hESCs) differentiating into the DE. Cells were
profiled over a 2 day time course following induction of TGFβ andWNT
signaling pathways: day 0, day 1-, day2-post treatment.
1. Cell culture of humanembryonic stemcells: H9humanembryonic

stemcells (WiCell) weregrown in themediummTesR1 (STEMCELL
Technologies) in tissue culture dishes coated with Matrigel
(Corning; 1:100 in DMEM/F12) overnight at 4 oC. Media changes
were performed daily. Cells were routinely passaged every
2–3 days using Dulbecco’s PBS/0.5mM EDTA and treated with
ROCK inhibitor Y27672 (10μM; STEMCELL Technologies) for 24 h
after passaging. The cellswere kept at 37 oC, and 5%CO2 in a tissue
culture incubator.

2. Definitive endoderm differentiation: Definitive endoderm differ-
entiation of H9 human embryonic stem cells (WiCell) was per-
formed according by adapting the modified D’Amour protocol
previously described in ref. 129. For each treatment group, 100K
cells were seeded into a single well of a 12-well plate with mTeSR
(Stemcell Technologies) and ROCK inhibitor Y-27632 (10μM;
STEMCELL Technologies). After 24 h, cells were switched to
mTeSR without ROCK inhibitor Y-27632 for an additional 24h. To
induce definitive endoderm differentiation, cells were treated
with Activin A (100ng/mL; Peprotech) and CHIR90992 (5μM;
Peprotech) in RPMI 1640 media with B27 supplement for 24 h
(d1-post treatment) followed by Activin A (100ng/mL; Peprotech) in
RPMI 1640 media with B27 supplement for the final 24 h (d2-post
treatment). Cell seeding was staggered for simultaneous cell
collection and labeling across time points.

3. Multiplexed single-cell RNA sequencing: We performed multi-
plexed single-cell RNA sequencing by adapting an approach
previously outlined in ref. 128 that uses Click Chemistry to tag
cells with unique oligo barcodes for condition-specific cell
labeling and multiplexing prior to single-cell RNA sequencing.
Condition-specific oligo barcodes were designed according to
10X Genomics’ specifications for feature barcoding of cell surface
proteins. Each condition-specific oligo barcode contained a
capture sequence 1, tru seq read 2, a unique feature barcode
selected from the list of whitelisted barcodes provided by 10X
Genomics, and an amine group (Am6C) on the 5′ end to allow for
the required click chemistry alterations. Condition-specific oligo
barcodes (desalted, 250 nmol, IDT) were reconstituted in 250μL
distilledwater and spun for 10min to remove any insoluble debris
from synthesis. Barcodes were then subjected to ethanol
precipitation and resuspended in 100muL 1X borate buffer
(ThermoFisher Scientific). Concentrations in μM were calculated
as (A260/ϵ ×Dilution Factor × 106). Then 35 nmol was diluted to
50μL with water and mixed with 7muL 10X BBS (0.5 M
borate + 1.5M NaCl) and 7μL DMSO. The barcodes were then
reacted with 2 additions of 3.5μL freshly prepared 100mMMTZ-
PEG4-NHS (Click Chemistry Tools) in DMSO added at 15min
intervals. The reaction was quenched with 1.45μL 1 M glycine for
5min, then ethanol precipitated and resuspended in 100μL
HEPES buffer. The concentration of each barcode was measured
and samples were normalized to 100μM. Prior to cell labeling,
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cells were washed twice with HBSS (Gibco) to remove any
extracellular proteins. Cells were then incubated in TCO-PEG4-
NHS (Click Chemistry Tools) in HBSS for 15min at room
temperature on a rotating platform. This solution was prepared
immediately prior to incubation with cells to minimize hydrolysis
of NHS groups. After incubation, the TCO-PEG4-NHS solutionwas
removed and the cells were incubatedwithMTZ-activated feature
barcodes at ~10μM inDMEM:F12 for an additional 20min at 37 oC.
The reaction was then quenched by incubation for 5min with Tris
HCl and MTZ-DBCO. Cells were washed once in PBS-EDTA then
passaged using PBS-EDTA and collected with PBS-BSA. Cells were
filtered and resuspended to a single cell suspension then equal
numbers of cells from each treatment were combined and loaded
onto a single lane of a 10X Genomics chip.

