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Prediction of glycopeptide fragment mass
spectra by deep learning

Yi Yang 1 & Qun Fang 1,2

Deep learning has achieved a notable success in mass spectrometry-based
proteomics and is now emerging in glycoproteomics. While various deep
learning models can predict fragment mass spectra of peptides with good
accuracy, they cannot cope with the non-linear glycan structure in an intact
glycopeptide. Herein, we present DeepGlyco, a deep learning-based approach
for the prediction of fragment spectra of intact glycopeptides. Our model
adopts tree-structured long-short term memory networks to process the gly-
can moiety and a graph neural network architecture to incorporate potential
fragmentationpathways of a specific glycan structure. This feature is beneficial
tomodel explainability and differentiation ability of glycan structural isomers.
We further demonstrate that predicted spectral libraries can be used for data-
independent acquisition glycoproteomics as a supplement for library com-
pleteness. We expect that this work will provide a valuable deep learning
resource for glycoproteomics.

Liquid chromatography coupled with tandem mass spectrometry
(LC-MS/MS) is the method of choice widely used in proteomics1 and
glycoproteomics2,3. At the heart of proteomics data analysis is pep-
tide identification by matching fragment spectra to theoretical or
experimental spectra for candidate peptides4. Most commonly used
proteomics5–8 or glycoproteomics9–16 search engines are based on
database searching, where peptide spectrum matches (PSMs) or
glycopeptide spectrummatches (GPSMs) are scored on the presence
of fragment ions theoretically generated from peptide sequence and
glycan but largely disregard fragment ion intensities. As a com-
plementary approach, spectral library searching correlates the
intensity pattern of fragment ions of the analyte to library spectra
typically constructed from previous identification data17, which has
been reported to yield more discriminative match scores than data-
base searching for data-dependent acquisition (DDA) analysis18–21.
Spectral libraries are also commonly used for the analysis of data-
independent acquisition (DIA) experiments22, achieving deep pro-
teome coverage with quantitative consistency in conventional
proteomics23–25, phosphoproteomics26,27, ubiquitin proteomics28, and
glycoproteomics29,30. However, the incompleteness of library cover-
age determines the upper limit of the identification capacity by
spectral library searching. In addition to experimentally recorded

spectra library, computational methods for the prediction of peptide
spectral libraries are of growing attention.

Over the years, machine learning and in particular deep learning
approaches have become increasingly prevalent and beneficial in
proteomics31–33. Efforts have been made using deep neural networks
for the prediction of peptide properties and behaviors throughout the
MS-based proteomics workflow, including detectability related to
digestibility by proteases34,35, retention times in LC36–38, collisional
cross sections in ion mobility spectrometry39, and fragment ion
intensities in MS/MS40. Deep learning-based methods for predicting
the peptide fragment intensities include pDeep41–43, DeepMass:Prism44,
Prosit45, AlphaPeptDeep46, and many subsequent ones now represent
the state-of-the-art for various tasks. Fragment spectrum prediction
has been used for improving DDA-based peptide identification by
integrating the intensity information into PSM scoring, resulting in
better sensitivity and specificity47–49. DIA data analysis has also bene-
fited from peptide fragment spectrum prediction50,51. Predicted spec-
tral libraries can be generated directly from protein sequence
databases51. Proteome-wide spectral library prediction, coupled with
deep learning-based feature scoring models have been developed to
discriminate real signals from noise, has enabled extraordinarily deep
proteome coverage in high throughput DIA analysis without the need
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of experimental spectral libraries52. Deep learningmodels were further
specialized for specific post-translational modifications (PTMs), such
as DeepPhospho53 for DIA phosphoproteomics and DeepFLR54 for
phosphorylation site localization. Nevertheless, yet current methods
fail to predict fragment spectra of intact glycopeptides.

In contrast to deglycosylated peptides, intact glycopeptides
maintain the peptide-glycan link and therefore can provide informa-
tion on the peptide sequence, linked glycan structures, and glycosite55.
The glycan moiety is an elaborate structure composited of different
monosaccharides and variable linkages among them. The existing
tools for peptide property prediction mostly use long-short term
memory (LSTM)41–44,51, gated recurrent unit45, or transformer-based
models53,54. These models can only process linear input of peptide
sequences (with simple PTMs considered as indivisible tags), whereas
they do not cope with the glycan structure. Moreover, fragmentation
behaviors of intact glycopeptides in MS/MS differ from non-
glycosylated peptides. Higher-energy collisional dissociation (HCD)
with stepped collision energy (CE), the most common fragmentation
strategy for N-glycopeptides, provides sequential cleavages of both
the glycan and peptide bonds56. This results in merged spectra con-
taining not only the peptide fragments (b/y ions) but glycan fragments
(B/Y ions), which are not covered by the existing models for peptide
fragment spectrum prediction. Novel architectures, like graph neural
networks that were recently adopted for de novo sequencing of
glycans57, are required to learn glycan structures and their relevance to
the fragment ions.

Herein, we present a deep learning-based framework called
DeepGlyco for the prediction of MS/MS spectra of intact glycopep-
tides. While the input peptide sequences are processed by

conventional LSTM networks, the glycan structures are resolved by
introducing the tree LSTMnetworks. Putative fragmentation pathways
of structure-specific glycans are modeled by graph neural networks
with the attention mechanism, enabling the explanation of possible
origins of the predicted fragment ions. This feature is beneficial to
differentiating glycan structural isomers. We further demonstrate that
predicted spectral libraries are also suitable for analyzing DIA data of
glycopeptides as a supplement for library completeness. We expect
that this work will provide a valuable deep learning resource for
glycoproteomics.

