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Data-driven prediction of colonization
outcomes for complex microbial
communities

Lu Wu 1,6, Xu-Wen Wang 2,6, Zining Tao1,3, Tong Wang 2, Wenlong Zuo 1,
Yu Zeng1, Yang-Yu Liu 2,4 & Lei Dai 1,5

Microbial interactions can lead to different colonization outcomes of exo-
genous species, be they pathogenic or beneficial in nature. Predicting the
colonization of exogenous species in complex communities remains a fun-
damental challenge inmicrobial ecology,mainly due to our limited knowledge
of the diverse mechanisms governingmicrobial dynamics. Here, we propose a
data-driven approach independent of any dynamics model to predict coloni-
zation outcomes of exogenous species from the baseline compositions of
microbial communities. We systematically validate this approach using syn-
thetic data, finding that machine learning models can predict not only the
binary colonization outcome but also the post-invasion steady-state abun-
dance of the invading species. Then we conduct colonization experiments for
commensal gut bacteria species Enterococcus faecium and Akkermansia
muciniphila in hundreds of human stool-derived in vitro microbial commu-
nities, confirming that thedata-driven approaches canpredict the colonization
outcomes in experiments. Furthermore, we find that while most resident
species are predicted to have a weak negative impact on the colonization of
exogenous species, strongly interacting species could significantly alter the
colonization outcomes, e.g., Enterococcus faecalis inhibits the invasion of E.
faecium invasion. The presented results suggest that the data-driven approa-
ches are powerful tools to inform the ecology and management of microbial
communities.

Microbial communities are constantly exposed to the invasion of
exogenous species, which can significantly alter their composition and
function1–4. The capacity of a microbial community to resist invasion is
regarded as an emergent property (i.e., from individual parts to a
holistic function) arising from the complex interactions among its
constituent species5. Theoretical studies have found that communities
with higher diversity or stronger interaction strengths among species

are more resistant to potential invaders6–8, attributed to the fact that
communities with higher diversity can occupy more niches and pro-
vide functional redundancy, making it more difficult for an invading
species to establish and thrive.

The role of host-associated microbiota in defending against
pathogens has been extensively studied9–12, particularly in the context
of thehumangutmicrobiome. For thehumangutmicrobiome, invasion
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of resident microbial communities can occur when non-resident bac-
teria from foods and the upper gastrointestinal tract reach the gut
ecosystem13,14. The residentmicrobes in the gut ecosystem outcompete
and exclude invaders through a combination of mechanisms, such as
producing antimicrobial compounds15,16, competing for nutrients and
space17–20, and modulating the host’s immune response21,22. However,
the composition of the human gut microbiota can vary significantly
across individuals23,24 and over time25,26. Dietary shifts, medication, and
other environmental factors cangreatly alter the compositionof the gut
microbial community27,28. These interpersonal and dynamic variations
in the gut microbiome can lead to significantly different colonization
outcomes, such as resistance to pathogens29,30 and probiotics31,32. For
example, antibiotics treatment often leads to a loss of diversity and
promotes the invasion of exogenous species30,33. The ability to predict
and alter the colonization outcomes (i.e., prevent the engraftment of
pathogens and promote the engraftment of probiotics) is critical for
personalizedmicrobiota-based interventions in nutrition andmedicine.

Despite the accumulating empirical studies, predicting the colo-
nization outcomes in complex communities, such as the human gut
microbiome, remains a fundamental challenge due to limited knowl-
edge of interspecies interactions. For a meta-community of N species
(N ranges from hundreds to thousands for the human gut micro-
biome), wewould need to isolate and culture all these species (which is
already a formidable task) and conduct a considerable number of
experiments to map pairwise interactions, not to mention higher-
order interactions. Thus, novel approaches are needed to study the
ecology of highly complex communities.

The key question is: can we achieve system-level predictions for
complex ecological systems without requiring detailed mechanistic
information? Colonization outcome can be viewed as a mapping from
the community structure of a complex ecological system (i.e., the pre-
invasion community profile) to its function (i.e., the post-invasion
abundance of the invading species). Recently, the application of data-
driven models (machine learning and deep learning) has shown great
promise in predicting the emergent properties of complex biomole-
cules, such as protein structure (mapping from protein sequence to
structure)34, promoter strength (mapping from DNA sequence to
function)35. While statistical models have been used to decipher
microbial interactions in synthetic humangutmicrobial communities36

and mouse gut microbiota30, the use of data-driven models has not
received much attention in microbial ecology37,38.

Here, we proposed a data-driven approach to predict colonization
outcomes of exogenous species in complex microbial communities.
First, we systematically evaluated the approach using synthetic data
generated by classical ecological dynamical models. We found that,
with sufficient sample size in training data (on the order of ~O(N)), the
colonization outcomes (i.e., whether an exogenous species can engraft
and what its abundance would be if it can engraft) can be predicted by
machine learningmodels. Then, we generated large-scale datasets with
in vitro experimental outcomes of two representative species (E. fae-
cium and A. muciniphila) colonizing human stool-derived microbial
communities. We validated that machine-learning models, including
Random Forest and neural ODE, can also predict colonization out-
comes in experiments (AUROC>0.8). Finally, we used the machine
learning models to infer species with large colonization impacts and
experimentally demonstrated that the introduction of strongly inter-
acting species can significantly alter the colonization outcomes. Our
results suggest that the colonization outcome of complex microbial
communities can be predicted via data-driven approaches and tunable.

Results
The data-driven approach of predicting colonization outcomes
for complex microbial communities
Let’s consider a meta-community with a pool of N microbial species,
denoted asΩ = {1,⋯,N}. Consider a large set ofMmicrobiome samples,

denoted as S = {1,…,M}, collected from this meta-community.
A microbiome sample s∈S can be considered as a local community of
themeta-communitywith a subset of co-existing species (Fig. 1A). For a
local community s, if an exogenous species i (still in the species poolΩ,
but not in community s) is introduced to community s, whether it can
successfully colonize the community or not, as well as its post-invasion
abundance xi, will depend on the baseline composition of community
s. For example, it is easier (or harder) for species i to colonize com-
munity s if some resident species strongly promote (or inhibit) its
growth of species i, respectively. Hereafter, we call the community s
permissive (or resistant) to species i if species i can (or cannot) suc-
cessfully colonize community s, respectively. If we only have the
information about species i and a community s, itmay seem impossible
to accurately predict the colonization outcome without detailed
knowledge aboutmicrobial interactions. However, if we have access to
the data from colonization experiments of many local communities,
then, in principle, we can formalize the colonization outcome predic-
tion problem as a machine-learning task that can be solved in a data-
driven fashion. To ensure the problem is mathematically well-defined,
we must assume that the different local communities in this meta-
community share identical assembly rules andmicrobial interactions39.
Thisway, the colonizationoutcomesof some local communities canbe
used to train a machine-learning model to predict the colonization
outcomes of other local communities.