4. Single-cell RNA sequencing preprocessing and quality control:
cDNA libraries were prepared for single-cell RNA sequencing
using the 10XGenomics Version 3 platform and analyzed with the
Cell Ranger pipeline v3.0.2. Raw sequencing Binary Base Call files
were computationally demultiplexed by sample indices and
converted into FASTQ files with the cellranger mkfastq
function. This pipeline outputs two sets of FASTQ files, one
corresponding to gene expression profiles and the other contain-
ing feature barcodes. Reads were then aligned to either the
human reference transcriptome (Hg19) or the custom
feature barcode reference file with the cellranger count
function. Cells were then filtered by the inflection point on the
barcode rank plot to eliminate background-associated cell
barcodes. Loom files were generated using default parameters
with the Velocyto v0.17 package in python. To computationally
demultiplex cells following single-cell RNA sequencing, unique
condition-specific oligo barcodes from the unified filtered
feature-barcode matrix were median normalized to correct for
differences in signal-to-noise and linked back to a sampling time
point according to its maximum condition-specific feature
barcode (e.g., day 0). Single-cell RNA sequencing quality control
was performed according to the distributions of count depth,
genes per cell, and the fraction ofmitochondrial genes per cell. To
remove dead or dying cells, we filtered cells that had more than
twenty percent of their total reads mapped to mitochondrial
transcripts. To remove empty droplets or cell doublets, cells were
required to have a minimum number of 1500 transcript counts or
amaximumnumber of 90000 transcript counts and were filtered
out if they had less than 650 genes per cell or more than 7200
genes per cell. Following cell and gene filtering, the data were
counts-per-million normalized, log+1 transformed, and variance
filtered using highly variable gene selection, such that the
resulting dataset consisted of 5397 cells × 2000 genes (See Highly
variable genes).

5. RNA velocity estimation: RNA velocity125,126 was calculated using
the dynamical model implementation in ScVelo v0.2.5. More
specifically, first and second order moments for velocity estima-
tion were computed for each cell based on a k-nearest neighbor
graph (k = 10) constructed according to pairwise Euclidean dis-
tances between cells using the first 50 principal components. The
full dynamicalmodelwas then solved for all genes to obtain a high
dimensional velocity vector for every cell. We then performed a
likelihood ratio test for differential kinetics amongst the cell
populations defined according to the time point labels to account
for any differences in mRNA splicing or degradation kinetics.
Groups of cells that exhibited different kinetic regimes were fit
independently and velocity vectors were corrected.

When evaluating feature selection methods, we first performed
principal components analysis, n_pcs = 50, and then selected the top
p = 500 features for each feature selection approach.

Statistics and reproducibility. For all publicly available datasets used
in this study (CD8T, RPE, PDAC), the sample sizes, number of repli-
cates, randomization, and blinding were determined by the original
authors. No sample size calculations were performed for the RPE
(ref. 17), PDAC (ref. 164), CD8T (ref. 107), or DE datasets. The RPE study
was performed in technical duplicates (ref. 17), the PDAC study had a
single well per cell line (ref. 164), and the CD8T cell differentiation
study collected CD8T cells that were pooled from approximately 1-6
mice at each timepoint. Here each timepoint of the analysis repre-
sented an independent experiment (ref. 107). The RPE (ref. 17) and
PDAC (ref. 164) studies had no randomization as there was no treat-
ment induction for the control data. For the CD8T cell study, mice
were randomly allocated into groups before adoptive transfer and
mice were randomly selected for cell harvesting at specific time points
(ref. 107). For the DE dataset, cells were randomly placed into three
replicate wells for each condition, treated with differentiation stimuli,
and pooled prior to acquisition. Therewasnoblinding to experimental
allocation or outcome association in this study. Data exclusions were
determined according to (1) quality control measures such as the
distribution of molecular counts and expression of mitochondrial
markers in single-cell RNA sequencing data, and/or (2) the availability
of ground truth cellular annotations.