Results
Model design for intact glycopeptide MS/MS spectrum
prediction
DeepGlyco inherits the LSTM-based model architectures for peptide
property prediction42,46, while it is extended with additional modules
to predict glycan fragment intensities (Fig. 1). A glycopeptide input is
split into peptide and glycanmoieties before being fed into themodel.
The peptide moiety includes the amino acid sequence and modifica-
tions, which is represented by one-hot indicators and element com-
positions, respectively, and then processed by a linear LSTM network
similar to themodels for peptideMS/MSprediction. Theglycanmoiety
is a tree with the one-hot-encoded monosaccharides as the nodes and
their linkages as the edges. A tree LSTM network traverses the glycan
tree in the bottom-up direction (from the non-reducing end to the
reducing end of glycan). The tree LSTM is a generalization of the
standard LSTM that adapts to tree-structured network topologies by
combining the hidden states of all sub-trees58. In this study, a sub-node
summing variant of tree LSTM ignoring the order of glycan branches
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Fig. 1 | Overview of the deep learning model for glycopeptide fragment spec-
trum prediction. a The input glycopeptide comprises a peptide sequence and a
glycan tree, where monosaccharides are one-hot encoded. b The peptide
sequence is processed by a linear LSTM network. c The glycan tree is traversed by
a tree LSTM network. d, e The peptide features extracted by the linear and the
glycan features by the tree LSTM are fusedwith each other. Then peptide features
are processed by another linear LSTM network to predict the relative intensities
of peptide b/y fragments. The glycan features are traversed by another tree LSTM

network, updating the feature of each monosaccharide node in the glycan tree.
f Features of potential cleavage sites are aggregated from the monosaccharide
nodes that are lost or retained after the cleavage. Features of structure-specific
glycan fragments are aggregated from the corresponding cleavages to predict the
relative intensities of Y ions, where structural isomeric fragments are combined.
g The peptide and glycan fragment ions are finally merged to form the output
glycopeptide spectrum. The monosaccharide symbols are defined in Supple-
mentary Table 1.
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wasemployed because the order information is hardly provided by the
conventional HCD MS/MS-based glycopeptide identification method.
Then the information of peptide andglycan is interchanged by a fusion
of the features extracted by the linear LSTM and the tree LSTM. The
precursor charge state is also concatenated to the peptide and glycan
features. The peptide features are processed by another linear LSTM
network to predict the relative intensities of peptide b/y fragments,
yielding the peptide part of the output MS/MS spectrum.

The glycan features are updated by another tree LSTM that tra-
verses the glycan tree in the top-downdirection. Thus, features of each
node in the glycan tree contains the information of monosaccharides
downward, upward, and in other branches. Eachpotential cleavage site
splits the glycan tree into nodes at the reducing end (lost after clea-
vage) and the non-reducing end (retained in the Y fragment ions).
Features of the lost and retained nodes are aggregated with an atten-
tionmechanism, turning into the feature vector of the cleavage (Fig. 1f
and Supplementary Fig. 1). Then the relative intensity of each
structure-specific Y fragment is computed by feature aggregation of
corresponding cleavages. Fragment isomers with the same mono-
saccharide composition are combined by summing up their inten-
sities, yielding the glycan part of the output MS/MS spectrum. The
updated peptide features and glycan features are also aggregated to a
vector and then transformed into a scalar value to predict the ratio of
the peptide fragment intensity to the whole MS/MS spectrum. Finally,
the peptide and glycan fragments aremerged by the ratio, forming the
output glycopeptide spectrum. The model contains ~7million para-
meters in total (including ~5million for the peptide part and ~2million
for the glycan part). Details of the model architecture are described in
the Methods section.

Specially for complex and hybrid type glycans, we further con-
structed a spectrumpredictionmodel that incorporateswith fragment
ions from the glycan branches at the non-reducing end (Supplemen-
tary Fig. 2). These ions, referred to as B ions in this study, include the
whole branch falling off the glycan core, fragments originated from
cleavages within the branch, as well as the branch and its fragments
with the adjacent core mannose. Analogous to the Y ions, the relative
intensities of B ions were predicted by feature aggregation of corre-
sponding branch cleavages and then merged to the output glyco-
peptide spectrum. Oligomannose structures in the high-mannose or
hybrid glycans were not taken into consideration due to lack of B ions
with multiple mannoses in glycopeptide MS/MS spectra13.

Performance evaluation of glycopeptide MS/MS spectrum
prediction
We trained and validated themodel with datasets of diverse organisms
acquired on Orbitrap mass spectrometers with distinct instrument
settings10,13,15,30,59–62 (Supplementary Table 2 and 3). In each dataset,
redundant spectra were removed by combining them into consensus
spectra30 (one spectrum per glycopeptide precursor). Before a dataset
was used for training, it was randomly partitioned into three subsets,
where 3/5were used for fitting themodel parameters, 1/5 to control for
overfitting, and the remaining 1/5 not involved in training (holdout) for
performance estimation. The spectral angle loss45 (SA) was used as the
objective function for spectrum prediction because of its higher sen-
sitivity than dot product (DP). SA values of the peptide part, the glycan
part, and the whole spectrum, as well as prediction error of the frag-
ment intensity ratio, served as four objectives for simultaneous opti-
mization and thus the model was trained by multi-task learning.

Benchmarking on the Mouse 1 and Human 1 datasets, fragment
spectrum prediction achieved very high similarities (Fig. 2a). The
median SA values of the peptide part were 0.22–0.16 (corresponding
to DP of 0.94–0.96), those of the glycan part were <0.11 (DP >0.98),
and those of the whole spectrum were <0.16 (DP > 0.97) for the hold-
out set. No substantial discrepancy of metrics was observed between
the training and holdout sets, demonstrating that the model was not