Consider species-i as the exogenous species to a local community
s. Note that the baseline abundanceof species-i is zero (i.e., xð0Þ

i =0) in s
before the invasion. With some initial abundance, the exogenous
species will interact with the resident species in s, and its post-invasion
steady-state abundance is denoted as xð1Þi . We propose to solve the
Colonization Outcome Prediction (COP) problem using machine-
learning models that treat the baseline (i.e., pre-invasion) taxonomic
profile xð0Þ as inputs and the steady state abundance of the invasive
species xð1Þ

i as output (Fig. 1B). Mathematically, we intend to learn the
mapping from the baseline taxonomic profile of a community xð0Þ to
the steady state abundance of the invading species xð1Þ

i , i.e.,
φ : xð0Þ 7!xð1Þ

i . In addition, this mapping could help us infer the impact
of each resident species on the colonization of the exogenous species.

We conducted in silico simulations to validate the feasibility of our
approach. We generated synthetic data of colonization outcomes
using the Generalized Lotka–Volterra (GLV) model with N = 100 spe-
cies in the meta-community (see Methods)40. The initial species col-
lection of each sample (i.e., a local community) consists of 30 species
randomly drawn from the (N−1) species pool (the exogenous species is
absent in all the local communities).Wegenerated thebaseline profiles
of local communities by running the GLV dynamics to a steady state.
The exogenous species was then added to each local community, and
its post-invasion abundance was obtained by running the GLV
dynamics to a new steady state.

We can formalize COP as two sub-problems: (1) Classification:
predictwhether anexogenous species can colonize a local community;
(2) Regression: predict the steady-state abundance of an exogenous
species after colonization. Using the synthetic data generated by the
GLV model, we first addressed the classification problem, i.e., pre-
dicting whether the invading species can colonize a community. We
employed threemodels covering representative categories ofmachine
learning: Logistic Regression, Random Forest classifier, and COP-
Neural Ordinary Differential Equations (COP-NODE) classifier (see
Methods). We tuned the complexity of the ecological network (i.e.,
network connectivity) and evaluated the performance of different
models at varying levels of the training sample size (Fig. 1C–E). Here,
the network connectivity represents the probability of two species in
the species pool interactingwith eachother. As expected, we observed
that the predictive performanceofmachine learningmodels improved
with the number of training samples. For network connectivity C = 0.3,
we found that the Area Under the Receiver Operating Characteristic
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Fig. 1 | Prediction of colonization outcomes for complex microbial commu-
nities via the data-driven approach. A Each individual’s microbiome can be
viewed as a local community, a subset of themeta-community ofmicrobial species.
For an exogenous species that invades the local communities, its colonization
outcome (e.g., permissive or resistant) can be highly personalized, depending on
the composition of local communities. B Colonization outcome prediction (COP)
can be solved by learning the mapping from the baseline taxonomic profile to the
post-invasion abundanceof the exogenous species (i.e.,φ : x0 7!x1).C–E Evaluation
of the data-driven approach in solving the classification task of COP. AUROC of

three machine learning models, including Logistic Regression (LR), COP-Neural
Ordinary Differential Equations classifier (NODE), and Random Forest classifier
(RF). F–H Evaluation of the data-driven approach in solving the regression task of
COP. Pearson correlation between the true abundance and the abundance pre-
dicted by three machine learning models, including Elastic Net Linear Regression
(ENET), COP-NODE regressor (NODE), and Random Forest regressor (RF) with
network connectivity C = 0.3, 0.4, 0.5. Error bars are the 95% confidence interval,
the bottom and top of the box are the 25th and 75th percentiles, the line inside the
box is the 50th percentile, and outliers are shown as plots.

Article https://doi.org/10.1038/s41467-024-46766-y

Nature Communications |         (2024) 15:2406 3



curve (AUROC, a perfect classifier has AUROC= 1 and AUROC=0.5 for
random guess) of three machine learning models was above 0.9 with
training sample size Strain =N. For higher network connectivity (e.g.,
C = 0:4 and 0:5), the increased complexity in inter-species interactions
rendered the binary prediction of colonization outcomes more diffi-
cult. Nevertheless, with a sample size on the order of ~O(N) per colo-
nizing species,machine learningmodels were able to achieve accurate
classification of colonization outcomes in synthetic data
(AUROC>0.8).

Next, we addressed the regression problem, i.e., predicting the
steady-state abundance of the exogenous species. For the GLV model
(with the interaction matrix A being invertible, which is almost surely
true for randomly constructed matrices), our analytical derivations
discovered a surprisingly simple linear relation between the post-
invasion abundance of the exogenous species and the pre-invasion
abundance of resident species (Supplementary Text, Fig. S1). Although
the linear relation doesn’t hold for other dynamicalmodels, it suggests
that learning the mapping for COP is feasible by the data-driven
approach, and the number of parameters required for fitting the
relation is on the order of ~O(N). We employed three machine learning
models: Elastic Net Linear Regression (ENET), Random Forest regres-
sor, and COP-NODE regressor (Fig. 1F–H). The predictive performance
was evaluated with Pearson’s correlation coefficient between the pre-
dicted and true abundance (log-transformed), as well as the ratio
between the predicted abundance and the true abundance (Fig. S2).
We systematically examined the predictive performance of three
models at varying levels of network connectivity and training sample
size. Similar to the classification problem, we found that increasing
network connectivity C rendered the regression problem more diffi-
cult. For training sample size Strain = 2N or higher, there was a sub-
stantial improvement in the quantitative prediction of the post-
invasion abundance by ENET and NODE; in contrast, Random Forest
had a poor performance at all sample sizes. Finally, we added varying
levels of noise in the simulated data to assess the robustness of
machine learning models to technical variations (e.g., measurement
errors). For both the classification problem and the regression pro-
blem, we found that the predictive performance of machine learning
models is robust against noise (Fig. S3).