Evaluation
Classification and regression
k-nearest neighbor classification. To quantitatively compare feature
selection methods on retaining features that are representative of cell
types, we aimed to implement an approach that would assess the
quality of the graph structure. k − nearest neighbors classification is a
supervised learning algorithm that classifies data basedon labels of the
k-most similar cells according to their gene or protein expression,
where the output of this algorithm is a set of labels for every cell. We
performed k-nearest neighbors classification to predict cell type labels
from simulated single-cell RNA sequencing datasets as follows. First,
3-fold cross-validation was performed using stratified random sam-
pling to assign cells to either a training or a test set. Stratified random
samplingwas chosen tomitigate the effect of cell type class imbalance.
Within each fold, feature selection was then performed on the training
data to identify the top p relevant features according to a feature
selection strategy. Next, a k-nearest neighbor classifier (k = 3)was fit on
the feature-selected training data to predict the cell type labels of the
feature selected test query points. Here, labels were predicted as the
mode of the cell type labels from the closest training data points
according to Euclidean distance. Classification performance was sub-
sequently assessed according to the median classification accuracy
with respect to the ground truth cell type labels across folds. k-nearest
neighbors classificationwas implementedusing the scikit-learnv0.23.2
package in python.

Support Vector Machine. The Support Vector Machines (SVM)165 is a
supervised learning algorithm that constructs hyperplanes in the high-
dimensional feature space to separate classes. We implemented SVM
classification or regression using the scikit-learn v0.23.2 package in
python. SVM classification was used to predict cell cycle phase labels
for both RPE and PDAC 4i datasets, whereas SVM regression was used
to predict age measurements from time lapse imaging for the RPE
dataset. Here, Nested 10-fold cross-validation was performed using
random sampling to assign cells to either a training set or a test set.
Within each fold, feature selection was performed to identify the p
most relevant features according to a feature selection strategy. SVM
hyperparameters were then tuned over a grid search and phase labels
were subsequently predicted from the test data according to those p
features. Classification performance was assessed according to the
median classification accuracy with respect to the ground truth cell
type labels across folds. Regression performance was assessed
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according to the average root mean squared error with respect to
ground truth age measurements across folds.

Precision@k. To evaluate the biological relevance of selected features
from each method, we computed precision@k (p@k) as the propor-
tion of top k selected features that were considered to be biologically
relevant according to a ground truth reference as,

p@k =
jFs,k \ Fr j

jFs,k j
, ð24Þ

where Fs,k indicates the set of selected features at threshold k, where
Fs,k⊂ Fs, and Fr indicates the set of reference features. Reference fea-
tures were defined as either (1) the ground truth differentially
expressed features within a cluster or along a differentiation path from
the Splatter single-cell RNA sequencing simulation study (see Splatter
simulation) or (2) the features determined to be useful for classifying
cells according to cell cycle phase using a random forest classifier
trained on ground truth phase annotations from time-lapse imaging
for the protein immunofluorescence imaging datasets (See Random
forest, RPE analysis, PDAC analysis).

Unsupervised clustering. To evaluate feature selection method per-
formance on retaining features that are informative for identifying
canonical cell types, we performed unsupervised clustering on the
data defined by the top p ranked features from a feature selection
strategy. More specifically, for each feature selection approach, clus-
tering was performed on the selected data using the KMeans++
algorithm105 with the number of centroids set as the same number of
ground truth cell cycle phase labels for the protein immuno-
fluorescence imaging datasets (RPE: c = 4, PDAC: c = 5).

To assess the accuracy of clustering assignments, we quantified a
NMI score between the predicted cluster labels and the ground truth
cell type labels. Normalized mutual information166 is a clustering
quality metric that measures the amount of shared information
between two cell-to-cluster partitions (u and v, such that the ith entry
ui gives the cluster assignment of cell i) as,

NMI =
2Iðu; vÞ
HðuÞHðvÞ , ð25Þ

where, I(u; v) measures the mutual information between ground truth
cell type labels u and cluster labels v, and H(u) or H(v) indicates the
Shannon entropy or the amount of uncertainty for a given set of labels.
Here, a score of 1 indicates that clustering on the selected features
perfectly recovers the ground truth cell type labels. KMeans++ clus-
tering was implemented using the KMeans function in scikit-
learn v0.23.2.