strongly overfitted. In addition to the consensus spectra, we evaluated
the model stability over replicate spectra, revealing a larger deviation
in the similarity distribution (Supplementary Fig. 3). Example spectra
are shown in Supplementary Data 1, showing the variation in glyco-
peptide fragmentation among replicates. Due to the limitation thatour
model ignores the order of glycan branches, isomeric glycopeptides
may be one of the factors contributing to the variation among repli-
cated spectra. The trained model was also tested across different
instrument settings (Supplementary Figs. 4–7). Trained with Mouse 1
and tested on the other mouse datasets (Mouse 2–4), the median SA
values of the peptide part were 0.28–0.26 (DP of 0.90–0.91), those of
the glycan part were 0.22–0.18 (DP of 0.94–0.96), and those of the
whole spectrum were 0.24–0.21 (DP of 0.93–0.95). Trained with
Human 1 and tested on the other human datasets (Human 2–4), pre-
diction of the peptide part was less accurate (SA of 0.38–0.32, DP of
0.82–0.88). The results indicated that peptide part was more suscep-
tible to CE settings. This is reasonable since in a typical HCD spectrum
of glycopeptide with stepped CE, peptide fragments are usually con-
siderably less intense than glycan fragments (Fig. 2b). Within each
dataset, the intensity ratio between peptide and glycan fragments
varied in a wide range across different glycopeptides, while most gly-
copeptides had lower intensity ratios (Supplementary Fig. 8). Varia-
tions of the ratio were also observed across datasets, probably
associated with the experimental condition. Prediction errors of the
intensity ratio are visualized in Supplementary Fig. 9 and 10, and its
effect on the overall spectral similarity was investigated (Supplemen-
tary Note 1, as well as Supplementary Figs. 11 and 12). The impact of
incorrectly identified spectra in the training data was also explored
(Supplementary Note 2, as well as Supplementary Figs. 13 and 14).

Since the change of instrument settings gave an impact on the
prediction accuracy, we further finetuned the pre-trained models on
datasets with other CE settings (Fig. 2c, d, Supplementary Figs. 15–18).
The model trained with Mouse 1 was fine-tuned with Mouse 2, the
median SA of peptide part on Mouse 3 (with the same CE setting as
Mouse 2) was improved from 0.26 – 0.21 (corresponding to DP from
0.91 to 0.94). The results were similar on human datasets, the median
SA of peptide part on Human 4 was improved from 0.39 – 0.24 (DP
from 0.82 to 0.93) after finetuning. For cross-organism prediction
(Supplementary Fig. 4b, c, training with Mouse 1, testing on Human 2,
Human 4, and Yeast; Supplementary Fig. 15a, fine-tuningwithMouse 2,
testing onHuman 1 andHuman3; Supplementary Fig. 6b, trainingwith
Human 1, testing on Mouse 2 and Mouse 3; Supplementary Fig. 15b,
fine-tuningwithHuman2, testing onMouse 1,Mouse 4, and Yeast), the
median SA values of the peptide part were 0.34 ±0.02 (corresponding
to DP of 0.86 ±0.02, mean± standard deviation, similarly hereinafter),
those of the glycanpart were0.23 ± 0.07 (DPof0.93 ± 0.04), and those
of thewhole spectrumwere 0.27 ± 0.07 (DPof0.89 ±0.04). In contrast
to model training/finetuning on individual datasets, we also explored
the effect of combiningmultiple datasets to create a larger dataset for
model training (Supplementary Note 3 and Supplementary
Figs. 19–22). The results suggest that incorporating more datasets of
different instruments or organisms for model training would lead to
better generalization.

The model with branch fragments was retrained and validated
with the datasets excluding high-mannose glycopeptides. The neural
network layers for prediction b/y and Y ions were migrated from the
models without B ions and frozen during training. As the intensities of
B ions with mono- or disaccharides (oxonium ions) are much higher
than other fragment ions, similarity metrics of prediction were com-
puted not only covering the complete spectrumbut also for B ions and
Y ions separately (Supplementary Figs. 23–30). With the good pre-
diction performance of Y ions staying, B ions achieved quite high
similarities (median SA of 0.16–0.06, corresponding to DP of
0.97–0.99, Supplementary Figs. 25 and 27) across different organisms
and instrument settings, giving rise to accurate predictionof thewhole
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spectrum (median SA of 0.20–0.10, corresponding to DP of
0.95–0.99). Notably, similarity metrics were reported against the
annotated b/y and B/Y ions accounting for 26–34% intensity of the raw
experimental spectra (Supplementary Fig. 31). Other peaks, such as
those sourced from noncanonical fragments or noise signals, were not
covered in this study.

Differentiating MS/MS spectra of structural isomeric
glycopeptides
Based on the prediction model, we explored the potential divergence
of MS/MS spectra of glycopeptide structural isomers with identical
peptide sequences and monosaccharide compositions. The spectral
matches of non-high-mannose glycopeptides were selected from the
MS/MS datasets as query spectra for spectral library searching. For
each spectral match, candidate glycopeptides were generated by
replacing the original glycanwith its structural isomers in a predefined
glycan space. The query spectrum was then compared with the pre-
dicted spectrum of each candidate glycopeptide and the similarity
metrics were calculated between them (Fig. 3a). The original

glycopeptide annotationswereobtained fromStrucGP13 search results.
Despite different search spaces and scoring mechanisms, the original
StrucGP annotations served as putative correct answer due to lack of
ground truth data.

The ability of predicted spectral library searching to differentiate
glycopeptide structural isomerswas evaluated on the holdout datasets
of Mouse 1 and Human 1, as well as a dataset of standard
glycoproteins13 (Supplementary Table 4). The candidates for each
query spectrumwere ranked by a combined similarity score of Y and B
ions (described in the Methods section). We assessed the rescored
results at three levels, i.e., recognition of core fucosylation or bisecting
HexNAc, aswell as the correct identity including the former twoand all
the branches in a glycan (Supplementary Data 2–4, Supplementary
Figs. 32–37). It should be noted that the branching order is ignored
whendescribing a glycan structure. Thepercentageof spectra inwhich
the correct identity was ranked as the first, second or third candidate
were calculated out of the number of cases with more than 1, 2 or 3
candidates in total (Fig. 3b, Supplementary Figs. 32a and 34a). While
71%–80% of the spectral matches were correct, spectrum prediction
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enabled ranking the correct identity among the top three candidates in
92%–95% of the cases. Considering the top one candidate for each
query spectrum, bisecting HexNAc recognition achieved an accuracy
of 88%–95% (Supplementary Figs. 32c, 34c and 36b). Among the
positive cases after rescoring, 69%–88% (precision) had been originally
annotated as bisecting HexNAc-containing cases, covering 68%–87%
(recall) of the original annotations with bisecting HexNAc in total.