Generation of human stool-derived in vitro microbial commu-
nities with diverse compositional profiles
To systematically study colonization outcomes in complex microbial
communities, we used cultivation of human stool-derived in vitro
communities in multi-well plates41–44 (Fig. 2A, Methods). Briefly, we
cultured gut microbial communities derived from 24 donors to reach
steady states after five rounds of serial passaging in vitro. To increase
the diversity in baseline communities, we treated each donor’s sample
with a single pulse of 12 antibiotics from different classes (Table S1).
After 24 h of antibiotics treatment, in vitro microbial communities
were passaged every 24 h with a 1:200 dilution into freshmedium (Fig.
2A). Overall, we obtained more than 300 baseline communities with
substantial variation in the compositional profiles at the species level
(Fig. 2B, Figs. S4, S5). The compositional profiles of the baseline
communities were stable, with around 40 to 120 co-existing species in
each community (Fig. S6).

For the invasion experiments, we would introduce an exogenous
species into the baseline communities and determine its colonization
outcomeafter 8–10 rounds of serial passaging (Fig. 2C).We conducted
a preliminary experiment to investigate the colonization outcome of
different exogenous species (Fig. S7). We found that E. faecium, A.
muciniphila, and Fusobacteriumnucleatum could successfully colonize
in some communities at varying levels of post-invasion abundance. In
contrast, Streptococcus salivarius, Bifidobacterium breve, and Lactoba-
cillus spp. could not colonize in nearly all the communities we tested.
Moreover, vancomycin treatment significantly altered the colonization

outcomes, rendering the gut microbial communities more susceptible
to invasion (Fig. S7C). Overall, our results support the use of human
stool-derived in vitro communities as amodel experimental system for
studying colonization outcomes.

Colonization outcomes of E. faecium in human stool-derived
in vitro communities
We selected E. faecium as a representative species for colonization
experiments in human stool-derived in vitro communities.E. faecium is
a Gram-positive bacterium that inhabits the gut of humans and other
animals. Some E. faecium strains have probiotic potential45, and recent
studies suggest that it plays a positive role in cancer
immunotherapy46,47. On the other hand, some E. faecium strains cause
opportunistic infections in hospitalized patients with disrupted gut
microbiota48.

We introduced E. faecium to ~300 baseline communities (Fig. S8)
at a dose of 5% relative to the total abundance of resident species. We
passaged all communities for ten rounds to reach the post-invasion
steady state (Methods). We observed that the colonization outcomes
of E. faecium in different communities were persistent during serial
passaging (Fig. S8B). In addition, the composition of in vitro commu-
nities before and after E. faecium invasion is highly reproducible across
three replicates (Fig. S9).

We found that E. faecium was able to colonize 32% of baseline
communities (i.e., permissive), with its post-invasion absolute abun-
dances (estimated by multiplying its relative abundance with the total
biomass OD600) in permissive communities varying over two orders of
magnitude (Fig. 3A). Previous studies suggested that community bio-
mass and diversity are important factors underlying the colonization
resistance to exogenous species49,50. For example, reduced diversity of
the resident community is often linked to pathogen infection in the
human gut or other ecosystems51. Indeed, we found that the biomass
and species richness of the baseline communities exhibited a clear
negative correlation with the post-colonization abundances of E. fae-
cium (Fig. S10). The diversity of the E. faecium permissive communities
was significantly lower than the resistant communities (Fig. 3B, C).
Furthermore, we observed a significant difference between the com-
position of E. faecium permissive communities and resistant commu-
nities (Fig. 3D). The colonization success of E. faecium was highly
baseline-dependent, with substantial variations across different
donors and antibiotics treatments (Fig. S11).

For the regression problem, we need training samples with non-
zero post-invasion abundance. Because E. faecium only colonized in
~30% of baseline communities in our experiments, the number of
samples is insufficient to train the regression models to predict the
post-invasion absolute abundance. To predict the binary colonization
outcomes (permissive vs. resistant) of E. faecium, we employed three
machine learning models, including Logistic Regression, COP-NODE
classifier, and Random Forest classifier (Fig. 3E–G, Fig. S12AB). For
6-fold cross-validation, we used the communities derived from 20
donors (~240 samples) to train the model and the communities
derived from the remaining 4 donors (~60 samples) to evaluate the
model. Random Forest classifier displayed the best performance in
predictingwhether E. faecium could successfully colonize basedon the
species-level community composition (AUROC=0.86, Accuracy =
0.82), followed by COP-NODE classifier (AUROC=0.81, Accuracy =
0.81) and Logistic Regression (AUROC=0.71, Accuracy = 0.75, and the
Accuracy of a naive classifier that predicts E. faecium cannot colonize
in all communities is around 0.7). We also evaluated the performance
ofmachine learning classifiers with a balanced split of training and test
samples, showing that Random Forest remains the best classifier
(AUROC=0.81 for E. faecium colonization, Fig. S13A). For comparison,
we used the community diversity (quantified by the relative species
richness) as the only feature to predict colonization outcome (see
Fig. S14). Our results indicated that the relative species richness alone
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can be used as a predictor, but its prediction performance (with
average AUROC=0.78 and Accuracy = 0.32) is worse than elaborate
classifiers, e.g., Random Forest using the taxonomic profile (with
average AUROC=0.86 and Accuracy = 0.82). Overall, our colonization
experiments of E. faecium in complex human gut microbial commu-
nities validated that the data-driven approach can solve the classifi-
cation problem of COP.

Quantitatively predict the colonization outcomes of A.
muciniphila
To investigate the generality of our approach, we selected A. mucini-
phila as a second representative species for colonization experiments
in human stool-derived in vitro communities. A. muciniphila is a Gram-

negativemucin-degrading bacterium that inhabits the humangut. Due
to its potential beneficial effects on human health52–54, A.muciniphila is
considered a promising probiotic candidate55. A. muciniphila is found
in the gut microbiome of around 30% of adults, and its abundance
varies substantially across individuals56. Similar to the experimental
design of E. faecium, we introduced A. muciniphila to ~300 baseline
communities at a doseof 5% relative to the total abundance of resident
species and passaged all communities for eight rounds to reach the
post-invasion steady state. The colonization outcomeofA.muciniphila
in different communities was persistent during serial passaging
(Fig. S15), and the composition of in vitro communities post A. muci-
niphila invasion is highly reproducible across three replicates
(Fig. S16).
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Fig. 2 | Invasion experiments in human stool-derived in vitro microbial com-
munities. A Schematic representation of in vitro culture of human stool-derived
microbial communities in 96-well plates (Methods). Stool samples from 24 donors
were treated with 12 different antibiotics for 24 h. The control group was not
treatedwith antibiotics. All communities were passaged five times to reach a stable