Protein-protein interaction networks. In this work, we aimed to test
whether features within DELVE dynamic clusters had experimental
evidence of co-regulation as compared to random assignment. The
STRING (search tool for the retrieval of interacting genes/proteins)
database122 is a relational database that computes protein association
scores according to information derived from several evidence chan-
nels, including computational predictions (e.g., neighborhood, fusion,
co-occurance), co-expression, experimental assays, pathway data-
bases, and literature text mining. To assess the significance of protein
interactions amongst features within a DELVE cluster, we performed a
permutation test with a test statistic derived from STRING association
scores using experimental evidence as follows.

Let Gp = ðN p, EpÞ denote a graph of p proteins from a DELVE
cluster comprising the nodes N p, and Ep denote the set of edges,
where edge weights encode the association scores of experimentally-
derived protein-protein interaction evidence from the STRING

database. Moreover, let Gr = ðN r , ErÞ denote a graph of r proteins
randomly sampled without replacement from the full feature space d
such that r = p comprising thenodesN r , and Er denote the set of edges
encoding the experimentally-derived association scores between
those r proteins from the STRING database. We compute the permu-
tation p-value as described previously in ref. 167 as,

p -value =
N + 1
R + 1

: ð26Þ

Here N indicates the number of times that Tr ≥ Tobs out of R ran-
dom permutations (R = 1000), where Tr is the average degree of a
STRING association network from randomly permuted features as
T r =

jN r j=jEr j, and Tobs is the average degree of a STRING association

network from the features identified within a DELVE cluster as

Tobs =
jN p j=jEp j. Of note, networks with higher degree are more con-

nected, and thus show greater experimental evidence of protein-
protein interactions. Experimental evidence-based association scores
were obtained from the STRING database (stringdb) and networks
were generated using networkx v3.1 package in python.

Trajectory inference and analysis. To evaluate how well feature
selection methods can identify features that (1) recapitulate the
underlying cellular trajectory and (2) can be used for trajectory ana-
lysis, we computed three metrics to assess trajectory preservation at
different stages of inference: accuracy of the inferred cell-state tra-
jectory graph, correlation of estimated pseudotime to the ground
truth cell progression measurements, and significance and biological
relevance of dynamic features identified following trajectory inference
and regression analysis.

To obtain predicted cellular trajectories following feature selec-
tion, we performed trajectory inference using two approaches that
were shown to outperformalternativemethods for inferenceof simple
or tree differentiation trajectories23. First, cellular trajectories were
inferred using the diffusion pseudotime algorithm31 based on 20 dif-
fusion map components generated from a k-nearest neighbor graph
(k = 10), where edge weights were determined by pairwise Euclidean
distances between cells according to selected feature expression. For
each feature selection approach, we estimated pseudotime using ten
random root cells selected according to a priori biological knowledge:
simulated datasets (cells with the smallest ground truth time annota-
tion), 4i cell cycle datasets (cells with the youngest age from time-lapse
imaging for the arrested (G0 phase) or proliferative (G1, S, G2, M
phases) trajectories), CD8 differentiation dataset (cells from the d3
population), and DE differentiation dataset (cells from the d0 popu-
lation). As a secondary approach,we inferred cellular trajectories using
Slingshot28. Here, a minimum spanning tree was fit through cluster
centroids defined according to a priori biological knowledge (e.g., cell
type labels or time point labels), then pseudotime was estimated by
projecting cells onto the principal curves fit through the PHATE
embedding generated from selected feature expression (See PHATE
visualizations). The root cluster for each dataset was defined as cluster
with the smallest ground truth time annotation as introduced pre-
viously. Feature selection trajectory performance was subsequently
assessed as follows.
1. Trajectory graph similarity: Partition-based graph abstraction

(PAGA)30 performs trajectory inference by constructing a coarse
grained trajectory graph of the data. First cell populations
are determined either through unsupervised clustering, graph
partitioning, or a prior experimental annotations. Next, a
statistical measure of edge connectivity is computed between
cell populations to estimate the confidence of a cell population
transition. To assess if feature selection methods retained
features that represented coarse cell type transitions, we
compared predicted PAGA trajectory graphs to ground truth cell
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cycle reference trajectories curated from the literature17. First,
PAGA connectivity was estimated between ground truth cell cycle
phase groups using the k-nearest neighbor graph (k = 10) based
on pairwise Euclidean distances between cells according to
selected feature expression. We then computed the Jaccard
distance between predicted and reference trajectories as,