The conflicting results of spectral library searching with the ori-
ginal StrucGP annotations were counted according to the mis-
identified branch types (Supplementary Figs. 33, 35 and 37, as well as
Supplementary Note 4). Among them, confusion between HexNAc-
Hex and HexNAc branches accounted for the largest proportion. We

then reanalyzed a dataset of mouse brain where terminal or bisected
HexNAc were expected to be removed by exoglycosidase treatments13

(Fig. 3c, d, Supplementary Fig. 38, Supplementary Data 5). Most of the
cases (96%, 448/466) originally annotated as neither bisecting nor
terminal HexNAc were retained after rescoring, while 13% (21/158) of
the original bisecting HexNAc cases and 75% (46/61) of the original
terminal HexNAc cases were reported as dual negatives. Notably, it is
still difficult to confirm whether the remaining bisecting or terminal
HexNAc after exoglycosidase treatments were false annotation or
actual results caused by inadequate reactions. Nevertheless, we pre-
sent representative cases to interpret the difference of the results by
spectral library searching from the original StrucGP annotations.
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For a spectral match of IGSYN[H(4)N(3)F(1)]GTAGDSLSYHQGR3+,
the original glycan structure annotation by StrucGP has a core fucose
and a branch terminal HexNAc, whereas a candidate glycan structure
with a HexNAc-Hex branch was ranked first after rescoring by spectral
library searching (Supplementary Fig. 39). Comparing the query
spectrumwith predicted spectra of candidate isomers, the core fucose
was confirmed by high intensity of the ion Y-H(3)N(2)F(1). However,
the original glycan should produce the ions Y-H(4)N(2)F(1), Y-H(2)N(3)
F(1) and Y-H(3)N(3)F(1), which were absent or matched with very weak
peaks in the query spectrum. The B ion H(1)N(1) was expected to
exhibit a higher relative intensity in MS/MS of the rescored glycan
structure than the original one. The presence of B ion H(2)N(1) in the
query spectrum was also a plus for the rescored glycan structure.
Therefore, the intensity pattern of the query spectrum was more
similar to that of the rescored structure. We also visualized the glycan
fragmentation graph in the model to find the source of these ions
(Supplementary Fig. 40). The nodes of fragment compositions and
fragment structures are linked by edges with weights reflecting the
proportion of fragment isomers. Each fragment isomer is connected
with its originating cleavages, where the attention weights can be used
todiscover themost important cleavages to a fragment isomer. For the
original structure, the ion Y-H(4)N(2)F(1) was unique to the cleavage of
the terminal HexNAc, and the ions Y-H(3)N(3)F(1) and Y-H(2)N(3)F(1)
were generated from the cleavages in the consecutive hexoses. For the
rescored structure, the ion Y-H(2)N(3)F(1) could be generated in the-
ory from the simultaneous cleavages of the terminal hexose in the
branch (VI) and a core hexose (VII). The attention weights indicated
that the cleavage VII was the determinative step. These Y ions were
scarcely in the predicted spectrum, which is in accordance with the
fact that cleavages are less liable within the core than the branchunder
relative low collision energy. This also explained the cause of different
relative intensity of B ion H(1)N(1) between the two candidate struc-
tures. More examples are present in Supplementary Note 5, Supple-
mentary Figs. 41–44.

For the Mouse1 holdout, Human1 holdout, and standard glyco-
protein datasets, core fucose recognition achieved an accuracy of
93%–97%, precision of 94%–99%, and recall of 96%–98% (Supplemen-
tary Figs. 32b, 34b and 36a). We further reanalyzed a dataset of wild
type and Fut8 knockout mouse brain59 (Fig. 3e, f, Supplementary
Fig. 45, Supplementary Data 6). In the knockout samples, all fucosy-
lated glycopeptides should be antenna fucosylated since the specific
glycotransferase of core fucosylation had been knocked out. From the
wild type samples, 97% (3058/3165) of the cases originally annotated as
core fucosylation and 92% (301/326) of negative cases were retained
after rescoring, indicating that spectral library searching did not side
with negative cases. From the knockout samples, core fucosylated
cases reduced from 12% (262/2229) to 5% (110/2229) after rescoring.
Themajority of the remaining core fucosylatedGPSMswere likely false
identifications. The challenge of accurate glycan structure identifica-
tion has not been fully resolved since the estimated false discovery rate
was supposed to be 1%. Nevertheless, the results still indicate
improvement with the spectrum prediction-based rescoring.

Representative spectral matches are presented in Supplementary
Note 6, and Supplementary Figs. 46–50. In some cases, spectral library
searching confirmed the original glycan structure annotation by
StrucGP with the high intensity of characteristic Y ions of core fuco-
sylation. In others, different candidate structures were ranked first
based on the intensity pattern of Y ions and B ions comprehensively.
The alteration of peak intensity for different candidate structures
could be explained using fragmentation graph in the model.

Predicting glycopeptide spectral libraries for DIA data analysis
In silico peptide spectral libraries have been proven compatible with
DIA analysis and can supplement or sometimes even substitute for
experimental libraries51,52. For this reason, we explored the ability of

predict glycopeptide spectral libraries for DIA analysis. In addition to
the fragment spectra, we trained models to predict indexed retention
time (iRT63) values of glycopeptides (Supplementary Note 7 and Sup-
plementary Fig. 51). On theMouse 1 and Human 1 datasets, the models
achieved high correlation between predicted and observed iRT values
(Pearson correlation coefficient r >0.97) for the holdout sets.