state, i.e., baseline community profiles (green dot, schematic cartoon below illu-
strated an example of in vitro baseline communities with diverse composition).
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end-point community profiles (red dot) were sequenced to determine the coloni-
zation outcome (C).
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Overall, we found substantial variations in the post-invasion
steady-state abundance of A. muciniphila across different donors and
antibiotics treatments (Fig. S17).A.muciniphila could colonize in93.6%
of baseline communities (i.e., permissive). For permissive commu-
nities, the post-invasion abundance of A. muciniphila displayed a
bimodal distribution (Fig. 4A). We classified the permissive commu-
nities into two subgroups (high vs. low), depending on the post-
invasion abundance of A. muciniphila (abundance threshold at 10�2).
The Shannon diversity (Fig. 4B) and species richness (Fig. 4C) of the A.
muciniphila high permissive communities were significantly lower
than those of the low permissive communities, and there was a sig-
nificant difference between the community composition of the two
groups (Fig. 4D).

We evaluated the performance of machine learning models in
predicting the colonization outcomes of A. muciniphila, both qualita-
tively (classification) and quantitatively (regression). Random Forest
classifier displayed the best performance in binary classification (high
permissive vs. low permissive of A. muciniphila) based on the species-
level community composition (AUROC=0.84), followed by COP-
NODE classifier (AUROC=0.79) and Logistic Regression (AUROC=
0.75) (Fig. 4E–G). To quantitatively predict the post-invasion abun-
dance of A. muciniphila, we employed three machine learningmodels:

ENET, COP-NODE regressor, and Random Forest regressor (Fig. 4H–J,
Fig. S18). In comparison to the other twomethods, the Random Forest
regressor achieved the highest accuracy in quantitative prediction
(Pearson’s correlation coefficient between the predicted and true
abundances ρ =0:74,p<2:2 × 10�16) and successfully recapitulated the
bimodal distribution in the abundance of A. muciniphila. Taken toge-
ther, we demonstrated the generality of the data-driven approach in
predicting baseline-dependent colonization outcomes for complex
microbial communities.

Colonization impact in simulated and experimental
communities
Learning the mapping from the baseline taxonomic profile to coloni-
zation outcomes can help us infer the impact of each resident species
on the colonization of the exogenous species (Fig. 1B). To compute the
colonization impact of regression (classification), we can perform a
thought experiment by introducing aperturbation in the abundanceof
the resident species and use the trained machine learning model to
predict the new colonization outcome of invading species after the
perturbation (Fig. 5A). Negative colonization impact means that a
resident species inhibits the colonization of the exogenous species in a
given local community. In GLV simulations, while the colonization
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curve is shown in dark color. LR: Logistic Regression, NODE: COP-Neural Ordinary
Differential Equations classifier, RF: RandomForest classifier. Error bars are the 95%
confidence interval, the bottom and top of the box are the 25th and 75th percen-
tiles, the line inside the box is the 50th percentile, and outliers are shown as plots.
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impact of resident species was randomly distributed (Fig. 5B), we
found that themedian colonization impact of a resident species across
different local communities was positively correlated to its interaction
strength on the exogenous species (Spearman correlation coefficient
ρ=0:73,p<2:2 × 10�16, Fig. 5C), suggesting that we may use coloniza-
tion impact to identify strongly interacting species.

We used the Random Forest model to evaluate the colonization
impact of all species in human stool-derived in vitro communities on E.
faecium and A.muciniphila (Fig. 5D–G).We inferred thatmost resident
species had a weak negative colonization impact (Fig. 5D, F). Based on
the median colonization impact of a certain resident species across
different local communities, we identified the top-ranking specieswith
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Fig. 4 | The colonization outcomes of A. muciniphila in human stool-derived
in vitro microbial communities are quantitatively discriminable. A The dis-
tribution of A. muciniphila colonization outcomes across permissive communities.
The abundance of A. muciniphila in resistant communities is below the detection
threshold and not shown. Inset: Percentage of high permissive (dark blue color),
low permissive (light blue), and resistant communities (gray) based on A. mucini-
phila colonization outcomes. B Shannon diversity of A. muciniphila resistant,
permissive (low), and permissive (high) communities (ns, not significant,
****p = 1.644e−15, Mann–Whitney U-tests, n = 257 biologically independent sam-
ples). C Species richness of A. muciniphila resistant, permissive (low), and per-
missive (high) communities (ns, not significant, **p =0.002307, ****p = 2.623e−07,
Mann–Whitney U-tests, n = 257 biologically independent samples). D Principal
component analysis (PCoA) plots based on the Bray-Curtis dissimilarity of the
compositional profiles of baseline communities. Color of the point showing the

abundance of A. muciniphila in communities. The difference between highly per-
missive and lowly permissive communities was significant (PERMANOVA Adonis
test, R2 =0:022,p=9:999e� 05). E–G ROC curve of machine learning models in
binary classification (high permissive vs. low permissive) of the colonization out-
comes of A. muciniphila. For each 6-fold cross-validation (ROC curves shown in a
light color), we used the samples from 20 subjects to train each model and the
samples from the remaining four subjects to evaluate the model. The mean ROC
curve is shown in dark color. ENET: Elastic Net Linear Regression, NODE: COP-
Neural Ordinary Differential Equations regressor, RF : Random Forest regressor.
H–J Pearson’s correlation coefficient and the average squared differences between
the predicted and the observed abundance (log-transformed values) of A. mucini-
phila. Error bars are the 95% confidence interval, the bottom and top of the box are
the 25th and 75th percentiles, the line inside the box is the 50th percentile, and
outliers are shown as plots.

Article https://doi.org/10.1038/s41467-024-46766-y

Nature Communications |         (2024) 15:2406 7



negative colonization impact (Fig. 5E, G). Colonization impact on A.
muciniphila was overall less negative than E. faecium, consistent with
our observation that human gut microbial communities were more
permissive to A. muciniphila colonization.