dj Wp,Wr

� �
= 1� jWp \Wr j

jWp ∪Wr j
: ð27Þ

Wp indicates the predicted cell type transition adjacencymatrix, where
each entry Wp,ij represents the connectivity strength between cell
populations i and j from PAGA and Wr indicates the reference trajec-
tory adjacency matrix with entries encoding ground truth cell type
transitions curated from the literature. Here, a lower Jaccard distance
indicates that predicted trajectories better capture known cellular
transitions.
2. Pseudotime correlation: To evaluate if feature selection methods

retained features that accurately represent a cell’s progression
through a biological trajectory, we computed the Kendall rank
correlation coefficient between estimated pseudotime following
feature selection and ground truth cell progression annotations
(e.g., the ground truth pseudotime labels generated from simu-
lations, time-lapse imaging molecular age measurements).

3. Regression analysis: To identify genes associatedwith the inferred
differentiation trajectory (e.g., CD8+ T cell, definitive endoderm
differentiation trajectory) following feature selection, we per-
formed regression analysis for each gene (d = 500) along esti-
mated pseudotime using a negative binomial GAM. Genes were
considered to be differentially expressed along the inferred line-
age if they had a q value < 0.05 following Benjamini-Hochberg
false discovery rate correction123.

4. Gene Ontology: To identify the biological relevance of differen-
tially expressed genes associatedwith thedifferent differentiation
trajectories specific to each feature selection strategy, we per-
formed gene set enrichment analysis on the set of significant
genes from either highly variable gene, DELVE, Hotspot, Laplacian
score, or RNA velocity feature selection using Enrichr124. Here, we
considered the gene sets (e.g.,mouse - CD8+T cell differentiation,
human - DE differentiation) from GO Biological Process 2023.

Diffusion pseudotime was implemented using the dpt function in
Scanpy v1.9.3 in python, Slingshot was implemented using the sling-
shot v2.1.1 package in R v4.1.1, PAGA was implemented using the paga
function in Scanpy v1.9.3 in python, GAM regression was implemented
using the statsmodels v0.14.0 package in python, and gene set
enrichment analysis was performed using the enrichr function in
gseapy v1.0.4 package in python.

PHATE visualizations. To qualitatively compare lower dimensional
representations from each feature selection strategy, we performed
nonlinear dimensionality reduction using PHATE (potential of heat-
diffusion for affinity-based transition embedding)78 as this approach
performs reasonably well for representing complex continuous bio-
logical trajectories. PHATE was implemented using the phate v1.0.11
package in python. Here, we used the same set of hyperparameters
across all feature selection strategies (knn= 30, t= 10, decay = 40).

Aggregate scores. To rank feature selection methods on preserving
biological trajectories in the presence of single-cell noise, we com-
puted rank aggregate scores by taking the mean of scaled method
scores across simulated single-cell RNA sequencing datasets from a
trajectory type and noise condition (e.g., linear trajectory, dropout
noise). More specifically, we first defined an overall method score per
dataset as the median of each metric. Method scores were

subsequently min-max scaled to ensure datasets were equally weigh-
ted prior to computing the average.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw publicly available single-cell datasets used in this study are
available in the Zenodo repository https://doi.org/10.5281/zenodo.
4525425 for theRPE cell cycle dataset168, the Zenodo repositoryhttps://
doi.org/10.5281/zenodo.7860332 for the PDAC cell cycle datasets164,
and the Gene Expression Omnibus (GEO) under the accession code
GSE131847 for the CD8+ T cell differentiation dataset169. All pre-
processed datasets, including the DE differentiation dataset are avail-
able in the Zenodo repository https://doi.org/10.5281/zenodo.
10534873170. The STRING database leveraged in this study is publicly
available https://string-db.org/. The source data are provided with this
paper and available in the Zenodo repository https://doi.org/10.5281/
zenodo.10534873170.

Code availability
DELVE is implemented as an open-source Python package and is
publicly available at https://github.com/jranek/delve. Source code
including all functions for benchmarking feature selection methods
includingpreprocessing, feature selection, evaluation, andplotting are
publicly available at: https://github.com/jranek/delve_benchmark.
Code is also publicly available in the Zenodo repository https://doi.
org/10.5281/zenodo.10426508171.
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