A predicted spectral library should contain two levels of infor-
mation: (1) which glycopeptides should be measured in a sample; (2)
their fragment ions and retention time values. Both of them will affect
the DIA analysis results. Therefore, we first evaluated the quality of
predicted values by keeping the coverage of predicted library
equivalent to the experimental library. We benchmarked predicted
spectral libraries against sample-specific experimental spectral librar-
ies using DIA datasets in our previous study30 (Supplementary
Table 5 and 6). For evaluation of a fission yeast dataset, we first pre-
dictedMS/MSspectra for glycopeptides contained in the experimental
library (DDALib), generating a spectral library (PredMS2) using the
predicted MS/MS spectra and the original iRT values in DDALib. We
also built a spectral library (PredLib) in which bothMS/MS spectra and
iRT values are predicted. DIA data analysis was performed using
GproDIA30, where statistical control was conducted on both the pep-
tide and glycan parts using a target-decoy approach. The numbers of
detected glycopeptides resulting from the predicted libraries were
compared to the experimental library (Supplementary Note 8, Sup-
plementary Figs. 52 and 53, Supplementary Data 7). Compared to
DDALib, the predicted libraries resulted in a loss of up to 10% detected
glycopeptide precursors and site-specific glycans, but a slightly better
data completeness. It should be noted that the glycans in the reported
glycopeptide precursors were identified as monosaccharide compo-
sitions since structural isomers are indistinguishable by current DIA
glycopeptide analysis workflow30. The term “site-specific glycan” is
referred to a glycan compositionon aprotein glycosite,which contains
a group of glycopeptide variants resulting from missed cleavages in
protein digestion.

We repeated the above analysis for a human serumdataset using a
finetuned model (Fig. 4a–d, Supplementary Figs. 54 and 55, Supple-
mentary Data 8). As serum samples were much more complex than
yeast, the glycoform inference optionwas enabled in DIA data analysis
to resolve interference from potential co-eluted and co-fragmented
glycopeptides. In average of 3 technical replicate runs, 859± 3 pre-
cursors of 594 ±2 site-specific glycans were detected using PredMS2
and 798 ± 3 precursors of 553 ± 1 site-specific glycans were detected
using PredLib, compared to 799 ± 14 precursors of 539 ± 2 site-specific
glycans when using DDALib. Accumulating the 3 replicate runs, 956
precursors of 647 site-specific glycans were detected totally using
PredMS2, among which 76% (729) precursors and 81% (522) site-
specific glycans were shared in all the replicates. PredLib resulted in
75% (667/893) precursors and 79% (480/605) site-specific glycans
shared in all the replicates, compared to 75% (671/892) precursors and
77% (463/599) site-specific glycans when using DDALib, indicating a
close data completeness. Considering identifications shared in >50%
replicate runs, using the predicted fragment spectra resulted in a gain
of 7% (893 compared to 835) precursors and 10% (613 compared to
556) site-specific glycans. Replacing the retention time values led to a
loss of 6% precursors (379 compared to 401) and 7% site-specific gly-
cans (833 compared to 893). The library with predicted spectrum
performed better than the experimental library. A possible reason is
that predicted spectra can exceed the quality of some spectra in the
original experimental library, e.g., those with incorrect identifications
that did not accurately represent relative fragment ion intensities, as
reported in previous studies on conventional proteomics45 and
phosphoproteomics53,54. Notably, the prediction accuracy of glyco-
peptides was limited because there have not been standards (as iRT kit
for peptides63) for high‐precision glycopeptide retention time cali-
bration of yet. However, the fully predicted spectral library still led to a
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close number of detected glycopeptides compared to the experi-
mental spectral library.

The incompleteness of spectral libraries can limit the capability of
detection in DIA data analysis. Therefore, we tested whether DIA ana-
lysis can benefit from predicted spectral libraries with increased cov-
erage. Starting from glycopeptide lists of serum collected in our
previous study30, we generated an extended predicted library with
~50% more glycopeptide coverage (PredExt, containing ~5000 pre-
cursors, denoted as 5k, Supplementary Table 7) compared to the
DDALib. PredExt yielded 991 ± 5 precursors of 691 ± 2 site-specific
glycans per run (Fig. 4a, Supplementary Fig. 56, Supplementary
Data 8). Considering identifications shared in >50% replicate runs, 24%
more (1033/835) precursors and 28% more (710/556) site-specific gly-
cansweredetected using PredExt than those usingDDALib.We further
tested a series of predicted spectral libraries with increasing coverage
up to ~10,000 precursors (Supplementary Note 9, Supplementary
Figs. 56 and 57, as well as Supplementary Data 8).

The entrapment-based benchmarking, which has been used to
approximately estimate false positive identifications for DIA analysis
with experimental spectral libraries30, was also performed with pre-
dicted libraries. Glycopeptides with glycans not present in the samples
were added to the original predicted libraries (Supplementary
Note 10). In all the analyses, we ensured that the entrapment glycans
were different from those in the original library, and kept the number
of entrapment glycopeptide precursors similar to the sizes of the
original library (Supplementary Tables 8 and9). The entrapment hits in
the results (Supplementary Data 9 and Supplementary Fig. 58) were
considered as false positives, and we used entrapment percentage
(percentage of the number of entrapment hits to the target hits) to
compare the false positive rates relatively, although it did notmeasure
the true error rates exactly. The entrapment percentage using PredLib
was higher than that using DDALib (1.4% compared to 1.0%) for the
yeast dataset, while it was close to that using DDALib (2.3% compared
to 2.5%) for the serum dataset. An extend predicted library containing
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Fig. 4 | Performance of predicted spectral libraries for DIA analysis. a Numbers
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e Box plot visualization of fold change of the quantification results of the mixed-
organism samples. Percent changes were calculated based on the mean quantities
in three replicates of each sample. The medians are indicated. The boxes indicate
the interquartile ranges (IQR), andwhiskers indicate 1.5 × IQRvalues; no outliers are
shown. The dashed lines indicate theoretical fold changes of the organisms
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lication of GproDIA. Source data are provided as a Source Data file.
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~7000 precursors (PredExt 7k) resulted in an entrapment percentage
(2.3%) closed to the PredLib, while larger library coverage (PredExt 10k,
~10,000 precursors) led to substantially higher entrapment percen-
tages. These results indicated that large libraries were adverse to sta-
tistical control of error rates in DIA glycopeptide analysis, which is
currently the main limitation of predicted spectral libraries.