The impact of strongly interacting species on colonization
outcomes
To understand the role of strongly interacting species on colonization
outcomes, we systematically studied the impact of E. faecalis on the
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introducing a perturbation in the abundance of the resident species and used the
trained machine learning model to predict the new steady state abundance of
invading species after the perturbation. A negative colonization impact indicates
that a resident species inhibits the colonization of the invading species. B, C In
simulated data, the colonization impact is randomly distributed. The median
colonization impact of a resident species across different local communities is

positively correlated to its interaction strength on the exogenous species (Spear-
man correlation ρ=0:73,p<2:2 × 10�16Þ. Network connectivity C =0:3, Strian=N = 5.
COP-NODE regressor is used. D, E The distribution of colonization impact on E.
faecium, and the top-ranking species with negative colonization impact (median
across different communities, RF classifier). F, G The distribution of colonization
impact on A. muciniphila and the top-ranking species with negative colonization
impact (median across different communities, RF regressor). Error bars are the 95%
confidence interval, the bottom and top of the box are the 25th and 75th percen-
tiles, the line inside the box is the 50th percentile, and outliers are shown as plots.
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colonization of E. faecium. E. faecaliswas inferred to have the strongest
colonization impact on E. faecium across different baseline commu-
nities (Fig. 5E). Besides, we found that E. faecalis, as well as other
5 species among the top 20 list (including Faecalibacteriumprausnitzii,
Ruminococcus gnavus, Blautia sp., Clostridium sp. L.2.50, and Roseburia
inulinivorans) were predicted by both Random Forest (Fig. 5E) and
NODE (Fig. S19AB) to have a strong impact on E. faecium colonization.
In contrast, Logistic Regression classifier did not identify E. faecalis as a
strong inhibitor (Fig. S19CD), and its predictive performance is sub-
stantially worse than Random Forest and NODE (Fig. 3). The coloni-
zation impact of those top-ranking species is also consistent with the
result of LIMEwhich is a novel explanation technique that explains the
predictions of any classifier57, e.g., the presence of E. faecalis,
F. prausnitzii, and Clostridium perfringens in resistant communities
increases the probability that E. feacium cannot colonize (see
Fig. S19E).

We observed a statistically significant negative correlation
between the abundance of E. faecalis in baseline communities and the
post-invasion abundance of E. faecium (Kendall’s τ= � 0:37,
p= 5:29 × 10�16). In particular, baseline communities derived from
some donors (e.g., S10, S07) had a high abundance of E. faecalis and
were resistant to E. faecium colonization (Fig. 6A).

We found that E. faecalis inhibited the growth of E. faecium in
pairwise co-culture, either in liquid culture or on agar plates
(Fig. S20). Then, we introduced E. faecalis into eight human stool-
derived in vitro communities that were permissive to E. faecium

invasion, using three different types of interventions (Fig. 6B–D,
Fig. S21A): (1) add E. faecalis into the baseline community, followed
by E. faecium on the next day; (2) add E. faecalis and E. faecium on the
same day; (3) add E. faecium into the baseline community, followed
by E. faecalis on the next day. In the control group, we only added E.
faecium. In all three intervention groups, the colonization of E. fae-
cium was significantly inhibited by E. faecalis across different base-
line communities. Also, the inhibitory effect was consistent for two
different E. faecalis strains isolated from human stool samples
(Methods). In comparison, Clostridium symbiosum, a species pre-
dicted to have a neutral impact, did not alter the colonization of E.
faecium (Fig. S21B).

Finally, we explored if the strong inhibition of E. faecalis on
E. faecium could be shaping their distribution in the human gut via
priority effects, i.e., the gut microbiome colonized with E. faecalis
becomes resistant to E. faecium. We performed metagenomic
sequencing of ~120 healthy volunteers in the SIAT cohort (Methods),
whose samples were used to derive the in vitro communities and iso-
late the Enterococcus strains in this study. Indeed, there was a statisti-
cally significant negative correlation between the relative abundance
of E. faecalis and E. faecium in the SIAT cohort (Kendall correlation
τ= � 0:36,p=0:0044, Fig. S22A). A similar pattern was observed in
gut metagenomic samples of four independent cohorts (Kendall cor-
relation τ = −0.36, p = 5.439 × 10−15, Fig. S22B).

Overall, our experimental validations and analysis suggest that
data-driven models can infer species with strong colonization impact

Baseline E. faeciumE. faecalis Baseline E. faecalisE. faeciumBaseline E. faecalis / E. faecium

10 0 0 0 02 22 11 0 1 03 0 0 12 23 01 1 13 1 1 1 1 21 20 2

E. faecalis
E. faecium

B C D

A

E. faecalis
E. faecalis

Fig. 6 | The presenceofE. faecalis in baseline communities inhibits the invasion
of E. faecium. A The post-invasion relative abundance of E. faecium (aqua) is
negatively associatedwith the relative abundanceof E. faecalis (red) across baseline
communities derived from different human subjects (labeled as S01 to S24).
B–D The colonization of E. faecium is significantly inhibited by E. faecalis across
different baseline communities (labeled as B1 to B8). There were three different
intervention groups: (1) add E. faecalis (or C. symbiosum) into the baseline com-
munity, followed by E. faeciumon the next day (B); (2) add E. faecalis and E. faecium

on the same day (C); (3) add E. faecium into the baseline community, followed by E.
faecalis on the next day (D). In the control group, we only added E. faecium. After
five passages, the end-point abundance of E. faecium was measured by qPCR. The
fold change in the end-point abundance of E. faecium (the intervention group
dividedby the control group) is lower than 1 (dashed line), indicating thatE. faecalis
inhibits the colonization of E. faecium. Two different E. faecalis strains, DA462 and
DA894, were used. n = 3 replicates, the error bars are standard error of means.
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and guide the modulation of resident communities to alter the colo-
nization outcomes of exogenous species.

Discussion
Hereweproposed and systematically validated a data-driven approach
to predict colonization outcomes of exogenous species, providing a
powerful tool to inform the management of complex ecosystems.
Pairwise co-culture50,58–60 and synthetic communities17,36,61,62 have been
widely used to study the ecology and function of microbial commu-
nities. These experiments require the isolation and cultivation of
individual species, thus are often limited to simple communities. In
comparison, our approach is based on sampling an ensemble of
complex communities (~100 species, Fig. S4) and using the sampled
communities to infer the mapping between community composition
and colonization outcomes63 by assuming the compositional profiles
represent steady states of the local communities.Wedemonstrate that
the data-driven approach enables accurate function prediction and
system-level understanding of complex microbial communities.

Understanding the colonization resistance of complex commu-
nities is a fundamental question in ecology. In our invasion experi-
ments (~300 local communities and two different exogenous species),
we found that resistance to exogenous species was positively corre-
lated to community diversity, supporting the view that colonization
resistance is an emergent property of complex communities8. Com-
munity diversity (i.e. species richness) alone can provide a reasonable
degree of predictive accuracy (Fig. S14). However, it is less effective
compared to utilizing full taxonomic profiles. While most resident
species had a weak negative impact on the colonization of exogenous
species, we identified E. faecalis as a strong inhibitor of E. faecium. We
validated that introducing strongly interacting species into baseline
communities can alter the colonization outcomes. It should be noted
that the colonization impact is dependent on the community context
(Fig. 5), because it takes into account both direct and indirect effects
on the invading species64, as well as potential higher-order
interactions65,66. Previous studies have shown that strongly interact-
ing species can lead to priority effects67, with important implications
for community assembly in the infant gut microbiome and the for-
mation of community types68,69. Moreover, strongly interacting spe-
cies can be used tomodulate the resident communities to prevent the
colonization of pathogens16 or facilitate the colonization of beneficial
microbes (e.g., probiotics, crop fertilizers)70.

Our results suggest that the colonization resistance of microbial
communities is predictable and tunable via the data-driven approach,
given that training data size is sufficient (on the order of ~O(N))71. For
synthetic data generated by the classical GLV model in community
ecology, we did see that the simple models, e.g., linear regression and
ENET work well for both classification problems (Fig. 1C–E) and
regression problems (Fig. 1F–H). However, those simple statistical
models did not work well in predicting the colonization of A. mucini-
phila (Fig. 4H).We anticipate that realmicrobial communities aremore
complicated than the simple GLVmodel (whichonly includes pair-wise
inter-species interactions). Sophisticated machine learning models
may have to be leveraged to predict colonization outcomes for com-
plex communities. We anticipate that more training samples are
required if high-order interactions are considered. However, those
high-order interactions might be weak and do not significantly impact
the prediction, as the community-function landscapes display a low
degree of ruggedness72. The high-throughput cultivation of gut
microbial communities in vitro provides a powerful approach to
studying the human gut microbiome44,73. In our experiments, the
number of species in the meta-community was ~160, and we profiled
~300 baseline communities for proof-of-concept validation. Meeting
the sample size requirement for gnotobiotic plants is feasible74,75.
However, it could be challenging to gather sufficient training data for
gnotobiotic animals and human cohort studies, depending on the

complexity of the meta-community. In addition to data size, another
critical concern is the technical variability in large-scale experiments76.
In future studies, experimental workflows can be automated to mini-
mize technical variability and ensure data quality for training machine
learning models.

Our study has several limitations. First, we did not account for
potential variations at the strain level77. Previous studies have shown
that the strength of interspecies interactions can vary across different
strains, such as the inhibition of Klebsiella pneumoniae by Klebsiella
oxytoca16,78. We also observed strain-level variations in the inhibition of
E. faeciumby E. faecalis (Fig. 6), and the underlyingmechanism remains
to be elucidated. Second, our invasion experiments in vitro did not
reflect host-mediated interactions, which also contribute to coloniza-
tion resistance in vivo22. Nevertheless, the higher permissiveness to
A. muciniphila than E. faecium in human gut microbial communities
in vitro is consistent with the higher prevalence of A. muciniphila in
metagenomic samples56,79. Third, we assumed that there was a single
post-invasion steady state in simulated and experimental communities.
The colonization outcomes may be influenced by multi-stability in
microbial communities, e.g., successful colonization depends on the
initial abundance of the invading species80,81. Fourth, in our in vitro
experiments, we found that A. muciniphila was able to stably colonize
in the majority of stool-derived communities with relatively high
abundance. It is known thatmucin is the preferred nutrient source ofA.
muciniphila82, so it would be interesting to study to which degree the
colonization of A. muciniphila depends on the mucin concentration
provided in the medium. Lastly, while the data-driven framework can
be generalized to different scenarios, the machine learning models
must be re-trained when the environmental condition changes. In
contrast, mechanism-based models can better deal with changes in
conditions (e.g., pH, nutrient level).

We noted a potential difference between the GLV simulated data
and experimental data: the exogenous species may already be present
in the stool-derived communities, but its steady-state abundance was
below the detection threshold. In this scenario, the introduction of the
exogenous species (~5% of community biomass)may provide a growth
boost (e.g., via some density-dependent mechanism) and enable the
species to co-exist with other species at a higher steady-state abun-
dance (i.e., multiple stable states). Moreover, there is a discrepancy
between the performance of Random Forest in gGLV simulated data
and real data. Potential explanations include: (1) the dynamics of the
GLV model may be different from that of experimental communities.
For instance, when the GLV model has globally stable equilibria, the
final state is solely determined by the species collection. (2) the dis-
tribution of interspecies interaction strength used in the GLV model
may differ from experimental communities. In experimental commu-
nities, a few strongly interacting species may dominate the contribu-
tion to the colonization resistanceof exogenous species. In contrast, in
simulated data, the contribution is more evenly distributed among
resident species.

Our data-driven approach is independent of any dynamics model
to predict colonization outcomes of exogenous species for complex
microbial communities without detailed knowledge of the underlying
ecological and biochemical process.We anticipate that the data-driven
approach can be generalized to predict and engineer the function of
microbial communities (i.e., mapping from community composition
to function)37,71,83,84. Similarly, this approach can be used to predict the
response of microbial communities to various types of perturbations
(i.e., mapping from community composition to the shift in composi-
tion/function), such as the baseline-dependent response of the human
gut microbiome to prebiotics, food additives, etc., refs. 85,86. In par-
allel to the breakthroughs in predicting the properties of complex
biomolecules, we envision that the data-driven approach will lead to a
paradigm shift in studying the stability and function of complex eco-
logical systems and guide important applications in healthcare (e.g.,
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personalized nutrition based on the human gut microbiome) and
agriculture.