For the evaluation of quantitative precision, the coefficients of
variation (CV) values of quantification results were calculated among
the replicate runs (Fig. 4d and Supplementary Fig. 56). The median CV
values were 12% at precursor level and 13% at site-specific glycan level
using PredExt (5 k), close to those using DDALib. The quantitative
performance of predicted spectral libraries was further evaluated on a
dataset of two-glycoproteome samples of budding yeast and human
serum (Supplementary Tables 5 and 10, Supplementary Data 10, and
Supplementary Figs. 59–62). Fold changes of measured abundance of
glycopeptides were calculated between samples with different mixing
ratios (Fig. 4e). Using the predicted spectral libraries, fold changes of
human glycopeptide abundance were slightly overestimated com-
pared to those using the DDALib, while quantification accuracy of
yeast glycopeptides was close to and sometimes better than DDALib.
The results indicated that predicted spectral libraries were suitable for
DIA data analysis with performance comparable to experimental
spectral libraries.

Discussion
In this study, we introduce a deep neural network architecture able to
predict MS/MS spectra of intact glycopeptides. The main character-
istic distinguishing our method from others for peptide MS/MS pre-
diction is the ability to process non-linear glycan structures by
introducing the tree LSTM networks. While separate modules played
their respective roles to extract features from the peptide and glycan
moieties, they shared information with each other through feature
fusion regarding the glycopeptide as a whole. Multi-task learning was
adopted for predicting thewholeglycopeptide spectrum, aswell as the
peptide and glycan fragments, aiming to fit the wide range of peak
intensities of different fragment types.

Our method achieved high prediction accuracy using models
trained with data originated from the same organism and instrument
settings. The changeof organisms and instrument settings could result
in losses of the prediction performance. The generalization ability of
the model was still limited by the size of training data due to the
difficulty in accessing large-scale glycopeptide MS/MS datasets com-
pared to conventional proteomics datasets. We anticipate that adding
additional encoders of spectral metadata, such as instrument types
and collision energy42,45, would probably facilitate the scalability of the
model for spectrum prediction in other glycoproteomics datasets
from independent laboratories. At this stage, however, we did not
commit to build such a universalmodel as a compromise due to lack of
high-quality reference MS/MS data of glycopeptides covering various
collision energies. As an alternative, we chose to train organism- and
instrument-specificmodels,which canbe furtherfinetuned to improve
the performance for glycopeptide spectrum prediction from different
origins.

Another distinct feature of our deep learning model is that the
prediction is explainable by the attention weights computed in the
model. It was demonstrated that the attention weights can reflect the
importance of possible cleavages in the putative fragmentation
pathways of a specific glycan structure. This highlighted how our
model learned underlying principles in the MS/MS fragmentation of
glycopeptides. This feature allowed the differentiation of glycan
structural isomers by modeling the intensity variation of peaks ori-
ginated from distinct fragmentation pathways. We demonstrated
that predicted spectra can be utilized for spectral library searching to
ranking potential glycan structures based on a given glycopeptide
composition and filter out the less possible candidates. Despite a

remaining gap towards the exact identification of glycan structures
by spectral library searching alone, it can discriminate glycan struc-
tural isomers partially, like the recognition of core fucosylation.
Different from methods relying on confirming the presence of
characteristic ions13, spectral library searching takes the intensity
pattern of the whole spectrum into consideration, which has been
proven to be effective in the identification of peptides64 and site
localization of phosphorylation54,65. With spectrum prediction, we
resolved the limitation of spectral library searching on the incom-
plete library coverage of glycan structure space, and showed its
potential for validating or supplementing the structural identifica-
tions of glycopeptide by other methods. We further envision that
spectrum prediction may improve scoring in glycopeptide database
searching and de novo sequencing57.

Our results also demonstrate that predicted spectral libraries can
beused for analyzingDIAdata of glycopeptides. Predicted libraries can
not only correct low-quality spectra in a sample-specific experimental
spectral libraries when keeping the same glycopeptide space, but they
can enlarge glycoproteome coverage with improved library com-
pleteness. The current glycopeptide-centric DIA data analysis method
cannot bear an extremely large query space which contains a sig-
nificant fraction of false target glycopeptides not detectable in the
samples30. This limitation was not peculiar to glycoproteomics and
actually inherited from the statistical control strategy of DIA analysis
for conventional proteomics66. Therefore, it is not practical to use a
predicted glycopeptide spectral library generated from an organism-
wideproteomeandglycome space. Instead, a starting glycopeptide list
of interest is still need to delimit the search space at present. We
envision that this issue would be resolved with critical advances in DIA
data analysis for glycoproteomics, like deep learning-based scoring
that are compatible with proteome-scale predicted library for con-
ventional proteomics52.

We expect that this work will provide a valuable deep learning
resource for the glycoproteomics community with other potential
applications in users’ informatic workflows (Supplementary Note 11).
Although it is demonstrated here in the context of N-glycoproteomics,
generic architecture of our deep learning model could be adapted to
spectrum prediction of O-glycopeptides. We envisage that extension
of the model architecture in the future will support fragmentation
techniques with other fragment ion types, such as electron-transfer
dissociation56, and analytes containing multiple glycans per
glycopeptide12, in case sufficient high-quality glycopeptide MS/MS
datasets are available for model training.

Methods
Datasets for model training and validation
HCD MS/MS spectra of intact glycopeptides were collected from 4
datasets of mouse samples, 4 of human samples, and 1 of yeast sam-
ples. They had been acquired on Orbitrap mass spectrometers with
different instrument settings: (1) Mouse110, Mouse460, Human430, and
Yeast30 were acquired on Orbitrap Fusion with stepped CE of 30 ± 10;
(2) Human215 was acquired on Orbitrap Exploris 480 with stepped CE
of 30± 10; (3) Mouse213, Mouse359, Human161,62, and Human359 were
acquired on Orbitrap Fusion Lumos with individual CEs of 20 and 33.
Detailed information of these datasets is shown in Supplementary
Table 2 and 3. Structure-specific glycopeptide identification results of
each dataset, if provided with its original publication, were directly
used in this study. Otherwise, we reanalyzed the datasets using
StrucGP13 (version 1.1.1) with the default settings.