Methods
Collection and preservation of human stool samples
All humanparticipants at SIAT (referred to as “SIAT cohort”) signed the
informed consent form in the present study which was approved by
the Shenzhen Institute of Advanced Technology, Chinese Academy of
Sciences (SIAT-IRB-200315-H0438). Stool sampleswere collected from
healthy human donors and were immediately transferred to an anae-
robic workstation (85%N2, 10%H2 and 5%CO2, COY). 10 g of each stool
sample was suspended into 50mL 20% glycerol (v/v, in sterile
phosphate-buffered saline, with 0.1% L-cysteine hydrochloride),
homogenizedbyvortexing, and thenfilteredwith sterile nylonmesh to
remove large particles in fecal matter. Aliquots of the suspension were
stored in sterile cryogenic vials and frozen at −80 °C for long-term
storage until processing for DNA extraction and culturing so that the
stool-derived community could be revived (thawed) for repeatable
experiments.

Cultivation of human stool-derived in vitro communities
20ul stool slurries aliquot stocks were inoculated into 980μLmedium
containing antibiotics in triplicate into 96 deep-well plates (PCR-96-
SG-C, Axygen) for static culturing at 37 °C for 24 h in the anaerobic
workstation. The concentration for each antibiotic was evaluated as
described in the SI method. The medium (MiPro) used for in vitro
culturewasmodified fromprevious studies, whichcomprises: peptone
water (2.0 g /L, CM0009, Thermo Fisher), yeast extract (2.0 g /L,
LP0021B, Thermo Fisher), L-cysteine hydrochloride (1 g/ L), Tween 80
(2mL/L), hemin (5mg/L), vitamin K1(10 μL/L), NaCl (1.0 g /L), K2HPO4

(0.4 g/L), KH2PO4 (0.4 g/L), MgSO4⋅7H2O (0.1 g/L), CaCl2⋅2H2O
(0.1 g/L), NaHCO3 (4 g/L), porcine gastric mucin (4 g/L, M2378, Sigma-
Aldrich), sodium cholate (0.25 g/L) and sodium chenodeoxycholate
(0.25 g/L)87. After 24h of antibiotics treatment, in vitro microbial
communities were passaged every 24 h with a 1:200 dilution into fresh
medium using the automated 96-format Thermo Scientific™ ClipTip™
(Thermofisher) pipette (every 24 h, 5μL of this saturated culture was
transferred into 995μL of fresh medium). After 5 days of passaging,
500μL of the cultures were mixed with 500μL sterile 40% glycerol
(v/v, in sterile phosphate-buffered saline, with 0.1% L-cysteine hydro-
chloride) in crimp vials, sealed, and stored as baseline communities at
−80 °C for further usage and long-term storage. After each transfer,
the remaining samples were centrifuged to remove the supernatant,
and the pellets were stored at −80 °C with a plastic seal until DNA
extraction. The in vitro microbial community biomass was evaluated
by measurement of optical density (OD600) with an Epoch 2 plate
reader (BioTek) after 24 h of incubation.

Generation of baseline communities with diverse taxonomic
profiles
To examine if in vitro stool-derived communities can reach stable
states and display diverse compositions, we collected stool samples
from healthy donors and grew them in MiPro medium, which has
shown its capability in capturing and maintaining the diversity of
in vitro stool-derived communities42,87,88. We inoculated the stool ali-
quots into 96-well plates with growthmedia and incubated them in an
anaerobic workstation in triplicate, passing them every 24 h with a
1:200 dilution. The microbial communities were assessed by shallow
metagenomic sequencing, which is a cost-effective method for char-
acterizing species-level composition of microbiota samples89. We col-
lected time-series data to examine the dynamics of community
establishment on the in vitro platform. The metagenomic analysis
revealed that, after an initial period of approximately four days, the
composition profiles of almost all in vitro communities reached a
stable and reproducible steady state. Our analysis also showed that the

stool-derived in vitro communities were highly complex in their
compositions and could retain personalized gut microbiota variation,
as evidenced by species-level time-series compositions of 4 repre-
sentative communities derived from 4 donors over ten rounds of
in vitro passaging in MiPro (Fig. S6A, B).

From the fecal samples of SIAT cohort, we selected 24 donors in
which E. faecium and A. muciniphila were not detected by metage-
nomic sequencing. To increase the diversity in baseline communities,
we treated each donor’s sample with 12 antibiotics from different
classes90 (Fig. S4). Those stool-derived communities were treated with
antibiotics for 24 h on Day 0 (i.e. a single pulse). Afterwards, the
communities were passaged five times (from Day 1 to Day 6) in
antibiotic-free medium to reach a stable state before introducing the
exogenous species. Different antibiotic classes target distinct spectra
of bacteria, leading to a remodeling of the community in different
directions90. We selected antibiotics from different classes as descri-
bed in the EUCAST databases91. The optimal concentrations of the
antibiotics were determined based on a previous study that evaluated
the activity spectrum of antibiotic classes on human gut
commensals90. We tested at least three different concentrations for
eachantibiotic andevaluated the optimizeddose basedon its ability to
partially inhibit (50–80%) the overall growth of stool-derived bacteria
as measured by OD600 after 24 h of incubation. To ensure reproduci-
bility, we screened at least three different stool aliquot stocks as bio-
logical duplicates for each antibiotic. We measured the OD600 of each
well every 30min using an Epoch 2 plate reader (BioTek) and collected
growth curves up to 24 h.

Bacterial strains
Enterococcus faecium, Enterococcus faecalis, Clostridium symbiosum,
Streptococcus salivarius, and Bifidobacterium breve strains were iso-
lated from fecal samples of SIAT cohort. Taxonomy of isolates from
SIAT cohort was confirmed by whole genome sequencing. Genome
sequences have been deposited in PRJEB60398 (see “Data avail-
ability”). Lactobacillus plantarum HNU08292, Lactobacillus paracasei
HNU31293 was provided by Prof. JiachaoZhang fromHainan University.
Akkermansia muciniphila (ATCC BAA-835) and Fusobacterium nucle-
atum (ATCC 25586) were purchased from ATCC.

Profiling the colonization outcomes of different exogenous
species
We conducted a preliminary experiment to investigate the coloniza-
tion outcome of gut microbial communities to different exogenous
species (Fig. S7), including: E. faecium, A.muciniphila94, F. nucleatum, S.
salivarius, B. breve, and Lactobacillus spp. (L. plantarumHNU082 and L.
paracasei HNU312). We identified 12 stool samples from healthy
donors in which the selected invader species were undetectable in the
microbiota. We then cultured the stool samples in vitro and exposed
them to antibiotics before introducing the exogenous species (~5% of
total biomass, approximately 106 CFUs for each well) into the com-
munity. We used shallow metagenomic sequencing to monitor the
time-series and final community composition.