For each GPSMs, peak intensities were extracted from the
experimental spectrum by matched with m/z of theoretical fragment
ions of intact glycopeptides in HCD with stepped CE30. For peptide
fragments, the following ion types with charge states 1+ or 2+ were
considered: (1) naked peptide backbone b and y fragment ions; (2) b/y
ions with one HexNAc, denoted as b-N(1)/y-N(1); (3) b/y ions with a
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residue as a result of cross-ring fragmentationon theHexNAc,denoted
as b$/y$ for simplicity. For glycan fragments, naked peptide (denoted
as Y0) and Y ions with charge states 1+ to 3+ were considered. For
glycans other than high mannose type, fragment ions from the glycan
branches at the non-reducing end (referred to as B ions, Supplemen-
tary Fig. 2) with charge state 1+ were considered. For datasets with
individual CEs, fragment ions in the low and high CE spectra of the
same precursor were merged by averaging the peak intensities,
yielding a pseudo stepped CE spectrum. Spectra with <5 peptide b/y
ions or <5 glycan Y ions were excluded. For the model with branch
fragments, spectra with <2 glycan B ionswere further excluded.Within
each dataset, fragment ions of replicate spectra of the same glyco-
peptide precursor were further combined to create a consensus
spectrum30. Finally, a non-redundant dataset was obtained, containing
one spectrum per glycopeptide precursor.

Model architecture
The model contained separate modules to process the peptide and
glycan moieties of a glycopeptide and predict the corresponding part
of the fragment spectrum.

For the peptide moieties, the amino acid sequence was encoded
as a list of 20-dimentional one-hot vector with zeros and ones. Each
PTM, if any, was represented as a 6-dimentional embedding vector to
represent the numbers of H, C, N, O, S, and P atoms. For amino acid
without PTMs, a 6-dimentional zero vector was used as a placeholder.
The amino acid vectors and PTM vectors at corresponding sequence
positions were concatenated and fed to two stacked bidirectional
LSTM layers (with a hidden size of 256), followed by a dropout layer
(with rate of 0.25).

For the glycan moieties, the monosaccharides were one-hot
encoded as 5-dimentional one-hot vectors representing Hex, HexNAc,
NeuAc, NeuGc, and Fuc. A graph (strictly speaking, a tree) was built
according the glycan structure, where the monosaccharides served as
the nodes (with one-hot vectors as node features) and their linkages as
the edges. A tree LSTM layer (with a hidden size of 256) traversed the
nodes in the bottom-up direction the glycan tree, followed by a
dropout layer. The cells in a tree LSTM are similar to those of the
standard LSTM, except that the standard LSTM uses the hidden state
of the previous timestep, whereas the tree LSTM combines the hidden
states from the child nodes by summing them up (in this study, we
ignore the order of branches in a glycan) to copewith variable number
of children58. After the bottom-up traversing, the node features con-
tained information of the monosaccharides for each node and those
sprouting at the non-reducing end.

The feature of the root node, which encoded the information of
the whole glycan, was transformed by a dense layer and then added to
the vector at the glycosite in the features output by the peptide LSTMs.
A two-dimensional vector of precursor charge state was concatenated
to the peptide features at each sequence position. The updated pep-
tide features were processed by another two bidirectional LSTM layers
and a dropout layer, followed by a dense layer and the ReLU activation
function to output b/y ion intensities (with 4 dimensions, i.e., 2 charge
states per ion type).

The final hidden state of the last timestep output by the first two
peptide LSTM layers contained the information of thewhole sequence.
It was transformed by a dense layer and added to the feature of the
root node in the glycan tree. The features of the original mono-
saccharide, those from bottom-up traversing, and the charge state
vector were concatenated node-wisely, and then updated by a second
tree LSTM layer that traversed the glycan tree in the top-down direc-
tion, followed by a dropout layer. This allowed each node having a
comprehensive view of monosaccharides downward, upward, and in
the other branches. As a results, the updated node features contained
information of monosaccharides, its position in the glycan structure,
as well as peptide and charge state.

Considering each potential cleavage site between two mono-
saccharides, we split the glycan tree into nodes lost fromor retained in
the fragment ions with peptide (Supplementary Fig. 1). Features of the
lost nodes were summed with attention weights computed by a dense
layer followed by a Softmax function67. The retained nodes were pro-
cessed similarly. The summed features of lost and retained nodes were
concatenated into a 512-dimensional vector for each cleavage site.
Then a tripartite graph was built according to the putative fragmen-
tation pathways of the glycan structure, comprising three types of
nodes: (1) cleavage sites; (2) structure-specific fragments originated
from a series of cleavages; (3) fragments with distinctmonosaccharide
composition combined from isomeric structure-specific fragments
that are not distinguishable by mass. Features of the cleavage nodes
were aggregated by a LSTM layer (after shuffle during training since
LSTM is not inherently symmetric68) and the attention mechanism
described above. A dense layer followed by the ReLu activation func-
tion was used to output Y ion intensities (with 3 dimensions, i.e., 3
charge states). Finally, intensities of isomeric fragments with the same
monosaccharide composition were summed up. Optionally, another
tripartite graph could be added to the model for predicting the
intensities of B ions, which was generated from combinations of link
cleavages that are different from Y ions (Supplementary Fig. 2).

The peptide features output by the last two LSTM layers were
summed over the peptide length dimension. The glycan node features
output by the second tree LSTM were summed. The attention
mechanism described above was used for weighting the features. The
summed features of peptide and glycan were concatenated and then
transformed into a scalar value by a dense layer with the sigmoid
activation function to predict the ratio of the peptide fragment
intensity to thewholeMS/MS spectrum. Finally, thepeptide andglycan
fragments are merged by the ratio, forming the output glycopeptide
spectrum.

Model training
The dissimilarity between the predicted and experimental spectrum
was measured by spectral angle loss45 (SA), which is defined based
on dot product (DP):

SA=
2
π
arccosDP=

2
π
arccos

s1 � s2
s1
�� �� s2

�� �� ð1Þ

where s1 and s2 are the intensity vectors of the predicted and experi-
mental spectrum, respectively. The SA and DP metrics perform an
inherent L2 normalization on the intensities. SAwere computed for the
whole glycopeptide spectrum, as well as the peptide and glycan frag-
ments separately. Mean square error (MSE) was used to measure the
prediction error of the fragment intensity ratio. The total loss function
was a weighted sum of the four objective functions:

L=w1 � SAtotal +w2 � SApeptide +w3 � SAglycan +w4 �MSEratio ð2Þ

Dynamic weight average69, a multi-task learning technique, was
used to adjust the weights based on the convergence rate of loss of
each subtask. In brief, theweight of loss for each subtask is determined
by the loss ratio of the previous two epochs, followed by a Softmax
function.

We first built a model containing only the modules to process
peptide sequences and predict peptide fragment intensities. The
model was trained with peptide spectra collected from a large-scale
dataset of HeLa proteome70. When training the model for glycopep-
tides, parameters of corresponding modules were port form the pre-
trained model for peptides and the first two BiLSTM layers were
frozen. Thedatasetwas split into three distinct subsets,where3/5were
used for training the model parameters, 1/5 for validation, and the
remaining 1/5 as holdout data. The validation set was used to control
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for overfitting.We used the Adamoptimizer and 16 samples per batch.
The learning rate started from 0 – 0.001 in 5 warmup epochs, and was
then scheduled by cosine annealingwithwarm restarts71 (with an initial
interval of 15 epochs andmultiplied by 2 after each restart). For model
finetuning, an initial of learning rate 0.001 was used without warmup,
and iteratively reduced to 10% when the metrics had stopped
improving for 5 epochs.

The model with B ions was trained based on the model without B
ions,where the layers for peptide fragment ions andglycanY ionswere
frozen. The total loss function further included the SA of B ions. The
learning rate was 0.0001, scheduled by warmup and cosine annealing
with warm restarts in the same manner as the model without B ions.

Differentiating structural isomeric glycopeptides by spectral
library searching
For eachGPSM, candidate glycopeptides were generated replacing the
original glycan with its structural isomers. In this study, the built-in
glycan databases of pGlyco14 were used as the glycan space (2922
glycan structures for human and 7878 for mouse), appended with
glycan structures uniquely present in the original identification results
by StrucGP13. The fragment ions were extracted from the experimental
(query) spectrum by matching to the m/z of theoretical fragments of
the candidate glycopeptides. Peaks absent in all of the predicted
spectra for different candidate glycopeptides were discarded. SA was
calculated between the fragment intensities of the query spectrumand
each candidate predicted spectrum. The total spectral similarity score
was combined from SA of glycan Y ions and B ions:

Score=α � 1� SAY

� �
+β � 1� SAB

� � ð3Þ

where the weights α and β were set as 0.5 in this study. The candidate
glycopeptides were then ranked by the similarity scores in
descending order.

DIA data analysis
Predicted spectral libraries were generated using the glycopeptide
list from the DDA-based experimental spectral libraries (Supple-
mentary Table 6). Two types of predicted spectral libraries were
built: (1) only the fragment ion intensities were predicted, while
experimental retention time values in the original DDA library was
kept; (2) both the fragment ion intensities and retention time values
were predicted. The DIA data were analyzed by GproDIA through the
workflow described in its original publication30, including transition
filtering, retention time calibration, decoy generation, feature
extraction, scoring and statistical control. For the serum data, the
glycoform inference was enabled.

We also built predicted spectral libraries with extended coverage
compared to the originalDDA libraries (Supplementary Table 7). These
libraries were generated from glycopeptide lists of yeast and serum
from our previous study30. This setting is necessary to avoid combi-
natorial explosion of peptides and glycans. In order to reduce the
computational burden, glycoform inference was turned off in a pre-
liminary search performed first, and then enabledwith a refined search
space narrowed down to the preliminary search result.

The influence of predicted spectral libraries on statistical control
was evaluated by adding entrapment glycopeptide precursors to the
predicted libraries30. In all the analyses, we ensured that the entrap-
ment glycopeptides were not present in the sample, and kept the
number of entrapment glycopeptide precursors a similar number to
that of the original predicted library (Supplementary Table 8 and 9).
For the yeast data, entrapment entries were glycopeptides with pep-
tide sequence from yeast and human glycans containing Fuc or NeuAc
monosaccharides. For the serum data, entrapment entries in the
GproDIApublicationwere glycopeptides with peptide sequences from
human and xylosylated glycans from Arabidopsis thaliana. Since our

current model do not support xylose due to lack of training data, we
kept the topologyof glycan structures andmerely replaced xylosewith
NeuGc. Therefore, the entrapment entries should still be absent in the
serum sample. The entrapment entries in the DIA analysis results can
be regarded as false positives.

Implementation, statistics and visualization
Thedeep learningmodelswere implemented inPython (version3.9.16,
Anaconda distribution version 2022.10, https://www.anaconda.com/)
with PyTorch (version 1.12.1, https://pytorch.org/) and DGL (version
1.0.1, https://www.dgl.ai/). Post-analysis statistics was conducted using
R (version 4.3.1, https://www.r-project.org/). The Python packages
matplotlib (version 3.6.2) and networkx (version 1.6.20), as well as the
R ackages ggplot2 (version 3.4.3) and VennDiagram (version 1.7.3)
were used for data visualization.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Raw mass spectrometry data are publicly available at the Proteo-
meXchange Consortium with the dataset identifiers PXD005411,
PXD005413, PXD005412, PXD005553, PXD005555, PXD025859,
PXD035158, PXD026629, PXD026649, PXD030804, PXD031025, and
PXD023980 (see Supplementary Table 2–4 for details). Data generated
in this study, including processed data for model training and testing,
trained models, predicted spectral libraries, and DIA analysis results,
have been deposited in the ProteomeXchange via the iProX72 partner
repository with the dataset identifiers PXD045248 or
IPX0007075000. Source data are provided with this paper.

Code availability
The source code of DeepGlyco is available at Github https://github.
com/yyi17/DeepGlyco and Zenodo https://zenodo.org/records/
1068289373.
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