Invasion experiments of E. faecium and A. muciniphila
To conduct invasion experiments, frozen stocks of E. faecium (strain
SIAT_DA797) and A. muciniphila (strain ATCC BAA-835) were grown
anaerobically in BHI and mGAM at 37 °C, respectively, until stationary
phase. In vitro microbial baseline communities, stored at −80 °C, were
thawed and revived by adding 20μL of the stocks to 980μL of MiPro
medium in deep-well plates. After incubation for 24 h at 37 °C, com-
munity biomass was measured by OD600, and 5μL of the saturated
cultures were diluted into 1mL of fresh MiPro in a new plate. Each well
was invaded with the respective amount of E. faecium or A. mucini-
phila, with biomass representing 5% of the inoculated communities’
average biomass. The inoculumwaspassaged every 24hof incubation,
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with a 1:200 dilution into fresh medium for 8–10 passages until the
community reached a steady state (10 passages for E. faecium, 8 pas-
sages for A. muciniphila, based on data from Fig. S6). After each pas-
sage, the remaining samples were centrifuged to remove the
supernatant, and the pellets were stored at −80 °Cwith a plastic seal in
plate until DNA extraction.

Metagenomic sequencing and taxonomic profiling
DNA was extracted from 200mg of stool samples using the QIAamp
Power Fecal Pro DNA Kit (Qiagen) according to the manufacturer’s
instructions. For stool-derived in vitro-cultured samples, 500 uL of
cultured samples were used for DNA extraction with the DNeasy
UltraClean 96 Microbial Kit (Qiagen) using an automated protocol at
Tecan Freedom EVO 200. The Hieff NGS® OnePot II DNA Library Prep
Kit for Illumina® (Yeasen) was used for library preparation, following
themanufacturer’s instructions. The resulting library DNAwas cleaned
up and size-selected with Hieff NGS® DNA Selection Beads (Yeasen),
and quantifiedusing the dsDNAHigh Sensitivity kit on aQubit (Thermo
Fisher). Libraries were further pooled together at equal molar ratios,
and the purity and library length distribution were assessed using
Bioanalyzer High Sensitivity DNA Kit (Agilent). Sequencing was per-
formed on the Illumina HiSeq X Ten system (150 bp paired-end reads;
AnnoroadGeneTechnologyCo.), with a target sequencing depth of 0.3
Gbp raw data per sample, as recommended by previous studies89.

Samples with fewer than 105 clean reads were excluded from
downstream analysis. Prior to analysis, reads were trimmed using the
following criteria: (1) Removing reads with more than 50% of the base
below quality score 19; (2) Removing reads with more than 5% of the
base being N; (3) Discarding paired-end reads if either of the paired
reads did not meet the above criteria. Microbial community compo-
sition from metagenomic sequencing data was generated using the
SHOGUN pipeline and the RefSeq database version 82, as described in
previous studies89,95. Species-level abundance profiles were filtered by
using a relative abundance threshold of 0.0001 (0.001) for all taxa in
colonization prediction of E. faecium (A. muciniphila), and those low-
prevalence taxa (present in less than 20% samples) were further fil-
tered to reduce the feature number. The colonization outcomes were
evaluated based on the invader’s absolute abundance in the commu-
nity, which was estimated by multiplying the relative abundance and
theOD600 value (OD600 × relative abundance). To ensure repeatability,
samples with Pearson correlation below 0.8 among replicates were
excluded from COP analysis. This resulted in the exclusion of 1.8% of
samples for E. faecium and 1.3% for A. muciniphila.

Quantification of the relative abundance of E. faecium and A.
muciniphila by metagenomic sequencing
To confirm the accuracy of shallow metagenomic sequencing in
quantifying the relative abundance of E. faecium and A. muciniphila, a
spike-in experiment was conducted (Fig. S23A). In this experiment, a
predefined amount of bacterial DNA fromthe target specieswas added
to a metaDNA sample extracted from an in vitro community derived
from human stool. ThismetaDNA sample was used as the background,
since it has been previously sequenced and did not contain the target
species. The spike-in DNA of the target species (E. faecium or A.
muciniphila) was 1:10 diluted for eight times and was added to the
microbialmetaDNA to amixedDNAsample (5μLof target speciesDNA
into 30 ng of microbial metaDNA). Three replicates were made for
each sample. The mixed DNA was then used for library construction
and metagenomic sequencing. By comparing the detected relative
abundance generated by shallow metagenomic sequencing with the
expected abundance, the accuracy and sensitivity of our workflow
were determined. The detection threshold of E. faecium is 0.0001
(Fig. S23B) and the detection threshold of A. muciniphila is 0.001
(Fig. S23C). Our results showed that the quantification of the relative

abundance of the two target species using the shallow metagenomic
sequencing pipeline is accurate and reproducible.

Statistical analysis
Statistical details for each experiment are indicated in the figure
legends. Pearson correlation coefficients and the p-values for testing
replicates communities’ composition correlation were calculated on
log10(relative abundance). Kendall correlation coefficients and the
p-values for testing E. faecium and E. faecalis abundance correlation
were calculated on log10(relative abundance). Alpha diversity of the
community was calculated on species profile using the observed spe-
cies richness and Shannon index. The composition of microbiota and
variations in colonization outcomes between communities were ana-
lyzed by performing PCoAusing the Bray-Curtis dissimilaritymetric on
the species-level abundance profile. Similarities among groups were
determined by permutational multivariate analysis of variance (PER-
MANOVA, Adonis test) based on the Bray-Curtis dissimilarity96, with
999 permutations used to test the significance. These analyses were
conducted using the vegan97 package (version 2.6–4). Non-parametric
Mann–Whitney U-test were used to conduct pairwise comparisons
between two groups98. P values of less than 0.05 were considered as
statistically significant, as indicated in the figures (ns, not significant,
*p < 0.05, **p <0.01, ***p <0.001, ****p < 0.0001). Data analysis and
plotting was performed in R version 4.1.2 and R studio version
2022.12.0 + 353 using the packages dplyr, ggpubr, vegen, and
ComplexHeatmap.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All sequencing data generated in this study are available from Eur-
opean Nucleotide Archive (ENA) under study accession number
PRJEB60398. Sample accession code, metadata and related source
data are provided as a Source data file with this paper. Source data are
provided with this paper.

Code availability
The code for simulations and data analysis is available at https://
github.com/spxuw/COP.
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